TW201213883A - Optical laminate, polarizing plate, display device, and method for making an optical laminate - Google Patents

Optical laminate, polarizing plate, display device, and method for making an optical laminate Download PDF

Info

Publication number
TW201213883A
TW201213883A TW100112168A TW100112168A TW201213883A TW 201213883 A TW201213883 A TW 201213883A TW 100112168 A TW100112168 A TW 100112168A TW 100112168 A TW100112168 A TW 100112168A TW 201213883 A TW201213883 A TW 201213883A
Authority
TW
Taiwan
Prior art keywords
optical
functional layer
phase
optical functional
solvent
Prior art date
Application number
TW100112168A
Other languages
Chinese (zh)
Other versions
TWI454753B (en
Inventor
Hideki Moriuchi
Takayuki Nakanishi
Chikara Murata
Original Assignee
Tomoegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Co Ltd filed Critical Tomoegawa Co Ltd
Publication of TW201213883A publication Critical patent/TW201213883A/en
Application granted granted Critical
Publication of TWI454753B publication Critical patent/TWI454753B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

This invention provides an optical laminate having a structure capable of providing excellent anti-glare property, and a dark tone in a bright room and a high dark room contrast, and also a stable productivity. This invention further provides a method for making such an optical laminate, and a polarizing plate and a display device having such an optical laminate. The optical laminate of this invention is constituted by laminating an optical-functional layer on an optically pervious substrate, the optical-functional layer having a first phase containing a relatively large amount of resin component, a second phase containing a relatively large amount of inorganic components, and microparticles, wherein the second phase is disposed specifically around the microparticles.

Description

201213883 六、發明說明: 【發明所屬之技術領域】 本發明係有關以第二相集中在構成光學積層體的光學 功能層的微粒周圍為特徵的光學積層體、偏光板、顯示裝 置及光學積層體的製造方法。本發明的光學積層體可以設 置在液晶顯示器(LCD)、電漿顯示器(PDP)、有機電致發光 顯示器(0LED)等的顯示器表面,或作為顯示器的一個構成 構件使用,為了使在構成0LED的有機EL層中產生的光向 有機EL外輸出的放率提高,可以良好地使用在其觀察面一 側。特別是關於重視防眩性、明室下的黑色、暗室對比度 這樣的辨認性的光學積層體,該光學積層體能夠適合用於 例如電視用途的顯示器等。 【先前技術】 液晶顯示裝置(LCD)、電漿顯示器(PDP)等顯示裝置, 由於在顯示裝置表面上螢光燈等室内照明、來自窗戶的太 陽光的入射、操作者的影子等的映入,使得圖像的辨認性 受到干擾。因此,在這些顯示器表面,為了使圖像的辨認 性提高,可以在最表面設置形成了能夠擴散表面反射光、 抑制外來光的鏡面反射、防止外部環境的映入(具有防眩性) 的微小凹凸結構的光學積層體等功能性膜。 這些功能性膜,通常製造銷售的是在聚對苯二甲酸乙 二酯(以下稱“PET”)、三醋酸纖維素(以下稱“TAC”)等 的透光性基體上設置有形成了微小凹凸結構的光學功能層 的膜、在光擴散層上層疊了低折射率層的膜,通過層構成 4 322931 201213883 的組合提供所希望的功能的功能性膜關發—直在進行 中。 在顯示器的最表面使用光學積層體的情況下,在明亮 的房1f7使用時’由於光的擴散’存在黑色顯示的圖像有些 發白、對比度降低關題。因此,需要一種即使防眩性降 低也能夠達到高對比度&amp;光學積層體(高對比度ag)。 使光學積層體的對比度提高的方法,例如可舉出使表面的 凹凸形狀最佳化。 作為在光學功能層表面形成凹凸形狀的方法,通常為 在士述透光性基體上塗布添加了微㈣光學功能層形成用 塗料後’對該光學功能層形成材料照射紫外線以形成光學 功能層(參照例如專利文獻丨)。 此外’也有通過使光學功能層中含有的微⑬的粒徑和 表面凹凸形狀(傾斜角)最佳化從而兼顧防眩性和對比度的 方法(參照例如專利文獻2)。 卜還有通過使用多種樹脂成分不含微粒地形成表 面凹凸’通過利用該樹脂成分的相分離特性形成帶狀結構 從而兼顧防眩性和對比度的方法(參照例如專利文獻3)。 [先前技術文獻] [專利文獻] 專利文獻1 :日本特開2002-196117號公報 專利文獻2 :日本特開2008-158536號公報 專利文獻3 :日本特開2008-225195號公報 【發明内容】 322931 201213883 [發明要解決的課題] 如專利文獻1,在使用含有微粒的光學功能層的情況 下達到防眩性和防閃光的效果。然而,由於在光^功^層 中含有的微粒的界面和基於該微粒的形狀的光學功沪層^ 表面凹凸部分產生光的散射,因此存在難以達到高 的問題。 如專利文獻2’即便在使微粒的粒徑和表面凹凸的傾 斜角最佳化的情況下,也存在對比度不充分的問題。 如專利文獻3,對於利用多種樹脂成分的相分離以在 表面形成帶狀凸部的方法,存在製造穩定性方面的問題。 因此,本發明的目的在於提供一種具有不僅防眩性 明室下的黑色優異,而且能夠實現高的暗室對比户的奸構 體、且製造穩定性優異的光學積層體及該光學積^體 造方法。另外,本發明的目的還在於提供一種具傷該光學 積層體的偏光板及顯示裝置。 ~ [解決課題的方法] 本發明通過下述技術構成能夠解決上述課題。 (1) 一種光學積層體,其特徵在於,其為在透光性基體 上層疊有光學功能層的光學積層體,該光學功能層具有: 含有相對多的樹脂成分的第一相、含有相對多的無機成分 的第二相、和微粒,第二相集中在該微粒的周圍。 (2) 如前述(1)所述的光學積層體,其中,前述無機成 分為無機奈米微粒。 (3) 如前述(1)所述的光學積層體,其中,前述第二相 322931 6 201213883 為無機奈米微粒的聚集體。 (4) 如前述(1)所述的光學積層體,其中,前述第二相 含有0.2質量%以上的無機成分。 ~ (5) —種偏光板,其特徵在於,在構成前述(1)至(4) 中任-項所述的光學積層ϋ的透光性基體上層#有偏光基 體。 土 (6) -種顯示裝置,其特徵在於,具備有前述⑴至⑷ 中任一項所述的光學積層體。 ⑺-種光學積層體的製造方法,其特徵在於,經過如 下步驟:在透光性基體上塗布包含有樹脂成分、無機成分、 微粒、第1溶劑和第2溶劑的溶液,隨著使第i溶劑 2溶劑揮發而產生對流的乾燥步驟;以及將經乾燥的 硬化來形成光學功能層的硬化步驟。 、 [發明效果] 根據本發明’能夠提供-種具有不僅防眩性、明 的黑色優異且能夠實現高的暗室對比度的結構體、且 穩定性優異的光學積層體及該光學積層體的製造方法。w 外’能夠提供—種具備該光學積層_偏光板及顯示襄置另 進一步地,根據本發明,能夠提供可適合用於 對比度的電視用途的光學積層體。 、同 【實施方式】 以下說明本發明。構成本發明的光學功能層具 聚集結構。第1圖為示意地表示光學功能層的結構的圖。 (a)和(b)為表示光學功能層的表面結構的平面圖,(幻和(幻 322931 201213883 為表示光學積層體的側截面結構的側截面圖。 以往的海島結構的光學魏層,⑹和(d)為具有無規聚集 結構的光學功能層。 由於構成本發明的光學功能層只要至少具有第一相和 第二相即可,因此,光學功能層也可以具有第三相、第四 相,對構成光學功能層的相的數量沒有限定。例如光學功 能層可以具有相機結構。具體可舉出在第丨圖((1)的光學功 能層16的凹凸上形成其它的相(例如第三相)的層。 構成本發明的光學功能層如第i圖(13)和(d)所示,至 少具有含有相對多的樹脂成分的第一相丨和含有相對少的 該樹脂成分(含有相對多的無機成分)的第二相2。該第二 相2各自以不同的大小和形狀存在。構成光學功能層的第 一相和第二相在三維空間錯綜複雜地存在。 此外,構成本發明的光學功能層16中存在微粒3。在 該微粒3的周圍幾乎不存在構成光學功能層16的第一相 1,而存在第二相2。也就是說,第二相2集中在構成光學 功忐層16的微粒3的周圍。第二相2集中在微粒3的周圍 可通過使用激光顯微鏡、SEM(掃描電子顯微鏡)、EDS(能量 分散型X射線分光器)來進行確認。 本發明中,“第二相集中在微粒的周圍,,是基於從光 學積層體的光學功能層面觀察的SEM結果來判斷。首先, 從該SEM結果選擇任意1〇點的微粒。接著,從各個微粒的 中心到該微粒長軸的10倍大小的同心圓内存在的第一相 和第二相中,求出第二相所占的比例。接下來,算出在任 322931 8 201213883 意10點的同心圓内的第二相所占比例的平均值。如果該平. 均值和比較對照相比相對較高,則符合“第二相集中在微 粒的周圍”’如果該平均值和比較對照相比相對較低,則 不符合第二相集中在微粒的周圍,,。 比較對照根據上述SEM結果求出。比較對照係將第一 相中存在的10點的某點為中心而對應上述各個微粒長軸 的10倍大小的同心圓。其中,將10點的某點全部設置在 該同心圓内不含微粒的地方。由此,算出10點的某點的同 〜圓内的第二相所占比例的平均值。 本發明中’光學功能層包含第一相和第二相,無規聚 集結構是指第一相和第二相在三維空間互相錯綜複雜地存 在,該第二相集中在微粒的周圍的特異的結構體。 如第1圖(c)所示,以往,光學功能層15是在透光性 基體20上,利用微粒3〇、3丨的形狀來形成表面凹凸。也 就疋說,由於在微粒30、31上存在的樹脂因該微粒的 形狀而凸起,而在不存在微粒30、31的部分樹脂40不凸 起,從而凸部分和凹部分交替形成,因此光學功能層15的 表面凹凸是斜率大的結構。另外,第1圖(a)、(c)中,在 多個微粒聚集存在而形成表面凹凸時,其表面凹凸也是斜 率大的結構。 相對於此’就本發明的光學功能層16而言,由於第二 相2集中在微粒3的周圍,與第1圖(a)和(c)中所示的以 在的光學功能層相比,能夠減少細微的凹凸,從而能夠提 高高防眩性和明室下的黑色。這是由於:構成本發明的光 9 322931 201213883 =功能層,由於在第一相上形成比較平 =一相上既提高明室下的黑色又實現高的暗室對比度: 過ί入第二相中的微粒形成凸部分,㈣進人該第 一相中的微粒達到防眩作用。 第-=第集中在微粒的周園,使微粒存在於 ,會在光學功能層的多個地方形 =凹凸數量增多)’因此光學功能層會發白, :凹=微粒的光學功能層,由於難以控制表 量和高度等,會使製造變的困難,因此不佳。 構成本發明的光學功能層,只要 為主要結構即可,也可以例如部分存在m聚集結構作 結構)β 其匕、,,〇構(例如海島 電子顯^發明中形成的無規聚集結構進行金墓鑛後,通過 形成了表面凹凸的Li 予功能層中含有的微粒 後,=使中形成的無規聚集結構進行石炭蒸錄 面的元素=行觀察’可以大致確認碳蒸链 素,通過例如料序數大的开夺顯-ί鍵面上存在多種元 的元素41-、原子序數的素顯不為白色、原子序數小 示元素的I:黑色等的顏色區分’從而可用顏色的濃淡表 構,^外、,對於本發明中形成的光學功能層和無規聚集結 表面過進行EDS面掃描,可以確認在塗膜(光學功能層) 塗犋(光學功能層)的截面存在的元素。該EDS面掃 322931 10 201213883 , 描可以對特定元素(例如:碳元素、氧元素、矽元素等)分 佈多的地方進行顏色顯示。 77 通過使用上述電子顯微鏡的觀察以及EDS面掃描,可 以確認無規聚集結構的凹凸結構、特定元素的分佈。由此, 可以確認例如在表面凹凸的凸部分中有某特定元素的多數 分佈等。 使用第2圖、第4圖再稍微具體地進行說明。第2圖 和第4圖為對後述實施例!中製成的光學功能層的表面狀 態在同-視野中拍攝的圖’該光學功能層由樹脂成分、無 機成分和微粒構成。 第2圖為對光學功能層表面進行了碳蒸鐘的卿照 片。反射電子檢測器中顯示的圖像是將由在光學功能層表 面含有的成分引起的反射電子作為圖像來顯示。 反射電子疋和原子序數有關的,可以通過例如原子序 數大的元素顯示為白色、原子序數小的元素顯示為黑色等 的顏色區分來顯示。如第2圖所示,光學功能層中的各元 素不是,表面水平方向上均句存在,而是由原子序數大的 元素3里相對較多的部分和含量相對較少的部分組成。 、、第4圖疋表不光學功能層表面的通過腿所得的無機 成刀(Si)的面掃描結果的圖,所含有的&amp;成分的量通過顏 色的濃/炎表不。如第4圖所示,就以成分而言,也是由含 量相對較夕的部分和含量相對較少的部分組成。另外,第 4圖中為7具體例示而表示了石夕(Si)的面掃描結果,但也 可以表7F出其它的無機成分元素、樹脂(有機物)成分的面 322931 11 201213883 掃描結果。關於第4圖所示的面掃描 條件有m料無機料 、&quot;也與檢測 :::。:就 含第一相和第二相這兩相的光學: ::層:’第一:包含90質量%以上的樹脂成分和無機成 刀,第二相包含小於99.8質量0/〇的樹脂成分和〇 以上的無機成分。第-相中含有的樹脂成分宜為95質量〇/ 2上者,進-步宜為99質量%以上者。第二相中含有的J 機成分宜為1質量%以上者’進-步宜為5質量%以上者: 特別宜為1〇質量%以上者。第二相中含有的樹脂成分宜為 小於99質量%者’進-步宜為小於95質量%者,特別宜為 小於90質量%者。對於光學功能層中含有的無機成分的 量,與第一相相比,第二相中含有更多。 樹脂成分的含量相對較多的部分(第2圖的顏色濃的 刀)中,樹脂成分以外的成分的含量相對地減少(第一 相)。 另一方面,樹脂成分的含量相對較少的部分(第2圖的 顏色淡的部分)中,樹脂成分以外的成分的含量相對地增多 (第二相)。 也就是說,本發明的光學功能層是第一相和第二相錯 综複雜地存在的層,是具有一種成分變少則其它成分變多 這樣互補關係的層。 此外,第2圖、第4圖為表示光學功能層的表面水平 方向的各成分的含量的圖,在表示光學功能層的垂直方向 (厚度方向)的各成分的含量的情況下,也同樣可以得到表 12 322931 201213883 示互補關係的結果(第3圖)。 〈形成無規聚集結構的方法〉 月的無規聚集結構可以利用無機成分的聚隼體倬 的對流而無規地集,在微粒周圍= 和第、錢成分、微㈣,(第1溶劑 U、劑)的溶液、伴隨著溶劑(第i溶 的揮發而產生對㈣賴步驟;以及將 而形成光學功能層的硬化步驟。更具體而言== =透先性基體上塗布前述溶液、使溶劑從塗布層蒸發而 楚,==和對流的併用之詳細的機制未能解釋清 ⑴通過伴隨著溶_發時的對流的轉 後的塗布層中產生對流域。 先在塗布 ⑵接者’各個對流域内產生無機材料 =間^巨大化,但在對流的域壁上聚= =::::的產生和時間的推移’,為核使得 ⑶作為其結果’可適度保持聚集體的大小,通過 學功能層内散佈這些轉雜㈣絲規聚集結構。 通過伴隨本發明中的無規聚集結構的表面凹凸 實現防眩性、明室對比度和暗㈣比度的兼顧,這是 的海島結構中的表面凹凸難以實現的。 322931 13 201213883 以下,對每個構成本發明的層可適用的材料加以說明。 〈透光性基體〉 作為本發明最佳實施方法所涉及的遷光性芙體,口要 為透光性則沒有特別限定,也可以使用石英玻$、^玻 璃等玻璃,可以適於使用PET、TAC、聚蔡二甲酸乙二醋 (PEN)、聚曱基丙稀酸曱醋(PMMA)、聚碳峻酯(pc)、聚 胺(pi)、聚乙烯㈣、聚丙稀⑽、聚己歸醇(pVA)、聚氣 乙烯(PVC)、環烯烴共聚物⑽)、含降w _脂、丙稀 酸樹脂、聚醚砜、赛璐玢、芳香族聚醯胺等的各種樹脂膜。 此外,用於PDP、LCD時,更宜使用選自PET膜、TAC膜及 含降冰片烯樹脂膜的1種。 這些透光性基體的透明性越高則越良好,作為全光線 透過率(JISK7105)可為80%以上,更宜為以上。此外, 作為透光性基體的厚度,從輕量化的觀點考慮宜為薄的類 塑,而考慮其生產率、操作性時,宜使用丄至7〇〇//m範圍 的基體’更宜為25至25〇em者。 通過在透光性基體表面實施鹼處理、電暈處理、電漿 處理、賤射處理等表面處理、表面活性劑、石夕烧耦合劑等 底漆塗布、矽蒸鍍等薄膜乾式塗布等,可以使透光性基體 和光學功能層的密合性提高,使該光學功能層的物理強 度、耐藥性提高。此外,在透光性基體和光學功能層之間 設置其它層的情況下,也可通過上述同樣的方法,使各層 界面的密合性提高,使該光學功能層的物理強度、耐藥性 提高。 14 322931 201213883 〈光學功能層〉 光學功能層為含有樹脂成分和無機成分,並使該樹% 成分硬化而形成的層。光學功能層含有微粒(無機微教、_ 機微粒)。 (樹脂成分) 作為構成光學功能層的樹脂成分,可以沒有特別限制 地使用作為硬化後的皮膜具有充分的強度且具有透明性@ 物質。作為前述樹脂成分可列舉如:熱硬化型樹脂、熱塑 型樹脂、電離輻射線硬化型樹脂、二液混合型樹脂等,這 些中’宜通過利用電子束、紫外線照射的硬化處理和簡易 的加工操作能夠高效率硬化的電離輻射線硬化型樹脂。 作為電離輻射線硬化型樹脂,可使用具有丙烯酿基、 曱基丙烯醯基、丙烯醯氧基、曱基丙烯醯氧基等自由基聚 合性官能基及/或環氧基、乙稀喊基、氧雜環丁统基等陽離 子聚合性官能基的單體、低聚物、預聚物、聚合物,這此 可以以單獨形式或者適當混合的組成物的形式來使用。作 為單體的例子,可舉出:丙烯酸曱酯、曱基丙烯酸曱酸、 曱基丙烯酸甲氧基聚乙二酯、曱基丙烯酸環己酯、甲基汚 烯酸苯氧基乙酯、乙二醇二曱基丙烯酸酯、二新戊四醇六 丙烯酸酯、三羥曱基丙烷三曱基丙烯酸酯、新戊四醇三丙 烯酸酯等。作為低聚物、預聚物,可舉出:聚酯丙烯酸酯、 聚胺酯丙烯酸酯、多官能胺基甲酸乙酯丙烯酸酯、環氧两 烯酸酯、聚醚丙烯酸酯、醇酸丙烯酸酯、三聚氰胺丙烯酸 醋、有機矽丙烯酸酯等丙烯酸酯化合物;不飽和聚輯、 322931 15 201213883 二醇二縮水甘油醚、丙二醇二縮水甘油醚、新戊二醇二縮 水甘油醚、雙酚A二縮水甘油醚、各種脂環式環氧樹脂等 環氧系化合物;3-乙基-3-羥基曱基氧雜環丁烷、1,4-雙 {[(3-乙基-3-氧雜環丁烷基)曱氧基]曱基}苯、二[1-乙基 (3-氧雜環丁烷基)]曱醚等氧雜環丁烷化合物。作為聚合 物,可舉出:聚丙烯酸醋、聚胺S旨丙烯酸S旨、聚S旨丙烯酸 酯等。這些可以單獨使用、或多種混合使用。 這些電離輻射線硬化型樹脂中,官能基數為3個以上 的多官能單體可以提高硬化速度、使硬化物的硬度提高。 此外,通過使用多官能胺基曱酸酯丙烯酸酯,可以賦予硬 化物的硬度、柔軟性等。 作為電離輻射線硬化型樹脂,可以使用電離輻射線硬 化型氟化丙烯酸酯。由於電離輻射線硬化型氟化丙烯酸酯 與其它氟化丙烯酸酯相比較為電離輻射線硬化型者會引起 分子間的交聯,因此耐藥性優異,即使在皂化處理後也達 到表現充分防污性的效果。作為電離輻射線硬化型氟化丙 烯酸酯,例如可以使用:2-(全氟癸基)乙基曱基丙烯酸酯、 2-(全氟-7-曱基辛基)乙基曱基丙烯酸酯、3-(全氟-7-曱基 辛基)-2-羥基丙基甲基丙烯酸酯、2-(全氟-9-曱基癸基) 乙基曱基丙烯酸酯、3-(全氟-8-曱基癸基)-2-羥基丙基曱 基丙烯酸酯、3-全氟辛基-2-羥基丙基丙烯酸酯、2-(全氟 癸基)乙基丙烯酸酯、2-(全氟-9-曱基癸基)乙基丙烯酸 酉旨、十五氟辛基(曱基)丙稀酸醋、十一氟己基(曱基)丙稀 酸酯、九氟戊基(曱基)丙烯酸酯、七氟丁基(曱基)丙烯酸 16 322931 201213883 酯、八氟戊基(曱基)丙烯酸酯、五氟丙基(甲基)丙烯酸醋、 三氟(甲基)丙婦酸酯、三氟異丙基(甲基)丙稀酸酯、三I 乙基(曱基)丙烯酸S旨、下述化合物(i)至(xxxi )等。另外, 下述化合物都為表示丙烯酸酯的情況下的物質,式中的丙 烯醯基都可以變更為曱基丙烯醯基。 CH2〇COCH2CH2CH2CH2C4F9 (1) HOCH2CHjOCOCHttCHz CH2OCOCH=CH2 CH2〇C〇CH^5H2〇5Pl7 (j|) OH3CH2 |_CH2〇C〇CH=CH2 ch2〇coch=ch2 CH2OCOCH2CH2CH2CH2C8F17 (iii) HOCH2—CH2〇COCH=CH2 CH20C0CH=CH2 (iv)201213883 6. TECHNOLOGICAL FIELD OF THE INVENTION The present invention relates to an optical layered body, a polarizing plate, a display device, and an optical layered body characterized in that a second phase is concentrated around particles of an optical functional layer constituting an optical layered body. Manufacturing method. The optical laminate of the present invention may be disposed on a display surface of a liquid crystal display (LCD), a plasma display (PDP), an organic electroluminescence display (OLED), or the like, or used as a constituent member of the display, in order to constitute an OLED. The emission rate of light generated in the organic EL layer to the outside of the organic EL is improved, and it can be favorably used on the side of the observation surface. In particular, the optical layered body which is excellent in the anti-glare property and the black and dark room contrast under the bright room can be suitably used for, for example, a display for television use. [Prior Art] A display device such as a liquid crystal display (LCD) or a plasma display (PDP) is reflected by an indoor illumination such as a fluorescent lamp, an incident of sunlight from a window, a shadow of an operator, or the like on the surface of the display device. The image recognition is disturbed. Therefore, in order to improve the visibility of the image on the surface of these displays, it is possible to provide a small surface on which the surface reflection light can be diffused, the specular reflection of the external light can be suppressed, and the reflection of the external environment (with anti-glare property) can be prevented. A functional film such as an optical laminate of a concave-convex structure. These functional films are usually produced and sold on a light-transmitting substrate such as polyethylene terephthalate (hereinafter referred to as "PET") or cellulose triacetate (hereinafter referred to as "TAC"). The film of the optically functional layer of the uneven structure and the film of the low refractive index layer laminated on the light-diffusing layer, and the functional film-off which provides the desired function by the combination of the layer configuration 4 322931 201213883 - is in progress. In the case where an optical layered body is used on the outermost surface of the display, when the bright room 1f7 is used, the image displayed in black due to the diffusion of light is somewhat whitened and the contrast is lowered. Therefore, there is a need for a high contrast &amp; optical laminate (high contrast ag) even if the anti-glare property is lowered. A method of improving the contrast of the optical layered body, for example, is to optimize the uneven shape of the surface. As a method of forming the uneven shape on the surface of the optical functional layer, the optical functional layer forming material is irradiated with ultraviolet rays to form an optical functional layer after coating a coating material for forming a micro (tetra) optical functional layer on a light transmissive substrate. See, for example, the patent document 丨). In addition, there is a method of optimizing the anti-glare property and the contrast by optimizing the particle size of the micro-tribes and the surface unevenness (inclination angle) contained in the optical functional layer (see, for example, Patent Document 2). In addition, a method of forming a band-like structure by using a phase separation property of the resin component by using a plurality of resin components to form an anti-glare property and a contrast ratio (see, for example, Patent Document 3). [Prior Art] [Patent Document] Patent Document 1: Japanese Laid-Open Patent Publication No. Hei. No. 2008-196156 (Patent Document No. JP-A-2008-158536). 201213883 [Problem to be Solved by the Invention] As disclosed in Patent Document 1, an anti-glare property and an anti-glare effect are achieved in the case of using an optical functional layer containing fine particles. However, since the interface of the fine particles contained in the optical layer and the optical unevenness of the surface of the optical layer based on the shape of the fine particles are scattered, it is difficult to achieve a high problem. As in Patent Document 2', even when the particle diameter of the fine particles and the inclination angle of the surface unevenness are optimized, there is a problem that the contrast is insufficient. According to Patent Document 3, there is a problem in terms of manufacturing stability in the method of forming a strip-shaped convex portion on the surface by phase separation using a plurality of resin components. In view of the above, it is an object of the present invention to provide an optical layered body which is excellent in blackness, which is excellent in black color, and which is excellent in manufacturing stability, and which is excellent in manufacturing stability. method. Another object of the present invention is to provide a polarizing plate and a display device which are resistant to the optical layered body. [Means for Solving the Problem] The present invention can solve the above problems by the following technical configuration. (1) An optical layered body in which an optical layered body having an optical functional layer laminated on a light-transmitting substrate, the optical functional layer having: a first phase containing a relatively large amount of a resin component, and a relatively large amount The second phase of the inorganic component, and the particulate, the second phase is concentrated around the particle. (2) The optical layered body according to the above (1), wherein the inorganic component is inorganic nanoparticle. (3) The optical layered body according to the above (1), wherein the second phase 322931 6 201213883 is an aggregate of inorganic nanoparticles. (4) The optical layered body according to the above aspect, wherein the second phase contains 0.2% by mass or more of an inorganic component. The polarizing plate of the optically-coated layer of the optical layered layer according to any one of the above items (1) to (4) has a polarizing substrate. The present invention provides the optical layered body according to any one of the above (1) to (4). (7) A method for producing an optical layered body, comprising: applying a solution containing a resin component, an inorganic component, fine particles, a first solvent, and a second solvent to a light-transmitting substrate; The drying step of the solvent 2 solvent volatilizing to produce convection; and the hardening step of forming the optical functional layer by dry hardening. [Effect of the Invention] According to the present invention, it is possible to provide an optical layered body having excellent structure which is excellent in not only anti-glare properties and bright black, but also capable of achieving high darkroom contrast, and a method for producing the optical laminate. . Further, according to the present invention, it is possible to provide an optical layered body which can be suitably used for television use for contrast. Same Embodiments [Embodiment] Hereinafter, the present invention will be described. The optical functional layer constituting the present invention has an aggregate structure. Fig. 1 is a view schematically showing the structure of an optical functional layer. (a) and (b) are plan views showing the surface structure of the optical functional layer, (phantom and illusion 322931 201213883 is a side cross-sectional view showing the side cross-sectional structure of the optical laminate. The optical layer of the conventional island structure, (6) and (d) is an optical functional layer having a random aggregation structure. Since the optical functional layer constituting the present invention is only required to have at least a first phase and a second phase, the optical functional layer may have a third phase and a fourth phase. The number of phases constituting the optical functional layer is not limited. For example, the optical functional layer may have a camera structure, and specifically, other phases (for example, the third phase) may be formed on the unevenness of the optical functional layer 16 of (1). The optical functional layer constituting the present invention has at least a first phase 含有 containing a relatively large amount of a resin component and a relatively small amount of the resin component (containing a relatively large amount) as shown in the first (13) and (d) of the present invention. The second phase 2 of the inorganic component. The second phase 2 each has a different size and shape. The first phase and the second phase constituting the optical functional layer are intricately present in a three-dimensional space. The microparticles 3 are present in the optical functional layer 16 of the invention. There is almost no first phase 1 constituting the optical functional layer 16 around the microparticles 3, and there is a second phase 2. That is, the second phase 2 is concentrated in the constituent optics. The periphery of the fine particles 3 of the work layer 16 is concentrated around the fine particles 3 by laser microscopy, SEM (scanning electron microscope), or EDS (energy dispersive X-ray spectroscope). "The second phase is concentrated around the particles, and is judged based on the SEM results observed from the optical function level of the optical laminate. First, particles of any 1 point are selected from the SEM results. Then, from the center of each particle The ratio of the second phase to the first phase and the second phase existing in the concentric circle of 10 times the long axis of the particle is obtained. Next, it is calculated in the concentric circle of 10:32931 8 201213883 The average of the proportion of the second phase. If the mean value is relatively high compared to the comparison control, then the "second phase is concentrated around the particle" is satisfied. 'If the average value is relatively low compared to the comparison control, Then The second phase is not concentrated around the particles, and the comparison is obtained based on the above SEM results. The comparison control centered on a certain point of 10 points existing in the first phase and corresponds to 10 times the long axis of each of the above particles. In the concentric circle, all the points of 10 points are placed in the concentric circle where no particles are present, thereby calculating the average value of the ratio of the second phase in the same circle to the 10 point. In the present invention, the 'optical functional layer includes a first phase and a second phase, and the random agglomerated structure means that the first phase and the second phase are intricately existing in a three-dimensional space, and the second phase is concentrated on a specific structure around the particles. As shown in Fig. 1(c), the optical function layer 15 is conventionally formed on the light-transmitting substrate 20 by the shape of the fine particles 3〇 and 3丨. In other words, since the resin present on the particles 30, 31 is convex due to the shape of the particles, the portion of the resin 40 in the absence of the particles 30, 31 is not convex, so that the convex portion and the concave portion are alternately formed, The surface unevenness of the optical function layer 15 is a structure having a large slope. Further, in the first drawings (a) and (c), when a plurality of fine particles are aggregated to form surface unevenness, the surface unevenness is also a structure having a large slope. In contrast to the optical functional layer 16 of the present invention, since the second phase 2 is concentrated around the microparticles 3, compared with the optical functional layer shown in Figs. 1(a) and (c) It can reduce fine irregularities, thereby improving high anti-glare and black under the bright room. This is due to the fact that the light constituting the present invention 9 322931 201213883 = functional layer, because the formation of the first phase is relatively flat = one phase increases both the black under the bright room and achieves a high darkroom contrast: The particles form a convex portion, and (4) the particles entering the first phase reach an anti-glare effect. The first -= is concentrated in the circumference of the microparticles, so that the microparticles are present, and the shape of the concavities and convexities will increase in multiple places in the optical functional layer.] Therefore, the optical functional layer will be whitish: concave = optical functional layer of the microparticles, due to It is difficult to control the amount and height, etc., which makes manufacturing difficult and therefore not good. The optical functional layer constituting the present invention may be a main structure as long as it is a main structure, for example, a m-aggregation structure may be partially formed as a structure, and a pseudo-aggregation structure formed in the invention may be gold. After the tomb, after the particles contained in the Li functional layer formed by the surface irregularities are formed, the element of the random agglomerated structure formed in the carbonaceous surface can be roughly observed. The number of elements has a large number of elements, and there are elements of the multi-element 41-, the atomic number of the element is not white, the atomic number is small, and the color of the element I: black is distinguished by the color. Further, in the case where the surface of the optical functional layer and the random aggregation junction formed in the present invention were subjected to EDS surface scanning, it was confirmed that an element existing in the cross section of the coating film (optical functional layer) was coated. EDS surface sweep 322931 10 201213883, the color can be displayed in places where specific elements (such as carbon, oxygen, strontium, etc.) are distributed. 77 By using the above electronic display In the observation of the micromirror and the EDS surface scanning, it is possible to confirm the uneven structure of the random aggregate structure and the distribution of the specific elements. Thus, for example, it is possible to confirm that there is a majority distribution of a specific element in the convex portion of the surface unevenness. Fig. 4 is a more detailed description. Fig. 2 and Fig. 4 are diagrams showing the surface state of the optical functional layer produced in the embodiment described later in the same field of view. The optical functional layer is composed of a resin component. The inorganic component and the fine particles are composed. Fig. 2 is a photograph of a carbon vaporization clock on the surface of the optical functional layer. The image displayed in the reflected electron detector is a reflection electron caused by a component contained on the surface of the optical functional layer. The reflection electron 疋 is related to the atomic number, and can be displayed by, for example, a color indicating that the element having a large atomic number is displayed as white, and an element having a small atomic number is displayed as black, etc. As shown in Fig. 2, the optical functional layer is shown. The elements in the middle are not, the average sentence exists in the horizontal direction of the surface, but the relatively large part and the relatively small content of the element 3 with a large atomic number. Fig. 4 is a diagram showing the results of the surface scan of the inorganic knives (Si) obtained by passing the legs on the surface of the optical functional layer, and the amount of the &amp; component contained is indicated by the concentration/inflammation of the color. As shown in Fig. 4, the composition is also composed of a relatively relatively large portion and a relatively small content. Further, in Fig. 4, 7 is specifically exemplified to show the surface of the stone (Si). Although the results of the scanning are shown in Table 7F, the results of the scanning of other inorganic component elements and resin (organic) components are 322931 11 201213883. The surface scanning conditions shown in Fig. 4 are m inorganic materials, &quot;also detected: :::: Optical with two phases of the first phase and the second phase: :: Layer: 'First: contains 90% by mass or more of the resin component and inorganic knives, and the second phase contains less than 99.8 masses 0/〇 The resin component and the inorganic component above the enamel. The resin component contained in the first phase is preferably 95 mass% / 2, and the stepwise step is preferably 99 mass% or more. The J-component contained in the second phase is preferably 1% by mass or more. The amount of the J-component is preferably 5% by mass or more. It is particularly preferably 1% by mass or more. The resin component contained in the second phase is preferably less than 99% by mass, and is preferably less than 95% by mass, particularly preferably less than 90% by mass. The amount of the inorganic component contained in the optical functional layer is more than that in the second phase. In the portion where the content of the resin component is relatively large (the knife having a rich color in Fig. 2), the content of components other than the resin component is relatively decreased (first phase). On the other hand, in the portion where the content of the resin component is relatively small (the portion having a light color in Fig. 2), the content of components other than the resin component is relatively increased (second phase). That is, the optical functional layer of the present invention is a layer in which the first phase and the second phase are intricately present, and is a layer having a complementary relationship in which one component is decreased and the other components are increased. In addition, FIG. 2 and FIG. 4 are diagrams showing the content of each component in the horizontal direction of the surface of the optical functional layer, and the same can be applied to the content of each component in the vertical direction (thickness direction) of the optical functional layer. The results of the complementary relationship shown in Table 12 322931 201213883 are obtained (Fig. 3). <Method of Forming Random Aggregation Structure> The random aggregation structure of the month can be randomly collected by convection of the inorganic component, and around the particles = and the first, the money component, the micro (four), (the first solvent U a solution of the agent, a solvent (the volatilization of the i-solution, a (4) step, and a hardening step of forming the optical functional layer. More specifically, the == = the substrate is coated on the transparent substrate, The solvent evaporates from the coating layer, and the detailed mechanism of the combination of == and convection fails to explain the (1) generation of the convection zone in the coating layer after the convection accompanying the dissolution. First in the coating (2) The inorganic material produced in each pair of watersheds is huge, but on the convective domain wall, the generation of ==:::: and the passage of time ', the core makes (3) as the result 'the size of the aggregate can be moderately maintained Dispersing these four (4) filament gauge aggregate structures through the functional layer. The island structure is achieved by the surface irregularities accompanying the random aggregate structure of the present invention in achieving anti-glare, bright room contrast, and dark (four) ratio. Surface bump 322931 13 201213883 Hereinafter, each material constituting the layer of the present invention will be described. <Translucent Substrate> As a light-transmissive body according to the preferred embodiment of the present invention, the mouth should be light-transmissive. The nature is not particularly limited, and it is also possible to use glass such as quartz glass, glass, etc., which can be suitably used for PET, TAC, polyethyl phthalate (PEN), polyacrylic acid acetonide (PMMA), poly Carbon sulphur ester (pc), polyamine (pi), polyethylene (tetra), polypropylene (10), polyhexanol (pVA), polyethylene (PVC), cyclic olefin copolymer (10)), containing w _ fat, C Various resin films such as dilute acid resin, polyether sulfone, cellophane, and aromatic polyamine. Further, in the case of a PDP or an LCD, one selected from the group consisting of a PET film, a TAC film, and a norbornene-containing resin film is preferably used. The higher the transparency of the light-transmitting substrate, the better the transparency, and the total light transmittance (JISK7105) may be 80% or more, and more preferably more. Further, the thickness of the light-transmitting substrate is preferably a thin plastic mold from the viewpoint of weight reduction, and in consideration of productivity and workability, it is preferable to use a substrate having a range of 丄 to 7 〇〇//m. To 25〇em. By subjecting the surface of the light-transmitting substrate to surface treatment such as alkali treatment, corona treatment, plasma treatment, or sputum treatment, surfactant coating, primer coating such as shovel coupling agent, and dry film coating such as ruthenium vapor deposition, The adhesion between the light-transmitting substrate and the optical functional layer is improved, and the physical strength and chemical resistance of the optical functional layer are improved. Further, when another layer is provided between the light-transmitting substrate and the optical functional layer, the adhesion of the interface of each layer can be improved by the same method as described above, and the physical strength and chemical resistance of the optical functional layer can be improved. . 14 322931 201213883 <Optical functional layer> The optical functional layer is a layer containing a resin component and an inorganic component and curing the tree component. The optical functional layer contains fine particles (inorganic micro-teaching, _ machine microparticles). (Resin component) The resin component constituting the optical functional layer can be used without any particular limitation as a film having a sufficient strength and having a transparency @ substance. Examples of the resin component include a thermosetting resin, a thermoplastic resin, an ionizing radiation curing resin, and a two-liquid mixing resin. Among these, it is preferable to use a hardening treatment by electron beam or ultraviolet irradiation and simple processing. An ionizing radiation-curable resin capable of high-efficiency hardening is operated. As the ionizing radiation-curable resin, a radical polymerizable functional group having an acryl-based group, a mercaptopropenyl group, an acryloxy group, a mercaptopropenyloxy group, and/or an epoxy group or a vinyl group can be used. A monomer, oligomer, prepolymer or polymer of a cationically polymerizable functional group such as an oxetanyl group, which may be used in the form of a single form or a suitably mixed composition. Examples of the monomer include decyl acrylate, decyl phthalic acid decyl acrylate, methoxypolyethylene glycol methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, and B. Glycol dimercapto acrylate, dipentaerythritol hexaacrylate, trishydroxypropyl propane tridecyl acrylate, neopentyl alcohol triacrylate, and the like. Examples of the oligomer and the prepolymer include polyester acrylate, polyurethane acrylate, polyfunctional urethane acrylate, epoxy enoate, polyether acrylate, alkyd acrylate, and melamine. Acrylates such as acrylic vinegar and organic hydrazine acrylate; unsaturated polymer, 322931 15 201213883 diol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether, Epoxy compounds such as various alicyclic epoxy resins; 3-ethyl-3-hydroxyindenyloxybutane, 1,4-bis{[(3-ethyl-3-oxetanyl) An oxetane compound such as decyloxy]fluorenyl}benzene or bis[1-ethyl(3-oxetanyl)]decyl ether. Examples of the polymer include polyacrylic acid vinegar, polyamine S, acrylic acid S, and poly S acrylate. These can be used singly or in combination of plural kinds. Among these ionizing radiation-curable resins, a polyfunctional monomer having three or more functional groups can increase the curing rate and increase the hardness of the cured product. Further, by using a polyfunctional amine phthalate acrylate, hardness, flexibility, and the like of the cured product can be imparted. As the ionizing radiation curing resin, an ionizing radiation hardening type fluorinated acrylate can be used. Since ionizing radiation-curable fluorinated acrylates are more ion-irradiated than other fluorinated acrylates, they cause cross-linking between molecules, so they are excellent in chemical resistance and achieve sufficient antifouling even after saponification treatment. Sexual effect. As the ionizing radiation-curable fluorinated acrylate, for example, 2-(perfluorodecyl)ethyl decyl acrylate, 2-(perfluoro-7-fluorenyloctyl)ethyl decyl acrylate, 3-(perfluoro-7-fluorenyloctyl)-2-hydroxypropyl methacrylate, 2-(perfluoro-9-fluorenylfluorenyl)ethyl decyl acrylate, 3-(perfluoro- 8-mercaptopurinyl-2-hydroxypropyl decyl acrylate, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2-(perfluorodecyl)ethyl acrylate, 2-(all Fluorin-9-mercaptopurinylethyl acrylate, fifteen fluorooctyl sulfonate, undecafluorohexyl acrylate, nonafluoropentyl Acrylate, heptafluorobutyl(mercapto)acrylic acid 16 322931 201213883 ester, octafluoropentyl (mercapto) acrylate, pentafluoropropyl (meth) acrylate, trifluoro(methyl) propionate, Trifluoroisopropyl (meth) acrylate, tri-I-ethyl (fluorenyl) acrylate, the following compounds (i) to (xxxi), and the like. Further, all of the following compounds are those which represent an acrylate, and the propylene group in the formula may be changed to a mercapto acryl group. CH2〇COCH2CH2CH2CH2C4F9 (1) HOCH2CHjOCOCHttCHz CH2OCOCH=CH2 CH2〇C〇CH^5H2〇5Pl7 (j|) OH3CH2 |_CH2〇C〇CH=CH2 ch2〇coch=ch2 CH2OCOCH2CH2CH2CH2C8F17 (iii) HOCH2—CH2〇COCH=CH2 CH20C0CH= CH2 (iv)

--^ococh=ch2) 2 o o (V) CHr--|〇-C-(CH2)j-S^CH-C-^CH2)^-C6F13 3 CH2_、。 CHr ~ -^-OCOCH=CH2) CH2OCOCH2CH2SCH2CH2C4F9 h〇ch2—|—ch2〇c〇chsch2 CH2OCOCH=:CH2 17 322931 (vi) 201213883 (νϋ) COCH2CH2SCH2CH2C4F9 CH2aCOCH2CH2SCI CH3CH2—|~CH2OCOCH=CH2 (viii) (»x) ⑻ (κΐ) (xH) ch2ococh=ch2C3H7 CH2OCOCH2CH2NCH2CH2C8F17 hoch2—j—ch2〇coch=ch2 CH20C0CHsCH2 ch2ococh2ch2sch2ch2c8f17 CH3CH2—j—CH2〇COCHs〇H2 CH2〇C〇CHsCH2 CH20COCH2CH2SCH2CH2C4P8H CH3CH2—^-CH2〇COCH=CH2 CH2OCOCHsCH2 CH20C0CH2CH2SCH2CH2(CF(CF3}»0*CF2}3-C2Fs CH3CH2-4-CH2OCOCH=CH2 ch2ococh=ch2 CHr(OC2H4)rOCOCH2CH2SCH2CH2C8F17 CH3CH2-i-CHH〇C2H4)s-〇C〇CH=CH2 CHHOCjHA-OCOCHssCHz r + s ♦ ts 3 &lt;xlH) OCOCHsCH2 ch2 ch2—ococh=ch2 C2H5OCO-CH2-4-CHZCH2—|~CH2—OCOCH2CH2SCH2CH2C8F17 CH2 CH2—OCOC2H5 ^OCOCiHe CH2- T CHr--^ococh=ch2) 2 o o (V) CHr--|〇-C-(CH2)j-S^CH-C-^CH2)^-C6F13 3 CH2_,. CHr ~ -^-OCOCH=CH2) CH2OCOCH2CH2SCH2CH2C4F9 h〇ch2—|—ch2〇c〇chsch2 CH2OCOCH=:CH2 17 322931 (vi) 201213883 (νϋ) COCH2CH2SCH2CH2C4F9 CH2aCOCH2CH2SCI CH3CH2—|~CH2OCOCH=CH2 (viii) (»x) ⑻ (κΐ) (xH) ch2ococh = ch2C3H7 CH2OCOCH2CH2NCH2CH2C8F17 hoch2-j-ch2〇coch = ch2 CH20C0CHsCH2 ch2ococh2ch2sch2ch2c8f17 CH3CH2-j-CH2〇COCHs〇H2 CH2〇C〇CHsCH2 CH20COCH2CH2SCH2CH2C4P8H CH3CH2 - ^ - CH2〇COCH = CH2 CH2OCOCHsCH2 CH20C0CH2CH2SCH2CH2 (CF (CF3}»0*CF2}3-C2Fs CH3CH2-4-CH2OCOCH=CH2 ch2ococh=ch2 CHr(OC2H4)rOCOCH2CH2SCH2CH2C8F17 CH3CH2-i-CHH〇C2H4)s-〇C〇CH=CH2 CHHOCjHA-OCOCHssCHz r + s ♦ ts 3 &lt;xlH) OCOCHsCH2 ch2 ch2—ococh=ch2 C2H5OCO-CH2-4-CHZCH2—|~CH2—OCOCH2CH2SCH2CH2C8F17 CH2 CH2—OCOC2H5 ^OCOCiHe CH2- T CHr

OCOCH^HaSCHzCHzCsFij -—^OC〇CH=CH^ 18 322931 201213883 (XV) C2H4·^c2h 奏· C2HrOCOCH^HaSCHzCHzCsFij -—^OC〇CH=CH^ 18 322931 201213883 (XV) C2H4·^c2h Play · C2Hr

OCH2CH2MCH2CH2C8F^ 1 令 coch=ch2) 3 OCOCHsCH2 CH2 CH2-OCOCH2CH2SCH2CH2C6F« (xvi) CH3CH2-|~CH2OCH2-|~CH2CH3 CH2 OH2m,,m OOOCH^CHj 、ococh*ch2 (XVfi) (xvfli) ^OC^CHzSCHz^CeF^ ?H2 CH2 —〇C〇CH2CH2$CH2CH2CeF17 CH3CH24-CH2OCH2-j-CH2CH3 OH2 CHj ——OCOCH=CH2OCH2CH2MCH2CH2C8F^ 1 Let coch=ch2) 3 OCOCHsCH2 CH2 CH2-OCOCH2CH2SCH2CH2C6F« (xvi) CH3CH2-|~CH2OCH2-|~CH2CH3 CH2 OH2m,,m OOOCH^CHj, ococh*ch2 (XVfi) (xvfli) ^OC^CHzSCHz^ CeF^ ?H2 CH2 —〇C〇CH2CH2$CH2CH2CeF17 CH3CH24-CH2OCH2-j-CH2CH3 OH2 CHj ——OCOCH=CH2

^OCOCH^CH 2 JOCOCH2CH2SCH; HOCH· CH2 ch2 ?H2 I2CH2C8P17 OCOCH2d OCH2-j—CH2-OCOCH=CH2 CH2 -OCOCHSCH2 ococh=ch2 ^CHzSCHaCHzCeF^ ^ococh=ch2 CH2 CH2-OCOCH2CH2SCH2〇H2C6F13 (xlx) HOCH2—j-CH2〇CH2-(-CH2-OCOCH2CH2SCH2CH2CbF17 ch2 ch2—ococh=ch2 ^COCHcC^ OCOCHsCH2 (xx) CH2 CH2 OCOCH2CH2SCH2CH2C6F17 H2CSHCOCO-CH2—j-CH2〇CH24-CH2-〇COCH2CH2SCH2CH2CeF17 CH2 CH2-OCOCHsCH2 OCOCH2pH2SCH2CH2CeF17 ch2 CH2 一 〇c&lt; h2c=hcococh2—J-ch2och2-|~ch2-c OCOCH2CH2SCH2CH2CeF17 (xxl&gt; ;OCH2CH2SCH2CH2CeF17 i-OCOCH=CH2 CH2 ch2 OCOCHsCH2 OOOCHsCH2 19 322931 201213883 CH2OCOCH2CH2SCH2CH2C4F9 ,NHCH2〇2CH2C-CH2〇COCH2CH2SCH2CH2C4F9 CH20COCHSCH2 (xxii)^OCOCH^CH 2 JOCOCH2CH2SCH; HOCH· CH2 ch2 ?H2 I2CH2C8P17 OCOCH2d OCH2-j-CH2-OCOCH=CH2 CH2 -OCOCHSCH2 ococh=ch2 ^CHzSCHaCHzCeF^ ^ococh=ch2 CH2 CH2-OCOCH2CH2SCH2〇H2C6F13 (xlx) HOCH2—j- CH2〇CH2-(-CH2-OCOCH2CH2SCH2CH2CbF17 ch2 ch2-ococh=ch2 ^COCHcC^ OCOCHsCH2 (xx) CH2 CH2 OCOCH2CH2SCH2CH2C6F17 H2CSHCOCO-CH2—j-CH2〇CH24-CH2-〇COCH2CH2SCH2CH2CeF17 CH2 CH2-OCOCHsCH2 OCOCH2pH2SCH2CH2CeF17 ch2 CH2 〇c&lt; H2c=hcococh2—J-ch2och2-|~ch2-c OCOCH2CH2SCH2CH2CeF17 (xxl&gt;; OCH2CH2SCH2CH2CeF17 i-OCOCH=CH2 CH2 ch2 OCOCHsCH2 OOOCHsCH2 19 322931 201213883 CH2OCOCH2CH2SCH2CH2C4F9 , NHCH2〇2CH2C-CH2〇COCH2CH2SCH2CH2C4F9 CH20COCHSCH2 (xxii)

(xxiii)(xxiii)

CH2〇COCH2CH2SCH2CH2C4F9 NHCO2CH2C-—CH2OCOCH2CH2SCH2CH2C4F9 、ch2ococh;ch2 ch2ococh2ch2n(c3h7&gt;ch2c6f13 (NHC02CH2C^-CH2〇COCH2CH2N(C3H7)CH2CeF13 \;H2OCOCH=CH2 CH2〇COCH2CH2N(C3H7)CH2C5F13 NHCO2CH2C^CH20COCH=CH2 \η2〇οοοη®οη2 CH2〇COCH2CH2$CH2CH2C8F17 NHC〇2CH2C—CH2OCOCH2CH2SCH2CH2CeF17 (xxiv)CH2〇COCH2CH2SCH2CH2C4F9 NHCO2CH2C - CH2OCOCH2CH2SCH2CH2C4F9, ch2ococh; ch2 ch2ococh2ch2n (c3h7 &gt; ch2c6f13 (NHC02CH2C ^ -CH2〇COCH2CH2N (C3H7) CH2CeF13 \; H2OCOCH = CH2 CH2〇COCH2CH2N (C3H7) CH2C5F13 NHCO2CH2C ^ CH20COCH = CH2 \ η2〇οοοη®οη2 CH2〇COCH2CH2$CH2CH2C8F17 NHC〇2CH2C—CH2OCOCH2CH2SCH2CH2CeF17 (xxiv)

t ——vr«2 ww v^n2'-r \h2ococh=ch2 nhco2ch2c^ pHaOCOCHzCHzSCHaCHjjCeFn ch2ococh*ch2 h2ococh=ch2 20 322931 201213883 (χχν)t ——vr«2 ww v^n2'-r \h2ococh=ch2 nhco2ch2c^ pHaOCOCHzCHzSCHaCHjjCeFn ch2ococh*ch2 h2ococh=ch2 20 322931 201213883 (χχν)

rCOCH»CH2 CH2〇C〇CH2CH2SCH2CH2C8F,7 NHCO2CH2CCH2OCH2CCH2OCOCHSCH2 ^H2〇C〇CH2CH2SCH2CH2C8F17 ch2ococh=ch2 CHaOCOCHsCH2 CH2OCOCH2CHaSCH2CH2C8F17 NHC〇2CH2CCH2〇CH2CCH2〇COCH=CH2 CH2OCOCH2CH2SCH2CH2CeF17 CH2〇C〇CH=CH2 〇 (xxvi) CH2=CHC02CH2CH2v zCH2CH2OCOCH2CHiSCH2CH2C6F13 、NAn人。 CH2CH2〇COCH=CH2 o (xxvii) CH2!=CHC02CH2CH2vnAn^CH2CH2〇C〇CH2CH2SCH2CH2C8F17 iH2CH2OCOCHsCH2 〇 (xxvili) CH2sCHC〇2CH2CH2^mAn^CH2CH2〇COCH2CH2SCH2CH2C4F8H 6h2ch2ococh=ch2 (xxix) CH2CH20COCH2CH2SCH2CH2C6F130 =P-CH2CH2〇COCHaCH2 CH2CH2〇C〇CH=CH2 ΟΗ2〇Η2〇0〇〇Η2〇Η2ε〇Η2〇Η2〇8Ρ17 0=^-ΟΗ2〇Η2〇〇〇〇Η=ΟΗ2CH2CH2〇C〇CHaCH2 21 322931 (XXX) 201213883rCOCH »CH2 CH2〇C〇CH2CH2SCH2CH2C8F, 7 NHCO2CH2CCH2OCH2CCH2OCOCHSCH2 ^ H2〇C〇CH2CH2SCH2CH2C8F17 ch2ococh = ch2 CHaOCOCHsCH2 CH2OCOCH2CHaSCH2CH2C8F17 NHC〇2CH2CCH2〇CH2CCH2〇COCH = CH2 = CH2 CH2OCOCH2CH2SCH2CH2CeF17 CH2〇C〇CH square (xxvi) CH2 = CHC02CH2CH2v zCH2CH2OCOCH2CHiSCH2CH2C6F13, NAn al . CH2CH2〇COCH = CH2 o (xxvii) CH2! = CHC02CH2CH2vnAn ^ CH2CH2〇C〇CH2CH2SCH2CH2C8F17 iH2CH2OCOCHsCH2 square (xxvili) CH2sCHC〇2CH2CH2 ^ mAn ^ CH2CH2〇COCH2CH2SCH2CH2C4F8H 6h2ch2ococh = ch2 (xxix) CH2CH20COCH2CH2SCH2CH2C6F130 = P-CH2CH2〇COCHaCH2 CH2CH2〇C〇 CH=CH2 ΟΗ2〇Η2〇0〇〇Η2〇Η2ε〇Η2〇Η2〇8Ρ17 0=^-ΟΗ2〇Η2〇〇〇〇Η=ΟΗ2CH2CH2〇C〇CHaCH2 21 322931 (XXX) 201213883

CtFibCH,! (XXX i)CtFibCH,! (XXX i)

CHaSCHaCHaOCOHj^ 〇 H OVCHOCOHaC-ip-CHjplA.H 戌 HaC-HCHaSCHaCHaOCOHj^ 〇 H OVCHOCOHaC-ip-CHjplA.H 戌 HaC-H

OVCHOCOH^C 〒H2〇COCH2CH2SCH2CH2CrF,6 OCH2-C^CH2〇COCH8CH3SCH3CH3C7F15 CH2OCOCH-CH2 這些也可單獨或多個種類混合使用。從硬化物的耐磨 性和延展性以及柔軟性考慮,在氟化丙烯酸酯内,更宜為 具有胺基曱酸醋鍵的含化烷基之胺基甲酸酯丙烯酸酯。 此外,氟化丙烯酸酯中,亦以多官能氟化丙烯酸酯為佳。 另外,此處的多官能氟化丙烯酸酯是指具有2個以上(宜為 3個以上,更宜為4個以上)的(甲基)丙烯醯氧基的物質。 電離輻射線硬化型樹脂直接通過電子束照射即可硬 化,但在通過紫外線照射進行硬化的情況下,需要添加光 聚合引發劑。此外,作為所用的輻射線,可以是紫外線、 可見光線、紅外線、電子束中的任—種。另外,這些輕射 線可以為偏光,也可以為非偏光。 作為光聚合引發劑’可以單獨或適當組合使用苯乙_ 系苯曱酉同系塞頓酮系、苯偶姻、苯偶姻甲基鍵等自 由基聚合引發劑;芳香族重氮鹽、芳香_鹽、芳香族峨 鏽鹽、茂金屬化合物等陽離子聚合引發劑。 此外,電離輻射線硬化型樹脂中可含有流平劑、抗靜 電劑等添域。时劑具有實現塗臈表㈣張力均句化、 矯正塗膜形成前之缺陷的作用。 作為流平劑,可舉出:有機Μ流平劑、氟系流平劑、 丙稀酸系流平劑。上述流平射以單獨使用,也可以2種 =上㈣。上絲平射,從在解倾層巾形成凹凸結 構的觀點考慮,宜為有機㈣、流平劑、IU流平劑,特別 322931 22 201213883 宜為有機矽系流平劑β 作為前述有機石夕系流 機矽、聚酯改性有機矽、全 例如可舉出:聚醚改性有 聚二甲基矽氧烷、聚甲基;^改性有機矽、反應性有機矽、 作為所涉及的有機石夕=石夕氧燒等。 (株)製造的“SILWET系歹丨Γ平劑,市售有:日本Unicar “ABNSILWET 系列,,二 、“SUPERSILWET 系列”、 “X-22系列”;畢克=越化學公司製造的“吓系列”、 列、共榮社化學(株株)製造的“BYK-綱系 寧(株)製造的“Sii金,的glan〇l系列”;東麗道康 ㈤⑽(株)製造的“ ST系列,,、‘於系歹Γ ; “TSF系列,,μ * ”列,GE東芝有機矽(株)製造的 (乂上為商品名)等。 涉及的二’二為具有㈣的化合物。作為所 構、脂環式結構(宜為^子數為1至20的直鏈或分支鱗 上述氣hi 為貝環或6員環),也可以具有鍵鍵。 上平劑可以為聚合物,也可以為低聚物。 的流平劑。流平劑,可舉出疏水基具有全氣破减 續酿基_酸1^!舉1氟絲減、Ν-全氣辛踩 (氟烷氧基)-1-烷基磺酸鈉、 . 妝基卜卜丙烷磺酸鈉、Ν-(3-全氟辛烷磺醢 m N’N〜一曱基_N~羧基亞甲基甜菜鹼銨、全氟烷基難 •、二氣辛燒姐二乙_胺、錄烧基魏鹽、N_兩基 旯越羧乙基)全氟辛烷磺醯胺、全氟烷基磺醯胺丙基彡f 銨孤全氟烷基_N—乙基磺醯基甘胺酸鹽、磷酸雙(N-食 23 322931 201213883 氟辛基續酿基-N-乙胺基乙基)醋等。 作為所涉及的氟系流平劑,例如可舉出:共榮社化學 (株)製造的“POLYFLOW 600” ;大金化學工業(株)製造= “R-2020、M-2020、R-3833、M_3833” ;大日本印墨(株) 製造的 “MEGAFAC F-171、F-172D、F-179A、F-470、F-475、 R-08、DEFENSA MCF-300’’(以上為商品名)等。 作為氟系流平劑,也可以使用上述化i至化5所示的 各材料。 作為丙烯酸系流平劑,市售有:東亞合成化學(株)製 造的 ARUF0N-UP 1000 系列” 、“uh 2〇〇〇 系列,,、“uc 3000系列;共榮社化學(株)製造的“poLYFLOl 77”(以 上為商品名)等。 用於光學功能層的流平劑的含量過少時,很難得到塗 膜的平整效果。流平_含4衫時,很難形絲機成分 的聚集體。 從上述觀點考慮,光學功能層中的流平劑的含量相對 於光學功能層的總成分(有機溶劑除外则冑量%,宜在 0.05至3質量%的範圍,更宜力〇 1 z; 文且在0. 1至2質量%的範圍,特 別宜在0.2至1質量%的範圍。 電離 名射綠硬化型樹脂等的樹脂成分的配合量相對於 構成光學功能層的樹脂組成物中的固形分的總質量,為含 有^質量%以上,宜為60質量%以上。對於上限值沒有特 別限定,例如為99. 8質景%。Α r« 買重/〇在小於50質量%時,存在無 法得到充分硬度等問題。 322931 24 201213883 =電_射線硬化型樹脂等的樹脂成分的固形分 了後述無機成分和微粒以外的總固形分,不僅 匕3電_射線硬化型樹脂等的樹脂成分的固形分,還包 含其它任意成分的固形分。 (無機成分) 作為本發明中使用的無機成分,只要為光學功能層中 所含且在製_聚細形成第二相和無規聚集結構的物質 即可。作為無機成分,可以使用無機奈米微粒。作為盈機 奈米微粒,有二氧切、氧化錫、氧化銦、氧化銻、氧化 :、氧化鈦、氧化鍅等金屬氧化物、金屬等;氧化矽溶膠、 ,化錯溶膠、氧化鈦溶膠、氧化銘溶膠等金屬氧化物溶膠; 氣相二氧化矽、膨潤性黏土、層狀有機黏土等。上述無機 奈米微粒可以使用一種,也可以使用多種。 此外’微粒和無機成分(無機奈米微粒)是不同的物 質,可通過粒徑來區別。 這些無機奈米微粒中,從可以穩定地形成無規聚集結 構這一點考慮,宜為層狀有機黏土。作為層狀有機黏土可 穩定地形成無規聚集結構的理由,可舉出:層狀有機黏土 和樹脂成分(有機物成分)的相溶性高、也具有聚集性,因 此容易形成第一相和第二相的錯綜複雜的結構、製膜時容 易形成無規聚集結構。本發明中,層狀有機黏土是指在膨 潤性黏土的層間導入有機鑌離子的物質。層狀有機黏土對 於特定溶劑的分散性低,使用層狀有齡土和具備特定性 質的溶劑來作為光學功能層形成用塗料時,通過該溶劑的 322931 25 201213883 選擇來形成無規聚集結構,形成具有表面凹凸的光學功能 層。 膨潤性黏土 膨潤性黏土只要為具有陽離子交換能力、通過在該膨 潤性黏土的層間引入水而膨潤的物質即可,可以為天然物 也可以為合成物(包含取代物、衍生物)。此外,还可以為 天然物和合成物的混合物。 作為膨潤性黏土,例如可舉出:雲母、合成雲母、蛵 石、蒙脫土、鐵蒙脫土、貝得石、皂石、鋰蒙脫石、矽鎂 石、綠脫石、麥羥矽納石、伊利石、層狀矽酸鹽、層狀鈦 酸、蒙脫石、合成蒙脫石等。這些膨潤性黏土可以使用1 種,也可以多種混合使用。 有機鏽離子 有機鑌離子只要是能利用膨潤性黏土的陽離子交換性 進行有機化的物質則沒有限制。 作為鑌離子,可以使用例如二曱基二硬脂醯基銨鹽、 三曱基硬脂醯基銨鹽等四級銨鹽;具有苄基、聚氧乙烯基 的銨鹽,也可以使用鱗鹽、°比啶鏽鹽、咪唑鑌鹽形成的離 子。作為鹽,例如可舉出與cr、Br' N〇3_、0ΪΓ、CH3C0(r 等陰離子所形成的鹽。作為鹽,宜使用四級銨鹽。 對有機鏽離子的官能基沒有限制,由於使用含有烷 基、苄基、聚氧丙烯基或苯基中的任一者的材料時,容易 發揮防眩性,因而為佳。 烷基的較佳範圍為碳原子數1至30,例如可舉出:甲 26 322931 201213883 =:乙基、丙基、異丙基、丁基、戊基'己基、庚基、辛 壬基、癸基、十—烧基、十二烧基、十三烧基、十四 沉基、十五烷基、十八烷基等。 如社^氣丙婦基[(CH2CH(CH3)0)nH或⑽咖㈣別的n的 多為1至50,進一步宜為5至50,其加成莫耳數越 物合恶冑'容劑的分散性越好,但由於過於過量時,生成 去有黏性,因此以對溶劑的分散性作為重點的話,η 由值更宜為20至50。此外,在〇的數值為5至2〇時, 於生成物為非黏性從而粉碎性優異。此外,從分散性和 眾作性的點考慮’四級錄整體的η的總數宜為5至50。 作為該四級銨鹽的具體例子,可舉出:四烧基氯化録、 四燒基漠化録、聚氧丙縣•三錄氯⑽、聚氧丙婦基· 二燒基漠化錢、二(聚氧丙埽基)·二烧基氯化錄、二(聚氧 兩婦基)·二絲演化錢、三(聚氧㈣基)·烧基氯化錄、 二(聚氧丙烯基)·烷基溴化銨等。 對於通式(I)的四級銨離子,Rl宜為甲基或雜。r2宜 為碳原子數1至12的絲,特別宜為❹子數為1至4的 燒基。R3宜為碳原子數^5的絲。R4宜為碳原子數丄OVCHOCOH^C 〒H2〇COCH2CH2SCH2CH2CrF,6 OCH2-C^CH2〇COCH8CH3SCH3CH3C7F15 CH2OCOCH-CH2 These may also be used alone or in combination. From the viewpoint of abrasion resistance and ductility of the cured product and flexibility, the fluorinated acrylate is more preferably an alkyl group-containing urethane acrylate having an amino citrate bond. Further, among the fluorinated acrylates, polyfunctional fluorinated acrylates are also preferred. Further, the polyfunctional fluorinated acrylate herein means a substance having two or more (preferably three or more, more preferably four or more) (meth) acryloxy groups. The ionizing radiation-curable resin can be hardened directly by electron beam irradiation, but in the case of curing by ultraviolet irradiation, it is necessary to add a photopolymerization initiator. Further, as the radiation to be used, any of ultraviolet rays, visible rays, infrared rays, and electron beams may be used. In addition, these light ray lines may be polarized or non-polarized. As the photopolymerization initiator, a radical polymerization initiator such as a phenylethyl benzoquinone, a benzoin, a benzoin methyl bond, or the like may be used singly or in an appropriate combination; an aromatic diazonium salt, an aromatic _ A cationic polymerization initiator such as a salt, an aromatic cerium salt or a metallocene compound. Further, the ionizing radiation-curable resin may contain a filling agent such as a leveling agent or an antistatic agent. The agent has the effect of realizing the tension of the sputum table (4) and correcting the defects before the formation of the film. Examples of the leveling agent include an organic cerium leveling agent, a fluorine-based leveling agent, and an acrylic-based leveling agent. The above-mentioned leveling can be used alone or in two types (upper (four)). The flat wire is flat, and from the viewpoint of forming the uneven structure of the decanted layered towel, it is preferably an organic (four), leveling agent, IU leveling agent, and particularly 322931 22 201213883 is preferably an organic lanthanide leveling agent β as the aforementioned organic stone system. The flow enthalpy, the polyester-modified organic hydrazine, and the like, for example, polyether modified polydimethyl siloxane, polymethyl; modified organic hydrazine, reactive organic hydrazine, as organic matter involved Shi Xi = Shi Xi oxygen burning and so on. "SILWET system sputum agent manufactured by the company, commercially available: Japan Unicar "ABNSILWET series, second, "SUPERSILWET series", "X-22 series"; BYK = Vietnam Chemical Co., Ltd. "The series of "Sii gold, glan〇l series" manufactured by BYK-Medical Ning Co., Ltd., manufactured by Tohoku Kogyo Co., Ltd.; "ST series, manufactured by Toray Dokang (5) (10) Co., Ltd. , "'s system"; "TSF series, μ*" column, manufactured by GE Toshiba Organic Co., Ltd. (trade name). The two or two involved are compounds having (d). As the constitution, the alicyclic structure (preferably a linear or branched scale having a number of 1 to 20), the gas hi is a shell-shaped ring or a 6-membered ring, and may have a bond. The leveling agent may be a polymer or an oligomer. Leveling agent. As a leveling agent, it can be mentioned that the hydrophobic group has an all-gas breakage and reduction of the brewing base _acid 1 ^! 1 fluorescein reduction, Ν-all gas stilting (fluoroalkoxy)-1-alkyl sulfonate,.基 卜 卜 丙烷 丙烷 丙烷 丙烷 丙烷 丙烷 丙烷 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Sister di-ethylamine, calcinin-based Wei salt, N_two-based fluorenylethyl) perfluorooctane sulfonamide, perfluoroalkylsulfonamidopropyl hydrazine f ammonium ortho-perfluoroalkyl-N- Ethylsulfonyl glycinate, phosphoric acid bis (N-food 23 322931 201213883 fluorooctyl aryl-N-ethylaminoethyl) vinegar, and the like. For example, "POLYFLOW 600" manufactured by Kyoei Kogyo Co., Ltd., and manufactured by Daikin Chemical Industry Co., Ltd., "R-2020, M-2020, R-3833" , M_3833"; "MEGAFAC F-171, F-172D, F-179A, F-470, F-475, R-08, DEFENSA MCF-300" (produced by Dainippon Ink Co., Ltd.) As the fluorine-based leveling agent, each of the materials shown in the above-mentioned formulas I to 5 can be used. As the acrylic leveling agent, the ARUF0N-UP 1000 series manufactured by Toagosei Synthetic Chemical Co., Ltd. is commercially available. "uh 2〇〇〇 series,", "uc 3000 series; "poLYFLOl 77" manufactured by Kyoei Kogyo Co., Ltd. (the above is a trade name). When the content of the leveling agent for the optical functional layer is too small, it is difficult to obtain a flattening effect of the coating film. When leveling _ contains 4 shirts, it is difficult to form agglomerates of the components of the silk machine. From the above viewpoints, the content of the leveling agent in the optical functional layer is relative to the total composition of the optical functional layer (except for the organic solvent, the amount of 5% is preferably in the range of 0.05 to 3% by mass, more preferably 1 z; In the range of 0.1 to 2% by mass, particularly preferably in the range of 0.2 to 1% by mass. The amount of the resin component such as an ionized green-curable resin is a solid content in the resin composition constituting the optical functional layer. The total mass of the fraction is preferably 5% by mass or more, preferably 60% by mass or more. The upper limit is not particularly limited, and is, for example, 99.8%. Α r« When the weight/〇 is less than 50% by mass, 322931 24 201213883 = The solid content of the resin component such as the electric ray hardening resin is a total solid content other than the inorganic component and the fine particles described later, and not only the resin component such as 电3 electric ray hardening resin. The solid component further contains a solid component of any other component. (Inorganic component) As the inorganic component used in the present invention, as long as it is contained in the optical functional layer and is formed into a second phase and random aggregation As the inorganic component, inorganic nanoparticles can be used. As the nanoparticle of the machine, there are metal oxides such as dioxo, tin oxide, indium oxide, antimony oxide, oxidation: titanium oxide, antimony oxide, and the like. , metal, etc.; cerium oxide sol, oxidized sol, titanium oxide sol, oxidized sol and other metal oxide sol; gas phase cerium oxide, swellable clay, layered organic clay, etc. The above inorganic nanoparticles can be used In addition, 'particulates and inorganic components (inorganic nanoparticles) are different substances and can be distinguished by particle size. Among these inorganic nanoparticles, from the viewpoint of stably forming a random aggregate structure, It is preferable that it is a layered organic clay. The reason why the layered organic clay can form a random aggregate structure stably is that the layered organic clay and the resin component (organic component) have high compatibility and aggregation, so that it is easy. The intricate structure forming the first phase and the second phase is easy to form a random aggregate structure during film formation. In the present invention, the layered organic clay is a substance that introduces organic cerium ions between layers of a swellable clay. The layered organic clay has low dispersibility in a specific solvent, and when a layered aged earth and a solvent having a specific property are used as a coating for forming an optical functional layer, Solvent 322931 25 201213883 is selected to form a random aggregate structure to form an optical functional layer having surface irregularities. The swellable clay swellable clay is a substance which has cation exchange ability and swells by introducing water between the layers of the swellable clay. It may be a natural product or a composition (including a substitute or a derivative). Further, it may be a mixture of a natural product and a composition. Examples of the swelling clay include mica, synthetic mica, and vermiculite. , montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, strontite, nontronite, hydroxyacanite, illite, layered citrate, layered titanic acid, Montmorillonite, synthetic montmorillonite, etc. These swellable clays may be used singly or in combination of two or more. Organic rust ion The organic cesium ion is not limited as long as it can be organically oxidized by the cation exchange property of the swellable clay. As the cerium ion, for example, a quaternary ammonium salt such as a dimercapto distearyl ammonium salt or a trimethyl stearyl sulfonium ammonium salt; an ammonium salt having a benzyl group or a polyoxyethylene group; and a scaly salt can also be used. An ion formed by a salt of a pyridine salt or an imidazolium salt. The salt may, for example, be a salt formed with an anion such as cr, Br'N〇3_, 0ΪΓ or CH3C0 (r). As the salt, a quaternary ammonium salt is preferably used. The functional group of the organic rust ion is not limited, and is used. When a material containing any of an alkyl group, a benzyl group, a polyoxypropylene group or a phenyl group is preferred, it is preferred to exhibit anti-glare properties. A preferred range of the alkyl group is 1 to 30 carbon atoms, for example,出:甲26 322931 201213883 =: ethyl, propyl, isopropyl, butyl, pentyl 'hexyl, heptyl, octyl, decyl, decyl, decyl, thirteen, ten Four sinking groups, pentadecyl groups, octadecyl groups, etc., such as a sulfonyl group [(CH2CH(CH3)0)nH or (10) coffee (four) other n is mostly from 1 to 50, further preferably from 5 to 50, the addition of the molar number of the more complex 胄 胄 'the better the dispersibility of the agent, but due to excessive excess, the formation of viscous, so the focus on the dispersion of the solvent, η is more appropriate In addition, when the value of 〇 is 5 to 2 ,, the product is non-tacky and excellent in pulverizability. In addition, from the point of dispersibility and popularity The total number of η of the four-level recording is preferably from 5 to 50. Specific examples of the quaternary ammonium salt include four-burning chlorination, four-burning desertification, polyoxygenation, and three recordings. Chlorine (10), polyoxypropylene base · dicalcinated desertification money, bis(polyoxypropyl fluorenyl)·dialkyl chlorination record, two (polyoxymethylene), two wire evolutionary money, three (polyoxygen) (4) base), chlorinated chloride, bis(polyoxypropylene)-alkylammonium bromide, etc. For the quaternary ammonium ion of formula (I), R1 is preferably methyl or hetero. R2 is preferably a carbon atom The filaments of 1 to 12 are particularly preferably those having 1 to 4 carbon atoms. R3 is preferably a filament having 5 carbon atoms. R4 is preferably a carbon atom.

至 25 的烧基、(CH2CH(CH3)〇)nH 基或⑽2CH2CH2〇)nH 基。N 宜為5至50。 322931 27 201213883a burnt group of 25, a (CH2CH(CH3)〇)nH group or a (10)2CH2CH2〇)nH group. N should be 5 to 50. 322931 27 201213883

RR

R3_ 此外,使用氧化鋁溶膠作為無機奈米微粒時,由於光 學功能層的表面硬度提高,耐擦傷性也提高,因而為佳。 無機奈米微粒可為經改性的物質。對於無機奈米微粒 的改性可以使用石夕烧搞合劑。作為石夕烧耦合劑,例如可使 用:乙烯基三曱氧基矽烷、3-環氧丙氧基丙基三曱氧基矽 烷、對苯乙烯基三曱氧基矽烷、3-曱基丙烯醯氧基丙基三 乙氧基矽烷、甲基丙烯醯氧基丙基三甲氧基矽烷、r-丙烯醯氧基丙基三曱氧基矽烷、7-曱基丙烯醯氧基丙基三 乙氧基矽烷、7-丙烯醯氧基丙基三乙氧基矽烷等。矽烷耦 合劑可具有能與構成樹脂成分的輻射線硬化型樹脂的聚合 性雙鍵進行共聚的官能基。 無機奈米微粒的平均粒徑宜為lOOnm以下,更宜為 50nm以下,最宜20nm以下。無機奈米微粒只要為具有聚 集性的物質即可,對平均粒徑的下限沒有限定,例如為 1 nm。無機奈米微粒的平均粒徑超過10Onm時,光學積層體 的霧度值表現出變高的傾向,容易看到白化等現象,同時 對比度降低。 無機成分的配合量相對於樹脂組成物中的固形分的總 質量為含有0.1至10質量%,特別宜為0.2至5質量%。無 28 322931 201213883 的表R3_ Further, when an alumina sol is used as the inorganic nanoparticle, the surface hardness of the optical functional layer is improved, and the scratch resistance is also improved. The inorganic nanoparticles can be modified materials. For the modification of inorganic nanoparticles, a stone smelting agent can be used. As the scouring agent, for example, vinyl trimethoxy decane, 3-glycidoxy propyl trimethoxy decane, p-styryl tridecyl decane, 3-mercapto propylene fluorene can be used. Oxypropyl propyl triethoxy decane, methacryloxypropyl trimethoxy decane, r-propylene methoxy propyl trimethoxy decane, 7-mercapto propylene methoxy propyl triethoxy Base decane, 7-propylene methoxy propyl triethoxy decane, and the like. The decane coupling agent may have a functional group copolymerizable with a polymerizable double bond of a radiation curable resin constituting the resin component. The average particle diameter of the inorganic nanoparticles is preferably 100 nm or less, more preferably 50 nm or less, and most preferably 20 nm or less. The inorganic nanoparticles are not particularly limited as long as they have a collecting property, and the lower limit of the average particle diameter is not limited, and is, for example, 1 nm. When the average particle diameter of the inorganic nanoparticles is more than 10 nm, the haze value of the optical layered product tends to be high, and it is easy to see a phenomenon such as whitening, and the contrast is lowered. The blending amount of the inorganic component is 0.1 to 10% by mass, particularly preferably 0.2 to 5% by mass based on the total mass of the solid content in the resin composition. No table for 28 322931 201213883

的問 機成分的配合量小於0.1質量%時,沒有形成足夠數量 面凹凸而存在防眩性不充分的問題。無機成分的配合 過1〇質量%時,表面凹凸數量增多,存在辨認性受鵪 題。 (溶劑)When the amount of the component of the organic component is less than 0.1% by mass, a sufficient number of surface irregularities are not formed, and there is a problem that the antiglare property is insufficient. When the amount of the inorganic component is more than 1% by mass, the number of surface irregularities increases, and there is a problem of visibility. (solvent)

作為形成用於得到防眩性的表面凹凸的溶劑 第1溶劑和第2溶劑。 通過在上述本發明的樹脂組成物中加入第1溶劑和 2溶劑,可以製成本發明的光學功能層形成用塗料。第 明的光學功能層形成用塗料由於含有上述第(溶劑和第發 溶劑,因此,即使不添加被認為用於製成以往光學功能層2 的表面凹凸形狀所必需的微粒,也能製成光學功能層的表 面凹凸形狀。 第1溶劑是指以實際上不使無機成分產生混濁而具有 透明性的狀態使其分散的溶劑。實際上不產生混濁係包括 7G全不產生混濁的情況以及能夠和不產生混濁等同看待的 情況。作為第1溶劑,具體而言,是指添加相對于無機成 分1〇〇質量份為1〇〇〇質量份的第丨溶劑混合所得的混合液 的霧度值為10%以下的溶劑。添加第丨溶劑混合所得的混 合液的霧度值宜為8%以下,進一步宜為以下。此外,對 混合液的霧度值的下限值沒有特別限定,例如為〇, 1%。作 為第1溶劑,例如可使用所謂的極性小的溶劑(非極性溶 劑)。 第2溶劑是指以使無機成分產生混濁的狀態使其分散 322931 29 201213883 的溶劑。作為第2溶劑,且艘 體 是指添加相對于無機 成为議質量份為圆質量份的第2溶劑混合所得的混合 液的霧度值為30%以上的溶劑。添加第2溶劑混合所得的 混合液的霧度值宜為侧以上,進—步宜為5⑽以上。此 外,對混合液的霧度值的上限值沒有特別㈣,例如為㈣。 作為第2溶劑,例如可使用所謂的極性溶劑。 此外,確定第1溶劑和第2溶劑時需要的霧度值,根 據JIS K7105來測定^ 可根據無機成分的種類而使用的第i溶劑和第2溶劑 是不同的。作為可用作第1溶劑和第2溶劑的溶劑,可以 使用甲醇〔醇、卜丙醇、2_丙醇、丁醇、異丙醇(心)、 異丁醇等醇類;丙酮、曱基乙基酮_)、環己酮、曱基異 丁基酮(MIBK)等酮類;二丙酮醇等酮醇類;苯、曱苯、二 曱苯等芳香族烴類;乙二醇、丙二醇、己二醇等二醇類; 乙基溶纖劑、丁基溶纖劑、乙基卡必醇、丁基卡必醇、二 乙基溶纖劑、二乙基卡必醇、丙二料?叫二醇_員; N-曱基咬略烧_、二甲基曱酿胺、乳酸甲醋、乳酸乙画旨、 醋酸曱醋、醋酸乙8旨、醋酸戊g旨等醋類;二㈣、二乙趟 等嶋;7K等。這些溶劑可以使用—種作為第丨溶劑或第 2溶劑,也可以多種混合作為第丨溶劑或第2溶劑。 、此處,第1溶劑和第2溶劑混合使用時,由於容易形 成用來得到防眩性的表面凹凸’因而為佳。作為第i溶劑 =第2溶劑的混合比,以質量比計為1〇 : 9〇至9〇 : 1〇的 範圍時,由於容易形成用來得到防眩性的表面凹凸,而為 322931 30 201213883 佳。作為第1溶劑和第2溶劑的混合比,以質量比計,宜 為15 · 85至85 . 15的範圍,更宜為20 : 80至80 : 20的 範圍第1 *劑小於;lQ質量份時,會產生因未分散物所引 起的外觀缺的問題。第i溶劑超過9〇質量份時,會有無 法得到用於獲得充分防眩性的表面凹凸的問題。 此外,樹月曰組成物和溶劑(合併第丄溶劑和第2溶劑的 /合劑)的配σ量’以質量比計’為: 至: 的範圍 即可。 樹月曰、、且成物小於3〇冑量份時,會有乾燥不均等之產生 麟外觀變差、㈣表面凹凸數量增多、娜性受損的問 題。 樹脂組成物超過70質量份時,由於固形分的溶解性 (刀散f生)#易受損’因此存在有無法製膜的問題。 (微粒) 上述樹脂組成物含有透光性的微粒。將在該樹脂組成 物中添加了㈣的光學功能層形成时料塗布在透光性基 體上後’使該光學功能層形成用塗料硬化即可形成光學功 能層。通過在麟組成物中添加透紐的微粒,容易調整 該光學功能層的表面凹凸的形狀、數量。 —作為透光性的微粒,可以使用:包括丙_樹脂、聚 ^乙婦樹脂、苯乙烯-丙稀酸共聚物、聚乙烯樹脂、環氧樹 in、聚偏氟乙烯、聚氟乙烯系樹脂等的有機系透 的樹脂微粒;二氧化石夕、氧化铭、氧化欽、氧化鍅 氧化^氧化錫、氧化銦、氧化銻等無㈣透光性的錄。 322931 31 201213883 透光性的微粒的折射率宜為1.40至1.75,在折射率小於 1.40或比1.75大時,與透光性基體或樹脂基質的折射率 差過大,全光線透過率降低。此外,透光性的微粒和樹脂 的折射率差宜為0. 2以下。透光性的微粒的平均粒徑宜為 0.3至10/zm的範圍,更宜為1至7//m,進一步宜為2至 6 a m。 由於粒徑小於0. 3/z m時之防眩性降低,而且,大於 10/zm大時會產生閃光,同時表面凹凸的程度變得過大使 得表面發白,因而不佳。此外,對上述樹脂中含有的透光 性的微粒的比例沒有特別限定,從滿足防眩功能、閃光等 特性的角度考慮,相對於樹脂組成物100質量份,宜為〇. 1 至20質量份,容易控制光學功能層表面的微小凹凸形狀和 霧度值。此處,“折射率”指的是依據JISK-7142的測定 值。此外,“平均粒徑”指的是通過電子顯微鏡實際測量 的100個粒子的直徑的平均值。 至於微粒的配合量,相對於構成光學功能層的樹脂組 成物中的固形分的總質量,所含為0.1質量%以上,宜為 1.0質量%以上。對上限值沒有特別限定,例如為5.0質量 %。當其小於0. 1質量%時,會有無法得到充分的防眩性等 問題。 抗靜電劑(導電劑) 本發明的光學功能層也可含有抗靜電劑(導電劑)。通 過導電劑的添加,可有效地防止塵埃附著在光學積層體的 表面。作為抗靜電劑(導電劑)的具體例,可以舉出四級銨 32 322931 201213883 鹽、吡啶鎘鹽、具有—級至三級胺基等陽離子性基團的各 種陽離子性化合物;具有罐酸鹽基團、硫酸§旨鹽基團、填 酸醋鹽基®、膦酸縣團等陰離子性基團的陰離子性化合 物’胺基酸系、胺基硫酸酯系等兩性化合物;胺基醇系、 甘油系、聚乙二醇系等非離子性化合物;錫和鈦的醇鹽之 類的有機金屬化合物以及該等的乙醯丙酮酸化物鹽之類的 金屬螯合物化合物’進—步可舉出將上述所列化合物高分 子量化的化合物。另外,具有三級胺基、四級銨基、或金 屬螯合部、並且可以利用電離輻射線進行聚合的單體或低 聚物’或者如含有官能基的耦合劑的有機金屬化合物等聚 合性化合物也可作為抗靜電劑使用。 另外’作為抗靜電劑可舉出導電性微粒。作為導電性 微粒的具體例子’可舉出由金屬氧化物構成的物質。作為 11樣的金屬氧化物,可舉出:Zn〇、Ce〇2、Sb2〇2、Sn〇2、常 被簡稱為ITO的氧化銦錫、Irl2〇3、Ah〇3、銻摻雜氧化錫(簡 稱:ΑΤ0)、鋁摻雜氧化鋅(簡稱:AZ〇)等。所謂導電性微粒 是指1微米以下,即亞微米大小的粒子,平均粒徑宜為 0. lnm 至 0. 1 // m。 另外’作為抗靜電劑(導電劑)的其它的具體例,可舉 出導電性聚合物。作為它的材料沒有特別限定,可以列舉 出例如選自下述材料中的至少一種,所述材料是:脂肪族 共輕系的聚乙块、聚並苯、聚奠(P〇lyazulene);芳香族共 軛系的聚笨撐;雜環式共軛系的聚吡咯、聚噻吩、聚異^ 茚(polyisothianaphthene);含雜原子共軛系的聚笨胺、 322931 33 201213883 聚噻吩伸乙烯(Polythienylenevinylene);混合¾共軛系 的聚苯伸乙烯;作為分子中具有多個共輕鏈的共輥系的多 鍵型共軛系;這些導電性聚合物的衍生物β及在飽和高分 子内與上述共輥高分子键接枝或嵌段共聚的高分子之導電 性複合體。其中’更宜使用聚噻吩、聚笨胺、聚吡咯等有 機系抗靜電劑。通過使用上述有機系抗靜電劑,既能發揮 優異的抗靜電性能’同時又能提高光學積層體的全光線透 過率,還能降低霧度值。另外,以提高導電性、提高抗靜 電性能為目的’還可以添加有機續酸、氣化鐵等的陰離子 作為摻雜劑(電子給予劑)。根據摻雜劑的添加效果,特% 宜為聚噻吩,因其透明性、抗靜電性高。作為上述聚嗔吩, 也可適合使用低聚噻吩。作為上述衍生物沒有特別限定, 例如可舉出聚苯乙炔、聚二乙炔的烷基取代物等。 &lt;光學積層體〉 將含有上述構成成分的光學功能層形成用塗料塗布在 透光性基體上後’通過熱、或照射電離輻射線(例如照射電 子束或紫外線)使該光學功能層形成用塗料硬化而形成光 學功能層’可得到本發明的光學積層體。 光學功能層可以形成在透光性基體的一面,也可以形 成在兩面。 此外’可以在光學功能層和透光性基體之間、光學功 能層的相反面具有其它層,也可以在光學功能層上具有其 它層。此處作為其它層,例如可舉出:偏光層、光擴散層、 低反射層、防污層、抗靜電層、紫外線•近紅外線(Νί0 34 322931 201213883 吸收層、氖光吸收層、電磁波屏蔽層等。 光學功能層的厚度宜為丨.〇至12. Oem的範圍,更宜 為2.0至ll.〇/zm的範圍,進一步宜為3.0至ιο.οβ^的 範圍。在光學功能層比1. 0;czin薄的情況下’在紫外線硬化 型時由於氧阻礙而引起硬化不良,光學功能層的耐磨性容 易劣化。在光學功能層比12. 0//Π1厚的情況下,會產生因 光學功能層的硬化收縮而引起的捲曲的產生、微裂紋的產 生、與透光性基體的密合性降低、以及光透過性下降。並 且’必要塗料量伴隨膜厚的增加而增加,這也成為成本增 加的原因》 對於本發明的光學積層體而言,圖像鮮明性宜為5.0 至85. 0的範圍(依據jis K7105、使用0· 5mm光梳測定的 值)’更宜為20. 0至75· 0。由於圖像鮮明性小於5· 0時對 比度變差,超過85. 0時防眩性變差,因此不適合於顯示器 表面所使用的光學積層體。 本發明的光學積層體在光學功能層的表面具有微小凹 凸形狀。此處,對於該微小凹凸形狀,從依據ASME95求出 的平均斜率計算的平均傾斜角宜在0· 2至1.4的範圍,更 宜為0. 25至1. 2,進一步宜為〇. 30至1. 〇。由於平均傾斜 角小於0. 2時防眩性變差,平均傾斜角超過l 4時黑色變 差,因此不適合於顯示器表面所使用的光學積層體。 此外,就本發賴光學積層體而言,作為光學功能^ 的微小凹凸形狀,表面粗糖度Ra宜為〇· 〇3至〇· 2扉,多 宜為0.03至0.15&quot;,待別宜為〇〇3至〇1〇 _。表透 322931 35 201213883 粗糙度Ra小於0. 03#m時,光學功能層的防眩性變得不充 分。表面粗糙度Ra超過0. 2時,光學積層體的黑色變 差。 凹凸平均間隔(Sm)處於30至300# m的範圍,更宜為 50至250 /zm,進一步宜為100至250/zm。在小於30/zm 時,由於表面散射變大’會有光學積層體的黑色變差的缺 點。超過300 μ m時,會有防眩性變差的缺點。 十點平均表面粗糖度(Rz)處於0. 3至1.2/zm的範圍’ 更加優選為0.4至1·〇#ιη,進一步優選為0.5至0.9em。 在小於0. 3//m時存在防眩性變差的缺點。超過丨.2 &quot; m時 存在光學積層體的黑色變差的缺點。 〈偏光基體〉 本發明中,可以在與光學功能層相反面的透光性基體 上層疊偏光基體。此處,該偏光基體可以使用只透過特定 的偏光而吸收其它光的光吸收型的偏光基體、或只透過特 定的偏光而反射其它光的光反射型的偏光基體。作為光吸 收型的偏光基體,可以使用使聚乙烯醇、聚乙烯撐等延伸 得到的膜,例如作為二色性元件可舉出將吸附了碘或染料 的聚乙烯醇單軸延伸得到的聚乙烯醇(PVA)膜。作為光反射 型的偏光基體,例如可舉出:將延伸時延伸方向的折射率 不同的2種聚酯樹脂(PEN和PEN共聚物)通過擠出成型技 術數百層交替層疊、延伸構成的3M公司製造的“Dbejt” ; 將膽留型液晶聚合物層和1/4波長板層疊’將從膽g型液 晶聚合物層一側入射的光分離成相互反向的兩束圓偏光, 36 322931 201213883 使一束透過而另一束反射,使透過膽留型液晶聚合物層的 圓偏光通過1/4波長板轉換成直線偏光的構成的日東電工 公司製造的“NIP0CS” ;默克公司製造的“TRANSMAX”等。 通過將偏光基體和光學積層體直接或通過黏接層層 疊,可以作為偏光板使用。 〈顯示裝置〉 本發明的光學積層體,可以應用於液晶顯示裝置 (LCD)、電漿顯示板(PDP)、電致發光顯示器(ELD)、陰極射 線管顯示裝置(CRT)、表面電場顯示器(SED)那樣的顯示裝 置。特別宜應用於液晶顯示裝置(LCD)。由於本發明的光學 積層體具有透光性基體,因此可以將透光性基體側黏接在 圖像顯示裝置的圖像顯示面來使用。 在將本發明的光學積層體作為偏光板的表面保護膜的 一側使用的情況下,可以適合使用於扭轉向列(TN)、超扭 轉向列(STN)、垂直排列(VA)、平面轉換(IPS)、光學補償 彎曲(0CB)等模式的透過型、反射型或半透過型的液晶顯示 裝置。 ^ 〈光學積層體的製造方法〉 作為在透光性基體上塗布光學功能層形成用塗料的方 法’可以應用通常的塗布方式、印刷方式。具體而言,可 以使用氣刀塗布、棒塗、刮刀塗布、刮塗、反轉塗布、轉 印輥塗布、照相凹版輥塗、吻合塗布、鑄塗、喷塗、狹縫 喷嘴塗布、壓延塗布、擋板塗布(dam coating)、浸塗、模 塗等塗布、照相凹版印刷等凹版印刷、絲網印刷等孔版印 322931 37 201213883 刷等印刷等。 以下’使用實施例說明本發明,但本發明並不限制於 這些。 實施例 (製造例1合成蒙脫石的製造) 在10L的燒杯中加入水4L,在其中溶解3號水玻璃 (Si〇z28%、NaA 9%,莫耳比 3. 22)860g、一次性地加入 95% 硫酸162g並進行攪拌’即得矽酸鹽溶液。接著,在il的 水中溶解MgCh · 6H2〇 —級試劑(純度98%)560g,將其加入 到前述石夕酸溶液中製備均質混合溶液。用5分鐘將其滴入 2N-NaOH溶液3. 6L中並進行攪拌。將所得的反應沈澱物立 刻用日本礙子(株)製造的交叉流動(Cross flow)方式的過 濾系統[交叉流動過濾器(陶瓷膜過濾器:孔徑2//m、管狀 式、過濾面積 400cm2)、加壓:2kg/cm2、遽布:Tetoron 1310] 進行過濾和充分水洗後,加入由水200ml和Li(OH) · H2〇 14. 5g形成的溶液,製成漿狀。將其移入高壓反應釜中, 在41kg/cm2、250°C下使其水熱反應3小時。冷卻後取出反 應物,在80°C下乾燥、粉碎,即得下述式的合成蒙脫石。 分析該合成蒙脫石,結果可得到以下組成的物質。Na〇.4Mg2.6 Li〇.4Si4〇1Q(OH)2,另外,通過亞甲基藍吸附法測定的陽離子 交換容量為110毫當量/100g。 (製造例2合成蒙脫石系層狀有機黏土A的製造) 使製造例1中合成的合成蒙脫石20g分散在1000ml自 來水中,形成懸濁液。將溶解有該合成蒙脫石的陽離子交 38 322931 201213883 換谷量的1.00倍相當量的下式(π)的四級銨鹽(98%含有 品)的水溶液500ml添加至前述合成蒙脫石懸濁液中’邊授 拌邊使其在室溫下反應2小時。將生成物固液分離、洗滌, 除去副產物鹽類後進行乾燥,即得合成蒙脫石系層狀有機 黏土 A。 CHa I C* H5 ~ N * — (CHa I C8 HbAs a solvent for forming surface unevenness for obtaining anti-glare properties, the first solvent and the second solvent. The coating material for forming an optical functional layer of the present invention can be obtained by adding the first solvent and the solvent to the resin composition of the present invention. Since the coating material for forming an optical function layer contains the above-mentioned (solvent and the first solvent), it can be made into optical even without adding particles necessary for forming the surface unevenness of the conventional optical functional layer 2. The surface of the functional layer has a surface unevenness. The first solvent is a solvent which is dispersed in a state in which the inorganic component is not turbid and is transparent. Actually, no turbidity is caused, and no turbidity is generated in all of the 7G, and In the case where the first solvent is added, the haze value of the mixed liquid obtained by mixing the first solvent of 1 part by mass with respect to 1 part by mass of the inorganic component is specifically obtained. The solvent having a concentration of 10% or less is preferably 8% or less, more preferably 5% or less, and the lower limit of the haze value of the mixed liquid is not particularly limited, and for example, 〇 1%. As the first solvent, for example, a so-called solvent having a small polarity (non-polar solvent) can be used. The second solvent is a state in which the inorganic component is turbid and dispersed. 322931 29 Solvents of 201213883. The second solvent is a solvent having a haze value of 30% or more by mixing a second solvent obtained by mixing a second solvent with a mass fraction of inorganic particles. 2 The liquid mixture obtained by solvent mixing preferably has a haze value of more than or equal to the side, and preferably 5 (10) or more. Further, the upper limit of the haze value of the mixed liquid is not particularly (4), for example, (4). For example, a so-called polar solvent can be used. The haze value required for determining the first solvent and the second solvent is measured according to JIS K7105. The i-th solvent and the second solvent which are used depending on the type of the inorganic component are different. As the solvent usable as the first solvent and the second solvent, alcohols such as methanol (alcohol, propanol, 2-propanol, butanol, isopropanol (heart), isobutanol; acetone, hydrazine can be used; Ketones such as ethyl ethyl ketone _), cyclohexanone, decyl isobutyl ketone (MIBK); ketone alcohols such as diacetone alcohol; aromatic hydrocarbons such as benzene, toluene and diphenyl; ethylene glycol; Glycols such as propylene glycol and hexanediol; ethyl cellosolve, butyl cellosolve, B Carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene feed? It is called diol _ member; N- fluorene-based biting _, dimethyl hydrazine amine, lactic acid methyl vinegar, lactic acid B, acetic acid vinegar, acetic acid ethane vinegar, acetic acid pentane g vinegar; two (four) , diethyl hydrazine, etc.; 7K and so on. These solvents may be used as a second solvent or a second solvent, or may be mixed as a second solvent or a second solvent. Here, when the first solvent and the second solvent are used in combination, it is preferable to form the surface unevenness for obtaining the anti-glare property. When the mixing ratio of the i-th solvent=the second solvent is in the range of 1 〇: 9 〇 to 9 〇: 1 质量 in mass ratio, surface irregularities for obtaining anti-glare properties are easily formed, and 322931 30 201213883 good. The mixing ratio of the first solvent and the second solvent is preferably in the range of 15 · 85 to 85 . 15 , more preferably in the range of 20: 80 to 80: 20, and the first agent is less than 1 part by mass; At the time, there is a problem of lack of appearance due to undispersed matter. When the i-th solvent exceeds 9 parts by mass, there is a problem that surface unevenness for obtaining sufficient anti-glare property cannot be obtained. Further, the amount of sigma s of the composition of the sapphire and the solvent (combining the second solvent and the second solvent/mixture) may be in the range of: to: . When the tree is sputum and the amount of the product is less than 3 parts, there is a problem that the unevenness of the drying occurs, the appearance of the lining is deteriorated, and (4) the number of surface irregularities is increased, and the nature is impaired. When the resin composition exceeds 70 parts by mass, the solubility of the solid component is easily damaged. Therefore, there is a problem that film formation cannot be achieved. (Particles) The above resin composition contains light-transmitting fine particles. When the optical functional layer-forming material (4) to which the resin composition is added is coated on a light-transmitting substrate, the optical functional layer-forming paint is cured to form an optical functional layer. It is easy to adjust the shape and the number of surface irregularities of the optical functional layer by adding fine particles of the permeable layer to the lining composition. - As a light-transmitting fine particle, it can be used: including propylene resin, polyethylene resin, styrene-acrylic acid copolymer, polyethylene resin, epoxy resin, polyvinylidene fluoride, polyvinyl fluoride resin. Other organic resin-permeable resin particles; sulphur dioxide, oxidized, oxidized, oxidized cerium oxide, tin oxide, indium oxide, cerium oxide, etc. 322931 31 201213883 The light-transmitting fine particles preferably have a refractive index of 1.40 to 1.75, and when the refractive index is less than 1.40 or larger than 1.75, the difference in refractive index from the light-transmitting substrate or the resin matrix is too large, and the total light transmittance is lowered. 2以下。 In addition, the refractive index difference between the light-transmitting particles and the resin is preferably 0.2 or less. The average particle diameter of the light-transmitting fine particles is preferably in the range of 0.3 to 10 / zm, more preferably 1 to 7 / / m, still more preferably 2 to 6 a m. The antiglare property is lowered when the particle diameter is less than 0.3/z m, and a flash is generated when it is larger than 10/zm, and the degree of surface unevenness becomes too large to make the surface white and thus poor. In addition, the ratio of the light-transmitting fine particles contained in the above-mentioned resin is not particularly limited, and it is preferably from 1 to 20 parts by mass based on 100 parts by mass of the resin composition from the viewpoint of satisfying characteristics such as an anti-glare function and a flash. It is easy to control the minute uneven shape and haze value of the surface of the optical functional layer. Here, "refractive index" refers to a measured value according to JIS K-7142. Further, "average particle diameter" refers to an average value of diameters of 100 particles actually measured by an electron microscope. The amount of the fine particles to be added is 0.1% by mass or more, preferably 1.0% by mass or more, based on the total mass of the solid content in the resin composition constituting the optical functional layer. The upper limit is not particularly limited and is, for example, 5.0% by mass. When it is less than 0.1% by mass, there is a problem that sufficient antiglare property cannot be obtained. Antistatic Agent (Conductive Agent) The optical functional layer of the present invention may also contain an antistatic agent (conductive agent). By the addition of the conductive agent, dust can be effectively prevented from adhering to the surface of the optical laminate. Specific examples of the antistatic agent (conductive agent) include quaternary ammonium 32 322931 201213883 salt, pyridine cadmium salt, and various cationic compounds having a cationic group such as a tertiary to tertiary amine group; An amphoteric compound such as an anionic compound such as an anionic group such as a sulfonate group, a sulphate group, a sulphate group or a phosphonic acid group; an amine compound such as an amino acid or an amine sulfate; Non-ionic compounds such as glycerol and polyethylene glycol; organometallic compounds such as tin and titanium alkoxides, and metal chelate compounds such as acetoacetate salts can be further advanced. A compound which polymerizes the above-listed compounds. Further, a polymerizable property of a monomer or oligomer having a tertiary amino group, a quaternary ammonium group, or a metal chelate portion and capable of being polymerized by ionizing radiation or an organometallic compound such as a coupling agent containing a functional group The compounds can also be used as antistatic agents. Further, as the antistatic agent, conductive fine particles can be mentioned. Specific examples of the conductive fine particles include a material composed of a metal oxide. Examples of the 11-type metal oxide include Zn〇, Ce〇2, Sb2〇2, Sn〇2, indium tin oxide, which is often abbreviated as ITO, Irl2〇3, Ah〇3, and antimony-doped tin oxide. (abbreviation: ΑΤ0), aluminum-doped zinc oxide (abbreviation: AZ〇). 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. Further, as another specific example of the antistatic agent (conductive agent), a conductive polymer can be mentioned. The material thereof is not particularly limited, and examples thereof include at least one selected from the group consisting of aliphatic poly-blocks, polyacene, and P〇lyazulene; and aromatics; a polycyclic conjugated polypyrrole, a polythiophene, a polyisothianaphthene, a heteroatom-containing conjugated polyphenylamine, 322931 33 201213883 Polythiophene ethylene Mixing 3⁄4 conjugated polyphenylene extending ethylene; a multi-bond conjugated system as a co-roller having a plurality of co-light chains in the molecule; a derivative of these conductive polymers β and in a saturated polymer The conductive composite of a polymer of the above-mentioned co-rolling polymer bond graft or block copolymerization. Among them, an organic antistatic agent such as polythiophene, polyphenylamine or polypyrrole is more preferably used. By using the above-mentioned organic antistatic agent, it is possible to exhibit excellent antistatic performance while improving the total light transmittance of the optical laminate and reducing the haze value. Further, for the purpose of improving conductivity and improving static electricity resistance, an anion such as an organic acid or a vaporized iron may be added as a dopant (electron donor). Depending on the effect of the dopant addition, polythiophene is preferred because of its high transparency and antistatic properties. As the above polybenzazole, oligothiophene can also be suitably used. The derivative is not particularly limited, and examples thereof include polyphenylacetylene and polyalkylene group alkyl substituted products. &lt;Optical laminated body> After coating the optical functional layer-forming coating material containing the above-mentioned constituent components on a light-transmitting substrate, the optical functional layer is formed by heat or irradiation with ionizing radiation (for example, irradiation of an electron beam or ultraviolet rays). The optical layered body of the present invention can be obtained by hardening the coating to form an optical functional layer. The optical functional layer may be formed on one side of the light transmissive substrate or on both sides. Further, other layers may be provided between the optical functional layer and the light-transmitting substrate, on the opposite side of the optical functional layer, or may have other layers on the optical functional layer. Here, as another layer, for example, a polarizing layer, a light diffusion layer, a low reflection layer, an antifouling layer, an antistatic layer, an ultraviolet ray, a near infrared ray (Νί0 34 322931 201213883 absorption layer, a krypton absorption layer, an electromagnetic wave shielding layer) The thickness of the optical functional layer is preferably in the range of 丨.〇 to 12. Oem, more preferably in the range of 2.0 to ll. 〇/zm, further preferably in the range of 3.0 to ιο.οβ^. 0; when czin is thin, 'hardening failure is caused by oxygen inhibition in the ultraviolet curing type, and the abrasion resistance of the optical functional layer is easily deteriorated. When the optical functional layer is thicker than 12.0//Π1, it is generated. The occurrence of curl due to the hardening shrinkage of the optical functional layer, the occurrence of microcracks, the decrease in adhesion to the light-transmitting substrate, and the decrease in light transmittance, and the amount of necessary coating increases with an increase in film thickness. It is also a cause of cost increase. For the optical laminate of the present invention, the image sharpness is preferably in the range of 5.0 to 85.0 (according to jis K7105, a value measured using a 0. 5 mm optical comb) 'more preferably 20 0 to 75· 0. Because When the sharpness is less than 5,000, the contrast is deteriorated, and when the antiglare property is more than 85.0, the antiglare property is deteriorated, so that it is not suitable for the optical laminate used on the surface of the display. The optical laminate of the present invention has minute irregularities on the surface of the optical functional layer. The shape of the singularity is preferably in the range of from 0.2 to 1.4, more preferably from 0.25 to 1.2, further preferably 〇. 30 to 1. 〇. Since the average tilt angle is less than 0.2, the anti-glare property is deteriorated, and when the average tilt angle exceeds 14, the black color is deteriorated, so it is not suitable for the optical laminate used on the surface of the display. In the case of the optical laminate, as the fine concavo-convex shape of the optical function ^, the surface roughness of Ra should be 〇·〇3 to 〇·2扉, and more preferably 0.03 to 0.15&quot;, and should be 〇〇3 to 〇1 〇 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The average interval (Sm) is in the range of 30 to 300 # m. It is preferably 50 to 250 /zm, further preferably 100 to 250/zm. When it is less than 30/zm, the surface scattering becomes large, which may cause the blackness of the optical laminate to deteriorate. When it exceeds 300 μm, there will be The disadvantage that the anti-glare property is deteriorated. The ten-point average surface roughness (Rz) is in the range of 0.3 to 1.2/zm, and more preferably 0.4 to 1·〇#ιη, further preferably 0.5 to 0.9 em. At 3/m, there is a disadvantage that the anti-glare property is deteriorated. When 丨.2 &quot; m is present, there is a disadvantage that the black of the optical laminate is deteriorated. <Polarizing Substrate> In the present invention, a polarizing substrate can be laminated on a light-transmitting substrate opposite to the optical functional layer. Here, as the polarizing substrate, a light-absorbing polarizing substrate that absorbs other light by transmitting only specific polarized light or a light-reflecting polarizing substrate that transmits only other light by transmitting a specific polarized light can be used. As the light-absorptive polarizing substrate, a film obtained by stretching polyvinyl alcohol, polyethylene, or the like can be used. For example, as the dichroic element, polyethylene obtained by uniaxially stretching polyvinyl alcohol adsorbed with iodine or a dye can be used. Alcohol (PVA) film. The light-reflecting type of polarizing substrate is, for example, 3M in which two kinds of polyester resins (PEN and PEN copolymers) having different refractive indices in the extending direction in the extending direction are alternately laminated and extended by extrusion molding techniques. "Dbejt" manufactured by the company; laminating the cholesteric liquid crystal polymer layer and the 1/4 wavelength plate's. The light incident from the side of the chol-type liquid crystal polymer layer is separated into two circularly polarized lights which are opposite to each other, 36 322931 201213883 "NIP0CS" manufactured by Nitto Denko Co., Ltd., which is formed by Nitto Electric Co., Ltd., which is made up of a bundle of reflections and reflects the circularly polarized light passing through the cholesteric liquid crystal polymer layer through a quarter-wave plate to linearly polarized light; "TRANSMAX" and so on. It can be used as a polarizing plate by laminating a polarizing substrate and an optical laminate directly or through an adhesive layer. <Display Device> The optical laminate of the present invention can be applied to a liquid crystal display device (LCD), a plasma display panel (PDP), an electroluminescence display (ELD), a cathode ray tube display device (CRT), and a surface electric field display ( A display device such as SED). It is particularly suitable for use in a liquid crystal display device (LCD). Since the optical layered body of the present invention has a light-transmitting substrate, the light-transmitting substrate side can be bonded to the image display surface of the image display device and used. When the optical layered body of the present invention is used as one side of the surface protective film of the polarizing plate, it can be suitably used for twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), and planar conversion. A transmissive, reflective or transflective liquid crystal display device of mode (IPS) or optically compensated bend (0CB). <Manufacturing Method of Optical Laminate> As a method of applying a coating material for forming an optical functional layer on a light-transmitting substrate, a usual coating method or printing method can be applied. Specifically, air knife coating, bar coating, blade coating, blade coating, reverse coating, transfer roller coating, gravure roll coating, conformal coating, cast coating, spray coating, slit nozzle coating, calender coating, Coating by dam coating, dip coating, die coating, gravure printing such as gravure printing, screen printing, etc. 322931 37 201213883 Printing such as brushing. The invention is described below using the examples, but the invention is not limited thereto. EXAMPLES (Production Example 1 Synthesis of Synthetic Montmorillonite) 4 L of water was added to a 10 L beaker, and 30,000 g of water glass (Si〇z 28%, NaA 9%, Mobi ratio 3.22) 860 g was dissolved therein. A cesium salt solution was obtained by adding 162 g of 95% sulfuric acid and stirring. Next, 560 g of MgCh·6H2 〇-grade reagent (purity: 98%) was dissolved in il of water, and this was added to the above-mentioned solution of the oxalic acid to prepare a homogeneous mixed solution. It was dropped into 2N-NaOH solution 3. 6 L and stirred for 5 minutes. The resulting reaction precipitate was immediately subjected to a cross flow filtration system manufactured by Hawthorn Industries, Ltd. [Cross flow filter (ceramic membrane filter: pore size 2//m, tubular type, filtration area 400 cm2) , pressurization: 2 kg / cm 2 , 遽 cloth: Tetoron 1310] After filtration and sufficient water washing, a solution of 200 ml of water and Li (OH) · H 2 〇 14. 5 g was added to prepare a slurry. This was transferred to a high pressure reaction vessel, and subjected to hydrothermal reaction at 41 kg/cm2, 250 ° C for 3 hours. After cooling, the reaction product was taken out, dried at 80 ° C, and pulverized to obtain a synthetic smectite of the following formula. The synthetic smectite was analyzed, and as a result, a substance having the following composition was obtained. Na〇.4Mg2.6 Li〇.4Si4〇1Q(OH)2, in addition, the cation exchange capacity measured by the methylene blue adsorption method was 110 meq/100 g. (Production Example 2 Production of Synthetic Montmorillonite Layered Organic Clay A) 20 g of synthetic smectite synthesized in Production Example 1 was dispersed in 1000 ml of tap water to form a suspension. 500 ml of an aqueous solution of a quaternary ammonium salt (98%-containing product) of the following formula (π) in which the amount of the cation of the synthetic smectite dissolved in the smectite 38 322931 201213883 was added to the synthetic smectite suspension In the turbid liquid, it was allowed to react at room temperature for 2 hours while mixing. The product is subjected to solid-liquid separation and washing, and by-product salts are removed and dried to obtain a synthetic smectite layered organic clay A. CHa I C* H5 ~ N * — (CHa I C8 Hb

3 0 Η Η C —— C C Η Η [實施例1] 將含有前述層狀有機黏土 A的如表1所記載的規定的 此合物用分散器授拌3〇分鐘,將由此所得的光學功能層形 成用的塗料通過輥塗方式塗布(線速度:2〇m/分鐘)在膜厚 為6〇vm、全光線透過率為92%的透明基體的TAC(富士膠 捲公司製造;TD60UL)的一面上,在3〇至5〇〇c下經2〇秒 ,備乾燥後,在l〇(TC下乾燥丨分鐘,通過在氮氣環境(氮 氣置換)中進行紫外線照射(燈:聚錢高壓水銀燈、燈輸 出功率.120W/Cm、燈數:4盞、照射距離:2〇cm)使塗布 膜硬化。由此’得到具有厚5· 9,的光學功能層的實施例 1的光學積層體。此處,從所得光學積層體的光學功能層 =察的SEM結果如第2圖所示,光學積層體的截面圖的 結果如第3圖所7F ’從光學積層體的光學功能層面觀 路=EDS、、’β果如第4圖所示。從這些結果可以確認:構成 所件光學積層體的光學功能層至少具有第一相和第二相, 39 322931 201213883 形成了無規聚集結構。 [實施例2] 除了把光學功能層形成用塗料變更為表1所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 4. lem的光學功能層的實施例2的光學積層體。從SEM、 EDS結果可以確認:構成所得積層體的光學功能層至少具 有第一相和第二相,形成了無規聚集結構。 [實施例3] 除了把光學功能層形成用塗料變更為表1所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 5. 5/zm的光學功能層的實施例3的光學積層體。從SEM、 EDS結果可以確認:構成所得積層體的光學功能層至少具 有第一相和第二相,形成了無規聚集結構。 [實施例4] 除了把光學功能層形成用塗料變更為表1所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 5. 5/zm的光學功能層的實施例4的光學積層體。從SEM、 EDS結果可以確認:構成所得積層體的光學功能層至少具 有第一相和第二相,形成了無規聚集結構。 [實施例5] 除了把光學功能層形成用塗料變更為表1所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 5. Ο/zm的光學功能層的實施例5的光學積層體。從SEM、 EDS結果可以確認:構成所得積層體的光學功能層至少具 40 322931 201213883 有第一相和第二相,形成了無規聚集結構。 [實施例6] 除了把光學功能層形成用塗料變更為表1所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 5. 4/zm的光學功能層的實施例6的光學積層體。從SEM、 EDS結果可以確認:構成所得積層體的光學功能層至少具 有第一相和第二相,形成了無規聚集結構。 [比較例1] 除了把光學功能層形成用塗料變更為表2所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 4.3/zm的光學功能層的比較例1的光學積層體。此處,從 所得積層體的SEM、EDS結果可以確認:構成所得光學積層 體的光學功能層未形成無規聚集結構而是形成了由透光性 有機微粒的聚集構成的海島結構。 [比較例2] 除了把光學功能層形成用塗料變更為表2所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 5. 8 // m的光學功能層的比較例2的光學積層體。此處,從 所得積層體的SEM、EDS結果可以確認:構成所得光學積層 體的光學功能層未形成無規聚集結構而是形成了第一相和 第二相分散在整個膜面的海島結構。 [比較例3 ] 除了把光學功能層形成用塗料變更為表2所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 41 322931 201213883 6· 6/z m的光學功能層的比較例3的光學積層體。此處,從 所得光學積層體的光學功能層面觀察的SEM結果如第5圖 所示,從光學積層體的光學功能層面觀察的EDS結果如第 6圖所示。可以確認:構成所得光學積層體的光學功能層 相分離為第一相和第二相,但由於光學功能層中不含有微 粒’因此沒有形成無規聚集結構。 [比較例4] 除了把光學功能層形成用塗料變更為表2所記載的規 定的混合液以外,和實施例1同樣地操作,得到具有厚 5· 5/zm的光學功能層的比較例4的光學積層體。此處,從 所得積層體的SEM、EDS結果可以確認:構成所得光學積層 體的光學功能層未形成無規聚集結構,而是形成了由透光 性有機微粒的聚集構成的海島結構。 [比較例5] 〜除了把光學功能層形成用塗料變更為表2所記載的規 ^的展合液以外’和實施例i同樣地操作,得到具有厚 的光學功能層的比較例5的光學積層體。此處,從 件光學積層體的光學功能層面觀察的珊結果如第7圖 斤^可以確認··構成所得光學積層體的光學功能層未形 成的' = 3 =構’而是形成了由透光性有機微粒的聚集構 [比較例6] 〜除了把光學功能層形成用塗料變更為表 2所記載的規 、展。液以外實施例1肖樣地操作,得到具有厚 42 322931 201213883 4. 0 μ m的光學功能層的比較例6的光學積層體。此處,從 所得光學積層體的SEM、EDS結果可以確認:構成所得光學 積層體的光學功能層未形成無規聚集結構,而是形成了由 無定形二氧化矽的聚集構成的海島結構。 上述實施例中使用的材料匯總在表1中,比較例中使 用的材料匯總在表2中。 43 322931 201213883 [表1 ]3 0 Η Η C —— CC Η Η [Example 1] The composition of the composition described in Table 1 containing the layered organic clay A described above was stirred for 3 minutes with a disperser, and the optical function thus obtained was obtained. The coating for layer formation was applied by a roll coating method (linear velocity: 2 〇m/min) to a side of a TAC (Fuji Film Co., Ltd.; TD60UL) of a transparent substrate having a film thickness of 6 〇vm and a total light transmittance of 92%. On the top, after 3 〇 to 5 〇〇 c for 2 〇 seconds, after drying, 丨 〇 〇 TC TC TC , , , , , , , , , , , , , , , , , , , , , , , , , TC TC TC TC TC TC TC TC TC TC The lamp output power was 120 W/cm, the number of lamps was 4 Å, and the irradiation distance was 2 〇 cm. The coating film was cured, thereby obtaining an optical layered body of Example 1 having an optical functional layer having a thickness of 5.9. From the optical function layer of the obtained optical laminate = the SEM results as shown in Fig. 2, the results of the cross-sectional view of the optical laminate are as shown in Fig. 3F' from the optical functional level of the optical laminate = EDS , 'β fruit as shown in Figure 4. From these results can be confirmed: constitute the optical product The optical functional layer of the body has at least a first phase and a second phase, and a random agglomerated structure is formed in 39 322931 201213883. [Example 2] In addition to changing the coating material for forming an optical functional layer to a predetermined mixed liquid described in Table 1, An optical layered product of Example 2 having an optical functional layer having a thickness of 4. lem was obtained in the same manner as in Example 1. From the results of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminated body had at least the first phase and In the second phase, a random agglomerated structure was formed. [Example 3] The same procedure as in Example 1 was carried out except that the coating material for forming an optical functional layer was changed to the predetermined mixed liquid described in Table 1, and it was found to have a thickness of 5. The optical layered body of Example 3 of the optical functional layer of 5/zm. From the results of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminated body had at least the first phase and the second phase, and a random aggregation structure was formed. Example 4] Implementation of an optical functional layer having a thickness of 5. 5/zm was carried out in the same manner as in Example 1 except that the coating liquid for forming an optical function layer was changed to the predetermined mixed liquid described in Table 1. The optical layered body of Example 4 was confirmed from the results of SEM and EDS: the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random aggregation structure was formed. [Example 5] An optical layered product of Example 5 having an optical functional layer having a thickness of 5. Ο/zm was obtained in the same manner as in Example 1 except that the coating material was changed to the predetermined mixed liquid described in Table 1. From the results of SEM and EDS It can be confirmed that the optical functional layer constituting the obtained laminate has at least 40 322931 201213883 having a first phase and a second phase, forming a random aggregation structure. [Example 6] Example 6 having an optical functional layer having a thickness of 5.4 / zm was obtained in the same manner as in Example 1 except that the coating material for forming an optical function layer was changed to the predetermined mixed liquid described in Table 1. Optical laminate. From the results of SEM and EDS, it was confirmed that the optical functional layer constituting the obtained laminate had at least the first phase and the second phase, and a random aggregation structure was formed. [Comparative Example 1] The optical of Comparative Example 1 having an optical functional layer having a thickness of 4.3/zm was obtained in the same manner as in Example 1 except that the coating material for forming an optical functional layer was changed to the predetermined mixed liquid described in Table 2. Laminated body. Here, from the SEM and EDS results of the obtained laminate, it was confirmed that the optical functional layer constituting the obtained optical laminate did not form a random aggregation structure but formed an island structure composed of aggregation of light-transmitting organic fine particles. [Comparative Example 2] A comparative example having an optical functional layer having a thickness of 5.8 // m was obtained in the same manner as in Example 1 except that the coating material for forming an optical functional layer was changed to the predetermined mixed liquid described in Table 2. 2 optical laminate. Here, from the SEM and EDS results of the obtained laminate, it was confirmed that the optical functional layer constituting the obtained optical laminate did not form a random aggregation structure but formed a sea-island structure in which the first phase and the second phase were dispersed throughout the film surface. [Comparative Example 3] An optical functional layer having a thickness of 41 322931 201213883 6·6/zm was obtained in the same manner as in Example 1 except that the coating material for forming an optical functional layer was changed to the predetermined mixed liquid described in Table 2. The optical laminate of Comparative Example 3. Here, the SEM results observed from the optical functional level of the obtained optical layered body are shown in Fig. 5, and the EDS results observed from the optical function level of the optical layered body are shown in Fig. 6. It was confirmed that the optical functional layer constituting the obtained optical layered body was phase-separated into the first phase and the second phase, but since the optical functional layer did not contain the fine particles, a random aggregate structure was not formed. [Comparative Example 4] Comparative Example 4 having an optical functional layer having a thickness of 5·5/zm was obtained in the same manner as in Example 1 except that the coating material for forming an optical functional layer was changed to the predetermined mixed liquid described in Table 2. Optical laminate. Here, from the results of SEM and EDS of the obtained laminate, it was confirmed that the optical functional layer constituting the obtained optical laminate did not form a random aggregation structure, but formed a sea-island structure composed of aggregation of light-transmitting organic fine particles. [Comparative Example 5] The optical operation of Comparative Example 5 having a thick optical functional layer was obtained in the same manner as in Example i except that the coating material for forming an optical functional layer was changed to the formulation liquid described in Table 2 Laminated body. Here, the results observed from the optical function level of the optical layered body can be confirmed as the '=3=construction' of the optical functional layer of the obtained optical layered body. Aggregation structure of the photo-organic fine particles [Comparative Example 6] The composition for the optical functional layer formation was changed to the specifications described in Table 2. Example 1 was operated in the same manner as in the liquid to obtain an optical layered product of Comparative Example 6 having an optical functional layer having a thickness of 42 322931 201213883 4. 0 μm. Here, from the SEM and EDS results of the obtained optical layered product, it was confirmed that the optical functional layer constituting the obtained optical layered body did not form a random aggregate structure, but formed a sea-island structure composed of aggregation of amorphous cerium oxide. The materials used in the above examples are summarized in Table 1, and the materials used in the comparative examples are summarized in Table 2. 43 322931 201213883 [Table 1]

No 成分 公司名 商品名 質董份 多官能内烯醸故 新中村化學 A-DPH 420 光聚合51發劑 汽巴曰本 IRGACURE 184 20 層狀有機黏土 A 一 - 5 . 流平埘 共榮杜化學 L1NC-3A 10 實施例1 透光性有機微粒 折射準:1.52*平均粒徑:2.〇Am - - 5 透光性有機微粒 折射牟:1.59 ·平均粒徑:2.0μη - - 10 甲苯(第1溶劑) - - 160 1ΡΑ(第2溶劑) - - 370 實施例2 多穿能胺基甲酸曲丙烯酸酯 共榮社化學 UA-306I 290 多官瞄丙烯址Μ 共榮社化學 DPE-6A 130 光聚合引發射 汽巴曰本 IRGACURE 184 20 層狀有機黏土 A - - 5 流平劑 共榮社化學 No. 77 10 透光性有機微粒 折射準:1.53,平均粗徑·· 3.〇μπι - - 15 MIBK(第1溶劑) - - 60 二甲笨(第1溶劁) - - 60 6醇(第2溶劑) 一 - 410 實施例3 多官能丙烯酸酯 共榮社化學 PE-3A 320 光聚合引發剤 汽巴曰本 IRGACURE 184 20 層狀有機黏土 A — - 5 流平劑 共榮社化學 No. 90 15 透光性有機微粒 折射毕:】.59,乎均粒役:2. 0//πι - - 50 MIBK(第1溶劑) - - 200 D酵(第2溶劑) - - 3Θ0 實施例4 多官柜胺基甲酸曲丙烯酸曲 共榮社化學 UA-306I· 425 光聚合引發劑 汽巴a本 IRGACURE 184 20 層狀有機黏土 A - - 5 透光性有機黴粗 折射芈:1.53,平均粗徑:3.0/zm — 一 10 透光性有機微粒 折射準:1.59,平均粒徑:2.〇Mm - - 10 M1BK(第1溶劑) 一 - 100 二甲苯(苐1溶劑) 一 - 50 異丁酵(第2溶劑) - - 380 實施倒5 多官能胺基甲酸曲丙烯tt曲 新中村化學 U-15HA 275 多官能丙烯址曲 東亞合成 M-305 120 光聚合5丨發劑 汽巴曰本 IRGACURE 184 20 二氧化矽溶膠 曰產化學工業 MEK-ST-UP 5 流平劑 共榮社化學 LINC-3A 10 透光性有機微粒 折射串:1.53,平均粗徑:3.0/zm - - 30 透光性有機徵粗 折射準:1. 59 *平均粗徑:2.0μιη - - 10 ΪΠΒΚ(第1溶劑) 一 - 160 甲醇(第2溶劑) 一 - 370 實施例6 多官能胺基甲眭雎丙烯酸曲 新中村化學 U-15HA 285 多官能丙烯酸K 東亞合成 M-305 120 光聚合引發劑 汽巴B本 IRGACURE 184 20 層狀有機黏土 A - - 5 流平埘 BYK BYK-361N 10 透光性有機微粒 折射率:1.49,平均粗徑:1.5/zm - - 30 UIBK(第1熔劑) - - 160 甲酵(第2溶劑) - - 370 44 322931 201213883 ·- [表 2]No Ingredient Company Name Product Name Dong Duo Polyfunctional Alkene 醸 New Nakamura Chemical A-DPH 420 Photopolymerization 51 Hair Agent Ciba Imoto IRGACURE 184 20 Layered Organic Clay A - 5 . L1NC-3A 10 Example 1 Light-transmitting organic fine particles refracting: 1.52* Average particle diameter: 2. 〇Am - - 5 Translucent organic fine particles 牟: 1.59 · Average particle diameter: 2.0 μη - - 10 Toluene (No. 1 Solvent) - - 160 1 ΡΑ (2nd solvent) - - 370 Example 2 Multi-energy urethane acetal acid Co., Ltd. UA-306I 290 Multi-guana propylene site Μ Gongrongsha Chemical DPE-6A 130 light Polymerization-derived emission Ciba 曰 IRGACURE 184 20 Layered organic clay A - - 5 Leveling agent Kyoeisha Chemical No. 77 10 Transmittance organic particle refraction: 1.53, average large diameter · · 3.〇μπι - - 15 MIBK (1st Solvent) - - 60 Dimethyl (1st Solvent) - - 60 6 Alcohol (Second Solvent) 1-410 Example 3 Multifunctional Acrylate Kyoritsu Chemical PE-3A 320 Photopolymerization Initiation剤汽巴曰本 IRGACURE 184 20 layered organic clay A — - 5 leveling agent No. 90 15 Transparency of organic light particles: 】.59, averaging granules: 2. 0//πι - - 50 MIBK (1st solvent) - - 200 D leaven (2nd solvent) - - 3Θ0 Implementation Example 4 Multi-Certificate Amino Acid Benzene Acetic Acid Qu Gongrong Chemical UA-306I· 425 Photopolymerization Initiator Ciba A IRGACURE 184 20 Layered Organic Clay A - - 5 Translucent Organic Mold Coarse Refraction 芈: 1.53, Average diameter: 3.0/zm — a 10 Translucent organic particles refracting: 1.59, average particle size: 2. 〇Mm - - 10 M1BK (1st solvent) 1-100 xylene (苐1 solvent) 1-50 Isobutyrate (Second Solvent) - - 380 Implementation of Pour 5 Polyfunctional Amino Acids Trimethoate tt Qu Xinzhongcun Chemical U-15HA 275 Multifunctional Acrylonitrile Site East Asian Synthesis M-305 120 Photopolymerization 5 Hair Spray Ciba This IRGACURE 184 20 cerium oxide sol production chemical industry MEK-ST-UP 5 leveling agent Gongrongshe chemical LINC-3A 10 translucent organic particles refracting string: 1.53, average diameter: 3.0/zm - - 30 Photorefractive index: 1.59 *Average diameter: 2.0μιη - - 10 ΪΠΒΚ (1st solvent) - 160 Methanol (No. 2 Solvents) 1-370 Example 6 Polyfunctional Aminocarbamyl Acetate Triton Nakamura Chemical U-15HA 285 Polyfunctional Acrylic Acid K East Asian Synthesis M-305 120 Photopolymerization Initiator Ciba B IRGACURE 184 20 Layered Organic Clay A - - 5 Flow 埘 BYK BYK-361N 10 Transmittance organic particle Refractive index: 1.49, average diameter: 1.5/zm - - 30 UIBK (1st flux) - - 160 Methyl yeast (2nd solvent) - - 370 44 322931 201213883 ·- [Table 2]

No 成分 公司名 商品名 質量份 比較例1 多官能胺基甲酸鸪丙烯酸酯 共榮社化學 UA-306H 175 多官能丙烯睃酯 新t村化學 A-DPH 250 光聚合引發劑 汽巴a本 IRGACURE 184 20 流平劑 共榮社化學 LINC-3A 10 透光性有機微粒 折射率:1.53,平均粒徑:3.0μπι - - 5 透光性有機微粒 折射率:1.59,平均粒徑:2.0μπι - - 10 ΜΙΒΚ. - - 130 乙醇 - - 400 比較例2 多官能胺基甲睃S自丙烯酸酯 共榮社化學 UA-306H 295 多官能丙烯睃S&amp; 共榮社化學 TMP-A 250 光聚合引發剤 汽巴曰本 IRGACURE 184 20 層狀有拽黏土 A - — 5 流平劑 BYK BYK-354 15 透光性有機微粗 折射率:1.53 *平均粒徑:3. Ομ η - - 5 透光性有機微粒 折射率:1.59,平均粒徑:2.0μη - - 10 ΜΙΒΚ(第I溶劑) - — 400 己酵(第2溶谢) - - 130 比較例3 多官能胺基甲酸酯丙烯酸酯 新中忖化學 U-6HA 125 多官能丙烯酸酯 新中村化學 A-TMMT-3 300 光聚合51發射 汽巴a本 IRGACURE 184 20 層狀有機黏土 A - — 20 流平剤 共榮社化學 LINC-3A 5 甲苯(第1溶劑) - - 80 二甲笨(第1溶劑) - - 20 乙醇(第2溶剤) - - 400 MEK(第1溶剤) - - 30 比較例4 多官能胺基甲玫酯丙烯酸S音 新中村化學 U-4HA 320 多官能丙烯狡雎 東亞合成 M-305 110 光聚合引發劑 汽巴a本 IRGACURE 907 20 增黏剤 伊士曼化學製造 CAP482-20 5 流平剤 BVK BYK-354 15 透光性有機微粒 折射丰:1.57 ·平均粒徑:3.5μπι - - 30 UIBK - - 250 甲苯 - - 250 比較例5 多官能丙烯睃a§ 共榮社化學 DPE-6A 410 光聚合引發剤 汽巴a本 IRGACURE 907 13 增黏剤 伊士曼化學製造 CAP482-20 15 流平剤 BYK BYK-354 2 透光性有機微粗 折射率:1.59,平均粒徑:3.5卩m — - 60 MIBK — - 400 環己明 - — 100 比較例6 多官能丙烯睃β§ 共榮社化學 DPE-6A 435 光聚合引發剤 汽巴曰本 IRGACURE 907 23 流平剤 BYK BYK-354 2 無定形二氧化矽粒珠 牟均長徑:1 // m - - 40 MEK - - 500 45 322931 201213883 關於SEM和EDS,在以下條件下拍攝。No Ingredient Company Name Trade Name Quality Part Comparative Example 1 Polyfunctional Amino Hydrazide Acetate Acrylic Co., Ltd. UA-306H 175 Polyfunctional Acryl Ester New T-Chemistry A-DPH 250 Photopolymerization Initiator Ciba A IRGACURE 184 20 leveling agent Kyoeisha Chemical LINC-3A 10 Translucent organic particles Refractive index: 1.53, average particle size: 3.0μπι - - 5 Translucent organic particles Refractive index: 1.59, average particle size: 2.0μπι - - 10 ΜΙΒΚ. - - 130 Ethanol - - 400 Comparative Example 2 Polyfunctional Aminoguanidine S from Acrylate Co., Ltd. UA-306H 295 Multifunctional Acrylonitrile S&amp; Cosmos Chemical TMP-A 250 Photopolymerization Initiated曰本 IRGACURE 184 20 Layered enamel clay A - 5 Leveling agent BYK BYK-354 15 Translucent organic slightly coarse refractive index: 1.53 * Average particle size: 3. Ομ η - - 5 Translucent organic particle refraction Rate: 1.59, average particle size: 2.0 μη - - 10 ΜΙΒΚ (the first solvent) - 400 hexane (2nd lysis) - - 130 Comparative Example 3 Polyfunctional urethane acrylate New 忖 Chemistry U -6HA 125 Multifunctional Acrylate Xinzhongcun Chemical A-TMMT-3 300 photopolymerization 51 emission Ciba a IRGACURE 184 20 layered organic clay A - 20 flow 剤 剤 荣 荣 Chemical LINC-3A 5 toluene (1st solvent) - - 80 dimethyl stupid (1st solvent) - - 20 Ethanol (Second Solvent) - - 400 MEK (1st Solvent) - - 30 Comparative Example 4 Polyfunctional Aminomethyl Methacrylate Acrylic Acid S-Xin Nakamura Chemical U-4HA 320 Multifunctional Acrylonitrile East Asian Synthesis M-305 110 Photopolymerization Initiator Ciba A IRGACURE 907 20 Viscosity 剤 Eastman Chemical Manufacturing CAP482-20 5 Flow 剤 BVK BYK-354 15 Translucent Organic Particles Refraction: 1.57 · Average Particle Size: 3.5μπι - - 30 UIBK - - 250 Toluene - - 250 Comparative Example 5 Polyfunctional propylene 睃 a§ Synthetic Chemical DPE-6A 410 Photopolymerization Initiation 剤 Ciba A IRGACURE 907 13 Viscosity 剤 Eastman Chemical Manufacturing CAP482-20 15 Leveling剤BYK BYK-354 2 Translucent organic slightly coarse refractive index: 1.59, average particle size: 3.5卩m — - 60 MIBK — - 400 cycloheximide — — 100 Comparative Example 6 Multifunctional propylene 睃β§ Gongrongshe Chemical DPE-6A 435 photopolymerization 剤 曰 曰 IR IRGAGURE 907 23 剤 剤 BYK BYK-354 2 Amorphous cerium oxide beads 牟Elongation diameter: 1 // m - - 40 MEK - - 500 45 322931 201213883 About SEM and EDS, shooting under the following conditions.

SEM 通過SEM觀察實施例、比較例中所得的積層體的塗布 層表面的狀態及含有元素的信息。觀察是在塗布層表面進 行了金或碳蒸鑛之後進行。SEM觀察的條件表示如下。 分析裝置 JSM-6460LV(日本電子公司製造)SEM The state of the surface of the coating layer of the laminate obtained in the examples and the comparative examples and the information on the element contained therein were observed by SEM. The observation was carried out after gold or carbon evaporation was carried out on the surface of the coating layer. The conditions observed by SEM are shown below. Analysis device JSM-6460LV (manufactured by JEOL Ltd.)

前處理裝置 C(碳)塗布 45nm SC-701C(SANYU 電子公 司製造) Au(金)塗布 10nm SC-701AT 改(SANYU 電 子公司製造) SEM條件 加速電壓 20KV 或 15KV 照射電流 0.15nA 真空度 高真空 圖像檢測器 反射電子檢測器 試樣傾斜 0度 EDS 通過EDS觀察實施例、比較例中所得的積層體的含有 元素的信息。觀察是在塗布層表面進行了碳蒸鍍之後進 行。EDS觀察的條件表示如下。 分析裝置 JSM-6460LV(日本電子公司製造) 前處理裝置C(碳)塗布 :45nm SC-701C(SANYU電子公 司製造)Pretreatment device C (carbon) coated 45nm SC-701C (manufactured by SANYU Electronics Co., Ltd.) Au (gold) coated 10nm SC-701AT modified (manufactured by SANYU Electronics Co., Ltd.) SEM condition Acceleration voltage 20KV or 15KV Irradiation current 0.15nA Vacuum degree high vacuum map Image detector electron detector sample tilted by 0 degree EDS The information of the element contained in the laminate obtained in the examples and the comparative examples was observed by EDS. The observation was carried out after carbon deposition on the surface of the coating layer. The conditions observed by EDS are as follows. Analytical device JSM-6460LV (manufactured by JEOL Ltd.) Pretreatment device C (carbon) coating: 45nm SC-701C (manufactured by SANYU Electronics Co., Ltd.)

EDS條件 加速電壓 ·· 20KVEDS condition Acceleration voltage ·· 20KV

照射電流 :0. 15nA 46 322931 201213883 高真空 反射電子檢漁j g 128x96像素 1024x768 像素 真空度 圖像檢測器 MAP解析度 圖像解析度 (評價方法) 以下,對於實施例和比較例的光學積層體,按照下述 項目進行評價。 , (霧度值) 關於霧度值(總Hz),依據JISK7105、使用霧度計(商 品名:NDH2000,日本電色公司製造)進行測定。 (表面粗輪度) 關於表面粗糙度Ra、Rz和Sm,依據JISB0601-1994、 使用上述表面粗糖度測定器進行測定。 (平均傾斜角) 關於平均傾斜角,依據ASME95、使用表面粗糙度測定 器(商品名:SurfcorderSE1700 a、小阪研究所公司製造) 求出平均斜率,依據下式算出平均傾斜角。 平均傾斜角=tan_1(平均斜率) (圖像鮮明性) 依據JISK7105、使用圖像清晰度測定器(商品名:ICM_ 1DP、SUGA試驗機公司製造),將測定器設定在透射模式, 按光梳寬度〇· 5mm進行測定。 (防眩性) 關於防眩性’通過定量評價和定性評價2種方法進行 47 322931 201213883 數值判定。兩評價的判定值的和為5點以上時記為◎、4 點時記為〇、3點以下時記為X。 (防眩性的定量評價) 圖形鮮明性的值為5以上〜小於40時記為3點,40以 上〜小於80時記為2點,80以上時記為1點。 (防眩性的定性評價) 使光學積層體形成面的相反面通過無色透明的黏合劑 貼合在黑色丙烯酸樹脂板(三菱RAYON製造的ACRYLITE L502),在400勒克斯的環境照度中,以2盞螢光燈暴露的 狀態平行配置的螢光燈作為光源,以45至60度的角度映 入光,從鏡面反射方向通過目視觀察其反射像,從而判定 螢光燈映入的程度。2盞螢光燈的反射像看成1盞的程度 之影像模糊時記為3分,能夠識別出2盞螢光燈但螢光燈 的輪廓模糊時記為2分,2盞螢光燈的輪廓不模糊而清晰 可見時記為1分。 (黑色) 明室下的黑色,通過定量評價和定性評價2種方法進 行數值判定。兩評價的判定值的和為6分時記為©、5分 時記為〇、4分以下時記為X。 (黑色的定量評價) 使與實施例和比較例的光學積層體形成面相反的面通 過無色透明黏合層貼合在液晶顯示器(商品名:LC-37GX1W,夏普公司製造)的晝面表面,從液晶顯示器畫面的 正面上方60°的方向通過螢光燈(商品名:HH4125GL, 48 322931 201213883Irradiation current: 0. 15nA 46 322931 201213883 High vacuum reflection electron detection jg 128x96 pixel 1024x768 pixel vacuum image detector MAP resolution image resolution (evaluation method) Hereinafter, for the optical laminate of the embodiment and the comparative example, Evaluation was performed according to the following items. (Haze value) The haze value (total Hz) was measured in accordance with JIS K7105 using a haze meter (trade name: NDH2000, manufactured by Nippon Denshoku Co., Ltd.). (Surface Roughness) The surface roughness Ra, Rz, and Sm were measured by the above-described surface roughness measuring device in accordance with JIS B0601-1994. (Average tilt angle) The average tilt angle was obtained from ASME 95 using a surface roughness measuring device (trade name: Surfcorder SE1700 a, manufactured by Kosaka Research Co., Ltd.), and the average tilt angle was calculated according to the following equation. Average tilt angle = tan_1 (average slope) (image sharpness) According to JIS K7105, using an image sharpness measuring device (trade name: ICM_1DP, manufactured by SUGA Testing Machine Co., Ltd.), the measuring device is set to the transmission mode, and the optical comb is pressed. Width 〇 · 5mm for measurement. (Anti-glare property) About the anti-glare property 'The numerical judgment was performed by two methods of quantitative evaluation and qualitative evaluation 47 322931 201213883. When the sum of the judgment values of the two evaluations is 5 points or more, it is marked as ◎, when 4 points is 〇, and when it is 3 points or less, it is referred to as X. (Quantitative evaluation of anti-glare property) When the value of the sharpness of the figure is 5 or more to less than 40, it is recorded as 3 points, and when it is 40 or more, it is recorded as 2 points, and when it is 80 or more, it is recorded as 1 point. (Qualitative evaluation of anti-glare property) The opposite surface of the optical laminate forming surface was bonded to a black acrylic resin plate (ACRYLITE L502 manufactured by Mitsubishi Rayon) through a colorless transparent adhesive, and in an ambient illuminance of 400 lux, 2 盏A fluorescent lamp arranged in parallel with the fluorescent lamp is used as a light source, and the light is reflected at an angle of 45 to 60 degrees, and the reflected image is visually observed from the specular reflection direction to determine the degree of reflection of the fluorescent lamp. 2 盏 The reflection of the fluorescent lamp is 3 points when the image is blurred as one ,, and 2 盏 fluorescent lamps can be recognized, but when the outline of the fluorescent lamp is blurred, it is recorded as 2 points, 2 盏 fluorescent lamps When the outline is not blurred and clearly visible, it is recorded as 1 point. (Black) Black under the bright room, numerically determined by quantitative evaluation and qualitative evaluation. When the sum of the judgment values of the two evaluations is 6 points, it is marked as ©, 5 minutes, and when it is 4 points or less, it is recorded as X. (Quantitative evaluation of black) The surface opposite to the surface of the optical layered body of the examples and the comparative examples was bonded to the surface of the surface of a liquid crystal display (trade name: LC-37GX1W, manufactured by Sharp Corporation) through a colorless transparent adhesive layer. Fluorescent lamp in the direction of 60° above the front of the LCD screen (trade name: HH4125GL, 48 322931 201213883

National公司製造)使液晶顯示器表面的照户 造)測定將液晶顯示器為白色顯示和黑色顯示 1N A 裏 得的黑色顯示時的輝度(Cd/m ”和白色顯示:的】:度’所2 根據以下式子鼻出,將平面偏光板的對比度吃又(d/m ) 據以下式子算出減少率。減少率小於5%時記為3 。根 上至小於10%時記為2分,1〇%以上時記為i分。刀5/6以 對比度=白色顯示的輝度/黑色顯示的輝度 減少率=對比度(光學積層體)/對比度(平面偏光板) 本發明中,平面偏光板指的是在將作為二色性元素的 吸附了碘或染料的聚乙烯醇單軸延伸得到的聚乙烯醇(pvA) 膜的兩面貼合TAC膜所得的積層體。 (黑色的定性評價) 使光學積層體形成面的相反面通過無色透明的黏合劑 貼合在黑色丙烯酸樹脂板(三菱麗陽製造的ACRYLITE L502),在400勒克斯的環境照度中,以2盞螢光燈暴露的 狀態平行配置的螢光燈作為光源’以45至60度的角度映 入光,從鏡面反射方向通過目視觀察光源的反射像以外的 部分的黑色,與實施例1所示的膜相比,黑色優異時記為 3分,黑色相同程度時記為2分,黑色差時記為1分。 (暗室對比度) 對於暗室對比度’使與實施例和比較例的光學積層體 形成面相反的面通過無色透明黏合劑貼合在液晶顯示器 (商品名:LC-37GX1W,夏普公司製造)的晝面表面,在暗室 49 322931 201213883 條件下通過色彩輝度計(商品名:BM-5A,T0PC0N公司製造) 測疋將液晶顯示器為白色顯示和黑色顯示時的輝度,所得 的黑色顯示時的輝度(cd/m2)和白色顯示時的輝度(Cd/m2) 根據以下式子算出,將平面偏光板的對比度記作100%,根 據以下式子算出減少率。減少率小於3%時記為◎,3%以上 至小於7%時記為〇,7%以上時記為χ。 對比度=白色顯示的輝度/黑色顯示的輝度 減少率=對比度(光學積層體)/對比度(平面偏光板) 所得結果如表3所示。 [表3]National Corporation made) The brightness of the liquid crystal display is displayed in white and the black display shows the luminance (Cd/m) and white display in the black display of 1N A: In the following formula, the contrast of the flat polarizer is eaten again (d/m). The reduction rate is calculated according to the following formula. When the reduction rate is less than 5%, it is recorded as 3. When the root is less than 10%, it is recorded as 2 points, 1〇. When it is more than %, it is recorded as i. Knife 5/6 is contrast ratio = white display luminance / black display luminance reduction rate = contrast (optical laminate) / contrast (planar polarizer) In the present invention, the plane polarizer refers to A laminate obtained by laminating a TAC film on both sides of a polyvinyl alcohol (pvA) film obtained by uniaxially stretching a polyvinyl alcohol adsorbed with iodine or a dye as a dichroic element. (Qualitative evaluation of black) Optical laminate The opposite side of the forming surface is bonded to a black acrylic plate (ACRYLITE L502 manufactured by Mitsubishi Rayon) through a colorless and transparent adhesive, and the fluorescent light is arranged in parallel in a state of exposure of 2 盏 fluorescent lamps in an ambient illuminance of 400 lux. Light as The source ' reflected light at an angle of 45 to 60 degrees, and the black portion of the portion other than the reflection image of the light source was visually observed from the specular reflection direction. When compared with the film of the first embodiment, the black color was recorded as 3 points, black. When the difference is the same, it is 2 points, and when it is black, it is 1 point. (Conscious room contrast) The contrast of the dark room contrast is adjusted to the liquid crystal display by the colorless transparent adhesive on the surface opposite to the optical laminate forming surface of the examples and the comparative examples. The surface of the kneading surface (trade name: LC-37GX1W, manufactured by Sharp Corporation) was measured by a color luminance meter (trade name: BM-5A, manufactured by T0PC0N) under the condition of darkroom 49 322931 201213883. The liquid crystal display was displayed in white and black. The luminance at the time of display, the luminance (cd/m2) at the time of black display and the luminance (Cd/m2) at the time of white display are calculated by the following equation, and the contrast of the plane polarizer is taken as 100%, and is calculated according to the following equation. Reduction rate: when the reduction rate is less than 3%, it is marked as ◎, when it is 3% or more to less than 7%, it is recorded as 〇, and when it is 7% or more, it is recorded as χ. Contrast = white display brightness/black display brightness reduction rate = contrast (Optical laminate) / contrast (polarizing plane) results are shown in Table 3. [Table 3]

No 臈厚 蟪Hz 畫面鮮明 [%) Ra [卩〇] Rz [&quot;m] Sid lum] 平均傾斜角 [度] 無规聚集 结搆 防眩性 黑色 暗宜對tb度 實施例1 5.9 4.3 65.2 0.087 0.534 213 0.34 0 〇 〇 (8ϊ 資铯例2 4.1 1.0 59.3 0.080 0.486 137 0.57 I 〇 | Ο | 〇 ◎ 實 5.5 12.3 52.0 0.Π0 0.590 95 0.68 〇 〇 〇 〇 實狍例4 5.5 5.3 66.6 0.080 0.430 201 0.40 〇 〇 〇 ◎ 實施例5 5.0 6.1 53.5 0.U1 0.582 202 0.57 〇 〇 〇 ◎ 實施例6 5.4 2.2 40.3 0.120 0.654 m 0.52 〇 〇 〇 ◎ 比枚例1 4.3 4.1 91.4 0.031 0.307 378 0.23 X X ◎ ◎ 比較例2 5.8 5.0 94.6 0.064 0.380 87 0.29 X X ◎ ◎ 比枚例3 6.6 1.5 25.7 0.130 0.731 218 1.42 X ◎ X 比較例4 5.5 10.8 55.0 0.104 0.723 133 0.74 X 〇 X 〇 比較例5 4.8 41.3 23. &amp; 0.171 1,347 103 1.49 X © X X 比枚例6 4.0 28.2 2.0 0.392 3.056 112 3.95 X ◎ X ◎ 如以上所述,根據本發明,能夠提供一種不僅有良好 防眩性、明室下的黑色優異,而且能夠實現高的暗室對比 度、且製造穩疋性優異的光學積層體及該光學積層體的製 造方法。另外,還能夠提供一種具備該光學積層體的偏光 50 322931 201213883 板及顯示裝置。 - 【圖式簡單說明】 第1圖為表示光學功能層結構的示意圖((a)為海島結 構的平面圖,(b)為無規聚集結構的平面圖,(c)為海島結 構的截面侧視圖,(d)為無規聚集結構的截面侧視圖); 第2圖為實施例1的光學功能層表面的結構經碳蒸鍍 後拍攝的SEM照片; 第3圖為實施例1的光學積層體的截面經碳蒸鍍後拍 攝的SEM照片; 第4圖為對實施例1的光學功能層表面的結構以無機 成分(Si)進行EDS面掃描的照片; 第5圖為比較例3的光學功能層表面的結構經碳蒸鍍 後拍攝的SEM照片; 第6圖為對比較例3的光學功能層表面的結構以無機 成分(Si)進行EDS面掃描的照片; 第7圖為比較例5的光學功能層表面的海島結構經碳 蒸鍵後拍攝的SEM照片。 【主要元件符號說明】 1 第一相 2 第二相 3 微粒 15、16 光學功能層 20 透光性基體 30、31 微粒 40 樹脂 51 322931No 臈 蟪 蟪 画面 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ 0.087 0.534 213 0.34 0 〇〇 (8ϊ 铯 2 2 4.1 1.0 59.3 0.080 0.486 137 0.57 I 〇 | Ο | 〇 ◎ Real 5.5 12.3 52.0 0. Π 0 0.590 95 0.68 〇〇〇〇 Example 4 5.5 5.3 66.6 0.080 0.430 201 0.40 〇〇〇 ◎ Example 5 5.0 6.1 53.5 0. U1 0.582 202 0.57 〇〇〇 ◎ Example 6 5.4 2.2 40.3 0.120 0.654 m 0.52 〇〇〇 ◎ Comparative Example 1 4.3 4.1 91.4 0.031 0.307 378 0.23 XX ◎ ◎ Comparative Example 2 5.8 5.0 94.6 0.064 0.380 87 0.29 XX ◎ ◎ Comparative Example 3 6.6 1.5 25.7 0.130 0.731 218 1.42 X ◎ X Comparative Example 4 5.5 10.8 55.0 0.104 0.723 133 0.74 X 〇X 〇 Comparative Example 5 4.8 41.3 23. & 0.171 1,347 103 1.49 X © XX Specific example 6 4.0 28.2 2.0 0.392 3.056 112 3.95 X ◎ X ◎ As described above, according to the present invention, it is possible to provide not only good anti-glare property, but also excellent blackness in a bright room, and Achieve high darkroom contrast An optical layered body excellent in the degree of stability and a method for producing the optical layered body, and a polarized light 50 322931 201213883 plate and a display device including the optical layered body. - [Simplified description of the drawing] 1 is a schematic view showing the structure of an optical functional layer ((a) is a plan view of a sea-island structure, (b) is a plan view of a random aggregate structure, (c) is a cross-sectional side view of the island structure, and (d) is a random aggregate structure. Fig. 2 is a SEM photograph of the structure of the surface of the optical functional layer of Example 1 after carbon deposition; and Fig. 3 is a photograph of the cross section of the optical layered body of Example 1 after carbon deposition. SEM photograph; Fig. 4 is a photograph of the structure of the surface of the optical functional layer of Example 1 with an inorganic component (Si) for EDS surface scanning; and Fig. 5 is a diagram showing the structure of the surface of the optical functional layer of Comparative Example 3 after carbon deposition SEM photograph taken; Fig. 6 is a photograph of the surface of the optical functional layer of Comparative Example 3 with an inorganic component (Si) for EDS surface scanning; and Fig. 7 is a photograph of the surface of the optical functional layer of Comparative Example 5 via carbon steam After the SEM photographs. [Description of main component symbols] 1 First phase 2 Second phase 3 Particles 15, 16 Optical functional layer 20 Translucent substrate 30, 31 Particulate 40 Resin 51 322931

Claims (1)

201213883 七、申請專利範圍: 1. 一種光學積層體,其特徵在於,其為在透光性基體上層 疊有光學功能層的光學積層體,該光學功能層具有第一 相、第二相和微粒, 其中,上述第一相與上述第二相相比,含有相對多 的樹脂成分;上述第二相與上述第一相相比,含有相對 多的無機成分, 並且,上述第二相集中在該微粒的周圍。 2·如申凊專·圍第1項所述的光學積層體,其中,上述 無機成分為無機奈米微粒。 3·如申凊專利範圍第1項所述的光學積層體,其中,上述 第二相為無機奈米微粒的聚集體。 4. 如申δ月專利範圍第i項所述的光學積層體,其中,上述 第二相含有0.2質量%以上的無機成分。 5. -種偏光板,其特徵在於,在構成申請專利範圍第&quot;員 至第4項中任-項所述的光學積層體的透光性基體上 層疊有偏光基體》 6. —種顯示裝置,其特徼名 a . ㈣徵在於,具備有中請專利範圍第i 項至第4項巾任-項所述的光學積層體。 7· 一種光學積層體的製造方法,其特徵在於,經過如下步 =在透紐絲上塗布包含有樹脂成分、無機成分、 :粒、第1溶劑和第2溶劑的溶液,隨著使第i溶劑和 ==劑揮發而產生對流的錢步驟;以及將經乾燥的 、膜硬化而形成光學功能層的硬化步驟。 322931 1201213883 VII. Patent Application Range: 1. An optical laminate, characterized in that it is an optical laminate having an optical functional layer laminated on a light-transmitting substrate, the optical functional layer having a first phase, a second phase and particles Wherein the first phase contains a relatively large amount of resin component compared to the second phase; the second phase contains a relatively large amount of inorganic components compared to the first phase, and the second phase is concentrated in the Around the particles. The optical layered body according to the above item 1, wherein the inorganic component is inorganic nanoparticle. The optical layered body according to claim 1, wherein the second phase is an aggregate of inorganic nanoparticles. 4. The optical layered product according to the above-mentioned item, wherein the second phase contains 0.2% by mass or more of an inorganic component. 5. A polarizing plate in which a polarizing substrate is laminated on a light-transmitting substrate constituting the optical layered body according to any one of the above-mentioned claims. The device, its special name a. (4) is characterized by the optical layered body described in the item of item i to item 4 of the patent scope. 7. A method for producing an optical layered body, comprising: applying a solution containing a resin component, an inorganic component, a granule, a first solvent, and a second solvent to a ray through a step of: The solvent and the == agent volatilize to produce a convective money step; and the hardened step of hardening the film to form an optical functional layer. 322931 1
TW100112168A 2010-04-19 2011-04-08 Optical laminate, polarizing plate, display device, and method for making an optical laminate TWI454753B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096372 2010-04-19

Publications (2)

Publication Number Publication Date
TW201213883A true TW201213883A (en) 2012-04-01
TWI454753B TWI454753B (en) 2014-10-01

Family

ID=44778318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112168A TWI454753B (en) 2010-04-19 2011-04-08 Optical laminate, polarizing plate, display device, and method for making an optical laminate

Country Status (4)

Country Link
JP (1) JP5802043B2 (en)
KR (1) KR101217964B1 (en)
CN (1) CN102221720B (en)
TW (1) TWI454753B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909454B2 (en) * 2012-03-30 2016-04-26 富士フイルム株式会社 Anti-glare film, method for producing the same, polarizing plate, and image display device
WO2013146023A1 (en) * 2012-03-30 2013-10-03 東京特殊電線株式会社 Laminate inspection method, laminate inspection device and laminate manufacturing apparatus
JP6641323B2 (en) * 2012-06-28 2020-02-05 日東電工株式会社 Method for producing antiglare film, antiglare film, polarizing plate, and image display device
JP6364005B2 (en) * 2013-07-05 2018-07-25 株式会社カネカ Antiglare film for solar cell module, solar cell module with antiglare film, and production method thereof
JP6656799B2 (en) * 2013-11-29 2020-03-04 王子ホールディングス株式会社 Anti-Newton ring laminate and capacitive touch panel using the anti-Newton ring laminate
JP6413266B2 (en) * 2014-03-14 2018-10-31 凸版印刷株式会社 EL element, illumination device, display device, liquid crystal display device, and method of manufacturing EL element
CN106105389B (en) * 2014-03-14 2018-08-10 凸版印刷株式会社 EL element, EL element substrate, lighting device, display equipment and LCD device
JP2020052433A (en) * 2014-08-01 2020-04-02 日東電工株式会社 Anti-glare film and image display device
JP2016035574A (en) * 2014-08-01 2016-03-17 日東電工株式会社 Anti-glare film and image display device
JP6736381B2 (en) * 2016-06-27 2020-08-05 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate and display device
JP6674371B2 (en) * 2016-12-14 2020-04-01 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate and display device
WO2019156076A1 (en) * 2018-02-08 2019-08-15 Agc株式会社 Transparent substrate provided with antiglare film
JP6556317B1 (en) * 2018-11-27 2019-08-07 住友化学株式会社 OPTICAL LAMINATE, FLEXIBLE DISPLAY DEVICE, AND OPTICAL LAMINATE MANUFACTURING METHOD
JP7393875B2 (en) * 2019-04-10 2023-12-07 日東電工株式会社 Anti-glare film, method for producing anti-glare film, optical member and image display device
JP7078863B2 (en) * 2020-04-01 2022-06-01 日亜化学工業株式会社 Light emitting device and its manufacturing method
TWI751721B (en) * 2020-09-25 2022-01-01 宏碁股份有限公司 Casing and manufacturing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515401B2 (en) * 1998-12-18 2004-04-05 大日本印刷株式会社 Anti-glare film, polarizing plate and transmission type display device
JP2001259517A (en) * 2000-03-16 2001-09-25 Kawamura Inst Of Chem Res Thermosetting resin coating film having uneven structure on surface and its production method
JP2002323700A (en) * 2001-04-26 2002-11-08 Keiwa Inc Optical sheet and backlight unit using the same
EP1391758A3 (en) * 2002-08-09 2004-06-16 Eastman Kodak Company Optical element containing nanocomposite particles
JP4229678B2 (en) * 2002-11-08 2009-02-25 帝人化成株式会社 Light diffusing polycarbonate resin composition and light diffusing plate
JP4361754B2 (en) * 2003-04-24 2009-11-11 日本製紙株式会社 Anti-glare film
WO2005033752A1 (en) * 2003-10-06 2005-04-14 Dai Nippon Printing Co., Ltd. Antiglare film
US7201949B2 (en) * 2003-10-21 2007-04-10 Eastman Kodak Company Optical film for display devices
JP4418684B2 (en) * 2004-01-06 2010-02-17 ダイセル化学工業株式会社 Anti-glare film
US20090022948A1 (en) * 2006-03-16 2009-01-22 Daicel Chemical Industries, Ltd. Anti-Glare Film
JP5103825B2 (en) * 2006-08-18 2012-12-19 大日本印刷株式会社 OPTICAL LAMINATE, ITS MANUFACTURING METHOD, POLARIZING PLATE, AND IMAGE DISPLAY DEVICE
CN101324677A (en) * 2007-03-14 2008-12-17 索尼株式会社 Method for producing anti-glare film
JP2009061686A (en) * 2007-09-06 2009-03-26 Teijin Dupont Films Japan Ltd Antiglare laminate
JP5504605B2 (en) * 2007-10-30 2014-05-28 大日本印刷株式会社 Curable resin composition for hard coat layer and hard coat film
TWI394985B (en) * 2008-05-07 2013-05-01 Ind Tech Res Inst Antiglare film and fabrication method thereof

Also Published As

Publication number Publication date
KR101217964B1 (en) 2013-01-02
JP2011242759A (en) 2011-12-01
CN102221720A (en) 2011-10-19
TWI454753B (en) 2014-10-01
KR20110117002A (en) 2011-10-26
CN102221720B (en) 2015-01-21
JP5802043B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
TW201213883A (en) Optical laminate, polarizing plate, display device, and method for making an optical laminate
JP6203796B2 (en) Anti-glare film and display device using the same
JP5593125B2 (en) Optical laminate, polarizing plate and display device
TWI490124B (en) Optical layered product, polarizer and display using the optical layered product
TWI429942B (en) Hard-coated antiglare film, and polarizing plate and image display including the same
TW201202763A (en) Optical laminate, polarizing plate and display device
CN104335078B (en) Nanostructured material and its manufacture method
TWI454725B (en) Optical laminate film
CN102859398B (en) Optical multilayered product, polarizer, and display device
CN103299217A (en) Anti-reflective film, anti-reflective film production method, polarization plate and image display device
TW200821343A (en) Anti-dazzling optical laminate
TW201124278A (en) Optical laminate and method for producing optical laminate
JP2008274266A (en) Composition, single layer, and member or layered product capable of exhibiting antistatic property (and hard coat nature)
TW201022712A (en) Anti-glare film, anti-glare polarizing plate and image display device
TW202023827A (en) Anti-reflective film, polarizing plate, and display apparatus
TW200916837A (en) Optical laminate
JP6558007B2 (en) Antireflection film, display device using the antireflection film, and method for selecting antireflection film
JP2014198405A (en) Conductive optical member
TW201128239A (en) Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same
JP2008276205A (en) Optical layered product
JP2011253092A (en) Optical laminate, polarizer and display device
JP5771362B2 (en) Optical laminate, polarizing plate and display device
JP2011232546A (en) Optical laminate, polarizing plate and display device