JP6736381B2 - Optical laminate, polarizing plate and display device - Google Patents

Optical laminate, polarizing plate and display device Download PDF

Info

Publication number
JP6736381B2
JP6736381B2 JP2016126637A JP2016126637A JP6736381B2 JP 6736381 B2 JP6736381 B2 JP 6736381B2 JP 2016126637 A JP2016126637 A JP 2016126637A JP 2016126637 A JP2016126637 A JP 2016126637A JP 6736381 B2 JP6736381 B2 JP 6736381B2
Authority
JP
Japan
Prior art keywords
optical
functional layer
layer
average
optical functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016126637A
Other languages
Japanese (ja)
Other versions
JP2018004682A5 (en
JP2018004682A (en
Inventor
多恵子 前田
多恵子 前田
直樹 芹澤
直樹 芹澤
隆之 中西
隆之 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Tomoegawa Optical Films Co Ltd
Original Assignee
Toppan Tomoegawa Optical Films Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60785984&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6736381(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toppan Tomoegawa Optical Films Co Ltd filed Critical Toppan Tomoegawa Optical Films Co Ltd
Priority to JP2016126637A priority Critical patent/JP6736381B2/en
Priority to TW106121212A priority patent/TWI638210B/en
Priority to PCT/JP2017/023477 priority patent/WO2018003763A1/en
Priority to CN202110389261.7A priority patent/CN113075760B/en
Priority to CN201780036195.7A priority patent/CN109313289B/en
Priority to KR1020187035788A priority patent/KR102194639B1/en
Publication of JP2018004682A publication Critical patent/JP2018004682A/en
Publication of JP2018004682A5 publication Critical patent/JP2018004682A5/ja
Publication of JP6736381B2 publication Critical patent/JP6736381B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Description

本発明は、防眩性フィルムに好適な光学積層体、並びに、これを用いた偏光板及び表示装置に関するものである。 TECHNICAL FIELD The present invention relates to an optical laminate suitable for an antiglare film, and a polarizing plate and a display device using the same.

液晶ディスプレイや有機ELディスプレイ等の最表面には、画像の視認性を向上させるために、防眩性を有する機能性フィルムが設けられる。防眩性フィルムは、表面に微細な凹凸構造を有し、表面反射光を拡散することで外光の正反射を抑え、外交が映り込むことを防止する。 A functional film having an antiglare property is provided on the outermost surface of a liquid crystal display, an organic EL display or the like in order to improve the visibility of an image. The antiglare film has a fine concavo-convex structure on the surface, diffuses the surface-reflected light, suppresses regular reflection of external light, and prevents diplomatic reflection.

表面に微細な凹凸形状有する機能性フィルムを形成する方法としては、紫外線硬化樹脂等のバインダーと微粒子(フィラー)とを含有する塗工液を透光性基体上に塗布して塗膜を形成し、この塗膜に紫外線を照射して硬化させる手法が一般的であり、微粒子の粒子径や添加量によって防眩性やその他の諸特性を調整することができる(例えば、特許文献1及び2参照)。 As a method for forming a functional film having fine irregularities on the surface, a coating liquid containing a binder such as an ultraviolet curable resin and fine particles (filler) is applied onto a translucent substrate to form a coating film. Generally, a method of irradiating the coating film with ultraviolet rays to cure the coating film is used, and the antiglare property and other characteristics can be adjusted by the particle size of the fine particles and the addition amount thereof (see, for example, Patent Documents 1 and 2). ).

特開2002−196117号公報JP, 2002-196117, A 特開2008−158536号公報JP, 2008-158536, A

従来の防眩性フィルムは、ディスプレイに黒表示させた際に、外観の白みが強く、ザラツキ感の強い質感となっており、品位の低い見た目となっていた。 The conventional antiglare film has a white appearance and a rough texture when it is displayed in black on the display, and has a low-grade appearance.

それ故に、本発明は、防眩性を有し、ザラツキ感が少なく、潤いのある深い黒表示が可能な高品位の光学積層体、並びに、これを用いた偏光板及び画像表示装置を提供することを目的とする。 Therefore, the present invention provides a high-quality optical laminate having an antiglare property, a less rough feeling, and capable of producing a rich and deep black display, and a polarizing plate and an image display device using the same. The purpose is to

本発明は、透光性基体上に光学機能層が少なくとも1層以上積層されてなる光学積層体に関するものであって、光学機能層の少なくとも一方の面に凹凸形状が形成されており、0.5mm幅の光学くしを用いた透過像鮮明度が70〜95%であり、光干渉方式により測定した、光学機能層の最表面の凸部の平均面積及び算術平均高さSaの積が4.7〜44.0μmであり、平均傾斜角θaが0.124〜0.349°であることを特徴とするものである。 The present invention relates to an optical laminate in which at least one optical functional layer is laminated on a translucent substrate, and an uneven shape is formed on at least one surface of the optical functional layer. The transmitted image sharpness using an optical comb having a width of 5 mm is 70 to 95%, and the product of the average area of the convex portions on the outermost surface of the optical functional layer and the arithmetic average height Sa measured by an optical interference method is 4. 7 to 44.0 μm 3 and the average inclination angle θa is 0.124 to 0.349°.

また、本発明に係る偏光板及び画像表示装置は、上記の光学積層体を備えるものである。 A polarizing plate and an image display device according to the present invention include the above optical laminate.

本発明によれば、防眩性を有し、ザラツキ感が少なく、潤いのある深い黒表示が可能な高品位の光学積層体、並びに、これを用いた偏光板及び画像表示装置を提供できる。 According to the present invention, it is possible to provide a high-quality optical laminate having an antiglare property, a less rough feeling, and capable of producing a rich and deep black display, and a polarizing plate and an image display device using the same.

実施形態に係る光学積層体の概略構成を示す断面図Sectional drawing which shows schematic structure of the optical laminated body which concerns on embodiment. 実施形態に係る偏光板の概略構成を示す断面図Sectional drawing which shows schematic structure of the polarizing plate which concerns on embodiment. 実施形態に係る表示装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the display apparatus which concerns on embodiment. 凸部の平均面積及び算術平均高さSaの積と平滑感の評価スコアとの関係をプロットしたグラフThe graph which plotted the relationship of the product of the average area of a convex part and arithmetic mean height Sa, and the evaluation score of smoothness. 平均傾斜角と黒みの評価スコアとの関係をプロットしたグラフGraph plotting the relationship between the average inclination angle and the evaluation score of blackness 凸部の平均面積及び算術平均高さSaの積と平均傾斜角との関係をプロットしたグラフA graph plotting the relationship between the average area of the protrusions and the product of the arithmetic average height Sa and the average inclination angle.

図1は、実施形態に係る光学積層体の概略構成を示す断面図である。実施形態に係る光学積層体100は、透光性基体1と、透光性基体1に積層された少なくとも1層の光学機能層2とを備える。光学機能層2の表面には、微細な凹凸が形成されている。この凹凸が外交を乱反射させることによって、光学機能層2が防眩性を発揮する。 FIG. 1 is a cross-sectional view showing a schematic configuration of the optical layered body according to the embodiment. The optical layered body 100 according to the embodiment includes a transparent base 1, and at least one optical functional layer 2 laminated on the transparent base 1. Fine irregularities are formed on the surface of the optical function layer 2. The irregularities reflect diplomatically, so that the optical function layer 2 exhibits antiglare properties.

透光性基体としては、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、シクロオレフィンコポリマー(COC)、含ノルボルネン樹脂、ポリエーテルスルホン、セロファン、芳香族ポリアミド等の各種樹脂フィルムを好適に使用することができる。 As the translucent substrate, polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate (PC), polyimide (PI), polyethylene (PE), polypropylene Various resin films such as (PP), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), cycloolefin copolymer (COC), norbornene-containing resin, polyether sulfone, cellophane, and aromatic polyamide can be preferably used. ..

透光性基体の全光線透過率(JIS K7105)は、80%以上であることが好ましく、90%以上であることがより好ましい。また、透光性基体の厚さは、光学積層体の生産性やハンドリング性を考慮すると、1〜700μmであることが好ましく、25〜250μmであることがより好ましい。 The total light transmittance (JIS K7105) of the translucent substrate is preferably 80% or more, more preferably 90% or more. The thickness of the translucent substrate is preferably 1 to 700 μm, more preferably 25 to 250 μm, in consideration of the productivity and handling of the optical laminate.

透光性基体には、光学機能層との密着性を向上させるために、表面改質処理を施すことが好ましい。表面改質処理としては、アルカリ処理、コロナ処理、プラズマ処理、スパッタ処理、界面活性剤やシランカップリング剤等の塗布、Si蒸着等を例示できる。 The translucent substrate is preferably subjected to surface modification treatment in order to improve the adhesion with the optical functional layer. Examples of the surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of a surfactant and a silane coupling agent, Si vapor deposition and the like.

光学機能層は、基材樹脂と、樹脂粒子と、無機微粒子とを含有する。光学機能層は、電離放射線または紫外線の照射により硬化する基材樹脂と、樹脂粒子と、無機微粒子とを含有する塗工液を透光性基体に塗布し、塗膜を硬化させることによって形成される。 The optical functional layer contains a base resin, resin particles, and inorganic fine particles. The optical functional layer is formed by applying a coating liquid containing a base resin that is cured by irradiation with ionizing radiation or ultraviolet rays, resin particles, and inorganic fine particles to a translucent substrate and curing the coating film. It

以下、光学機能層の形成に用いる樹脂組成物の構成成分について説明する。 Hereinafter, constituent components of the resin composition used for forming the optical functional layer will be described.

基材樹脂としては、電離放射線または紫外線の照射により硬化する樹脂を使用できる。 As the base resin, a resin that is cured by irradiation with ionizing radiation or ultraviolet rays can be used.

電離放射線の照射により硬化する樹脂材料としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基等のラジカル重合性官能基や、エポキシ基、ビニルエーテル基、オキセタン基等のカチオン重合性官能基を有するモノマー、オリゴマー、プレポリマーを単独でまたは混合して使用できる。モノマーとしては、アクリル酸メチル、メチルメタクリレート、メトキシポリエチレンメタクリレート、シクロヘキシルメタクリレート、フェノキシエチルメタクリレート、エチレングリコールジメタクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート等を例示できる。オリゴマー、プレポリマーとしては、ポリエステルアクリレート、ポリウレタンアクリレート、多官能ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート、アルキットアクリレート、メラミンアクリレート、シリコーンアクリレート等のアクリレート化合物、不飽和ポリエステル、テトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルや各種脂環式エポキシ等のエポキシ系化合物、3−エチル−3−ヒドロキシメチルオキセタン、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、ジ[1−エチル(3−オキセタニル)]メチルエーテル等のオキセタン化合物を例示できる。 As the resin material that is cured by irradiation with ionizing radiation, acryloyl group, methacryloyl group, acryloyloxy group, radical polymerizable functional group such as methacryloyloxy group, and epoxy group, vinyl ether group, cation polymerizable functional group such as oxetane group. The monomers, oligomers and prepolymers can be used alone or as a mixture. Examples of the monomer include methyl acrylate, methyl methacrylate, methoxy polyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate and the like. As the oligomer or prepolymer, polyester acrylate, polyurethane acrylate, polyfunctional urethane acrylate, epoxy acrylate, polyether acrylate, alkoxide acrylate, melamine acrylate, acrylate compounds such as silicone acrylate, unsaturated polyester, tetramethylene glycol diglycidyl ether, Epoxy compounds such as propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether and various alicyclic epoxies, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis{[(3- Examples include oxetane compounds such as ethyl-3-oxetanyl)methoxy]methyl}benzene and di[1-ethyl(3-oxetanyl)]methyl ether.

上述した樹脂材料は、光重合開始剤の添加を条件として、紫外線の照射により硬化させることができる。光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル等のラジカル重合開始剤、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物等のカチオン重合開始剤を単独でまたは混合して使用できる。 The resin material described above can be cured by irradiation with ultraviolet rays, provided that a photopolymerization initiator is added. As the photopolymerization initiator, acetophenone-based, benzophenone-based, thioxanthone-based, benzoin, radical polymerization initiators such as benzoin methyl ether, aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, cationic polymerization initiation of metallocene compounds, etc. The agents can be used alone or in combination.

光学機能層に添加する樹脂粒子は、基材樹脂中で凝集して、光学機能層の表面に微細な凹凸構造を形成する。樹脂粒子としては、アクリル樹脂、ポリスチレン樹脂、スチレン−(メタ)アクリル酸エステル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等の透光性樹脂材料からなるものを使用できる。樹脂粒子の材料の屈折率は、1.40〜1.75であることが好ましい。屈折率や樹脂粒子の分散を調整するために、材質(屈折率)の異なる2種類以上の樹脂粒子を混合して使用しても良い。 The resin particles added to the optical functional layer aggregate in the base resin to form a fine uneven structure on the surface of the optical functional layer. The resin particles are made of a translucent resin material such as acrylic resin, polystyrene resin, styrene-(meth)acrylic acid ester copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, polyfluorinated ethylene resin You can use one. The refractive index of the material of the resin particles is preferably 1.40 to 1.75. In order to adjust the refractive index and the dispersion of resin particles, two or more kinds of resin particles having different materials (refractive indexes) may be mixed and used.

樹脂粒子の平均粒径は、0.3〜10.0μmであることが好ましく、1.0〜7.0μmであることがより好ましい。樹脂粒子の平均粒径が0.3μm未満の場合、防眩性が十分に得られない。一方、樹脂粒子の平均粒径が10.0μmを超えると、凸部の平均面積及び算術平均高さSaの積が大きくなり、ザラツキ感が強くなる。 The average particle size of the resin particles is preferably 0.3 to 10.0 μm, and more preferably 1.0 to 7.0 μm. When the average particle size of the resin particles is less than 0.3 μm, sufficient antiglare property cannot be obtained. On the other hand, when the average particle diameter of the resin particles exceeds 10.0 μm, the product of the average area of the convex portions and the arithmetic average height Sa becomes large, and the graininess becomes strong.

本実施形態に係る光学積層体において、光学機能層の固形分中の樹脂粒子の含有量は、0.1〜10.0%である。樹脂粒子の含有量が0.1%を下回ると、光学機能層の表面の凹凸が少なくなり、防眩性が低下する。一方、樹脂粒子の含有量が10.0%を超えると、凸部の平均面積及び算術平均高さSaの積が大きくなり、ザラツキ感が強くなる。 In the optical layered body according to the present embodiment, the content of the resin particles in the solid content of the optical functional layer is 0.1 to 10.0%. When the content of the resin particles is less than 0.1%, the irregularities on the surface of the optical functional layer are reduced and the antiglare property is deteriorated. On the other hand, when the content of the resin particles exceeds 10.0%, the product of the average area of the convex portions and the arithmetic average height Sa becomes large, and the rough feeling becomes strong.

光学機能層の基材樹脂に添加する無機微粒子は、平均粒径が10〜200nmの無機ナノ粒子であることが好ましい。無機微粒子の添加量は、0.1〜5.0%であることが好ましい。 The inorganic fine particles added to the base resin of the optical functional layer are preferably inorganic nanoparticles having an average particle size of 10 to 200 nm. The addition amount of the inorganic fine particles is preferably 0.1 to 5.0%.

無機微粒子としては、例えば、膨潤性粘土を用いることができる。膨潤性粘土は、陽イオン交換能を有し、該膨潤性粘土の層間に溶媒を取り込んで膨潤するものであればよく、天然物であっても合成物(置換体、誘導体を含む)であってもよい。また、天然物と合成物との混合物であってもよい。膨潤性粘土としては、例えば、雲母、合成雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイト、合成スメクタイト等を挙げることができる。これらの膨潤性粘土は、1種を使用してもよいし、複数を混合して使用してもよい。また、無機微粒子としてコロイダルシリカ、アルミナ、酸化亜鉛を単独でまたは混合して用いても良い。上述した膨潤性粘土に加えて、コロイダルシリカ、アルミナ、酸化亜鉛の1種類以上を併用しても良い。 As the inorganic fine particles, for example, swelling clay can be used. The swelling clay may be any swelling clay as long as it has a cation exchange ability and swells by taking in a solvent between the layers of the swelling clay. May be. Further, it may be a mixture of a natural product and a synthetic product. Examples of the swelling clay include mica, synthetic mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, ironite, kanemite, layered titanic acid, smectite, synthetic smectite. Etc. can be mentioned. These swelling clays may be used alone or in combination of two or more. Further, colloidal silica, alumina, and zinc oxide may be used alone or in combination as the inorganic fine particles. In addition to the above-mentioned swelling clay, one or more kinds of colloidal silica, alumina and zinc oxide may be used in combination.

無機微粒子としては、層状有機粘土がより好ましい。本発明において、層状有機粘土とは、膨潤性粘土の層間に有機オニウムイオンを導入したものをいう。有機オニウムイオンは、膨潤性粘土の陽イオン交換性を利用して有機化することができるものであれば制限されない。無機微粒子として、例えば、合成スメクタイト(層状有機粘土鉱物)を使用できる。合成スメクタイトは、光学機能層形成用樹脂組成物の粘性を増加させる増粘剤として機能する。増粘剤としての合成スメクタイトの添加は、樹脂粒子及び無機微粒子の沈降を抑制して、光学機能層の表面の凹凸構造形成に寄与する。 Layered organic clay is more preferable as the inorganic fine particles. In the present invention, the layered organic clay refers to a swelling clay into which an organic onium ion is introduced between layers. The organic onium ion is not limited as long as it can be organized by utilizing the cation exchange property of the swelling clay. As the inorganic fine particles, for example, synthetic smectite (layered organic clay mineral) can be used. Synthetic smectite functions as a thickener that increases the viscosity of the resin composition for forming an optical functional layer. Addition of synthetic smectite as a thickener suppresses the sedimentation of resin particles and inorganic fine particles, and contributes to the formation of an uneven structure on the surface of the optical functional layer.

また、光学機能層形成用の樹脂組成物には、レベリング剤を添加しても良い。レベリング剤は、乾燥過程の塗膜の表面に配向して、塗膜の表面張力を均一化し、塗膜の表面欠陥を低減させる機能を有する。 A leveling agent may be added to the resin composition for forming the optical functional layer. The leveling agent has a function of orienting on the surface of the coating film during the drying process to make the surface tension of the coating film uniform and reduce surface defects of the coating film.

更に、光学機能層形成用の樹脂組成物には、適宜有機溶剤を添加しても良い。有機溶剤としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、イソプロピルアルコール(IPA)、イソブタノール等のアルコール類;アセトン、メチルエチルケトン(MEK)、シクロヘキサノン、メチルイソブチルケトン(MIBK)等のケトン類;ジアセトンアルコール等のケトンアルコール類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類;エチルセルソルブ、ブチルセルソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセルソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;N−メチルピロリドン、ジメチルフォルムアミド、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸アミル等のエステル類;ジメチルエーテル、ジエチルエーテル等のエーテル類;水等のうち、1種類または2種類以上を混合して使用できる。 Furthermore, an organic solvent may be appropriately added to the resin composition for forming the optical functional layer. Examples of the organic solvent include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, isopropyl alcohol (IPA) and isobutanol; ketones such as acetone, methyl ethyl ketone (MEK), cyclohexanone and methyl isobutyl ketone (MIBK). Ketone alcohols such as diacetone alcohol; aromatic hydrocarbons such as benzene, toluene, xylene; glycols such as ethylene glycol, propylene glycol, hexylene glycol; ethyl cellosolve, butyl cellosolve, ethyl carbitol, Glycol ethers such as butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene glycol monomethyl ether; esters such as N-methylpyrrolidone, dimethylformamide, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, amyl acetate; Ethers such as dimethyl ether and diethyl ether; one kind or a mixture of two or more kinds of water and the like can be used.

光学機能層の膜厚は、1.0〜10.0μmであることが好ましく、3.0〜7.0μmであることが更に好ましい。光学機能層の膜厚が1μm未満の場合、酸素阻害による硬化不良を生じ、光学機能層の耐擦傷性が低下しやすくなる。一方、光学機能層の膜厚が10.0μmを超えると、基材樹脂層の硬化収縮によるカールが強くなるため好ましくない。 The film thickness of the optical function layer is preferably 1.0 to 10.0 μm, and more preferably 3.0 to 7.0 μm. When the film thickness of the optical functional layer is less than 1 μm, curing failure occurs due to oxygen inhibition, and the scratch resistance of the optical functional layer is likely to decrease. On the other hand, if the film thickness of the optical functional layer exceeds 10.0 μm, curling due to curing shrinkage of the base resin layer becomes strong, which is not preferable.

本実施形態に係る光学積層体の透過像鮮明度は、0.5mm幅の光学くしを用いて測定した測定値が70〜95%である。透過像鮮明度が70%未満の場合、過剰な防眩性となり視認性が悪化する。一方、透過像鮮明度が95%を超えると、防眩性が十分に得られない。 The transmitted image clarity of the optical layered body according to the present embodiment is 70 to 95% when measured using an optical comb having a width of 0.5 mm. When the transmitted image definition is less than 70%, the antiglare property becomes excessive and the visibility deteriorates. On the other hand, when the transmitted image clarity exceeds 95%, sufficient antiglare property cannot be obtained.

本実施形態に係る光学積層体において、光干渉方式で計測した光学機能層の最表面の凸部の平均面積と算術平均高さSaとの積が4.7〜44.0μmである。ここで、凸部とは、測定面に存在する全ての凸部の頂点及び凹部の最下点の平均レベルを通過する平均面を基準としたときに、この平均面より高い部分を指し、凸部の平均面積は、算術平均高さSaにおける凸部の断面積の平均値である。また、算術平均高さSaは、ISO 25178に準拠して測定される値であって、算術平均粗さRaを面方向に拡張したパラメータである。凸部の平均面積と算術平均高さSaとの積は、各凸部を柱状体としてモデル化した場合における、平均面上に存在する凸部の平均体積の近似値である。凸部の平均面積と算術平均高さSaとの積は、平均面上に存在する凸部の大きさを表す指標であって、光学機能層表面の平滑感・ザラツキ感に相関性があるパラメータである。凸部の平均面積と算術平均高さSaとの積が4.7μm未満の場合、光学機能層表面に形成される凸部の大きさが小さすぎるため、防眩性が十分に得られない。一方、凸部の平均面積と算術平均高さSaとの積が44.0μmを超える場合、光学機能層表面に形成される凸部のサイズが大きすぎ、ザラツキ感が強くなる。 In the optical layered body according to the present embodiment, the product of the average area of the convex portions on the outermost surface of the optical function layer and the arithmetic average height Sa measured by the optical interference method is 4.7 to 44.0 μm 3 . Here, the convex portion refers to a portion higher than the average surface when the average surface that passes through the average level of the apexes of all the convex portions and the lowest points of the concave portions existing on the measurement surface is used as a reference, and the convex portion The average area of the part is the average value of the cross-sectional areas of the convex portions at the arithmetic average height Sa. The arithmetic mean height Sa is a value measured according to ISO 25178, and is a parameter obtained by expanding the arithmetic mean roughness Ra in the surface direction. The product of the average area of the convex portions and the arithmetic average height Sa is an approximate value of the average volume of the convex portions existing on the average surface when each convex portion is modeled as a columnar body. The product of the average area of the convex portions and the arithmetic average height Sa is an index representing the size of the convex portions existing on the average surface, and is a parameter that correlates with the smoothness/roughness of the surface of the optical functional layer. Is. When the product of the average area of the convex portions and the arithmetic average height Sa is less than 4.7 μm 3 , the size of the convex portions formed on the surface of the optical functional layer is too small, and sufficient antiglare property cannot be obtained. .. On the other hand, when the product of the average area of the convex portions and the arithmetic average height Sa exceeds 44.0 μm 3 , the size of the convex portions formed on the surface of the optical functional layer is too large, and the graininess becomes strong.

また、本実施形態に係る光学機能層表面の凹凸形状の平均傾斜角θaは、0.124〜0.349°である。平均傾斜角は、凸部の頂点とこの凸部に隣接する凹部の最下点とを結ぶ直線が平均面に対してなす角度の平均値であり、θa=tan−1Δaで定義される値である。Δaは、一般的には、触針式表面粗さ計を用いて粗面形状を測定し、測定で求めた凹凸断面の粗さ曲線において、基準長さL内にある凸部の頂点及びこの凸部に隣接する凹部の最下点との差の絶対値の合計を、基準長さLで除した値であるが、本発明においては、従来のΔaの値を面方向に拡張し、光干渉方式で測定した測定面内にある全ての凸部及び凹部を用いて算出した値とした。平均傾斜角θaが0.124°未満の場合、光学機能層表面に形成される凸部のサイズが小さすぎるため、防眩性が十分に得られない。一方、平均傾斜角θaが0.349°を超える場合、ディスプレイに黒表示させた際に白みが強くなる。 Further, the average inclination angle θa of the uneven shape on the surface of the optical functional layer according to the present embodiment is 0.124 to 0.349°. The average inclination angle is an average value of angles formed by a straight line connecting the apex of the convex portion and the lowest point of the concave portion adjacent to the convex portion with respect to the average surface, and is defined by θa=tan −1 Δa. Is. Δa is generally measured by measuring the rough surface shape using a stylus type surface roughness meter, and in the roughness curve of the uneven cross section obtained by the measurement, the peak of the convex portion within the reference length L and this It is a value obtained by dividing the sum of the absolute values of the differences from the lowest point of the concave portion adjacent to the convex portion by the reference length L. In the present invention, the conventional value of Δa is expanded in the surface direction to The value was calculated using all the convex portions and concave portions in the measurement surface measured by the interference method. When the average inclination angle θa is less than 0.124°, the size of the convex portion formed on the surface of the optical functional layer is too small, and thus sufficient antiglare properties cannot be obtained. On the other hand, when the average inclination angle θa exceeds 0.349°, whiteness becomes strong when black is displayed on the display.

本発明者らは、透過像鮮明度、凸部の平均面積と算術平均高さSaとの積、及び平均傾斜角が、それぞれ、防眩性、平滑感(ザラツキ感の少なさ)及び黒みに関係するパラメータであることを新規に見出した。上述したように、透過像鮮明度の値が特定の範囲内である場合に、視認性を損なわない良好な防眩性が得られる。また、凸部の平均面積と算術平均高さSaとの積は、小さいほど平滑感が良好となり、大きくなるにつれてザラツキ感が増す(後述する図4参照)。平均傾斜角は、小さいほど黒みが強くなり、大きくなるにつれて白みが増す(後述する図5参照)。本発明では、防眩性、平滑感及び黒みに関係する上記3つのパラメータを選択することによって、防眩性が良好で、ザラツキ感が少なく、潤いのある深い黒表示が可能な高品位の光学積層体を実現している。 The inventors of the present invention have confirmed that the transmitted image sharpness, the product of the average area of the convex portions and the arithmetic average height Sa, and the average inclination angle have anti-glare property, smoothness (less roughness) and darkness, respectively. It was newly found that it is a related parameter. As described above, when the value of the transmitted image sharpness is within the specific range, good antiglare property that does not impair the visibility can be obtained. Further, the smaller the product of the average area of the convex portions and the arithmetic average height Sa, the better the smoothness, and the larger the product, the more rough the texture (see FIG. 4 described later). The smaller the average inclination angle is, the stronger the blackness is, and the larger the average inclination angle is, the more the whiteness is increased (see FIG. 5 described later). In the present invention, by selecting the above-mentioned three parameters relating to the antiglare property, smoothness and blackness, the antiglare property is good, the rough feeling is small, and a high-quality optical display capable of producing a deep and dark black display is provided. A laminated body is realized.

また、光学機能層中にランダム凝集構造が形成されていることが好ましい。ランダム凝集構造とは、相対的に樹脂成分を多く含有する第一の相と、相対的に無機成分を多く含有する第二の相とが三次元的に入り組んで存在し、第二の相が微粒子(樹脂粒子)の周囲に偏在した構造体のことをいう。光学機能層中にランダム凝集構造が形成されることによって、細かい凹凸を減らすことができるので、防眩性と黒表示時の黒みとを向上させることができる。ランダム凝集構造は、例えば、特許第5802043号公報に記載されている方法により形成することができる。 Further, it is preferable that a random aggregation structure is formed in the optical function layer. Random aggregation structure, the first phase containing a relatively large amount of resin components, and the second phase containing a relatively large amount of inorganic components are three-dimensionally intricately present, the second phase A structure that is unevenly distributed around fine particles (resin particles). Since the random aggregation structure is formed in the optical function layer, fine irregularities can be reduced, so that the antiglare property and the blackness at the time of black display can be improved. The random aggregation structure can be formed, for example, by the method described in Japanese Patent No. 5802043.

図2は、実施形態に係る偏光板の概略構成を示す断面図である。偏光板110は、光学積層体100と、偏光フィルム11とを備える。光学積層体100は、図1に示したものであり、透光性基体1の光学機能層2が設けられていない側の面に、偏光フィルム(偏光基体)11が設けられている。偏光フィルム11は、例えば、透明基材3と偏光層4と透明基材5とをこの順に積層したものである。透明基材3及び5、偏光層4の材質は特に限定されるものではなく、通常、偏光フィルムに使用されるものを適宜用いることができる。 FIG. 2 is a cross-sectional view showing a schematic configuration of the polarizing plate according to the embodiment. The polarizing plate 110 includes the optical layered body 100 and the polarizing film 11. The optical layered body 100 is the one shown in FIG. 1, and a polarizing film (polarizing substrate) 11 is provided on the surface of the transparent substrate 1 on which the optical functional layer 2 is not provided. The polarizing film 11 is, for example, a transparent substrate 3, a polarizing layer 4, and a transparent substrate 5 laminated in this order. The materials of the transparent substrates 3 and 5 and the polarizing layer 4 are not particularly limited, and those normally used for a polarizing film can be appropriately used.

図3は、実施形態に係る表示装置の概略構成を示す断面図である。表示装置120は、光学積層体100と、偏光フィルム11と、液晶セル13と、偏光フィルム(偏光基体)12と、バックライトユニット14とをこの順に積層したものである。偏光フィルム12は、例えば、透明基材6と偏光層7と透明基材8とをこの順に積層したものである。透明基材6及び8、偏光層7の材質は特に限定されるものではなく、通常、偏光フィルムに使用されるものを適宜用いることができる。液晶セル13は、透明電極を有する一対の透明基材の間に液晶分子が封入された液晶パネルと、カラーフィルタとを備え、透明電極間に印可された電圧に応じて液晶分子の配向を変化させることにより、各画素の光の透過率を制御して像を形成する装置である。バックライトユニット14は、光源と光拡散板と(いずれも図示せず)を備え、光源から出射された光を均一に拡散させて出射面から出射する照明装置である。 FIG. 3 is a cross-sectional view showing a schematic configuration of the display device according to the embodiment. The display device 120 is formed by laminating the optical laminate 100, the polarizing film 11, the liquid crystal cell 13, the polarizing film (polarizing substrate) 12, and the backlight unit 14 in this order. The polarizing film 12 is formed by laminating a transparent base material 6, a polarizing layer 7, and a transparent base material 8 in this order, for example. The materials of the transparent substrates 6 and 8 and the polarizing layer 7 are not particularly limited, and those normally used for a polarizing film can be appropriately used. The liquid crystal cell 13 includes a liquid crystal panel in which liquid crystal molecules are enclosed between a pair of transparent base materials having transparent electrodes, and a color filter, and changes the orientation of the liquid crystal molecules according to the voltage applied between the transparent electrodes. By doing so, the device controls the light transmittance of each pixel to form an image. The backlight unit 14 is a lighting device that includes a light source and a light diffusing plate (neither is shown), and uniformly diffuses the light emitted from the light source and emits the light from the emission surface.

尚、図3に示した表示装置120は、拡散フィルム、プリズムシート、輝度向上フィルムや、液晶セルや偏光板の位相差を補償するための位相差フィルム、タッチセンサを更に備えていても良い。 The display device 120 shown in FIG. 3 may further include a diffusion film, a prism sheet, a brightness enhancement film, a retardation film for compensating the retardation of a liquid crystal cell or a polarizing plate, and a touch sensor.

本実施形態に係る光学積層体は、ギラツキを抑制する光学機能層に加えて、更に、低屈折率層等の屈折率調整層、帯電防止層、防汚層の少なくとも1層を有していても良い。 The optical layered body according to the present embodiment further includes at least one layer of a refractive index adjusting layer such as a low refractive index layer, an antistatic layer, and an antifouling layer, in addition to the optical functional layer that suppresses glare. Is also good.

低屈折率層は、光学機能層の上に設けられ、表面の屈折率を低下させることにより反射率を低減するための機能層である。低屈折率層は、ポリエステルアクリレート系モノマー、エポキシアクリレート系モノマー、ウレタンアクリレート系モノマー、ポリオールアクリレート系モノマー等の電離放射線硬化性材料と重合開始剤とを含む塗液を塗布し、塗膜を重合により硬化させて形成できる。低屈折率層には、低屈折粒子としては、LiF、MgF、3NaF・AlFまたはAlF(いずれも、屈折率1.4)、または、NaAlF(氷晶石、屈折率1.33)等の低屈折材料からなる低屈折率微粒子を分散させても良い。また、低屈折率微粒子としては、粒子内部に空隙を有する粒子を好適に用いることができる。粒子内部に空隙を有する粒子にあっては、空隙の部分を空気の屈折率(≒1)とすることができるため、非常に低い屈折率を備える低屈折率粒子とすることができる。具体的には、内部に空隙を有する低屈折率シリカ粒子を使用することで、屈折率を下げることができる。 The low refractive index layer is a functional layer that is provided on the optical functional layer and reduces the reflectance by lowering the refractive index of the surface. The low refractive index layer is formed by applying a coating liquid containing an ionizing radiation curable material such as a polyester acrylate-based monomer, an epoxy acrylate-based monomer, a urethane acrylate-based monomer, and a polyol acrylate-based monomer, and a polymerization initiator, and polymerizing the coating film. It can be formed by curing. In the low refractive index layer, as the low refractive particles, LiF, MgF, 3NaF.AlF or AlF (all have a refractive index of 1.4) or Na 3 AlF 6 (cryolite, refractive index of 1.33). It is also possible to disperse low refractive index fine particles made of a low refractive index material such as Further, as the low refractive index fine particles, particles having voids inside can be preferably used. In the case of particles having voids inside the particles, the void portion can be made to have a refractive index of air (≈1), and thus a low refractive index particle having a very low refractive index can be obtained. Specifically, the refractive index can be lowered by using low-refractive index silica particles having voids inside.

帯電防止層は、ポリエステルアクリレート系モノマー、エポキシアクリレート系モノマー、ウレタンアクリレート系モノマー、ポリオールアクリレート系モノマー等の電離放射線硬化性材料と、重合開始剤と、耐電防止剤とを含む塗液を塗布し、重合により硬化させることによって形成できる。帯電防止剤としては、例えば、アンチモンをドープした酸化錫(ATO)、スズをドープした酸化インジウム(ITO)等の金属酸化物系微粒子、高分子型導電性組成物や、4級アンモニウム塩等を使用できる。帯電防止層は、光学積層体の最表面に設けられても良いし、光学機能層と透光性基体との間に設けられても良い。 The antistatic layer is a coating liquid containing an ionizing radiation curable material such as a polyester acrylate-based monomer, an epoxy acrylate-based monomer, a urethane acrylate-based monomer, and a polyol acrylate-based monomer, a polymerization initiator, and an antistatic agent. It can be formed by curing by polymerization. Examples of the antistatic agent include fine particles of metal oxides such as antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO), polymer conductive composition, and quaternary ammonium salt. Can be used. The antistatic layer may be provided on the outermost surface of the optical layered body, or may be provided between the optical functional layer and the translucent substrate.

防汚層は、光学積層体の最表面に設けられ、光学積層体に撥水性及び/または撥油性を付与することにより、防汚性を高めるものである。防汚層は、珪素酸化物、フッ素含有シラン化合物、フルオロアルキルシラザン、フルオロアルキルシラン、フッ素含有珪素系化合物、パーフルオロポリエーテル基含有シランカップリング剤等をドライコーティングまたはウェットコーティングすることにより形成できる。 The antifouling layer is provided on the outermost surface of the optical layered body and enhances the antifouling property by imparting water repellency and/or oil repellency to the optical layered body. The antifouling layer can be formed by dry coating or wet coating with a silicon oxide, a fluorine-containing silane compound, a fluoroalkylsilazane, a fluoroalkylsilane, a fluorine-containing silicon compound, a perfluoropolyether group-containing silane coupling agent, or the like. ..

上述した低屈折率層、帯電防止層、防汚層の他に、または、低屈折率層、帯電防止層、防汚層に加えて、赤外線吸収層、紫外線吸収層、色補正層等の少なくとも1層を設けても良い。 In addition to the low refractive index layer, the antistatic layer, and the antifouling layer described above, or in addition to the low refractive index layer, the antistatic layer, and the antifouling layer, at least an infrared absorbing layer, an ultraviolet absorbing layer, a color correcting layer, and the like. You may provide one layer.

以下、実施形態に係る光学積層体を具体的に実施した実施例を説明する。 Hereinafter, examples in which the optical layered body according to the embodiment is specifically implemented will be described.

(光学積層体の製造方法)
以下に示す材料を表1に記載の割合で配合した光学機能層形成用塗工液を調整し、調整した塗液を、厚さ40μmのトリアセチルセルロースフィルム(透光性基体)に塗布した。塗膜を乾燥(溶媒を揮発)させた後、塗膜に紫外線を照射して光硬化させることによって、実施例及び比較例に係る光学積層体を得た。尚、表1における「−」は、該当する材料を配合していないことを表す。
(Method for producing optical laminate)
A coating liquid for forming an optical functional layer was prepared by mixing the materials shown below in the proportions shown in Table 1, and the prepared coating liquid was applied to a 40 μm thick triacetyl cellulose film (translucent substrate). After the coating film was dried (solvent was volatilized), the coating film was irradiated with ultraviolet rays to be photo-cured to obtain optical laminates according to Examples and Comparative Examples. In addition, "-" in Table 1 represents that the corresponding material is not mixed.

[光学機能層形成用塗工液の使用材料]
・基材樹脂:UV/EB硬化性樹脂 ライトアクリレートPE−3A(ペンタエリスリトールトリアクリレート、共栄社化学株式会社製)、屈折率1.52
・樹脂粒子:スチレン−メタクリル酸メチル共重合体粒子、屈折率1.515、平均粒径2.0μmまたは3.5μm
・無機微粒子1:合成スメクタイト
・無機微粒子2:アルミナナノ粒子、平均粒径40nm
・光重合開始剤:イルガキュア184(BASFジャパン製)
・溶剤:トルエン及びイソプロピルアルコールを16:37の割合で混合した混合溶剤
[Materials used for coating liquid for forming optical functional layer]
-Base resin: UV/EB curable resin light acrylate PE-3A (pentaerythritol triacrylate, manufactured by Kyoeisha Chemical Co., Ltd.), refractive index 1.52
Resin particles: styrene-methyl methacrylate copolymer particles, refractive index 1.515, average particle size 2.0 μm or 3.5 μm
・Inorganic particles 1: Synthetic smectite ・Inorganic particles 2: Alumina nanoparticles, average particle size 40 nm
Photoinitiator: Irgacure 184 (manufactured by BASF Japan)
-Solvent: A mixed solvent in which toluene and isopropyl alcohol are mixed in a ratio of 16:37

実施例及び比較例に係る光学積層体の透過像鮮明度、平均傾斜角、光学機能層の表面に存在する凸部の平均面積及び算術平均高さSaを以下の方法で測定した。 The transmitted image clarity, the average inclination angle, the average area of the convex portions existing on the surface of the optical functional layer, and the arithmetic average height Sa of the optical laminates according to the examples and the comparative examples were measured by the following methods.

[透過像鮮明度]
透過像鮮明度は、JIS K7105に従い、写像性測定器(ICM−1T、スガ試験器株式会社製)を用いて、光学くし幅0.5mmで測定した。
[Transmission image clarity]
The transmitted image clarity was measured according to JIS K7105 using an image clarity measuring device (ICM-1T, manufactured by Suga Test Instruments Co., Ltd.) with an optical comb width of 0.5 mm.

[平均傾斜角θa、凸部の平均面積及び算術平均高さSaの積]
光学機能層の最表面の凹凸形状を、非接触表面・層断面形状計測システム(測定装置:バートスキャンR3300FL−Lite−AC、解析ソフトウェア:VertScan4、株式会社菱化システム製)を用いて光干渉方式により測定し、測定データを装置の解析ソフトウェアで解析した。平均傾斜角θaは、解析ソフトウェアの傾斜角解析機能を用いて、測定領域全体のデータに基づいて算出した。また、凸部の平均面積及び算術平均高さSaは、解析ソフトウェアの粒子解析機能を用いて算出した。
[Product of average inclination angle θa, average area of convex portions and arithmetic average height Sa]
The uneven shape of the outermost surface of the optical functional layer is measured using a non-contact surface/layer cross-section shape measurement system (measurement device: Bertscan R3300FL-Lite-AC, analysis software: VertScan4, manufactured by Ryoka Systems Inc.) The measurement data was analyzed by the analysis software of the device. The average tilt angle θa was calculated based on the data of the entire measurement region using the tilt angle analysis function of the analysis software. The average area of the convex portions and the arithmetic average height Sa were calculated using the particle analysis function of the analysis software.

防眩性、膜厚条件、平滑感、黒みについては、以下の評価方法にしたがって評価した。 The anti-glare property, film thickness condition, smoothness, and blackness were evaluated according to the following evaluation methods.

[平滑感及び黒みの評価方法と評価基準]
実施例及び比較例の光学積層体を透明な粘着層を介して黒色アクリル板(スミペックス960 住友化学株式会社製)に貼り合せたものを用意した。黒アクリル板に蛍光灯の光を映し込み、黒アクリル板の中心から垂直に50cm離れた位置から光学積層体表面を観察し、平滑感及び黒みを官能評価により5段階で評価した。20人の試験者の評価点を平均し、平均値を0.5刻みで丸めた値を評価スコアとした。また、評価スコアが4以上であれば、平滑感または黒みが良好であると判定した。
<平滑感の評価基準>
5:ザラツキ感がなく、滑らかな質感
4:ザラツキ感が少なく、やや滑らかな質感
3:ザラツキ感があり、滑らかさのない質感
2:ザラツキ感がやや強い
1:ザラツキ感が強い
<黒みの評価基準>
5:光学積層体表面での乱反射が殆どなく、潤いのある深い色味
4:光学積層体表面での乱反射が少なく、潤いのある色味
3:光学積層体表面での乱反射がややあり、やや白未がかった色味
2:白みがやや強い
1:白みが強い
[Evaluation method and evaluation criteria for smoothness and darkness]
The optical laminates of Examples and Comparative Examples were attached to a black acrylic plate (SUMIPEX 960 manufactured by Sumitomo Chemical Co., Ltd.) via a transparent adhesive layer to prepare a laminate. The light of a fluorescent lamp was projected on the black acrylic plate, and the surface of the optical laminate was observed from a position vertically separated by 50 cm from the center of the black acrylic plate, and the smoothness and the blackness were evaluated by a sensory evaluation in five levels. The evaluation scores of 20 testers were averaged, and the average value was rounded in 0.5 increments to give an evaluation score. Further, if the evaluation score was 4 or more, it was determined that the smoothness or the blackness was good.
<Evaluation criteria for smoothness>
5: Smooth texture with no graininess 4: Slight texture with little graininess 3: Texture with grainy texture, without smoothness 2: Strong texture with graininess 1: Strong graininess <Evaluation of blackness Criteria>
5: Almost no diffuse reflection on the surface of the optical layered body, rich and moisturized color 4: Little diffused reflection on the surface of the optical layered body, moist color 3: Some diffused reflection on the surface of the optical layered body, and slightly Whiteish tint 2: Slight whiteness 1: Strong whiteness

表1に、実施例及び比較例で用いた光学機能層形成用塗工液の組成、塗工液の塗布膜厚、透過像鮮明度、平均傾斜角θa、凸部の平均面積及び算術平均高さSaの積、平滑感及び黒みの評価結果をまとめて示す。 In Table 1, the composition of the coating liquid for forming the optical functional layer used in Examples and Comparative Examples, the coating thickness of the coating liquid, the transmitted image clarity, the average inclination angle θa, the average area of the convex portions, and the arithmetic average height. The evaluation results of the product of Sa and the smoothness and the darkness are shown together.

Figure 0006736381
Figure 0006736381

尚、表1及び2に示す各成分の添加割合は、光学機能層形成用塗工液の全固形分質量に占める割合(質量%)である。ここで、光学機能層形成用塗工液の全固形分とは、溶剤を除く成分を指す。したがって、光学機能層形成用塗工液の全固形分中の樹脂粒子、無機微粒子の配合割合(質量%)と、光学機能層形成用塗工液の硬化膜である光学機能層中の樹脂粒子、無機微粒子の含有割合(質量%)とは等しい。 The addition ratios of the respective components shown in Tables 1 and 2 are ratios (% by mass) to the total solid mass of the coating liquid for forming an optical functional layer. Here, the total solid content of the coating liquid for forming an optical functional layer refers to the components excluding the solvent. Therefore, the resin particles in the total solid content of the coating liquid for forming an optical functional layer, the compounding ratio (mass %) of the inorganic fine particles, and the resin particles in the optical functional layer that is a cured film of the coating liquid for forming an optical functional layer. , And the content rate (% by mass) of the inorganic fine particles is equal.

図4は、凸部の平均面積及び算術平均高さSaの積と平滑感の評価スコアとの関係をプロットしたグラフであり、図5は、平均傾斜角と黒みの評価スコアとの関係をプロットしたグラフである。尚、図4及び5のグラフでは、表1に示す全ての実施例及び比較例の値がプロットされている。 FIG. 4 is a graph plotting the relationship between the product of the average area of the convex portions and the arithmetic average height Sa and the evaluation score of smoothness, and FIG. 5 is a graph of the relationship between the average inclination angle and the evaluation score of blackness. This is the graph. In the graphs of FIGS. 4 and 5, the values of all Examples and Comparative Examples shown in Table 1 are plotted.

図4から、凸部の平均面積及び算術平均高さSaの積(すなわち、平均サイズの凸部の体積の近似値)は、平滑感の評価スコアと負の相関関係があり、相関性が極めて高いことがわかる。また、図5から平均傾斜角と黒みの評価スコアとの間にも極めて高い負の相関性があることがわかる。 From FIG. 4, the product of the average area of the convex portions and the arithmetic average height Sa (that is, the approximate value of the volume of the convex portions of the average size) has a negative correlation with the evaluation score of smoothness, and the correlation is extremely high. It turns out to be expensive. Further, it can be seen from FIG. 5 that there is an extremely high negative correlation between the average inclination angle and the evaluation score of blackness.

図6は、凸部の平均面積及び算術平均高さSaの積と平均傾斜角との関係をプロットしたグラフである。図6のグラフにおいて、黒丸は実施例のプロットであり、×印は比較例のプロットである。 FIG. 6 is a graph plotting the relationship between the average area of the convex portions and the product of the arithmetic average height Sa and the average inclination angle. In the graph of FIG. 6, black circles are plots of the examples, and x marks are plots of the comparative examples.

多数の実施例及び比較例を作成して検討したところ、図6に示すように、実施例1〜13に係る光学積層体は、凸部の平均面積及び算術平均高さSaの積と平均傾斜角とが一定の範囲内(図6の破線で囲んだ範囲内)にある場合に、表面の平滑感と黒みとを良好にできることがわかった。より具体的には、凸部の平均面積及び算術平均高さSaの積が4.7〜44.0μmであり、かつ、平均傾斜角θaが0.124〜0.349°である場合に、滑らかでザラツキ感がなく、潤いのある深い黒表示の光学積層体を実現することができる。 When a large number of examples and comparative examples were prepared and examined, as shown in FIG. 6, the optical laminates according to Examples 1 to 13 showed that the product of the average area of the convex portions and the arithmetic average height Sa and the average inclination thereof. It was found that when the corners are within a certain range (the range surrounded by the broken line in FIG. 6), the smoothness and blackness of the surface can be improved. More specifically, when the product of the average area of the convex portions and the arithmetic average height Sa is 4.7 to 44.0 μm 3 and the average inclination angle θa is 0.124 to 0.349°. Thus, it is possible to realize an optical laminated body which is smooth, has no rough feeling, and is rich in moisture and has a deep black display.

表1に示したように、実施例1〜13に係る光学積層体は、透過像鮮明度が70〜95%であり、凸部の平均面積及び算術平均高さSaの積と平均傾斜角θaとがいずれも上述した範囲内にあるため、防眩性を有しながらも、滑らかで潤いのある深い黒表示が可能であることが確認された。 As shown in Table 1, in the optical laminated bodies according to Examples 1 to 13, the transmitted image clarity is 70 to 95%, the product of the average area of the convex portions and the arithmetic average height Sa, and the average inclination angle θa. It was confirmed that, since each of the above values is within the above range, it is possible to provide a smooth, moist and deep black display while having antiglare properties.

これに対して、比較例1及び7〜13では、平均傾斜角θaが上述した上限値(0.349°)を超えたため、光学機能層表面での光の散乱が過剰となり、白みがかった品位の悪い光学積層体となった。 On the other hand, in Comparative Examples 1 and 7 to 13, since the average tilt angle θa exceeded the upper limit value (0.349°) described above, light was excessively scattered on the surface of the optical functional layer and was whitish. It became an optical laminate with poor quality.

また、比較例1、2、4、5、9及び10では、凸部の平均面積及び算術平均高さSaの積が上述した上限値(44.0μm)を超えたため、光学機能層の表面に形成される凸部のサイズが大きくなり、ザラツキ感のある光学積層体となった。 Further, in Comparative Examples 1, 2, 4, 5, 9 and 10, the product of the average area of the convex portions and the arithmetic average height Sa exceeded the upper limit value (44.0 μm 3 ) described above, and therefore, the surface of the optical functional layer. The size of the convex portion formed on the substrate was increased, resulting in an optical laminate having a rough feeling.

また、比較例3では、平均傾斜角θaが上述した下限値(0.124°)を下回り、かつ、凸部の平均面積及び算術平均高さSaの積が上述した下限値(4.7μm)を下回ったため、平滑感及び黒味のいずれも高評価となったが、凸部のサイズが小さすぎるために、透過像鮮明度が95%を越え、防眩性が不十分であった。比較例4でも同様に、凸部の平均面積及び算術平均高さSaの積が上述した下限値(4.7μm)を下回ったため、凸部のサイズが小さすぎ、透過像鮮明度が95%を越え、防眩性が不十分であった。 In Comparative Example 3, the average inclination angle θa is lower than the lower limit value (0.124°) described above, and the product of the average area of the convex portions and the arithmetic average height Sa is the lower limit value (4.7 μm 3). 2), the smoothness and the blackness were both highly evaluated, but the size of the convex portion was too small, so that the transmitted image sharpness exceeded 95% and the antiglare property was insufficient. Similarly in Comparative Example 4, since the product of the average area of the convex portions and the arithmetic average height Sa was below the lower limit value (4.7 μm 3 ) described above, the size of the convex portions was too small and the transmitted image clarity was 95%. And the antiglare property was insufficient.

本発明に係る光学積層体は、液晶ディスプレイや有機ELディスプレイといった画像表示装置に用いる防眩フィルムとして利用できる。本発明に係る光学積層体は、防眩性を有し、ザラツキ感が少なく、潤いのある深い黒表示を可能とするため、特にテレビに用いる防眩フィルムとして好適である。 The optical laminate according to the present invention can be used as an antiglare film used in an image display device such as a liquid crystal display or an organic EL display. INDUSTRIAL APPLICABILITY The optical layered body according to the present invention has an antiglare property, has a less rough feeling, and enables a moist deep black display, and thus is suitable as an antiglare film particularly used for a television.

1 透光性基体
2 光学機能層
3、5、6、8 透明基材
4、7 偏光層
11、12 偏光板
13 液晶セル
14 バックライトユニット
100 光学積層体
110 偏光板
120 表示装置
1 Translucent Substrate 2 Optical Functional Layers 3, 5, 6, 8 Transparent Substrates 4, 7 Polarizing Layers 11, 12 Polarizing Plate 13 Liquid Crystal Cell 14 Backlight Unit 100 Optical Laminated Body 110 Polarizing Plate 120 Display Device

Claims (6)

透光性基体上に光学機能層が少なくとも1層以上積層されてなる光学積層体であって、
前記光学機能層の少なくとも一方の面に凹凸形状が形成されており、
0.5mm幅の光学くしを用いた透過像鮮明度が70〜95%であり、
光干渉方式により測定した、前記光学機能層の最表面の凸部の平均面積及び算術平均高さSaの積が4.7〜44.0μmであり、
平均傾斜角θaが0.124〜0.349°であることを特徴とする、光学積層体。
An optical laminate comprising at least one optical functional layer laminated on a translucent substrate,
An uneven shape is formed on at least one surface of the optical functional layer,
The transmitted image clarity using an optical comb having a width of 0.5 mm is 70 to 95%,
The product of the average area of the convex portions on the outermost surface of the optical functional layer and the arithmetic average height Sa measured by an optical interference method is 4.7 to 44.0 μm 3 ,
An optical layered body having an average inclination angle θa of 0.124 to 0.349°.
前記光学機能層がランダム凝集構造を形成していることを特徴とする、請求項1に記載の光学積層体。 The optical layered body according to claim 1, wherein the optical functional layer forms a random aggregation structure. 前記光学機能層が放射線硬化型樹脂組成物の硬化膜からなる1層以上の層からなることを特徴とする、請求項1または2に記載の光学積層体。 The optical layered body according to claim 1 or 2, wherein the optical functional layer comprises one or more layers formed of a cured film of a radiation curable resin composition. 屈折率調整層、帯電防止層、防汚層のうちの少なくとも1層を更に備える、請求項1〜3のいずれかに記載の光学積層体。 The optical laminate according to claim 1, further comprising at least one layer of a refractive index adjusting layer, an antistatic layer, and an antifouling layer. 請求項1〜4のいずれかに記載の光学積層体を構成する前記透光性基体上に、偏光基体が積層されてなることを特徴とする、偏光板。 A polarizing plate, wherein a polarizing substrate is laminated on the translucent substrate that constitutes the optical laminate according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の光学積層体を備えることを特徴とする、表示装置。 A display device comprising the optical laminate according to claim 1.
JP2016126637A 2016-06-27 2016-06-27 Optical laminate, polarizing plate and display device Active JP6736381B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016126637A JP6736381B2 (en) 2016-06-27 2016-06-27 Optical laminate, polarizing plate and display device
TW106121212A TWI638210B (en) 2016-06-27 2017-06-26 Optical laminate, polarizing plate and display device
CN201780036195.7A CN109313289B (en) 2016-06-27 2017-06-27 Optical laminate, polarizing plate, and display device
CN202110389261.7A CN113075760B (en) 2016-06-27 2017-06-27 Optical laminate, polarizing plate, and display device
PCT/JP2017/023477 WO2018003763A1 (en) 2016-06-27 2017-06-27 Optical laminate, polarizing plate, and display device
KR1020187035788A KR102194639B1 (en) 2016-06-27 2017-06-27 Optical laminate, polarizer and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126637A JP6736381B2 (en) 2016-06-27 2016-06-27 Optical laminate, polarizing plate and display device

Publications (3)

Publication Number Publication Date
JP2018004682A JP2018004682A (en) 2018-01-11
JP2018004682A5 JP2018004682A5 (en) 2019-06-13
JP6736381B2 true JP6736381B2 (en) 2020-08-05

Family

ID=60785984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126637A Active JP6736381B2 (en) 2016-06-27 2016-06-27 Optical laminate, polarizing plate and display device

Country Status (5)

Country Link
JP (1) JP6736381B2 (en)
KR (1) KR102194639B1 (en)
CN (2) CN109313289B (en)
TW (1) TWI638210B (en)
WO (1) WO2018003763A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11148364B2 (en) 2018-07-19 2021-10-19 Ricoh Company, Ltd. Three dimensional modeling apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196117A (en) 2000-12-25 2002-07-10 Nitto Denko Corp Light diffusion layer, light diffusing sheet and optical element
JP4213989B2 (en) * 2003-05-08 2009-01-28 富士フイルム株式会社 Method for producing antiglare film
KR100959049B1 (en) 2005-06-28 2010-05-20 닛토덴코 가부시키가이샤 Antiglare hardcoat film
JP2007156132A (en) * 2005-12-06 2007-06-21 Sumitomo Chemical Co Ltd Anti-glare film and image display device
JP2007293303A (en) * 2006-03-28 2007-11-08 Fujifilm Corp Light-scattering film, polarizing plate and image display
JP5135871B2 (en) * 2007-05-08 2013-02-06 住友化学株式会社 Anti-glare film, anti-glare polarizing plate and image display device
TWI454753B (en) * 2010-04-19 2014-10-01 Tomoegawa Co Ltd Optical laminate, polarizing plate, display device, and method for making an optical laminate
JP2011232683A (en) * 2010-04-30 2011-11-17 Tomoegawa Paper Co Ltd Optical laminated body, polarizer, and display device
JP5653378B2 (en) * 2011-09-27 2015-01-14 日本製紙株式会社 Anti-glare hard coat film
JP5826104B2 (en) * 2012-04-27 2015-12-02 富士フイルム株式会社 Light diffusing antireflection film, method for producing light diffusing antireflection film, polarizing plate, and image display device
JP6435681B2 (en) * 2014-07-18 2018-12-12 大日本印刷株式会社 Optical laminate
TWI702414B (en) * 2014-07-18 2020-08-21 日商大日本印刷股份有限公司 Optical film and display device with touch panel

Also Published As

Publication number Publication date
KR102194639B1 (en) 2020-12-28
JP2018004682A (en) 2018-01-11
TWI638210B (en) 2018-10-11
TW201800815A (en) 2018-01-01
CN109313289A (en) 2019-02-05
KR20190005972A (en) 2019-01-16
CN113075760A (en) 2021-07-06
WO2018003763A1 (en) 2018-01-04
CN109313289B (en) 2021-04-30
CN113075760B (en) 2023-07-07

Similar Documents

Publication Publication Date Title
KR101943810B1 (en) Optical laminate, polarizing plate and display device
JP6698552B2 (en) Optical laminate, polarizing plate and display device
JP6078938B2 (en) Optical film, polarizing plate, liquid crystal panel, and image display device
JP6153723B2 (en) Method for producing antiglare film, antiglare film, polarizing plate and image display device
JP6221017B1 (en) Optical laminate, polarizing plate and display device
US8081281B2 (en) Liquid crystal display device
TWI639861B (en) Optical laminate, polarizing plate and display device
JP6736381B2 (en) Optical laminate, polarizing plate and display device
TWI834758B (en) Anti-glare film, manufacturing method of anti-glare film, optical component and image display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6736381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250