TW201212707A - AC LED module - Google Patents

AC LED module Download PDF

Info

Publication number
TW201212707A
TW201212707A TW099131276A TW99131276A TW201212707A TW 201212707 A TW201212707 A TW 201212707A TW 099131276 A TW099131276 A TW 099131276A TW 99131276 A TW99131276 A TW 99131276A TW 201212707 A TW201212707 A TW 201212707A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
diode
schottky
emitting diode
layer
Prior art date
Application number
TW099131276A
Other languages
Chinese (zh)
Other versions
TWI528855B (en
Inventor
Chun-Lung Tseng
Chih-Tsung Su
Chien-Wen Tseng
Po-Jung Chen
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW099131276A priority Critical patent/TWI528855B/en
Publication of TW201212707A publication Critical patent/TW201212707A/en
Application granted granted Critical
Publication of TWI528855B publication Critical patent/TWI528855B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Led Devices (AREA)

Abstract

An AC LED module includes a substrate; an LED located above the substrate and the LED including a first semiconductor layer with a first conductivity and a second semiconductor layer with a second conductivity; and a bridge rectifier located above the substrate and electrically connected to the LED wherein the bridge rectifier includes a plurality of Schottky diodes. A first portion of the Schottky diodes is located above the first semiconductor layer and a second portion of the Schottky diodes is located above the second semiconductor layer.

Description

201212707 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種發光二極體,特別是關於一種整合於單一 晶片(single chip)上並且適用於交流電源的交流發光二極體模組。 【先前技術】 眾所周知,發光二極體(LED)為一具有η型半導體與p型 半導體之發光裝置’經由電子及電洞的再結合而發光。此種 LED被廣泛使用於顯示器及背光模組(back light module)。此 •外’因為與傳統燈泡及螢光燈相比時’ LED具有較少的電力消 耗及較長的使用壽命,所以led的應用領域已擴展到一般照 明,而逐漸取代傳統的燈泡與螢光燈。 請參照第1圖’其所繪示為習知發光二極體的電路連接示 意圖。首先’交流電源AC產生一交流電流iac至變壓器 (transformer)12,而變壓器12調整交流電流iac的振幅並輸出 第一電流i!。接著’整流器(rectifier)l4接收第一電流h並進行 半波或全波整流後輸出第二電流i2。濾波器(fllter)i6接收第二 φ 電流丨2產生具有漣波(ripple)的第三電流i3。最後,電壓調節器 (voltage regulator) 18接收第三電流i3產生固定值的直流電流idc 與直流電壓vdc至直流LED模組(DC LED module)19,使直流 LED模組19發光。 很明顯地’習知直流LED模組19無法直接連接至交流電 源AC,如果直接將直流LED模組19連接至交流電源AC,則 會有直流LED模組19無法連續發光,且容易因反向電流 (reverse current)而導致直流LED模組19受損。 為了解決上述問題,交流LED模組(AC LED module)即因 201212707 應而生。請參照第2A與2B圖,其所繪示為習知交流LED模 組。如第2A圖所示,交流LED模組20是以橋式電路(bridge circuit)的方式進行整流功能且交流LED模組20係設計在單一 晶片(single chip)上。 換句話說,第2A圖的交流LED模組20係在半導體基板 (substrate)上設計一個LED陣列(LED matrix),並且使用四個 LED,亦即LED4、LED5、LED6、LED7,彼此電性連接成一 個橋式整流器(bridge rectifier),而橋式整流器的二連接端 (CN1、CNT2)之間則串接多個 LED,亦即 LED 1、LED2、LED3。 如第2A圖所示,當交流LED模組20的第一輸入端IN1 接收正電壓而第二輸入端IN2接收負電壓時,則串接的 LED4、LED 1、LED2、LED3、LED7 為順向偏壓(forward bias) ’ LED5與LED6為逆向偏壓(reverse bias)。反之,如第2B圖所 示,當交流LED模組的第一輸入端IN1接收負電壓而第二輸 入端IN2接收正電壓時,則串接的LED6、LED1、LED2、LED3、 LED5為順向偏壓,LED4與LED7為逆向偏壓。 也就是說’於交流電源的正極性時,當電壓的振幅小於一 臨界電壓總和時,串接的LED4、LEm、LED2、LED3、LED7 無法發光;當電壓的振幅大於一臨界電壓總和時,即可產生電 流流過串接的LED 4、LED卜LED2、LED3、LED7並且發光。 同理’於交流電源的負極性時,當電壓的振幅小於一臨界電壓 總和時,串接的LED6、LED卜LED2、LED3、LED5無法發 光;當電壓的振幅大於一臨界電壓總和時,即可產生電流流過 串接的LED6、LED卜LED2、LED3、LED5並且發光。 由上述可知,習知設計於單一晶片上的交流LED模組 20,並無法同時讓所有的LED發光,因此導致整體亮度上的 201212707 損失。 【發明内容】 ;,此’本發明之-目的係提出—種交流led模組,其設 計在單-晶片上並利用多個蕭特基二極體(Sch〇ttky di〇de)連 接成為橋式整㈣,可以有效地提高交流㈣餘的整體亮 度。 本發明係提出-種交流發光二極體模組,包括:一基板; -發光-極體’位於基板上’且發光二極體包括—具有第一導 電特性第-半導體層與—具有第二導電特性第二半導體層;以 及-橋式整流H,位於基板上’包括複數個蕭特基二極體,其 中蕭特基二極體巾n部份位於第—半導體層上方,且蕭 特基二極體中的一第二部份位於第二半導體層上方。 本發明更提出-種交流發光二極體模組,包括:一基板; 一發光一極體’位於基板上;以及一橋式整流器,位於基板上, ,連接於發光二極體,橋式整流器包括複數個蕭特基二極體且 蕭特基一極體位於基板上且未與發光二極體重疊。 為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 請參照第3圖,其所繪示為本發明交流LED模組第一實 施例。根據本發明的第一實施例,交流LED模組包含四個蕭 特基二極體(Schottky diode),亦即 SD1、SD2、SD3、SD4,連 接成為一個橋式整流器。而橋式整流器的第一輸入端IN1與第 二輸入端IN2即為交流LED模組30的二輸入端,用以接收一 5 201212707 交流電源。如圖所示,第一蕭特基二極體SD1陽極端(an〇de) 連接至第一輸入端INI而第一蕭特基二極體SD1陰極端 (cathode)連接至第一連接端CN1 ;第二蕭特基二極體SD2陽 極端連接至第二連接端CN2而第二蕭特基二極體SD2陰極端 連接至第一輸入知IN2,第二蕭特基二極體§£)3陽極端連接至 第二輸入端IN2而第三蕭特基二極體SD3陰極端連接至第一 連接端CN1 ;第四蕭特基二極體SD4陽極端連接至第二連接 端CN2而第四蕭特基二極體SD4陰極端連接至第一輸入端 IN1。再者,橋式整流器的第一連接端CN1與第二連接端CN2 之間連接一 LED 32。 由於蕭特基二極體的順向偏壓很低,因此交流LED模組 30可在低壓AC電源下正常操作,亦即,約3V的電壓強度即 可使得交流LED模組30正常操作。再者,由於蕭特基二極體 SD1、SD2、SD3、SD4重疊於LED32之上,而利用此橋式整 流器所完成的交流LED模組30,不論輸入端IN1與IN2的極 性為何,LED 32均能夠發光,因此交流LED模組30的整體 亮度可有效地提高。 請參照第4A與4B圖,其所繪示為本發明第一實施例單 一晶片上的交流LED模組上視圖以及剖面圖。以藍光LED為 主的交流LED模組為例,藍寶石基板(sapphire substrate)410 上主要有η型氮化鎵半導體層(n type GaN layer)420、p型氮化 鎵半導體層(ptypeGaNlayer)430,而n型氮化鎵半導體層420 與Ρ型氮化鎵半導體層430之間還有一作用層425 (active layer),亦即η型氮化鎵半導體層420、作用層425、與p型氮 化鎵半導體層430形成藍光LED的主體。此外,在ρ型氮化 鎵半導體層430上設置有ρ型指狀電極(p finger 201212707 eleCtr〇de)436,在n型氮化鎵半導體層42〇上則設置有n型指 狀電極(n finger electrode)426。 於本實施例中’二個蕭特基二極體SD2、SD4堆疊於曝露 的η型氣化蘇半導體層420上方;二個蕭特基二極體sdi、sd3 堆疊於P型氮化鎵半導體層430上方。再者,第一蕭特基二極 體SD1陽極端連接至第一輸入端IN1而第一蕭特基二極體 SD1陰極端連接至p型指狀電極(p fmger eiectr〇de)436 ;第二 蕭特基二極體SD2陽極端連接至n型指狀電極(n fmger electrode)426而第二蕭特基二極體SD2陰極端連接至第二輸 鲁入端1N2 ;第三蕭特基二極體SD3陽極端連接至第二輸入端 IN2而第二蕭特基二極體SD3陰極端連接至p型指狀電極 436,第四蕭特基一極體SD4陽極端連接至n型指狀電極426 而第四蕭特基一極體SD4陰極端連接至第一輸入端ini。其中 ρ型指狀電極436與η型指狀電極426可視為橋式整流器的第 一連接端與第二連接端,而ρ型指狀電極536與η型指狀電極 526分別連接至藍光LED的ρ型氮化鎵半導體層53〇與η型氮 化鎵半導體層520。 籲由第4Α圖的a、b二點的剖面圖即如第4Β圖所示。首先 介紹藍光LED’於藍寶石基板41〇成長一 η型氛化錄半導體層 420、一作用層425、與一 ρ型氮化鎵半導體層43〇。而於ρ型 乳化嫁半導體層430上可形成電流阻播層(current blocking layer)432,而透明銦錫氧化導電層(ITO)434覆蓋於ρ型氮化鎵 半導體層430與電流阻擋層432上,即形成LED藍光二極體。 其中’作用層 425 可為一単異質(single heterostructure,SH), 雙異質(double heterostructure,DH),單量子井(single quantum weU,SQW) ’ 或多量子井(muitipie quantuin wei 卜 MQW)結構 201212707 的作用層。 再者’第二蕭特基二極體SD2包括一歐姆接觸 半導體層444、與一金屬層442。而歐姆接觸層4的日主 二蕭特基二極體SD2的陰極端,金屬層松可視 基二極體SD2的陽極端。其中,第二蕭特基二極體sd陆 極端即連接至藍光LED的陰極端,而第二蕭特基二s 的陰極端即可連接至第二輸入端IN2(未繪示)。同理, 特基二極體SD3可包括一歐姆接觸層456、一半導體層 與一金屬層452。其中,半導體層454可視為第三蕭特曰基二極 體fD3的陰極端,金屬層452可視為第三蕭特基二極 的陽極端,而第三蕭特基二極體SD3的陰極端即連接至藍光 LED的陽極端,第三蕭特基二極體SD3的陽極端即連接至第 二輸入端藍光LED的陽極端IN2。再者,上述半導體層444、 454的材料一般為電子濃度較高的n型半導體材料。例如,201212707 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode, and more particularly to an AC light-emitting diode module integrated on a single chip and suitable for an AC power source. [Prior Art] It is known that a light-emitting diode (LED) emits light through a recombination of electrons and holes by a light-emitting device having an n-type semiconductor and a p-type semiconductor. Such LEDs are widely used in displays and back light modules. This is because 'LEDs have less power consumption and longer life than traditional bulbs and fluorescent lamps, so the application of LED has been extended to general lighting, and gradually replaces traditional bulbs and fluorescent lamps. light. Please refer to Fig. 1 for a circuit connection diagram of a conventional light emitting diode. First, the AC power source AC generates an AC current iac to a transformer 12, and the transformer 12 adjusts the amplitude of the AC current iAc and outputs a first current i!. The 'rectifier' l receives the first current h and performs half-wave or full-wave rectification to output the second current i2. A filter (fllter) i6 receives the second φ current 丨2 to generate a third current i3 having a ripple. Finally, the voltage regulator 18 receives the third current i3 to generate a fixed value of the direct current idc and the direct current voltage vdc to the DC LED module 19 to cause the DC LED module 19 to emit light. Obviously, the conventional DC LED module 19 cannot be directly connected to the AC power source AC. If the DC LED module 19 is directly connected to the AC power source AC, the DC LED module 19 cannot continuously emit light, and is easily reversed. The reverse current causes the DC LED module 19 to be damaged. In order to solve the above problems, the AC LED module was born in 201212707. Please refer to Figures 2A and 2B, which are illustrated as conventional AC LED modules. As shown in Fig. 2A, the AC LED module 20 is rectified by means of a bridge circuit and the AC LED module 20 is designed on a single chip. In other words, the AC LED module 20 of FIG. 2A is designed to design an LED array on a semiconductor substrate, and is electrically connected to each other using four LEDs, that is, LED4, LED5, LED6, and LED7. It is a bridge rectifier, and a plurality of LEDs, that is, LED 1, LED 2, and LED 3 are connected in series between the two terminals (CN1, CNT2) of the bridge rectifier. As shown in FIG. 2A, when the first input terminal IN1 of the AC LED module 20 receives a positive voltage and the second input terminal IN2 receives a negative voltage, the LEDs 4, LED 1, LED 2, LED 3, and LED 7 connected in series are forward. Forward bias 'LED5 and LED6 are reverse bias. On the contrary, as shown in FIG. 2B, when the first input terminal IN1 of the AC LED module receives a negative voltage and the second input terminal IN2 receives a positive voltage, the LEDs 6, LED1, LED2, LED3, and LED5 connected in series are forward. Bias, LED4 and LED7 are reverse biased. That is to say, in the positive polarity of the AC power supply, when the amplitude of the voltage is less than the sum of the threshold voltages, the LEDs 4, LEm, LED2, LED3, and LED7 in series cannot emit light; when the amplitude of the voltage is greater than the sum of the threshold voltages, Current can flow through the series connected LED 4, LED Bu LED2, LED3, LED7 and emit light. Similarly, when the amplitude of the voltage is less than the sum of the threshold voltages, the LEDs connected in series, LEDs LED2, LED3, and LED5 cannot emit light; when the amplitude of the voltage is greater than the sum of the threshold voltages, A current is generated to flow through the series connected LEDs 6, LEDs LED2, LED3, and LED5 and emit light. As can be seen from the above, the conventional AC LED module 20 designed on a single wafer cannot simultaneously illuminate all of the LEDs, resulting in a loss of 201212707 in overall brightness. SUMMARY OF THE INVENTION The present invention is directed to an AC LED module designed on a single-wafer and connected by a plurality of Schottky diodes (Sch〇ttky di〇de) to form a bridge. The whole formula (4) can effectively improve the overall brightness of the alternating (four). The invention provides an AC light-emitting diode module comprising: a substrate; a light-emitting body 'on the substrate' and the light-emitting diode includes a first conductive property, a semiconductor layer and a second Conductive property second semiconductor layer; and - bridge rectification H, located on the substrate 'comprises a plurality of Schottky diodes, wherein the Schottky diode wiper n portion is located above the first semiconductor layer, and Schottky A second portion of the diode is above the second semiconductor layer. The present invention further provides an AC LED module comprising: a substrate; a light-emitting body 'on the substrate; and a bridge rectifier on the substrate, connected to the light-emitting diode, the bridge rectifier includes A plurality of Schottky diodes and a Schottky diode are located on the substrate and do not overlap the light emitting diode. The above and other objects, features and advantages of the present invention will become more <RTIgt; [Embodiment] Please refer to FIG. 3, which illustrates a first embodiment of an AC LED module of the present invention. According to the first embodiment of the present invention, the AC LED module includes four Schottky diodes, i.e., SD1, SD2, SD3, and SD4, which are connected as a bridge rectifier. The first input terminal IN1 and the second input terminal IN2 of the bridge rectifier are the two input terminals of the AC LED module 30 for receiving a 5 201212707 AC power supply. As shown, the first Schottky diode SD1 anode terminal is connected to the first input terminal INI and the first Schottky diode SD1 cathode terminal is connected to the first connection terminal CN1. The second Schottky diode SD2 anode end is connected to the second connection terminal CN2 and the second Schottky diode SD2 cathode end is connected to the first input known as IN2, the second Schottky diode is §£) 3 anode end is connected to the second input terminal IN2 and the third Schottky diode SD3 cathode end is connected to the first connection terminal CN1; the fourth Schottky diode SD4 anode end is connected to the second connection terminal CN2 The fourth Schottky diode SD4 cathode terminal is connected to the first input terminal IN1. Furthermore, an LED 32 is connected between the first connection terminal CN1 and the second connection terminal CN2 of the bridge rectifier. Since the forward bias of the Schottky diode is very low, the AC LED module 30 can operate normally under low voltage AC power, that is, a voltage strength of about 3 V can cause the AC LED module 30 to operate normally. Furthermore, since the Schottky diodes SD1, SD2, SD3, and SD4 are superimposed on the LED 32, the AC LED module 30 completed by the bridge rectifier, regardless of the polarity of the input terminals IN1 and IN2, the LED 32 All of them can emit light, so the overall brightness of the AC LED module 30 can be effectively improved. Referring to Figures 4A and 4B, there is shown a top view and a cross-sectional view of an AC LED module on a single wafer in accordance with a first embodiment of the present invention. Taking a blue LED-based AC LED module as an example, a sapphire substrate 410 mainly has an n-type GaN layer 420 and a p-type GaN layer 430. There is also an active layer 425 between the n-type gallium nitride semiconductor layer 420 and the germanium-type gallium nitride semiconductor layer 430, that is, the n-type gallium nitride semiconductor layer 420, the active layer 425, and the p-type nitride. The gallium semiconductor layer 430 forms the body of the blue LED. Further, a p-type finger electrode (p finger 201212707 eleCtr〇de) 436 is provided on the p-type gallium nitride semiconductor layer 430, and an n-type finger electrode is provided on the n-type gallium nitride semiconductor layer 42? Finger electrode) 426. In the present embodiment, 'two Schottky diodes SD2 and SD4 are stacked on top of the exposed n-type vaporized su semiconductor layer 420; two Schottky diodes sdi and sd3 are stacked on the P-type gallium nitride semiconductor Above layer 430. Furthermore, the anode end of the first Schottky diode SD1 is connected to the first input terminal IN1 and the cathode end of the first Schottky diode SD1 is connected to the p-type finger electrode (p fmger eiectr〇de) 436; The anode end of the second Schottky diode SD2 is connected to the n-type ferrite electrode 426 and the cathode end of the second Schottky diode SD2 is connected to the second input end 1N2; the third Schottky The anode end of the diode SD3 is connected to the second input terminal IN2 and the cathode end of the second Schottky diode SD3 is connected to the p-type finger electrode 436, and the anode end of the fourth Schottky diode SD4 is connected to the n-type finger The electrode 426 and the cathode end of the fourth Schottky diode SD4 are connected to the first input terminal ini. The p-type finger electrode 436 and the n-type finger electrode 426 can be regarded as the first connection end and the second connection end of the bridge rectifier, and the p-type finger electrode 536 and the n-type finger electrode 526 are respectively connected to the blue LED. The p-type gallium nitride semiconductor layer 53A and the n-type gallium nitride semiconductor layer 520. The cross-sectional view of points a and b of the fourth drawing is as shown in Fig. 4. First, the blue LED' is grown on the sapphire substrate 41 to form an n-type semiconductor recording layer 420, an active layer 425, and a p-type gallium nitride semiconductor layer 43. A current blocking layer 432 may be formed on the p-type emulsified semiconductor layer 430, and a transparent indium tin oxide conductive layer (ITO) 434 is overlaid on the p-type gallium nitride semiconductor layer 430 and the current blocking layer 432. That is, an LED blue LED is formed. The 'action layer 425 can be a single heterostructure (SH), double heterostructure (DH), single quantum weU (SQW) or multi-quantum well (muitipie quantuin wei Bu MQW) structure 201212707 The layer of action. Further, the second Schottky diode SD2 includes an ohmic contact semiconductor layer 444 and a metal layer 442. On the cathode end of the ohmic contact layer 4, the cathode end of the second Schottky diode SD2, the metal layer loosens the anode end of the base diode SD2. Wherein, the second Schottky diode sd land terminal is connected to the cathode end of the blue LED, and the cathode end of the second Schottky s is connected to the second input terminal IN2 (not shown). Similarly, the special base diode SD3 may include an ohmic contact layer 456, a semiconductor layer and a metal layer 452. Wherein, the semiconductor layer 454 can be regarded as the cathode end of the third Schottky diode fD3, the metal layer 452 can be regarded as the anode end of the third Schottky diode, and the cathode end of the third Schottky diode SD3. That is, connected to the anode end of the blue LED, the anode end of the third Schottky diode SD3 is connected to the anode terminal IN2 of the second input blue LED. Furthermore, the materials of the semiconductor layers 444 and 454 are generally n-type semiconductor materials having a high electron concentration. E.g,

SiC、Ti〇2、ZnO、CNT、Fe203 層。而金屬層 442、452 為金、 銀、或鉑金屬(Pt)。 請參照第5圖’其所繪示為本發明交流led模組第一實 施例的另一製造方式。此交流LED模組5〇〇特徵在於將所有 的蕭特基二極體SD1、SD2、SD3、SD4皆製作於藍寶石基板 510上方’並且不重疊(〇veriap)於藍光LED上。其中,第一蕭 特基一極體SD1陽極端連接至第一輸入端IN1而第一蕭特基 二極體SD1陰極端連接至p型指狀電極536;第二蕭特基二極 體SD2陽極端連接至η型指狀電極526而第二蕭特基二極體 SD2陰極端連接至第二輸入端ΙΝ2;第三蕭特基二極體SD3 陽極端連接至第二輸入端IN2而第三蕭特基二極體SD3陰極 端連接至p型指狀電極536;第四蕭特基二極體SD4陽極端連 201212707 接至η型指狀電極526而第四蕭特基二極體SD4陰極端連接 至第一輸入端ΙΝ1。而ρ型指狀電極536與η型指狀電極526 即可視為橋式整流器的第一連接端與第二連接端,而ρ型指狀 電極536與η型指狀電極526分別連接至藍光LED的ρ型氮 化鎵半導體層530與η型氮化鎵半導體層520。 請參照第6圖,其所繪示為本發明交流LED模組第二實 施例。根據本發明的第二實施例,交流LED模組60可根據輸 入端INI、IN2的交流電振幅,串接適當數目的蕭特基二極體 使得交流LED模組60正常運作。根據本發明的實施例,利用 # 四個串接蕭特基二極體組’亦即SD_1、SD 2、SD 3、SD 4, 連接成為一個橋式整流器。而每一個串接蕭特基二極體組中包 括多個串接蕭特基二極體(例如3個)。 再者’橋式整流器的第一連接端CN1與第二連接端CN2 之間連接一 LED 62。 由於第二實施例交流LED模組的上視圖相同於第一實施 例,因此不再贅述。請參照第7圖,其所繪示為本發明第二實 施例單一晶片上的交流LED模組區域剖面圖。由於藍光led •的結構相同此處不再贅述。再者,第二蕭特基二極體組SD_2 堆疊於11型氮化鎵半導體層720上方;第三蕭特基二極體SD_3 堆疊於P型氮化鎵半導體層730上方。 再者,由第七圖可知,第二蕭特基二極體組SD_2與第三 蕭特基二極體組各包括三個串接的蕭特基二極體。而每個蕭特 基一極體中的半導體層的材料一般為電子濃度較高的η型半 導體材料,例如。例如sic、Ti〇2、⑶層,而 金屬層為金、銀、或!自金屬(Pt)。 同理’所有的蕭特基二極體組也可以形成於藍寶石基板的 201212707 上方,並且不重疊(overlap)於藍光LED。而蕭特基二極體組的 結構與上述相同,不再贅述。 因此,本發明之優點係提出一種交流LED模組, 可 使得交流LED模組在低壓AC電源正常工作。再者,利用蕭 特基·一極體重疊於發光led上所完成的橋式整流器,不論輪 入端IN1與IN2的極性為何’ LED均能夠發光,因此可以使 得交流LED模組的整體亮度有效地提高。 雖然本發明已以較佳實施例揭露如上,然其並非用以限定 本發明’任何熟習此技藝者,在不脫離本發明之精神和範圍 内’當可作些許之更動與潤飾,因此本發明之保護範圍當視後 附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖所繪示為習知發光二極體的電路連接示意圖。 第2A與2B圖所繪示為習知交流LED模組。 第3圖所繪示為本發明交流LED模組第一實施例。 第4A與4B圖所繪示為本發明第一實施例單一晶片上的 交流LED模組上視圖以及剖面圖。 第5圖所繪示為本發明交流LED模組第一實施例的另— 製造方式。 第6圖所繪示為本發明交流LED模組第二實施例。 第7圖所繪示為本發明第二實施例單一晶片上的交流 LED模組區域剖面圖。 【主要元件符號說明】 變壓器 12 201212707SiC, Ti〇2, ZnO, CNT, Fe203 layers. The metal layers 442, 452 are gold, silver, or platinum metal (Pt). Please refer to FIG. 5, which illustrates another manufacturing method of the first embodiment of the AC LED module of the present invention. The AC LED module 5 is characterized in that all of the Schottky diodes SD1, SD2, SD3, and SD4 are fabricated over the sapphire substrate 510 and do not overlap (蓝光veriap) on the blue LED. Wherein, the anode end of the first Schottky diode SD1 is connected to the first input terminal IN1 and the cathode end of the first Schottky diode SD1 is connected to the p-type finger electrode 536; the second Schottky diode SD2 The anode end is connected to the n-type finger electrode 526 and the cathode end of the second Schottky diode SD2 is connected to the second input terminal ΙΝ2; the anode end of the third Schottky diode SD3 is connected to the second input terminal IN2 The third Schottky diode SD3 cathode terminal is connected to the p-type finger electrode 536; the fourth Schottky diode SD4 anode terminal 201212707 is connected to the n-type finger electrode 526 and the fourth Schottky diode SD4 The cathode end is connected to the first input terminal ΙΝ1. The p-type finger electrode 536 and the n-type finger electrode 526 can be regarded as the first connection end and the second connection end of the bridge rectifier, and the p-type finger electrode 536 and the n-type finger electrode 526 are respectively connected to the blue LED. The p-type gallium nitride semiconductor layer 530 and the n-type gallium nitride semiconductor layer 520. Please refer to FIG. 6 , which illustrates a second embodiment of the AC LED module of the present invention. According to the second embodiment of the present invention, the AC LED module 60 can connect the appropriate number of Schottky diodes in series according to the AC amplitude of the input terminals INI, IN2 so that the AC LED module 60 operates normally. In accordance with an embodiment of the present invention, a four bridged Schottky diode set, i.e., SD_1, SD 2, SD 3, SD 4, is connected to form a bridge rectifier. Each of the series of Schottky diodes includes a plurality of series of Schottky diodes (for example, three). Furthermore, an LED 62 is connected between the first connection terminal CN1 and the second connection terminal CN2 of the bridge rectifier. Since the upper view of the AC LED module of the second embodiment is the same as that of the first embodiment, it will not be described again. Referring to Figure 7, there is shown a cross-sectional view of an area of an AC LED module on a single wafer in accordance with a second embodiment of the present invention. Since the structure of the blue light LED is the same, it will not be described here. Furthermore, the second Schottky diode set SD_2 is stacked over the 11-type gallium nitride semiconductor layer 720; the third Schottky diode SD_3 is stacked over the P-type gallium nitride semiconductor layer 730. Furthermore, as can be seen from the seventh figure, the second Schottky diode group SD_2 and the third Schottky diode group each include three series-connected Schottky diodes. The material of the semiconductor layer in each of the Schottky electrodes is generally an n-type semiconductor material having a high electron concentration, for example. For example, sic, Ti 〇 2, (3) layers, and the metal layer is gold, silver, or ! from metal (Pt). Similarly, all Schottky diode groups can also be formed over the 201212707 sapphire substrate and do not overlap the blue LED. The structure of the Schottky diode group is the same as above, and will not be described again. Therefore, the advantage of the present invention is to provide an AC LED module that allows the AC LED module to operate normally on a low voltage AC power source. Furthermore, by using the bridge rectifier completed by the Schottky one-pole overlap on the light-emitting led, regardless of the polarity of the wheel terminals IN1 and IN2, the LED can emit light, so that the overall brightness of the AC LED module can be made effective. Improve the ground. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the circuit connection of a conventional light-emitting diode. Figures 2A and 2B show a conventional AC LED module. FIG. 3 illustrates a first embodiment of an alternating current LED module of the present invention. 4A and 4B are a top view and a cross-sectional view of an AC LED module on a single wafer in accordance with a first embodiment of the present invention. FIG. 5 is a diagram showing another manufacturing method of the first embodiment of the alternating current LED module of the present invention. FIG. 6 is a second embodiment of the AC LED module of the present invention. FIG. 7 is a cross-sectional view showing an area of an AC LED module on a single wafer according to a second embodiment of the present invention. [Main component symbol description] Transformer 12 201212707

16 遽波器 18 電壓調節器 19 直流LED模組 20、30、60 交流LED模組 32、62 LED 400 、 500 交流LED模組 410、510、710 藍寶石基板 420、520、720 η型氮化鎵半導體層 425 ' 725 作用層 426 ' 526 η型指狀電極 430、530、730 ρ型氮化鎵半導體層 432 電流阻擋層 434 銦錫氧化導電層 436 、 536 ρ型指狀電極 442 、 452 金屬層 444 、 454 半導體層 446 、 456 歐姆接觸層 LED 卜 LED2、 LED3、LED4、 LED5、LED6、 LED7 發光二極體 INI、IN2 輸入端 CN1 ' CN2 連接端 SD1 ' SD2 ' SD3、SD4 蕭特基二極體 SD_1 ' SD_2 ' SD 3、SD 4 蕭特基二極體組16 Chopper 18 Voltage Regulator 19 DC LED Module 20, 30, 60 AC LED Module 32, 62 LED 400, 500 AC LED Module 410, 510, 710 Sapphire Substrate 420, 520, 720 n-type GaN Semiconductor layer 425 ' 725 active layer 426 ' 526 n-type finger electrode 430, 530, 730 p-type gallium nitride semiconductor layer 432 current blocking layer 434 indium tin oxide conductive layer 436, 536 p-type finger electrode 442, 452 metal layer 444, 454 semiconductor layer 446, 456 ohm contact layer LED Bu LED2, LED3, LED4, LED5, LED6, LED7 LED INI, IN2 input CN1 ' CN2 connector SD1 'SD2 ' SD3, SD4 Schottky diode Body SD_1 ' SD_2 ' SD 3, SD 4 Schottky diode group

Claims (1)

201212707 七、申請專利範圍: 1. 一種交流發光二極體模組,包括: 一基板; 一發光二極體,位於該基板上,且該發光二極體包括 一具有第一導電特性的第一半導體層與一具有第二導電特性 的第二半導體層;以及 一橋式整流器,位於該基板上,電連接於該發光二極 體,包括複數個蕭特基二極體,其中該些蕭特基二極體中的一 第一部份位於該第一半導體層上方,且該些蕭特基二極體中的 一第二部份位於該第二半導體層上方。 2. 如申請專利範圍第1項所述之交流發光二極體模組,其 中,該發光二極體包括: 該第一半導體層,位於該基板上方; 一作用層,覆蓋部份該第一半導體層; 該第二半導體層,覆蓋於該作用層; 一電流阻擋層,覆蓋部份該第二半導體層;以及 一導電層,覆蓋該電流阻擋層與該第二半導體層。 3. 如申請專利範圍第2項所述之交流發光二極體模組,其 中該作用層係一單異質、雙異質、單量子井、或多量子井結構 的作用層。 4. 如申請專利範圍第2項所述之交流發光二極體模組,其 中該第一半導體層係為一 η型氮化鎵半導體層,該第二半導體 層係為一ρ型氮化鎵半導體層。 12 201212707 中利範圍第1項所述之交流發光二極體模組,其 中,该些蕭特基二極體包括: 導體層上; 第一蕭特基二極體’位於該發光二極體的該第二半 導體層上; 第一蕭特基一極體’位於該發光二極體的該第一半 一第二蕭特基二極體,位於該發光二極體 導體層上;以及 肢…%弟一千 一第四蕭特基二極體,位於該發光二極體的該半 導體層上。 6.如申請專利範圍第5項所述之交流發光二極體模繞立 中,該橋式整流器的-第-輸人端電連接至該第—蕭特基二極 =極:以及該第四蕭特基二極體的陰極端;該橋式&amp;器 Μ 電連接至該第三#特基&quot;·極體的陽極端以及 二極體的陰極端;該第二半導體層電連接至該第 蕭特基二極體的陰極端以及該第三蕭特基二極體的陰極 導體層電連接至該第四蕭特基二極體的陽極端以 汉通弟一蕭特基二極體的陽極端。 I.如中請專利範圍第丨項所述之交流發光二極體模組,其 母忒蕭特基二極體包括:相互堆疊的一半導體戶班一全 中,該半導體層為該蕭特基二極體==層== 臀马该蕭特基二極體陽極端。 13 201212707 8. 如申請專利範圍第7項所述之交流發光二極體模組,其 中該半導體層係包含SiC、Ti02、ZnO、CNT、或者Fe203 ;且 該金屬層係包含一金、銀、或麵金屬。 9. 如申請專利範圍第1項所述之交流發光二極體模組,其 中,該些蕭特基二極體包括: 堆疊的一第一蕭特基二極體組,位於該發光二極體的 該第二半導體層上。 10. 如申請專利範圍第1項所述之交流發光二極體模 鲁 組,其中,該些蕭特基二極體包括: 堆疊的一第一蕭特基二極體組,位於該發光二極體的 該第一半導體層上。201212707 VII. Patent application scope: 1. An AC light-emitting diode module comprising: a substrate; a light-emitting diode on the substrate, and the light-emitting diode includes a first conductive property a semiconductor layer and a second semiconductor layer having a second conductive property; and a bridge rectifier disposed on the substrate and electrically connected to the light emitting diode, including a plurality of Schottky diodes, wherein the Schottky A first portion of the diode is above the first semiconductor layer, and a second portion of the Schottky diodes is above the second semiconductor layer. 2. The ac diode module of claim 1, wherein the illuminating diode comprises: the first semiconductor layer above the substrate; and an active layer covering the first portion a second semiconductor layer covering the active layer; a current blocking layer covering a portion of the second semiconductor layer; and a conductive layer covering the current blocking layer and the second semiconductor layer. 3. The alternating current light emitting diode module of claim 2, wherein the active layer is a single heterogeneous, double heterogeneous, single quantum well, or multiple quantum well structure. 4. The AC LED module of claim 2, wherein the first semiconductor layer is an n-type gallium nitride semiconductor layer, and the second semiconductor layer is a p-type gallium nitride layer Semiconductor layer. 12 201212707 The alternating current light emitting diode module of claim 1, wherein the Schottky diodes comprise: a conductor layer; the first Schottky diode is located in the light emitting diode On the second semiconductor layer; the first Schottky-pole body is located on the first half-second Schottky diode of the light-emitting diode, on the light-emitting diode conductor layer; ...% of the 1st, 4th Schottky diode, located on the semiconductor layer of the light-emitting diode. 6. The AC-light diode of the bridge rectifier of claim 5, wherein the first-input terminal of the bridge rectifier is electrically connected to the first-Schottky diode = pole and the first a cathode end of the four Schottky diode; the bridge &amp; Μ electrically connected to the anode end of the third #特基&quot; body and the cathode end of the diode; the second semiconductor layer is electrically connected a cathode end of the third Schottky diode and a cathode conductor layer of the third Schottky diode are electrically connected to the anode end of the fourth Schottky diode to Hantongdi-Schottky II The anode end of the polar body. I. The alternating current light-emitting diode module according to the third aspect of the patent application, wherein the mother-made Schottky diode comprises: a semiconductor household stacked on top of each other, the semiconductor layer being the Schott Base diode == layer == hip horse The anode end of the Schottky diode. The illuminating diode module of claim 7, wherein the semiconductor layer comprises SiC, TiO 2 , ZnO, CNT, or Fe 203; and the metal layer comprises a gold, silver, Or face metal. 9. The alternating current light emitting diode module of claim 1, wherein the Schottky diodes comprise: a stacked first Schottky diode set at the light emitting diode On the second semiconductor layer of the body. 10. The alternating current light emitting diode set according to claim 1, wherein the Schottky diodes comprise: a stacked first Schottky diode set, located in the light emitting diode On the first semiconductor layer of the polar body. 八、圖式· 14Eight, schema · 14
TW099131276A 2010-09-15 2010-09-15 Ac led module TWI528855B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099131276A TWI528855B (en) 2010-09-15 2010-09-15 Ac led module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099131276A TWI528855B (en) 2010-09-15 2010-09-15 Ac led module

Publications (2)

Publication Number Publication Date
TW201212707A true TW201212707A (en) 2012-03-16
TWI528855B TWI528855B (en) 2016-04-01

Family

ID=46764644

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131276A TWI528855B (en) 2010-09-15 2010-09-15 Ac led module

Country Status (1)

Country Link
TW (1) TWI528855B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675607B (en) * 2017-12-29 2019-10-21 斯任 簡 Led lighting system with dimming function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675607B (en) * 2017-12-29 2019-10-21 斯任 簡 Led lighting system with dimming function

Also Published As

Publication number Publication date
TWI528855B (en) 2016-04-01

Similar Documents

Publication Publication Date Title
CN101958334B (en) Light emitting diode
US6445007B1 (en) Light emitting diodes with spreading and improving light emitting area
US8294174B2 (en) Light-emitting device
JP5229034B2 (en) Light emitting device
EP1935038B1 (en) Light emitting device having vertically stacked light emitting diodes
US8188489B2 (en) Light emitting diode for AC operation
US8405107B2 (en) Light-emitting element
CN105895763A (en) Light-Emitting Diode Chip
US20060192223A1 (en) Nitride semiconductor light emitting device
US20040140473A1 (en) Light emitting diode having distributed electrodes
TW201205879A (en) Light emitting device
KR100716645B1 (en) Light emitting device having vertically stacked light emitting diodes
TW201407760A (en) Light-emitting diode array
JP2007036024A (en) Light emitting diode and light emitting diode lamp
TW201212707A (en) AC LED module
TW201013976A (en) Light emitting diode chip
CN105304782B (en) A kind of blue green LED chip
CN105140369B (en) Light emitting diode structure
US20050082547A1 (en) Light emitting device having a transparent conducting layer
CN102479795A (en) Alternating-current light emitting diode module
CN105374908B (en) A kind of blue green LED chip manufacture craft
CN102832310B (en) Light emitting diode structure
TWI610464B (en) Light emitting diode structure
TWM414664U (en) Light emitting diode
CN207398165U (en) Light emitting diode