TW201205879A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
TW201205879A
TW201205879A TW100114854A TW100114854A TW201205879A TW 201205879 A TW201205879 A TW 201205879A TW 100114854 A TW100114854 A TW 100114854A TW 100114854 A TW100114854 A TW 100114854A TW 201205879 A TW201205879 A TW 201205879A
Authority
TW
Taiwan
Prior art keywords
layer
light
electrode
emitting
semiconductor
Prior art date
Application number
TW100114854A
Other languages
Chinese (zh)
Inventor
Nobuhisa Sugimori
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Publication of TW201205879A publication Critical patent/TW201205879A/en

Links

Abstract

In a light emitting device with a structure having two electrodes formed on one surface of a semiconductor light emitting function layer, a uniform light emitting strength can be obtained in a long-edge direction. The semiconductor light emitting function layer 20 is formed on a Si substrate 11 and has a lamination structure composed of an n-type GaN layer (first semiconductor layer) 21, an MQW layer 22, and a p-type GaN layer (second semiconductor layer) 23. A transparent electrode 31 is formed in a manner of extending from another terminal part (left terminal part) toward the right terminal part on the surface (main surface) of the p-type GaN layer 23. An n-side electrode 34 is formed in the area of the right terminal part side, and a p-side electrode 33 is formed in the area of the left terminal part side, wherein the width of the transparent electrode 31 is getting larger from the left terminal part to the right terminal part. As a result, the transparent electrode 31 is able to constrain the increment of the current flowing through MQW layer 22 in up and down directions close to the side of the p-side electrode 33.

Description

201205879 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種將半導體作為構成材料發光之發光 凡件之構造,尤其是關於線狀之發光元件之構造。 【先前技術】 半導體之發光二極體(LED)係使用於各種目的。例如, 使用其之照明機器,由於相較於習知白熱燈泡或營光燈耗 電低且發熱性低,因此期盼將來能夠全面取代此等白熱燈 泡或螢光燈。此處,LED中p型半導體層或n型半導體層, 舨而&係藉由磊晶成長或離子注入等形成。因此’ ρη接 合面與半導體晶圓之表面平行形成,連接力ρ側之電極盥 ?接於η側之電極係分配在此半導體層之上面與下面。能 韁由使ρη接合之順向電流流過此等電極間使此發光元件發 光此時,一般而言,由於電極係以遮蔽此光之金屬構成, 因此不易從形成有電極之部位取出光。又,若此電流在發 光凡件内不均勻,則不易獲得均勻之發光。 解決上述課題之發光元件之具體構成係記載於例如專 利文獻1。圖8係顯示其剖面圖。在此發光元件9〇中發光 之半導體發光功能層91為在下側具有ρ型半導體層Μ、在 :側具有11型半導體層93之雙層構造。在半導體發光功能 之下面(ρ型半導體層92之下面)整體形成有以金屬構 Ρ側電極94,在半導體發光功能層9 1之上面(η型半導 體層 9 3 L -r- \ 95。 )之一部分形成有以金屬構成之II側電極 再者,在上面整體覆蓋n側電極95形成有透明電極%。 201205879 作為透明電極96之材料,有例如⑽(銦錫氧化物:Indium —Tln-〇xlde^ Zn0(Zinc—〇xide)等此等為導電性且同 時對此發光元件90發出之光為透明。 在此構造中,用以使此發光元件9〇動作(發光)之電壓 係施加於p側電極94與n側電極95間。此時,p側電極 94係形成在下面整面’ n側電極%則與形成在上面整面之 透明電極96連接。由於ρ型半導體層92之下面整面被ρ 側電極94覆蓋,因此電位相同。又,藉由透明電極%之 存在Π型半導體層93之上面整體之電位亦大致相同,因此 半導體發光功能層中之電流,遍布其上下方向(ρη接合 方向)大致相同地流過。因此,可在面内獲得均勻之發光。 此時,在圖8中之上側發出之光,在半導體發光功能 層9丨之左端部被η側電極95遮蔽,但在大部分區域未被 遮蔽而透射過透明電極96。因此,如圖8中之虛線箭頭所 示,能取出均勻之發光》 如上述,藉由將透明電極作為連接於一極之電極使 用,能使半導體發光功能層91之表面之電位相同,能獲得 進行均勻發光之發光元件。 專利文獻1 :曰本特開昭61 — 8 5 8 7 8號公報 【發明内容】 若為發光二極體之兩電極分別連接於半導體發光功能 層之上面與下面之構成之發光元件,則藉由上述構成可取 出均勻之發光。然而,在發光二極體之兩電極皆形成在半 導體發光功能層之相同主面側(例如半導體發光功能層之上 201205879 面側)之情形.,不易獲得均勻之發光。此在兩電極間之間隔 愈寬廣時愈顯著。 圖9係顯示將與圖8相同之構成適用在兩電極設在半 導體發光功能層之一面側且兩電極間具有細長構成之發光 元件9〇之隋形之俯視圖(a)、其Ρ — ρ方向之剖面圖(b)。 此處,半導體發光功能層191係以n型半導體層192與其 上之P型半導體層193構成。在右端部除去p型半導體層 193使η型半導體層192露出,在其上形成n側電極i94 ^ 在左端部之ρ型半導體層193上形成ρ側電極195。與圖名 相同,透明電極196覆蓋Ρ側電極195而形成在ρ型半導 體層193 ±面整體。此外,圖9〇))係剖面圖,但為了說明 而省略各半導體層之斜線。 此情形,用以使半導體發光功能層191發光之電流, 如圖9(a)之箭頭所示,從ρ側電極195側流向η側電極1料 側。作為其間之電流路徑,如圖9(b)中之箭頭所示有多種 路徑。其原因在於,從p側電極丨95至n側電極194之水 平方向之間隔寬廣,在水平方向流過透明電極i %中、ρ型 半導體層193中、n型半導體層192中之成分變多。又,由 於此等層相較於此間隔皆較薄,目此對在水平方向流過此 等層之電流之電阻高。另一方面,有助於發光之電流,係 圖9(b)中粗黑箭頭所示之通過pn接合(p型半導體層^们與 η型半導體層192之界面)之電流,藉由此電流發出虛線箭 頭所示之光。此電流強《,在因於水平方向流動之電流路 徑之電阻大而產生f壓下降之情形,係取決於該電屢下 201205879 降。由於該電壓下降係大幅取決於電流路徑,因此不易在 水平方向獲得均勻之發光強度。因此,此發光強度之不均 勻性取決於透明電極196、P型半導體層193、n型半導體 層192之膜厚構成或各層之電阻率。例如,以氣化鎵(GaN) 構成半導體發光功能層191之情形,一般而言在磊晶基板 上依序形成η型GaN層、p型GaN層。在此情形,n型 層之電阻低,p型GaN層或透明電極之電阻較其高。在此 情形,一般而言在p側電極195附近發光強度高,在n側 電極194附近發光強度低。在透明電極或?型⑽層之電 阻可忽視之情形不會產生上述問胃,但實際上不易使構成 透明電極之材料或p型GaN之導電率提高,因此不易使此 等之電阻小至可忽視之程度。 亦即在半導體發光功能層之一面形成有二個電極之 構成之發光元件中,“在長邊方向獲得均句之發光強 度此問題尤其在二個電極之間隔寬廣時顯著。 本發明係有鑑於上述問題點而構成,其目的在於提供 解決上述問題點之發明。 本發明為了解決上述課題,揭示以下之構成。 本發明之發光元件,係使用有在具有第1導電型之第 半導體層上形成有具有與該第1導電型相反之導電型即第 導電型之第2半導體層之半導體發光功能層,用以使該 導體發光功月b層發光之通電所使用之二個電極皆形成在 半導體發光功能層中形成有該第2半導體層之側之主 上’其特徵在於’具備:第1電極’係形成為在於該半 6 201205879 體發光功能層之-端部該第2半導體層被從該主面側除去 之°P位與第1半導體層接觸;透明電極,係形成為在該 第2半^體層 < 表面從另一端部側朝向該一端部侧延伸, 在與該延伸方向垂直之方向之實效長度從該另一端部側朝 向該-端部側變長;以及第2電極,係以在該另一端部側 與該透明電極接觸《方式形成在該透明電極上。 本發明之發光元件,係使用有在具有第丨導電型之第! 半導體層上形成有發光層、在該發光層上形成有具有與該 第1導電型相反之導電型即第2導電型之第2半導體層之 半導體發光功能層,用以使該半導體發光功能層發光之通 電所使用之二個電極皆形成在該半導體發光功能層中形成 有该第2半導體層之側之主面上,其特徵在於,具備:第1 係形成為在於該半導體發光功能層之_端部侧該第2 +導體層及該發光層被從該主面側除去之部位盥該第 =體層接觸;透明電極,係在該第2半導體層之表面從另 端。P側朝向該一端部側延伸形成;以及第2電極係以 ^該另—端部側與該透明電極接觸之方式形成在該透明電 端=第2半導體層’係以在與從該另一端部朝向該_ 端垂ί之方向之實效長度從該另-端部朝向該-又長之方式形成在該發光層上。 光功元件巾該透明_及料導體發 層而形成絕緣層;該第1電極、該第2電極通過形 :::絕緣層中之開”別接觸於該第1半導雜層、該: 201205879 本發明之發光元件中,該半導體發光功能層之端部被 錐狀加工,該第1電極、該第2電極中之至少—個係隔著 該絕緣層覆蓋錐狀加工後之該半導體發光功能層之端部。 本發明之發光元件中,該帛丨半導體層係藉由蟲晶成 長形成在矽基板上。 本發明之發光元件中,該半導體發光功能層令該端部 以外之側面被錐狀加工。 本發明之發光元件中,該第i電極與該第2電極之間 隔相對於在與從該一端部朝向該另一端部之方向垂直之方 向之該半導體發光功能層之寬度之比率為10以上。 由於本發明係以上述方式構成,因此在半導體發光功 能層之一面形成有二個電極之構成之#光元#中在長邊 方向獲得均勻之發光強度。 【實施方式】 以下,針對本發明實施形態之發光元件進行說明。此 發光元件’在半導體發光功能層之一主面側形成有p側電 極(陽極)與η側電極(陰極)。又,半導體發光功能層,尤苴 在從Ρ側電極朝向η側電極之方向構成細長形態。 圖1係此發光元件10的俯視圖⑷及其Α—Α方向的剖 面圖⑻。又’圖2⑷、(b)、(c)係分別為圖1⑷中b—b方 向、C一 C方向、D—D方向的剖面圖。 在此發光元件10發光之半導體發光功能層2〇係形成 在Si基板11上,具有由n型GaN層(第1半導體層^卜 MQW(多量子井:Mult! Quantum Well)層 22、p 型 _ 層(第 201205879 2半導體層)23構成之積層構造201205879 VI. Description of the Invention: [Technical Field] The present invention relates to a structure in which a semiconductor is used as a constituent material for emitting light, and particularly relates to a configuration of a linear light-emitting element. [Prior Art] Semiconductor light-emitting diodes (LEDs) are used for various purposes. For example, lighting machines using them are expected to fully replace such incandescent lamps or fluorescent lamps in the future due to their low power consumption and low heat generation compared to conventional white heat bulbs or camp lights. Here, the p-type semiconductor layer or the n-type semiconductor layer in the LED is formed by epitaxial growth, ion implantation, or the like. Therefore, the 'ρη junction surface is formed in parallel with the surface of the semiconductor wafer, and the electrode on the connection force ρ side is disposed on the upper side and the lower surface of the semiconductor layer. It is possible to cause the light-emitting element to emit light by flowing a forward current of ρη between the electrodes. In general, since the electrode is made of a metal that shields the light, it is difficult to extract light from the portion where the electrode is formed. Moreover, if the current is not uniform in the illuminating member, it is difficult to obtain uniform illuminance. The specific configuration of the light-emitting element that solves the above problems is described, for example, in Patent Document 1. Figure 8 is a cross-sectional view showing the same. The semiconductor light-emitting function layer 91 which emits light in the light-emitting element 9A has a two-layer structure having a p-type semiconductor layer 下 on the lower side and a type 11 semiconductor layer 93 on the side. Under the semiconductor light-emitting function (below the p-type semiconductor layer 92), a metal-structured side electrode 94 is formed integrally on the semiconductor light-emitting function layer 9 1 (n-type semiconductor layer 9 3 L -r- \ 95 . ) A part of the II side electrode made of a metal is formed in part, and a transparent electrode % is formed on the entire surface of the n-side electrode 95. 201205879 As a material of the transparent electrode 96, for example, (10) (indium tin oxide: Indium-Tln-〇xlde^ Zn0 (Zinc-〇xide) or the like is electrically conductive and at the same time, the light emitted from the light-emitting element 90 is transparent. In this configuration, a voltage for causing the light-emitting element 9 to operate (light-emitting) is applied between the p-side electrode 94 and the n-side electrode 95. At this time, the p-side electrode 94 is formed on the lower surface of the n-side electrode. % is connected to the transparent electrode 96 formed on the entire upper surface. Since the entire lower surface of the p-type semiconductor layer 92 is covered by the p-side electrode 94, the potential is the same. Further, the presence of the transparent electrode % of the germanium-type semiconductor layer 93 Since the entire potential of the upper surface is also substantially the same, the current in the semiconductor light-emitting function layer flows substantially in the same direction in the vertical direction (ρη bonding direction). Therefore, uniform light emission can be obtained in the plane. In this case, in FIG. The light emitted from the upper side is shielded by the n-side electrode 95 at the left end portion of the semiconductor light-emitting function layer 9B, but is shielded from the transparent electrode 96 in most areas. Therefore, as indicated by the dotted arrow in FIG. Can take out As described above, by using a transparent electrode as an electrode connected to one pole, the potential of the surface of the semiconductor light-emitting function layer 91 can be made uniform, and a light-emitting element that emits uniform light can be obtained. Patent Document 1: 曰本特Japanese Laid-Open Patent Publication No. SHO 61-85 5 187. SUMMARY OF THE INVENTION In the case where the two electrodes of the light-emitting diode are respectively connected to the light-emitting elements of the upper surface and the lower surface of the semiconductor light-emitting function layer, the above configuration can be taken out uniformly. Luminescence. However, in the case where both electrodes of the light-emitting diode are formed on the same main surface side of the semiconductor light-emitting functional layer (for example, the surface of the semiconductor light-emitting functional layer 201205879), it is difficult to obtain uniform light emission. Fig. 9 is a plan view showing a configuration in which the same configuration as that of Fig. 8 is applied to a shape in which two electrodes are provided on one side of a semiconductor light-emitting function layer and a light-emitting element 9 having an elongated configuration between the electrodes is formed. (a), Ρ - a cross-sectional view (b) in the ρ direction. Here, the semiconductor light-emitting function layer 191 is an n-type semiconductor layer 192 and a P-type semiconductor layer 193 thereon. The p-type semiconductor layer 193 is removed at the right end portion to expose the n-type semiconductor layer 192, and the n-side electrode i94 is formed thereon. The p-side electrode 195 is formed on the p-type semiconductor layer 193 at the left end portion. The electrode 196 covers the meandering electrode 195 and is formed on the entire surface of the p-type semiconductor layer 193. Further, Fig. 9A) is a cross-sectional view, but the oblique lines of the respective semiconductor layers are omitted for the sake of explanation. In this case, the current for causing the semiconductor light-emitting function layer 191 to emit light flows from the side of the p-side electrode 195 toward the side of the n-side electrode 1 as indicated by an arrow in Fig. 9(a). As the current path therebetween, there are various paths as indicated by the arrows in Fig. 9(b). The reason for this is that the interval from the p-side electrode 丨95 to the n-side electrode 194 in the horizontal direction is wide, and the components flowing in the transparent electrode i% in the horizontal direction, the p-type semiconductor layer 193, and the n-type semiconductor layer 192 become large. . Further, since the layers are thinner than this interval, the electric resistance of the current flowing through the layers in the horizontal direction is high. On the other hand, the current contributing to the light emission is the current through the pn junction (the interface between the p-type semiconductor layer and the n-type semiconductor layer 192) as indicated by the thick black arrow in FIG. 9(b). Lights as indicated by the dashed arrows. This current is strong, and the voltage drop due to the large resistance of the current path flowing in the horizontal direction depends on the power drop of 201205879. Since this voltage drop is largely dependent on the current path, it is difficult to obtain uniform luminous intensity in the horizontal direction. Therefore, the unevenness of the luminous intensity depends on the film thickness of the transparent electrode 196, the P-type semiconductor layer 193, and the n-type semiconductor layer 192 or the resistivity of each layer. For example, in the case where the semiconductor light-emitting function layer 191 is formed of gallium carbide (GaN), an n-type GaN layer or a p-type GaN layer is generally formed on the epitaxial substrate in this order. In this case, the resistance of the n-type layer is low, and the resistance of the p-type GaN layer or the transparent electrode is higher. In this case, generally, the light-emission intensity is high near the p-side electrode 195, and the light-emitting intensity is low near the n-side electrode 194. On transparent electrodes or? In the case where the resistance of the type (10) layer can be ignored, the above-mentioned stomach is not caused, but in practice, it is difficult to increase the conductivity of the material constituting the transparent electrode or the p-type GaN, so that it is difficult to make the resistance so small as negligible. In the light-emitting element in which two electrodes are formed on one surface of the semiconductor light-emitting functional layer, "the problem of obtaining the luminous intensity of the uniform sentence in the longitudinal direction is remarkable especially when the interval between the two electrodes is wide." In order to solve the above problems, the present invention has been made to solve the above problems. The present invention discloses the following configuration. The light-emitting device of the present invention is formed on a semiconductor layer having a first conductivity type. a semiconductor light-emitting function layer having a second semiconductor layer of a first conductivity type, which is a conductivity type opposite to the first conductivity type, and two electrodes used for electrifying the light-emitting power layer b-layer light are formed in the semiconductor In the main surface of the light-emitting function layer on which the second semiconductor layer is formed, the first electrode is formed so that the second semiconductor layer is formed at the end of the half-light 6 201205879 bulk light-emitting functional layer. The upper surface of the main surface side is in contact with the first semiconductor layer; and the transparent electrode is formed on the second half of the surface layer from the other end side toward the one The end side extends, the effective length in a direction perpendicular to the extending direction is longer from the other end side toward the end side; and the second electrode is in contact with the transparent electrode on the other end side The light-emitting element of the present invention is characterized in that a light-emitting layer is formed on a semiconductor layer having a second conductivity type, and a light-emitting layer is formed on the light-emitting layer to have a surface opposite to the first conductivity type. a semiconductor light-emitting function layer of a second semiconductor layer of a second conductivity type, which is a conductive type, is formed with two electrodes used for energizing the semiconductor light-emitting function layer, and the second semiconductor is formed in the semiconductor light-emitting function layer. The main surface on the side of the layer is characterized in that the first portion is formed on the end portion side of the semiconductor light-emitting function layer, and the second +-conductor layer and the portion from which the light-emitting layer is removed from the main surface side. The transparent layer is formed on the surface of the second semiconductor layer from the other end, the P side is extended toward the one end side, and the second electrode is in contact with the transparent electrode on the other end side It Formed at the transparent electric terminal = the second semiconductor layer ' is formed in the light-emitting direction from the other end portion toward the _ end, and the effective length is formed from the other end portion toward the -length The layer of the optical element has a transparent layer and a conductor layer to form an insulating layer; and the first electrode and the second electrode pass through the shape::: opening in the insulating layer to contact the first semiconductor layer In the light-emitting device of the present invention, the end portion of the semiconductor light-emitting functional layer is tapered, and at least one of the first electrode and the second electrode is covered by the insulating layer to cover the tapered shape. The end of the semiconductor light-emitting functional layer. In the light-emitting device of the present invention, the germanium semiconductor layer is formed on the germanium substrate by the growth of the crystallites. In the light-emitting device of the present invention, the semiconductor light-emitting functional layer has a side surface other than the end portion which is tapered. In the light-emitting device of the present invention, the ratio of the width between the ith electrode and the second electrode to the width of the semiconductor light-emitting function layer in a direction perpendicular to the direction from the one end portion toward the other end portion is 10 or more. Since the present invention is constructed in the above manner, a uniform light-emitting intensity is obtained in the longitudinal direction in the #光元# in which two electrodes are formed on one surface of the semiconductor light-emitting function layer. [Embodiment] Hereinafter, a light-emitting device according to an embodiment of the present invention will be described. This light-emitting element ' has a p-side electrode (anode) and an n-side electrode (cathode) formed on one main surface side of the semiconductor light-emitting function layer. Further, the semiconductor light-emitting functional layer particularly has a slim shape in a direction from the side electrode to the side electrode. Fig. 1 is a plan view (4) of the light-emitting element 10 and a cross-sectional view (8) of the Α-Α direction thereof. Further, Fig. 2 (4), (b), and (c) are cross-sectional views in the b-b direction, the C-C direction, and the D-D direction in Fig. 1 (4), respectively. The semiconductor light-emitting function layer 2 on which the light-emitting element 10 emits light is formed on the Si substrate 11, and has an n-type GaN layer (first semiconductor layer, MQW (multi-quantum well: Mult! Quantum Well) layer 22, p-type _ layer (201205879 2 semiconductor layer) 23 laminated structure

GaN層23與肘(^層22被部分除去。 ^ 在P型GaN層23之表面(一主面)以從另—端部(左端 側朝向右端部側延伸之形態形成有透明電極3卜 、 覆蓋半導體發光功能層2〇及透 ,以 绦展”〜 及迓月電極31之形態形成有絕 、毒層32°在右端部側口型㈣層23與MQW層22被部分 除去之區域與左端部側之區域之二部位,在此絕緣層Μ 成有開口。在此右端部側之區域形成有n側電極(陰極:第 1電極m’在左端部側之區域形成有p側電極(陽極:第2 電極)33。藉由此構成,n側電極34與n型GaN層21連接, P側電極33與透明電極31連接。透明電極31與η側電極 34未接觸。此外’為了容易進行構成之說明,圖_中省 略絕緣層32之記載。 又,Si基板11及其上之半導體發光功能層2〇之端部, 如圖1(b)所示,作成為錐狀。p侧電極33、n側電極34係 隔著絕緣層32覆蓋此作成為錐狀之部分。此外,上述構造 係形成在絕緣性之支承基板(未圖示)上。 此處,Si基板1 1為矽之單晶基板,播雜有雜質構成高 導電性、未摻雜構成高電阻率皆可。適當設定其面方位以 月b在其上使良質之半導體發光功能層2〇(n型GaN層2 1、 MQW層22、P型GaN層23)異質磊晶成長。 η型GaN層21、MQW層22、p型GaN層23能藉由 MBE(分子束遙晶:Molecular Beam Epitaxy)法或 MOCVD(有 201205879 機金屬化學氣相沉積:Metal 〇rganic .. inimical VaporThe GaN layer 23 and the elbow layer are partially removed. ^ On the surface (one main surface) of the P-type GaN layer 23, a transparent electrode 3 is formed in a form extending from the other end portion (the left end side toward the right end side). The semiconductor light-emitting function layer 2 is covered and permeable, and a region of the left and right ends of the right-side portion (four) layer 23 and the MQW layer 22 is partially removed from the left end side. In the second portion of the region on the side of the portion, an opening is formed in the insulating layer. An n-side electrode is formed in the region on the right end side (cathode: the first electrode m' is formed with a p-side electrode in the region on the left end side (anode) The second electrode 33 is formed by the n-side electrode 34 connected to the n-type GaN layer 21, and the P-side electrode 33 is connected to the transparent electrode 31. The transparent electrode 31 and the n-side electrode 34 are not in contact with each other. In the description of the configuration, the description of the insulating layer 32 is omitted in the drawing, and the end portion of the Si substrate 11 and the semiconductor light-emitting function layer 2 on the Si substrate 11 is tapered as shown in Fig. 1(b). 33. The n-side electrode 34 is covered by the insulating layer 32 to form a tapered portion. It is formed on an insulating support substrate (not shown). Here, the Si substrate 1 1 is a single crystal substrate of germanium, and impurities may be mixed with impurities to form high conductivity and undoped to form high resistivity. The surface orientation of the thin semiconductor light-emitting functional layer 2〇 (n-type GaN layer 2 1 , MQW layer 22 , and P-type GaN layer 23 ) is heteroepitaxially grown on the surface b. The n-type GaN layer 21 and the MQW layer 22 are grown. The p-type GaN layer 23 can be by MBE (Molecular Beam Epitaxy) method or MOCVD (with 201205879 metal metallurgical deposition: Metal 〇rganic.. inimical Vapor)

Deposition)法在si基板n上磊晶成 , 牧n型GaN層2 1 適當播雜作為施體之雜質,在型G層 A ^ ^ ^ ^ 尽23適當摻雜作為 又體之雜質。„型&]^層21之厚度可 π \了 a , N 如 5·〇ν m、P 型 a層23之厚度可為例如〇·2 # m程度。又 又 又’ MQW層22 具有積層有複數層例如數nm〜數i〇nm 手厪之InGaN、 a薄膜之構造,InGaN、GaN之各層^型⑽層门 型GaN層23同樣地藉由磊晶成長形成。 為了在半導體發光功能層20之右端部之區域除 _層23、MQW層22以使„型咖層21露出在此區 域以外形成光阻,將此作為光罩進行乾式敍刻。又, 導體發光功能層20加工成圖!之拟能 。 止a 成圆1之形態,且使端部錐狀化之 v驟’係在以上述順序形成半導體發光功能層2〇之後在 其上形成錐狀之光阻,將此作為光罩進行乾式㈣來進 :。光阻之錐狀化可藉由曝光條件或顯影條件之調整進 行。藉此,圖1(b)所示之錐角0可為例如3〇〜6〇。。The Deposition method is epitaxially formed on the Si substrate n, and the n-type GaN layer 2 1 is appropriately mixed as an impurity of the donor body, and is appropriately doped as a foreign substance in the type G layer A ^ ^ ^ ^ 23 . The thickness of the layer 21 can be π \ a, N such as 5 · 〇 ν m, and the thickness of the p-type a layer 23 can be, for example, 〇·2 # m. Further, the ' MQW layer 22 has a layer. There are a plurality of layers of, for example, a structure of InGaN and a thin film of a number of nm to several μm, and each of the layers of the InGaN and GaN (10) gate-type GaN layer 23 is formed by epitaxial growth in the same manner. In the region of the right end portion of 20, except for the layer 23 and the MQW layer 22, the photoresist layer 21 is exposed outside the region to form a photoresist, and this is used as a mask for dry characterization. Moreover, the conductor light-emitting function layer 20 is processed into a figure! The ability to do. In the form of the circle 1 and the tapered portion of the end portion, the semiconductor light-emitting function layer 2 is formed in the above-described order, and a tapered photoresist is formed thereon, and this is used as a mask for dry (4). Come in: The taper of the photoresist can be adjusted by exposure conditions or development conditions. Thereby, the taper angle 0 shown in FIG. 1(b) can be, for example, 3 〇 to 6 〇. .

透明電極3 1,作為能與型G P i baN層23歐姆接觸且對 半導體發光功能層20發出之#盔.泰 贫出之先為透明之材料,以例如 ITO(姻錫氧化物:indium—Tin π a \ 〇.· 松 Tin—〇Xlde)或 ZnO(Zinc_0xide) 4構成。此外,為了使與p型r N js 0Β ρ ^ UaN層23之間之歐姆性或密 合性等提升,在此等之間插入 1欠尤兄分透射過之程度之薄 鈦(Ti)層或鎳(Ni)層亦可。透 边明電極3 1之圖案化,可使用在 整面使上述透明電極材料忐蹬 ..., 何卄成膜,在所欲之部位形成光阻 之光罩後進行飯刻,將所欲夕部>、, 仃欲之。卩位以外之透明電極材料除 10 201205879 去(姑亥j法),(2)在所欲之部位以外形成光阻等之光罩後在整 面使上述透明電極材料成膜,之後除去光罩以除去所欲之 部位以外之透明電極材料(剝_法)之任一方法。料,由於 對構成透明電極31之材料要求高光透射率,因此其導電率 較構成P側電極33、n側電極34之材料低。因此,在圖i 中之左右方向之透明電極31之電阻’―般而言較?側電極 33、η側電極34高。 絕緣層32具有充分之絕緣性,且以對此發光元件10(半 導體發光功能層20)發出之光為透明之材料構成,例如以氧 化石夕(Si〇2)構成。其形成係藉由使用例如(化學氣相沉 積:Chimical Vapor Dep〇siu〇n)法等,在右端部之區域: ⑽層23肖MQW層22被除去之部位之段差部、或錐狀化 之端部能以較佳被覆性形成。 P側電極33係以銘⑽等之導電性高之金屬形成 電極則以能與η型_層21達成歐姆接觸之材料 Ρ側電極33、η側電極34之圖案化能與透明電極3 化相同地進订。對構成ρ側電極33、η側電極Μ : 要求冋光透射率。因此,能使此等之導電率較構成明 極μ之:明電極材料高,可忽視ρ側電極33“側電: 34中之電阻(或此等導致之電壓降低)。另-方面,丰 發光功能層20發出之伞又奋、类证 +導體 34。 “之先不會透射過Ρ側電極33、η側電極 藉由此構成,ρ側電極33係隔著透 ⑽層㈣接,電極34則直接連接於η型咖與層^型 201205879 藉此,藉由對p側電極33施加正電壓,對n側電極34施 加負電壓,能使半導體發光功能層2〇 叫―…此光從一層23之表=要: 通過透明電極3 1在圆1 (t>)中之上側發出。 此處之特徵在於’如圖1(a)、圖2⑷、(b)、⑷所示, 透明電極3!之寬度(與透明電極31延伸之方向垂直之方向 之長度)遍布發光元件10中從„側電極34朝向p側電極33 =方向(圖1中之左右方向)不均勻。具體而言,從左端部(另 一端部:具有p側電極33之側)朝向右端部(一端部:具有 η側電極34之側)其宽度變寬廣。藉此,在接近?側電極η 之側在上下方向流過MQW層22之電流之擴大被透明電極 31限制〇是以,相較於透明電極31具有均勻之寬度之情形, 能使接〇側電極33之側之發錢度低。或者,能在接近 η側電極34之側使在上下方向流過零層22之電流變 大,能提高接近η側電極34之側之發光強度。 亦即,能在發光元件10之長邊方向(圖1(a)中之左右方 向)使發光強度均勾化。其效果,在長邊方向之發光之不均 勻性成為問題之情形,亦即在發光體1〇中p側電極Μ與η 側電極34之間隔寬廣、發光體1〇長之情形顯著。具體而 言,例如,在η側電極34肖ρ側電極33之間隔相對於在η 側電極34與ρ側電極33之間之半導體發光功能層2〇之寬 度之比率Α ίο以上之情形尤其顯著。此時,透明電極η 之寬度係適當設定成使長邊方向之發光強度均勻。此寬度 之最佳分布係藉由半導體發光功能層2〇與透明電極η ^ 12 201205879 流動之電流分布決定,斗在^The transparent electrode 31 is used as a material which can be in ohmic contact with the GP i baN layer 23 and which is emitted to the semiconductor light-emitting function layer 20, such as ITO (indium-tin). π a \ 〇.· Pine Tin-〇Xlde) or ZnO(Zinc_0xide) 4. Further, in order to enhance the ohmicity or adhesion between the p-type r N js 0 Β ρ ^ UaN layer 23, a thin titanium (Ti) layer of a degree which is transmitted through the owing portion is inserted between these. Or a nickel (Ni) layer is also possible. By patterning the transparent electrode 3 1 , it is possible to use the transparent electrode material on the entire surface, and to form a film, and to form a photoresist mask at a desired portion, and then perform a meal engraving. >,, 仃欲之. In addition to the transparent electrode material other than the niobium, in addition to 10 201205879 to go to the (gu Hai j method), (2) after forming a mask such as a photoresist other than the desired portion, the transparent electrode material is formed on the entire surface, and then the mask is removed. Any method of removing the transparent electrode material (peeling method) other than the desired portion. Since the material constituting the transparent electrode 31 is required to have high light transmittance, the electrical conductivity is lower than that of the material constituting the P-side electrode 33 and the n-side electrode 34. Therefore, the resistance of the transparent electrode 31 in the left-right direction in Fig. i is generally better? The side electrode 33 and the η side electrode 34 are high. The insulating layer 32 has sufficient insulating properties and is made of a material transparent to the light emitted from the light-emitting element 10 (semiconductor light-emitting function layer 20), for example, made of oxide oxide (Si〇2). The formation is performed by using, for example, a chemical vapor deposition (Chimical Vapor Dep〇siu〇n) method, in the region at the right end portion: (10) the step portion of the portion where the layer 23 of the MQW layer 22 is removed, or the tapered portion The ends can be formed with better coverage. The P-side electrode 33 is formed of a metal having high conductivity such as the one of (10), and the patterning energy of the material of the Ρ-side layer 33 and the η-side electrode 34 is the same as that of the transparent electrode 3. Ordering. For the ρ-side electrode 33 and the η-side electrode 构成: The luminosity transmittance is required. Therefore, the conductivity of these can be made higher than that of the bright electrode μ: the bright electrode material can be ignored, and the resistance of the side electrode 33 "side electricity: 34 (or the voltage caused by the voltage) can be ignored. The illuminating function layer 20 emits an umbrella, and the type of conductor + conductor 34. "The first side is not transmitted through the side electrode 33, the η side electrode is constructed by this, and the ρ side electrode 33 is connected through the (10) layer (four). 34 is directly connected to the n-type coffee and layer type 201205879. By applying a positive voltage to the p-side electrode 33 and applying a negative voltage to the n-side electrode 34, the semiconductor light-emitting function layer 2 can be called "... The table of one layer 23 = to be: emitted through the transparent electrode 3 1 on the upper side of the circle 1 (t >). Here, the feature is that, as shown in FIG. 1(a), FIGS. 2(4), (b), and (4), the width of the transparent electrode 3! (the length in the direction perpendicular to the direction in which the transparent electrode 31 extends) is distributed throughout the light-emitting element 10. The side electrode 34 is uneven toward the p-side electrode 33 = direction (the left-right direction in Fig. 1). Specifically, the left end portion (the other end portion: the side having the p-side electrode 33) faces the right end portion (one end portion: The side of the η-side electrode 34 has a wide width. Thereby, the expansion of the current flowing through the MQW layer 22 in the up-and-down direction on the side close to the side electrode η is restricted by the transparent electrode 31, as compared with the transparent electrode 31. In the case of having a uniform width, the degree of the increase in the side of the contact side electrode 33 can be made low, or the current flowing in the vertical direction through the zero layer 22 can be made larger on the side close to the side of the η side electrode 34, and the proximity can be improved. The light-emitting intensity of the side of the η-side electrode 34. That is, the light-emitting intensity can be made in the longitudinal direction of the light-emitting element 10 (the horizontal direction in Fig. 1(a)). The effect is that the light is emitted in the long-side direction. Inhomogeneity becomes a problem, that is, in the illuminator 1〇, the p-side electrode Μ and the η side are electrically The case where the distance between the poles 34 is wide and the length of the light-emitting body 1 is long is remarkable. Specifically, for example, the interval between the side electrodes 33 of the n-side electrode 34 and the semiconductor light between the n-side electrode 34 and the p-side electrode 33 is relatively small. The ratio of the width of the functional layer 2〇 is particularly remarkable. In this case, the width of the transparent electrode η is appropriately set so that the luminous intensity in the longitudinal direction is uniform. The optimum distribution of the width is by the semiconductor light-emitting functional layer. 2〇 and transparent electrode η ^ 12 201205879 The current distribution of the flow is determined, the bucket is in ^

溫” * 疋此係藉由n型GaN層21、p型GaN 層23、透明電極31之厚度、電阻㈣以。 又,圖i之構成中,?側電極33係形成在透明電極Si 上,P側電極33與p f jg π + + Ρ 1⑽層23未直接接觸。假設,如 專利文獻1記載之枯併,你 ^ 戰之技術,使p側電極33與透明電極31之 上下關係反轉,在左端部使P側電極33與P型GaN層23 直接接觸之情形,從電阻低之P側電極 層23之電流成為支配性,從透明電極3i流過?型G抑 23之電流成分變+。 m 一 ^ 因此,P側電極33附近之發光強度變 特別南,改變透明φ打;<3 , >办+ 電極3 1之寬度導致之發光強度之均勻 效果變小。亦即,兔7 &〜θ 為了心付上述效果,如圖丨、圖2所示, 較佳為透明電極3丨拟+ + 电乜h形成在p型GaN層23上、p側電極33 形成在此透明電極3丨上之構成。 ·'、之例中,半導體發光功能層2 0之所有側面被 錐狀化,錐狀化之端部皆隔著絕緣層32被p側電極Μ、打 側電極34覆蓋。半導體發光功能層20中主要之發光層為 MQW 層 22,作 ji 士 + 4致上、> 仫猎由此構成,MQW層22之端部被p側電極 3 3、η側電極3 4说止 《 # 遮光。又’藉由此構成,從發光層往斜上 方向k方向發出之光之一部分被此錐狀化之側面反射, 被位於下側之Si基板} !吸收。肖此,在例如將此發光元件 1义〇排列使用之㈣’可抑制在㈣之發光元们〇彼此間之 ’X光之串擾之發生。此時,例如,可適當設定欲錐狀化之 1M立例如’僅使圖1 (a)、(b)中左右端部之側面錐狀化、 其他側面(圖2(a)、⑻、⑷之側面)不錐狀化之構成亦可。 13 201205879 在設置未錐狀化之側面之情形,能使在設有該側面之方向 之發光元件ίο之尺寸變小。亦即,能使欲錐狀化之部位僅 為發光之串擾成為問題之部位。藉由將欲錐狀化之側面之 加工與不錐狀化之側面之加工分開進行,可實現上述形狀。 作為圓卜圖2之構成之發光元件1〇之較佳使用例, 有圖3⑷所示之七段顯示器或圖3(b)所示之—維發光元件 陣列。七段顯示器可較佳使用為顯示元件,一維發光元件 陣列可較佳使用為顯示元件或測量用之發光元件。在上述 情形,能使各發光元件中之發光強度在長度方向均句,且 減少相鄰之發光元件間之串擾。 ;上述發光元件10中之透明電極31之形狀(圖案),在能 調i實效之透明電極31之寬度(在與透明電極η之延伸方 向(長邊方向)垂直之方1^1夕+ 4 e rfr \ Π之貫效長度)之情況下,可適當設 定。圖4係顯示上述發光元件10之第i變形例即發光元件 40的俯視圖⑷、其E_E方向的剖面圖⑻、其F-F方向的 。1面圖(c)、其G— G方向的剖面圖⑷。此外,由於此發光 -件中與圖1(b)相當之剖面圖與圓1(b)相同,因此省略。 此構成中’透明電極31之寬度從。側電極34朝向〆側電 極33階段性變細。即使如此报明確亦可達成相同之效果。 明2 ’上述之例中,雖改變在發光元件之長邊方向之透 # ° i寬’但不改變實際之全寬’改變在與長邊方向 直:方向之實效長度亦可。例如,不改變透明電極之全 其寬度方向之内側形成空隙,藉此使此實效長度變 5係顯示使用此形態之第2變形例即發光元件50的 14 201205879 俯視圖(a)、其η - η方h λα θ /ρ ± 向的剖面圖⑻、其^方心 圖(c)。即使此構成很明確 方向的剖面 改變透明電極之全寬達成相同之效果。 隙,藉此改變此實效長度亦 内侧設置空 第3變形例即發光元件6〇的俯視圖⑷、其广:此構成之 面圖⑻、其Κ—κ方向㈣ 方向的剖 (d) 〇 L方向的剖面圖 ^使在與透明電極之長邊方向垂直之方向之實效 度-定’替代性地調整p型㈣層(第2半導體 ’ 度’亦可達到相同之效果。圖7係作為此構成之-例之^ 4 變形例即發光元件7〇的俯 〗<第4 ()、其M方向的剖面圖 ⑻、N方向的剖面圖⑷、其〇_〇方向的剖面圖⑷。 在此構成中’透明電極31之寬度(在與透明電極31之延伸 方向垂直之方向之實效長度)-定,替代性地,位於1下側 之P型⑽層(第2半導體層)23之寬度(在與透明電極3丨 之延伸方向垂直之方向之實效長度)從左端部側朝向右端部 側變長。在此半導體發光功能層2G中成為實際之發光層者 為MQW層22’ p型GaN層23係作用為連接於此發光層之 半導體層,因此即使上述構成很明確亦可達成相同之效 果。又,P型GaN層23之形態與第i〜第3變形例之透明 電極3 1之形態相同亦可。或者,適當組合此構成與第j〜 第3變形例亦可。 又’上述之例以外,可適當設定在與透明電極或p型 GaN層(第2半導體層)之長邊方向垂直之方向之實效長度在 15 201205879 電極)側長之形 p側電極(第2電極)側柄、户 姐在η側電極(第 態0 述構成中針對在S i基板11上作為半導體發光 功月匕層2G ’作為第1半導體層形成有η型GaN層2卜作為 發光層形成有MQW層22、作為第2半導體層形成有p型 GaN層23之例進仃記載。然而,即使是未使用層η 之隋形很明確亦可動作為使用單純pn接合之發光二極體 ()或者作為發光層亦可使用上述構成之MqW層以 外之構成。又’以GaN以外之材料構成半導體發光功能層 亦可。此情形,可依據發光波長設定半導體材料。 述之例中,在基板(§丨基板11)側形成有η型半 導體層(第1半導體層),在其上形成有ρ型半導體層(第2 半導體層),但在上側之半導體層之導電率低之情形,即使 此等傳導型相反报明確亦可達到相同之效果。亦即只要 為第1半導體層與第2半導體層之傳導型相反、連接於此 等半導體層之二個電極形成在半導體發光功能層之一主面 側之構成,則上述構成有效。 再者’即使半導體發光功能層未形成在基板上,很明 確亦可達到上述效果。又,在使用基板之情形,在基板與 半導體發光功能層之間插入用以提高半導體發光功能層之 結晶性之緩衝層亦可。只要在將二個電極形成在半導體發 光功能層之相同主面側之情況下,基板或緩衝層為絕緣性 或導電性皆可。 又’如上述,藉由使半導體發光功能層之端部錐狀化 16 201205879 可抑制串擾,但使發光強度在半導體發光功能層之長邊方 向均勻化之動作,與該錐狀化之有無無關皆可進行。又, 在以電極覆蓋錐狀化之端部之構造之情形,為了確保在此 端部之電極與各半導體層或發光層之間之絕緣性,必須要 絕緣層。然而,在未使用此構造之情形,不使用絕緣層, 例如在圖丨中之左端部在透明電極31上局部形成p側電極 33’在右端部在"⑽層21上局部形成n側電極μ亦 可 〇 【圖式簡單說明】 圖Η系本發明實施形態之發光元件的俯視圖⑷及盆a —A方向的剖面圖(b)。 ’、 圖2係本發明實施形態之發 R ^ Γ-p 1干之β ~~ B方向的剖面 圖(a) C — c方向的剖面圖(b)、 岡h λ ; U 13方向的剖面圖(c)。 時之形態ϋΓΓ圖顯示本發明實施形態之發光元件在使用 視二 4:二發:=^ 万向的剖面圖(b)、F — F太A & G-G方向的剖面圖(d” 肖的剖面圖⑷、 圖5係本發明實施形態之發光元件之 視圖Ο)、其Η ~ Η方6沾立,工 第2變形例的俯 Η方向的剖面圖(b)、I — τ古 圖6係本發明万向的剖面圖(c)。 視圖⑷、其h方向的剖面圖(b)、K—κ方?變形例的俯 L—L方向的剖面圖(d)。 万向的剖面圖(c)、 圖7係本發明實施形態之發光元件之第 第4變形例的俯 17 201205879 視圖(a)、其 (c) ' 0-0 万向的剖面圖(b)、N—N方& 〇方向的剖面圖(d)。 方向的剖面圖 圖8係習知發井-批 圖9係在主例的剖面圓。 加 主面側形成有兩電極之習4八丄 例的俯視圖(a)、其p p 之^知發光元件之_ ;再P~P方向的剖面圖(b)。 【主要元件符號說明】 1〇,40,50,60,70,9〇, 19〇 發光元件 11 Si基板(基板) 20, 91,191 半導體發光功能層 21 η型GaN層(第1半導體層) 22 MQW層(發光層) 23 ρ型GaN層(第2半導體層) 3 1, 96, 196 透明電極 32 絕緣層 33, 94, 195 P側電極(第2電極) 34, 95, 194 η側電極(第i電極) 92, 193 p型半導體層 93,192 η型半導體層 18The temperature "*" is based on the thickness of the n-type GaN layer 21, the p-type GaN layer 23, the transparent electrode 31, and the electric resistance (4). In the configuration of Fig. i, the side electrode 33 is formed on the transparent electrode Si, P The side electrode 33 is not in direct contact with the pf jg π + + Ρ 1 (10) layer 23. It is assumed that, as described in Patent Document 1, the technique of the technique of the p-side electrode 33 and the transparent electrode 31 is reversed. When the P-side electrode 33 is in direct contact with the P-type GaN layer 23 at the left end portion, the current from the P-side electrode layer 23 having a low electric resistance becomes dominant, and the current component flowing through the transparent electrode 3i is changed to +. Therefore, the luminous intensity near the P-side electrode 33 becomes particularly south, and the transparent φ is changed; <3, > The width of the electrode 3 1 causes the uniform effect of the luminous intensity to become small. That is, the rabbit 7 &~θ In order to pay the above effects, as shown in FIG. 2 and FIG. 2, it is preferable that the transparent electrode 3 is formed on the p-type GaN layer 23, and the p-side electrode 33 is formed on the transparent electrode. In the example of '', the semiconductor light-emitting function layer 20 is tapered on all sides, and the tapered ends are all The insulating layer 32 is covered by the p-side electrode Μ and the side electrode 34. The main luminescent layer in the semiconductor light-emitting function layer 20 is the MQW layer 22, which is composed of ji 士+4, 仫 由此, and thus the MQW layer 22 The end portion is terminated by the p-side electrode 3 3 and the n-side electrode 34. "#Light-shielding. Further, by this, a part of the light emitted from the light-emitting layer in the obliquely upward direction k is reflected by the tapered side. It is absorbed by the Si substrate located on the lower side. For example, in the case of the light-emitting element 1 (4), it is possible to suppress the occurrence of 'X-ray crosstalk' between the light-emitting elements of (4). For example, it is possible to appropriately set the 1M leg to be tapered, for example, to make only the side faces of the right and left end portions in FIGS. 1(a) and 1(b) tapered, and the other side faces (Fig. 2(a), (8), (4)) The side surface may be formed without a taper. 13 201205879 In the case where the side surface which is not tapered is provided, the size of the light-emitting element ίο in the direction in which the side surface is provided can be made small, that is, it can be tapered. The part that is formed is only the part where the crosstalk of light is a problem. By processing and not conicalizing the side surface to be tapered The processing of the side surface is performed separately, and the above shape can be realized. As a preferred use example of the light-emitting element 1A having the configuration of FIG. 2, there is a seven-segment display as shown in FIG. 3 (4) or a dimension shown in FIG. 3(b). An array of light-emitting elements. A seven-segment display can be preferably used as a display element, and a one-dimensional light-emitting element array can be preferably used as a display element or a light-emitting element for measurement. In the above case, the luminous intensity in each of the light-emitting elements can be made in the longitudinal direction. Uniform sentence, and reduce crosstalk between adjacent light-emitting elements. The shape (pattern) of the transparent electrode 31 in the above-mentioned light-emitting element 10, in the width of the transparent electrode 31 capable of adjusting the effect (in the direction of extending with the transparent electrode η) In the case of (longitudinal direction) vertical square 1^1 eve + 4 e rfr \ Π 贯 effect length), it can be set as appropriate. Fig. 4 is a plan view (4) showing a light-emitting element 40 which is an ith modification of the light-emitting element 10, a cross-sectional view (8) in the E_E direction, and a F-F direction thereof. 1 (c), cross-sectional view (4) in the G-G direction. Further, since the cross-sectional view corresponding to Fig. 1(b) in this illuminating member is the same as the circle 1(b), it is omitted. In this configuration, the width of the transparent electrode 31 is from. The side electrode 34 is tapered toward the crotch side electrode 33 in stages. Even if this is reported, the same effect can be achieved. In the above example, the effect of changing the length of the light-emitting element in the longitudinal direction of the light-emitting element, but not changing the actual full width, in the direction perpendicular to the longitudinal direction: the effective length of the direction may be changed. For example, the gap is formed on the inner side in the width direction of the transparent electrode, and the effective length is changed to 5, and the light-emitting element 50 according to the second modification of the embodiment is used. The plan view (a) and the η - η of the light-emitting element 50 are used. A section (8) of the square h λα θ /ρ ± direction, and a square diagram (c) of the square. Even if the cross section of this configuration is clearly defined, changing the full width of the transparent electrode achieves the same effect. In this case, a plan view (4) of the light-emitting element 6A, which is a third modified example, is added to the inner side of the effective length, and a wide view: a plan view (8) of the configuration, and a cross-sectional view (d) 〇L direction in the Κ-κ direction (four) direction. The cross-sectional view ^ is such that the p-type (four) layer (the second semiconductor 'degree" can be adjusted alternately in the direction perpendicular to the longitudinal direction of the transparent electrode. The same effect can be achieved. Example 4 is a cross-sectional view (4) of the light-emitting element 7〇, a cross-sectional view (8) in the M direction, a cross-sectional view (4) in the N direction, and a cross-sectional view (4) in the 〇_〇 direction. In the configuration, the width of the transparent electrode 31 (the effective length in the direction perpendicular to the extending direction of the transparent electrode 31) is determined, alternatively, the width of the P-type (10) layer (second semiconductor layer) 23 located at the lower side ( The effective length in the direction perpendicular to the direction in which the transparent electrode 3 is extended becomes longer from the left end side toward the right end side. In the semiconductor light-emitting function layer 2G, the actual light-emitting layer is the MQW layer 22' p-type GaN layer. The 23 series functions as a semiconductor layer connected to the light-emitting layer, and thus even the above composition It is clear that the same effect can be achieved. The form of the P-type GaN layer 23 may be the same as that of the transparent electrode 3 1 of the first to third modifications. Alternatively, the configuration may be combined with the jth to the third modification. In addition to the above examples, the shape of the side of the shape of the side of the transparent electrode or the p-type GaN layer (the second semiconductor layer) in the direction perpendicular to the longitudinal direction of the transparent electrode or the p-type GaN layer (the second semiconductor layer) may be appropriately set to the side of the p-side. The electrode (second electrode) side handle and the household sister are formed with the n-type GaN layer 2 as the first semiconductor layer on the ii substrate 11 as the semiconductor light-emitting work layer 2G' in the configuration of the first embodiment. An example in which the MQW layer 22 is formed as the light-emitting layer and the p-type GaN layer 23 is formed as the second semiconductor layer is described. However, even if the shape of the unused layer η is clear, the operation can be performed by using a simple pn junction. The diode (or) or the light-emitting layer may have a configuration other than the above-described MqW layer. The semiconductor light-emitting functional layer may be formed of a material other than GaN. In this case, the semiconductor material may be set depending on the light-emitting wavelength. Medium on the substrate An n-type semiconductor layer (first semiconductor layer) is formed on the side of the germanium substrate 11), and a p-type semiconductor layer (second semiconductor layer) is formed thereon. However, even when the conductivity of the upper semiconductor layer is low, even if such The conductivity type is oppositely reported to achieve the same effect, that is, two electrodes which are opposite to the conduction type of the first semiconductor layer and the second semiconductor layer and are connected to the semiconductor layer are formed on one main surface of the semiconductor light-emitting functional layer. In the configuration of the side, the above configuration is effective. Further, even if the semiconductor light-emitting functional layer is not formed on the substrate, it is clear that the above effect can be achieved. Further, in the case of using the substrate, the substrate and the semiconductor light-emitting functional layer are inserted. A buffer layer for improving the crystallinity of the semiconductor light-emitting functional layer may also be used. The substrate or the buffer layer may be either insulative or electrically conductive as long as the two electrodes are formed on the same main surface side of the semiconductor light-emitting functional layer. Further, as described above, the end portion of the semiconductor light-emitting function layer is tapered 16 201205879 to suppress crosstalk, but the operation of uniformizing the light-emitting intensity in the longitudinal direction of the semiconductor light-emitting function layer is independent of the presence or absence of the taper. Can be carried out. Further, in the case where the electrode is covered with the tapered end portion, an insulating layer is necessary in order to secure insulation between the electrode at the end portion and each of the semiconductor layers or the light-emitting layer. However, in the case where this configuration is not used, the insulating layer is not used, for example, the p-side electrode 33' is partially formed on the transparent electrode 31 at the left end portion in the figure, and the n-side electrode is locally formed on the <(10) layer 21 at the right end portion. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a plan view (4) of a light-emitting device according to an embodiment of the present invention and a cross-sectional view (b) of a basin a-A direction. 2, FIG. 2 is a cross-sectional view of the R ^ Γ-p 1 dry β ~ ~ B direction according to the embodiment of the present invention (a) C-c cross-sectional view (b), Gang h λ; U 13 direction profile Figure (c). The morphological diagram of the present embodiment shows a cross-sectional view (b) of the illuminating element according to the embodiment of the present invention, which is used in the view of the second and second directional directions: (b), F-F, A & GG direction (d) Section (4), Fig. 5 is a view of the light-emitting element according to the embodiment of the present invention, and Η Η Η 6 , , , , , , , , , , , , , , , , , ( ( ( ( ( 6 6 6 6 6 The cross-sectional view (c) of the universal direction of the present invention. The view (4), the cross-sectional view (b) in the h direction, and the cross-sectional view (d) in the K-κ square deformed example in the extended L-L direction. (c), Fig. 7 is a view showing a fourth modification of the light-emitting element according to the embodiment of the present invention. 17 201205879 View (a), (c) '0-0, general cross-sectional view (b), N-N square & cross-sectional view in the 〇 direction (d). Cross-sectional view of the direction Figure 8 is a well-known well-batch diagram 9 is a cross-sectional circle of the main example. The top side of the main surface is formed with two electrodes. ), its pp is known as the illuminating element _; and then the cross section of the P~P direction (b). [Main component symbol description] 1〇, 40, 50, 60, 70, 9〇, 19〇 illuminating element 11 Si Substrate (substrate) 20, 91, 19 1 semiconductor light-emitting function layer 21 n-type GaN layer (first semiconductor layer) 22 MQW layer (light-emitting layer) 23 p-type GaN layer (second semiconductor layer) 3 1, 96, 196 transparent electrode 32 insulating layer 33, 94, 195 P-side electrode (second electrode) 34, 95, 194 η-side electrode (i-th electrode) 92, 193 p-type semiconductor layer 93, 192 n-type semiconductor layer 18

Claims (1)

201205879 七、申請專利範圍: 光元件,係使用有在具有第1導電型之第1 導體層上形成右且;也》Μ 有,、有與该第1導電型相反之導電型 導電型之第2半導,js + t & 導體層之+導體發光功能層,用以使該丰 導體發光功能層發弁夕、g带 一 ^光之通電所使用之二個電極皆形成在該 半導體發光功能;φ m β 刀此層中形成有該第2半導體層之側之主面 上’其特徵在於,具備: 第1電極,係形成為在於該半導體發光功能層之一端 5玄第2半導體層被從該主面側除去之部位與該第1半導 體層接觸; 透明電極’係形成為在該第2半導體層之表面從另一 端:侧朝向該—端部側延伸’在與該延伸方向垂直之方向 之貫效長度從該另一端部側朝向該一端部側變長;以及 第2電極,係以在該另一端部側與該透明電極接觸之 方式形成在該透明電極上。 2.—種發光元件,係使用有在具有第丨導電型之第丨半 導體層上形成有發光層、在該發光層上形成有具有與該第i 導電型相反之導電型即帛2導電型之第2半導體層之半導 體發光功能層,用以使該半導體發光功能層發光之通電所 使用之二個電極皆形成在該半導體發光功能層中形成有該 第2半導體層之側之主面上,其特徵在於,具備: 第1電極,係形成為在於該半導體發光功能層之一端 部側該第2半導體層及該發光層被從該主面側除去之部位 與該第1半導體層接觸; 19 201205879 2半導體層之表面從另一端部例 :以及 透明電極,係在該第 朝向該-端部側延伸形成 第2電極,係以在該另一端部側與該透明電極接觸 方式形成在該透明電極上; -亥第2半導體層,係以在與從該另一端部朝向該—俨 部之方向垂而 部變長之方二 該另一端部朝向該-端 長之方式形成在該發光層上。 …3’如申請專利範圍第1或2項之發光元件,其中,覆蓋 。亥透明電極及該半導體發光功能層而形成絕緣層; 4第1電極、該第2電極通過形成在該絕緣層中之開 刀另J接觸於该第j半導體層、該透明電極。 4.如申請專利範圍第3項之發光元件’其中該半導體 發光功能層之端部被錐狀加工’該第1電極、該第2電極 中之至少一個係隔著該絕緣層覆蓋錐狀加工後之該半導體 發光功能層之端部。 5. 如申請專利範圍第1或2項之發光元件,其中,該第 1半導體層係藉由磊晶成長形成在矽基板上。 6. 如申凊專利範圍第i或2項之發光元件,其中,該半 導體發光功能層中該端部以外之側面被錐狀加工。 7. 如申睛專利範圍第!或2項之發光元件,其中,該第 1電極與忒第2電極之間隔相對於在與從該一端部朝向該另 端。P之方向垂直之方向之該半導體發光功能層之寬度之 比率為10以上。 20201205879 VII. Patent application scope: The optical component is formed by forming a right on the first conductor layer having the first conductivity type, and also having a conductivity type opposite to the first conductivity type. 2 semi-conducting, js + t & + conductor light-emitting functional layer of the conductor layer, the two electrodes used for energizing the light-emitting functional layer of the abundance conductor are formed in the semiconductor light The main surface of the side in which the second semiconductor layer is formed in the layer φ m β is characterized in that: the first electrode is formed at one end of the semiconductor light-emitting functional layer, and the second semiconductor layer is formed. The portion removed from the main surface side is in contact with the first semiconductor layer; the transparent electrode ' is formed so that the surface of the second semiconductor layer extends from the other end: side toward the end portion side 'in a direction perpendicular to the extending direction The effective length of the direction is longer from the other end side toward the one end side, and the second electrode is formed on the transparent electrode so as to be in contact with the transparent electrode on the other end side. 2. A light-emitting element using a light-emitting layer formed on a second semiconductor layer having a second conductivity type, and a conductive type having a conductivity opposite to that of the ith conductivity type, that is, a 帛2 conductivity type is formed on the light-emitting layer a semiconductor light-emitting function layer of the second semiconductor layer, wherein two electrodes used for energizing the semiconductor light-emitting function layer are formed on a main surface of the semiconductor light-emitting function layer on which the second semiconductor layer is formed The first electrode is formed such that the second semiconductor layer and the portion of the light-emitting layer removed from the main surface side are in contact with the first semiconductor layer at one end side of the semiconductor light-emitting function layer; 19 201205879 2 The surface of the semiconductor layer is formed from the other end portion and the transparent electrode, and the second electrode is formed to extend toward the end portion, and the second electrode is formed in contact with the transparent electrode on the other end side. On the transparent electrode, the second semiconductor layer is formed so as to be longer in a direction from the other end portion toward the crotch portion, and the other end portion is formed to be long toward the end portion. On the luminescent layer. A light-emitting element of the first or second aspect of the patent application, which is covered by . The transparent electrode and the semiconductor light-emitting functional layer form an insulating layer; and the first electrode and the second electrode are in contact with the j-th semiconductor layer and the transparent electrode through a slit formed in the insulating layer. 4. The light-emitting element of claim 3, wherein the end portion of the semiconductor light-emitting functional layer is tapered; the at least one of the first electrode and the second electrode is covered by the insulating layer to cover the tapered processing The end of the semiconductor light-emitting functional layer is followed. 5. The light-emitting element of claim 1 or 2, wherein the first semiconductor layer is formed on the germanium substrate by epitaxial growth. 6. The light-emitting element of claim i or 2, wherein the side of the semiconductor light-emitting functional layer other than the end portion is tapered. 7. If the scope of the patent application is the first! Or two of the light-emitting elements, wherein a distance between the first electrode and the second electrode is opposite to and from the one end. The ratio of the width of the semiconductor light-emitting functional layer in the direction perpendicular to the direction of P is 10 or more. 20
TW100114854A 2010-05-14 2011-04-28 Light emitting device TW201205879A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111936A JP2011243614A (en) 2010-05-14 2010-05-14 Light emitting device

Publications (1)

Publication Number Publication Date
TW201205879A true TW201205879A (en) 2012-02-01

Family

ID=44962120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114854A TW201205879A (en) 2010-05-14 2011-04-28 Light emitting device

Country Status (3)

Country Link
JP (1) JP2011243614A (en)
CN (1) CN102244174A (en)
TW (1) TW201205879A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201324839A (en) * 2011-12-09 2013-06-16 Chi Mei Lighting Tech Corp Light-emitting diode device
JP5961377B2 (en) * 2011-12-21 2016-08-02 スタンレー電気株式会社 Semiconductor light emitting device
CN104037296A (en) * 2013-03-07 2014-09-10 百士杰企业有限公司 Light-emitting element and manufacturing method thereof
CN104269471A (en) * 2014-09-28 2015-01-07 映瑞光电科技(上海)有限公司 LED chip of full-angle side-wall reflecting electrode and manufacturing method of LED chip
CN106206900A (en) * 2015-05-08 2016-12-07 广东德力光电有限公司 A kind of highlighted packed LED chip
CN105655458B (en) * 2016-03-17 2019-06-04 厦门乾照光电股份有限公司 A kind of increase light-emitting area LED chip structure and production method
CN109923681B (en) * 2016-12-12 2021-06-11 歌尔股份有限公司 Display device manufacturing method, display device, and electronic apparatus
KR102556280B1 (en) * 2018-07-05 2023-07-17 엘지전자 주식회사 Lamp using semiconductor light emitting device and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436278Y2 (en) * 1986-10-20 1992-08-27
JPH07202259A (en) * 1993-12-28 1995-08-04 Hitachi Cable Ltd Gaalas light emitting diode
JP2000312034A (en) * 1999-04-27 2000-11-07 Hitachi Cable Ltd Light-emitting diode array
JP2007214276A (en) * 2006-02-08 2007-08-23 Mitsubishi Chemicals Corp Light-emitting element

Also Published As

Publication number Publication date
CN102244174A (en) 2011-11-16
JP2011243614A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
TW201205879A (en) Light emitting device
EP3444855B1 (en) Semiconductor light emitting device
KR102191933B1 (en) A light emitting die component formed by multilayer structures
US8350279B2 (en) Light emitting diode having AlInGaP active layer and method of fabricating the same
TWI282616B (en) Light emitting device having a plurality of light emitting cells and method of fabricating the same
TW201138152A (en) Light emitting diode having electrode pads
TW201631794A (en) Light emitting diode chip
JP5549629B2 (en) Light emitting element
US9337406B2 (en) GaN-based light emitting diode with current spreading structure
US20130015465A1 (en) Nitride semiconductor light-emitting device
KR101763072B1 (en) LED Device For Enhancing Light Extraction Efficiency And Current Injection Efficiency
US8384112B2 (en) Light emitting chip
JP2004228554A (en) Light emitting diode having distributed electrode
JP3720341B2 (en) Semiconductor light emitting device
US10505092B2 (en) Light-emitting diode device
EP1530242B1 (en) Semiconductor light emitting device
TW201407760A (en) Light-emitting diode array
US9929207B2 (en) Light-emitting device and method for manufacturing the same
JP2004311677A (en) Semiconductor light emitting device
TW201248957A (en) Semiconductor light-emitting structure
KR101037987B1 (en) Light emitting diode having the electrode pattern
JP2012169392A (en) Light-emitting device
TW201101538A (en) Light emitting diode
KR100967245B1 (en) Manufacturing method of light emitting device and light emitting device
JP2005322945A (en) Semiconductor light-emitting device