TW201212305A - Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device - Google Patents

Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device Download PDF

Info

Publication number
TW201212305A
TW201212305A TW99130238A TW99130238A TW201212305A TW 201212305 A TW201212305 A TW 201212305A TW 99130238 A TW99130238 A TW 99130238A TW 99130238 A TW99130238 A TW 99130238A TW 201212305 A TW201212305 A TW 201212305A
Authority
TW
Taiwan
Prior art keywords
semiconductor light
circuit board
emitting element
substrate
light emitting
Prior art date
Application number
TW99130238A
Other languages
Chinese (zh)
Other versions
TWI422079B (en
Inventor
Yan-Kuin Su
Chun-Liang Lin
Kuan-Chun Chen
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW99130238A priority Critical patent/TWI422079B/en
Publication of TW201212305A publication Critical patent/TW201212305A/en
Application granted granted Critical
Publication of TWI422079B publication Critical patent/TWI422079B/en

Links

Abstract

A method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device is described, which includes the following steps. A circuit board including a first surface and a second surface on opposite sides is provided, wherein the first surface includes at least two electrodes, and the circuit board has at least one through hole. The second surface of the circuit board and at least one semiconductor light-emitting device are attached to a substrate, wherein the semiconductor light-emitting device is located within the through hole. A liquid strippable glue is formed to cover the circuit board, the electrodes, the semiconductor light-emitting device and the substrate and to fill the through hole. A solidification treatment is performed on the strippable glue. The substrate is removed, and a conductive layer is formed to cover the exposed second surface of the circuit board, the semiconductor light-emitting device and the strippable glue. A metal substrate is formed on the conductive layer. The strippable glue is removed.

Description

201212305 六、發明説明: 【發明所屬之技術領域】 本發明是有關於一種半導體發光元件之製作方法’且 特別是^關於一種半導體發光元件之散熱座的製作方法。 【先前技術】 半導艚發光元件,例如發光二極體(LED)或雷射二極體 (LD)等,應用在大聖或小型背光模組(Backlight Module)或 照明模組時,需提供足夠的光輸出通量,才能提供足夠的 亮度與照度。因此,半導體發光元件通常需要在高輸入功 率條件下操作。但,高功率輸入會導致這些半導體發光元 1 牛的皿度快速上升,如此會導致半導體發光元件的操作效 率下降甚至可能會導致半導體發光元件因高溫而燒毀。 $、’大多選用外掛風扇或增加散熱板面積等方式, 此站=半導體發光模組之散熱效能不彰的問題。然而,這 方式也衍生了許多問題。舉例而言,在外掛風扇的 产運轉時所產生之®動會造成光關爍,且風 ^方^會產生額外之功率消耗。此外,增加散熱板面 辦加散較A型之半導雜光模組可能因此而需大幅 二例如成ί。另外’雖然可採用高導熱係數之金 導體發井-1銅’來製作散熱座,以迅速傳導熱。然,半 於膠^之與散熱座之間大都利用膠體來加以接合,由 的熱大多將累於純金屬’因此元件運轉時所產生 不佳。 、在接合界面上,而導致散熱座之散熱效能 s] 4 201212305 另一方面’目前半導體發光元件除了使用膠體來進打 晶粒與支架或散熱基板間的接合外,有時亦使用合金金屬 來將晶粒固定在支架或散熱基板上。然而,不管是採用勝 體或是合金金屬,其接合過程皆需要加熱至150°C以上。 這樣的高溫’容易損害半導體發光元件之光電特性。 此外’另有一種技術係先將半導體發光元件的玉面® 入勝帶或膠體中,再於半導體發光元件之背面設置散熱基 座。然而,發明人發現由於半導體發光元件係以正面壓入 方式固定在膠帶或膠體中’半導體發光元件除底面外,其 侧邊也會露出於膠帶或膠體外。因此,顯露於膠帶或膠體 外之半導體發光元㈣㈣與側面㈣散熱基座所包覆 =如此-來’散熱基座會阻擋半導體發光元件的部分侧 Ϊ光輸出’因而導致半導體發光元件之光輸出通量大幅下 【發明内容】 因此,本發明之一態樣就 件之散熱座的製作方法,其可利種半導體發光元 成之可剝膠體來作為暫時的承 光兀件上形 膠體的結合’即可將散熱體,無需透過 上。因此,半導妒n # 镬°又置在+導體發光元件 此散熱座可確實發揮二:;接與散熱座接觸密合’如 光元件之散熱能力 %,而可有效提升半導體發 本發明之另—態樣是在提供… 熱座的製作方法’其半導體發光元件與散熱Ϊ二= 201212305 合’因此散熱座可將半導體發光元件運轉時所產生之熱迅 速導出’而可使半導體發光元件之溫度快速下降。故,可 達到提高半導體發光元件之操作品f、以及有效延長光電 元件之壽命的目的。 本發明之又一態樣是在提供一種半導體發光元件之散 熱座的製作方法’其散熱座不會包覆在半導體發光元件之 侧面上’因此散熱座不會對半導體發光元件之側面出光造 成阻擋’而可大大地提升半導體發光元件之光輸出通量。 熱座ίί:::一Ϊ樣是在提供一種半導體發光元件之散 固定半導體發光元件時的製程溫度低 性造成損害此可避切半導體發統件之減電等操作特 熱座的樣是在提供-種半導體發光元件之散 職熱座直接接!!::剝膠體來作為暫時的承載體,即 製程簡單易實施,發光元件上’因此散熱座之 散二上述目的’提出-種半導體發光元件之 此電路板具有相對j含I列步I提供—電路板,其: 一表面包含至少if—表面與第二表面,且電路板之第 路板之第二表^^電路板具有至少—貫穿孔°將電 上,兑中r:、至少—半導體發光元件㈣在一基板 形成液體發*元件位於電路板之貫穿孔中。 導體發i-彼 —可制膠體覆蓋在前述之電路板、電極、半 且填充貫穿孔。對前述液態狀之 仃固化處理❶移除基板,以暴露出電路板之 [S] 6 201212305 第二表面、半導體發光元件與可剝膠體。形成一導電層覆 蓋在暴露出之電路板之第二表面、半導體發光元件與可剝 膠體上。形成一金屬基板於導電層上。移除可剝膠體。 依據本發明之一實施例,上述之基板係一膠帶或一藍 膜(Blue Tape)。 依據本發明之另一實施例,在上述移除基板之步驟與 形成導電層之步驟之間,更包含對暴露出電路板之第二表 面、半導體發光元件與可剝膠體進行一清潔步驟,其中此 ✓月潔步驟包含一電漿清潔步驟或一濕式清潔步驟。 依據本發明之又一實施例,上述之固化處理可為一常 溫固化處理、一加熱固化處理或一紫外光照射處理。此外, 上述之固化處理之溫度較佳係低於3 〇°c。 依據本發明之再一實施例,上述之形成金屬基板之步 驟可利用一電鍍方式、一無電電鍍(Electr〇lessPlating)或一 鍵合(Bonding)方式。 運用本發明之散熱座的製作方法,半導體發光元件可 直接與散熱座接觸密合,因此散熱座可確實發揮其散熱效 能,而可有效提升半導體發光元狀散減力,達到提高 半導體發光7G件之操作品質、以及有效延長光電元件之壽 命之目的。而且,軸衫會包覆在半導H發光it件之側 面上’因此並不會影響半導體發光元件之侧面出取光,而 可大幅提升半導體發光元件之光輸出通量。此外,在本發 月之方法+ 半導體發光^件時的製程溫度低於 c。因此可避免對半導n發光元件之光與電等操作特性造 成損害。另外,本發明之方法利用可剝膠體來作為暫時的 201212305 承載體,即可將散熱座直接接合在半導體發光元件上’因 此具有製程簡單易實施以及成本低廉的優勢。 【實施方式】 請參照第1圖至第6A圖與第7圖至第9圖,其係繪 示依照本發明之一實施方式的一種半導體發光元件之封裝 製程剖面圖。在本實施方式中,首先提供電路板102,其 中此電路板102可例如為印刷電路板(PCB^電路板102具 有相對之第一表面104與第二表面106。在電路板102之 第一表面104上至少設有二電極110與112。其中,電路板 102之第一表面104上所設置之電極數量可根據後續所設 置之半導體發光元件114的增加而增加。電路板1〇2可具 有至少一貫穿孔108。其中,電路板102之貫穿孔的 數量可與半導體發光元件114的數量相同。 同時,提供半導體發光元件114。此半導體發光元件 114可例如為發光二極體或雷射二極體◊在本實施例中, 半導體發光元件114為一發光二極體,且此半導體發光元 件114包含基板116、位於基板116上之第一電性半導體層 118、依序疊設在部分之第一電性半導體層118上之發光層 120與第二電性半導體層122、位於第—電性半導體層⑴ 之暴露部分上之第一電性電極124、以及位於第二電性半 導體層122上之第二電性電極126。其中,第―電性與第 二電性為不同之電性。例>,第—電性與第二電性之其中 一者為η型,另一者則為p型。 八 同時,提供基板1〇〇,其中基板励可為具有黏性的 201212305 膠帶。在一實施例中,基板100可為藍膜。接下來’如第 1圖所示,將電路板102與半導體發光元件1H對準後, 共同貼設而固定在基板100上。將電路板102固定在基板 100上時,係將電路板102之第二表面106貼設於基板100 上,並使電極110與112朝上。此外,半導體發光元件114 則係位於電路板102之貫穿孔108中。在本實施方式中, 半導體發光元件114之正面朝上,而半導體發光元件114 之背面則貼在基板1〇〇上。 接著,如第2圖所示,利用例如塗佈方式,形成液態 狀之可剝膠體128覆蓋在電路板102、電路板102上之電 極110與112、半導體發光元件114與基板1〇〇上,並使可 剝膠體128填充於電路板1〇2之貫穿孔1〇8中。在本實施 方式中’可剝膠體128可為一熱固性膠體。可剝膠體128 可例如具有耐酸驗之特性。 接下來,如第3圖所示,對此可剝膠體128進行固化 處理。可剝膠體128經固化處理後,可具有平整表面。在 一例子中,可利用常溫(例如25。〇固化處理方式,使可剝 膠體128固化。在另一例子中,可利用加熱固化處理方式 來固化可剝膠體128。在又一例子中,可利用紫外光照射 處理方式,來進行可剝膠體丨28的固化。在本發明之一較 佳實施例中,可剝膠體128之固化處理的溫度低於30〇C。 接著’可先將第3圖所示之結構予以翻轉。再將基板 100予以移除’而暴露出電路板102之第二表面1〇6、半導 體發光元件114、與可剝膠體128,如第4圖所示。基板 100移除後’半導體發光元件114除了底面之外,半導體 [S] 9 201212305 發光元件114之侧面與正面均完全為可剝膠體128所包覆。 在一實施例中,由於基板100可能採用膠帶或藍膜之 材料,因此於基材1〇〇移除後,暴露出電路板1〇2之第二 表面106、半導體發光元件114與可剝膠體128上可能有 殘膠留存。於是,可根據製程需求,而選擇性地對暴露出 電路板102之第二表面106、半導體發光元件114與可剝 膠體128進行清潔步驟,以去除暴露出電路板1〇2之第二 表面106、半導體發光元件114與可剝膠體128上之殘膠。 在一實施例中,去除殘膠的清潔步驟可為電漿清潔步驟, 例如利用氧電漿進行清潔。在另一實施例中,去除殘膠的 清潔步驟可為濕式清潔步驟,例如利用丙酮或二氯甲烧溶 液來進行殘膠的清潔。 由於本實施方式所採之可剝膠體128係熱固性且具有 耐酸鹼之特性,因此在清潔殘膠的過程中,不論是電漿或 是濕式清潔的酸驗溶液’均不會對可剝膠體128造成損傷。 接下來’如第5圖所示’利用例如蒸鑛(Evaporation) 沉積方式、濺鍍(Sputtering)沉積方式或無電電鍍 (Electroless Plating)方式,形成導電層130覆蓋在暴露出之 電路板102之第二表面106、半導體發光元件114與可剝 膠體128上。此時’半導體發光元件114之側面完全為可 剝膠體128所包覆,因此導電層130並不會包覆在半導體 發光元件114之側面上。導電層130之材質較佳係選用具 附著性之金屬材料。在一實施例中,導電層130之材料可 例如選用氧化銦錫(IT0)、氮化鈕(TaN)、氮化鈦(TiN)、錄 (Ni)、鉻(Cr)、鈦(Ti)、钽(Ta)、鋁(A1)、銦(In)、鎳合金、 201212305 鉻合金、鈦合金、组合金、鋁合金、或銦合金。 此實施方式之一特徵在於,導電層13〇並不會包覆在 半導體發光元件114之側面上,因此由導電層13〇與後續 形成之金屬基板132(請先參照第6A圖)或134(請先參照第 6B圖)所構成之散熱座,並不會阻擋住半導體發光元件114 之側面出光,而可大幅提升半導體發光元件114之光輸出 通量。 在一實施例中,請參照第6A圖,可利用例如電鍵或 無電電鍍(Electroless Plating)方式,形成一層較厚之金屬基 板132覆蓋在導電層130上。導電層13〇與金屬基板132 可組合成半導體發光元件114之散熱座。金屬基板丨32之 材質較佳係採用散熱性佳之金屬,例如銅、鐵/錄合金、錄、 鋁、鎢、或這些金屬的合金。金屬基板132通常具有較大 之厚度’例如大於10/z m,以提供較大之熱傳導量與熱容 量。 在本發明之另一實施方式中,可使用鍵合方式,來形 成金屬基板。請先參照第6B圖,可在導電層130形成後, 先提供具有較大厚度之金屬基板134。同樣地,金屬基板 134之材質較佳係採用散熱性佳之金屬,例如銅、鐵/鎳合 金、鎳、鋁、鶴、或這些金屬的合金。再利用固化後之可 剝膠體128作為電路板1〇2、半導體發光元件114與導電 層130的支撐’將金屬基板134與導電層13〇鍵合在一起。 其中,導電層130與金屬基板134同樣可組合成半導體發 光元件114之散熱座。 在一實施例中’進行鍵合時’金屬基板134可先形成 201212305 在一支樓載板(未緣示)上,例如形成在㈣板上,而由此 支標載板所支#來與導電層U0鍵合。在另_實施例中, 若金屬基板I34厚度鼓,使得其本身具有足夠結構強度 時’金屬基S 134可無需藉由支撐载板的支承,即可直接 與導電層130鍵合。 接下來,請繼續參照第7圖,完成第6A圖之金属基 板132的製作後,即可將固化之可剝膠體128移除,而完 成半導體發光元件114之散熱座的製作。此時,可接下來 進行半導體發光元件114之封裝程序。 如第8圖所示,利用打線方式,形成導線136與138, 來完成半導體發光元件114與電路板1〇2之間的電性連 接。其中,導線136連接半導體發光元件114之第一電性 電極124與電路板1〇2上之電極112,而導線138則連接 半導體發光元件m之第二電性電極m與電路板1〇2上 之另一電極110。 接著’如第9圖所示’形成封裝膠體14〇,以包覆住 半導體發光元件114、電路板102與其上之電極11〇和112、 導線136與138、以及散熱座之導電層13〇, ⑽之貫穿孔⑽,來保護半導體發光元件114=: 板102之間的電性連接。此時,即已大致完成半導體發光 元件114的封裝程序。 由上述本發明之實施方式可知,本發明之一優點就是 因為本發明之㈣座的製作方法可利用在半導體發光元件 上形成之可_體來作為暫時的承讎,因此無需透過膠 體的結合,即可將散熱座直接設置在半導體發光元件上。 12 201212305 故,半導體發光元件可直接與散熱座接觸密合,如此散熱 座可確實發揮其散熱效能,而可有效提升半導體發光元件 之散熱能力。 由上述本發明之實施方式可知,本發明之另一優點就 是因為本發明之方法係使半導體發光元件與散熱座直接接 合,因此散熱座可將半導體發光元件運轉時所產生之熱迅 速導出,而可使半導體發光元件之溫度快速下降。故,可 達到提高半導體發光元件之操作品質、以及有效延長光電 元件之壽命的目的。 由上述本發明之實施方式可知,本發明之又一優點就 是因為本發明之製作方法可使半導體發光元件之侧面不會 被散熱座所包覆,因此散熱座不會對半導體發光元件之侧 面出光造成阻擋,而可大大地提升半導體發光元件之光輸 出通量。 由上述本發明之實施方式可知,本發明之再一優點就 是因為本發明之散熱座的製作方法,其固定半導體發光元 件時的製程溫度低於30°C,因此可避免對半導體發光元件 之光與電等操作特性造成損害。 由上述本發明之實施方式可知,本發明之再一優點就 是因為本發明之散熱座的製作方法利用可剝膠體來作為暫 時的承載體,即可將散熱座直接接合在半導體發光元件 上,因此散熱座之製程簡單易實施,且成本低廉。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何在此技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作各種之更動與潤飾,因此 [s] 13 201212305 ^發明之保制时視錢之W專·㈣界定者為 【圖式簡單說明】 之上述和其他目的、特徵、優點與實施例 月b更明顯易懂’所附圖式之說明如下: 第1圖至第6A圖與第7圖至第9圖係綠示依昭本發 明之一實施方式的一種半導體發光元件之封裝製程剖面 圖。 第6B圖係繪示依照本發明之另一實施方式的一種半 導體發光元件與散熱座之接合示意圖。 【主要元件符號說明】 100 :基板 102 電路板 104 :第一表面 106 第二表面 108 :貫穿孔 110 電極 112 :電極 114 半導體發光元件 116 :基板 118 第一電性半導體層 120 :發光層 122 第二電性半導體層 124 :第一電性電極 126 第二電性電極 128 :可剝膠體 130 導電層 132 :金屬基板 134 金屬基板 136 :導線 138 導線 140 :封裝膠體201212305 VI. Description of the Invention: [Technical Field] The present invention relates to a method of fabricating a semiconductor light-emitting device, and more particularly to a method of fabricating a heat sink for a semiconductor light-emitting device. [Prior Art] Semi-conductive illuminating elements, such as light-emitting diodes (LEDs) or laser diodes (LDs), should be provided when used in large holy or small backlight modules or lighting modules. The light output flux is sufficient to provide sufficient brightness and illumination. Therefore, semiconductor light emitting elements generally need to operate under high input power conditions. However, high power input causes the semiconductor light-emitting elements to rise rapidly, which may result in a decrease in the operational efficiency of the semiconductor light-emitting element and may even cause the semiconductor light-emitting element to burn out due to high temperatures. $, ' mostly use external fan or increase the area of the heat sink, etc., this station = the problem of the heat dissipation performance of the semiconductor light-emitting module. However, this approach has also spawned many problems. For example, the motion generated during the operation of the external fan will cause the light to be turned off, and the wind will generate additional power consumption. In addition, the addition of a heat sink to add a thinner than the A-type semi-conductive stray module may require a large amount of two. In addition, although a high thermal conductivity gold conductor hair well-1 copper can be used to make a heat sink to quickly conduct heat. However, the glue is mostly used between the glue and the heat sink, and the heat is mostly caused by the pure metal, so the component is not working properly. On the joint interface, the heat dissipation performance of the heat sink is s] 4 201212305 On the other hand, the current semiconductor light-emitting components use alloy metal instead of using a colloid to join the die and the heat sink substrate. The die is fixed on a support or a heat sink substrate. However, whether it is a winner or an alloy metal, the bonding process needs to be heated to above 150 °C. Such a high temperature is likely to impair the photoelectric characteristics of the semiconductor light emitting element. In addition, another technique is to first insert a semiconductor light-emitting device into a ribbon or a gel, and then provide a heat-dissipating base on the back surface of the semiconductor light-emitting device. However, the inventors have found that since the semiconductor light-emitting element is fixed in the tape or the gel by the front side press-fitting, the semiconductor light-emitting element is exposed to the outside of the tape or the glue except for the bottom surface. Therefore, the semiconductor light-emitting elements (4) (4) and the side (4) heat-dissipating pedestals exposed on the outer surface of the tape or the glue are covered. Thus, the 'heat-dissipating pedestal blocks the partial side light output of the semiconductor light-emitting element' and thus causes the light output of the semiconductor light-emitting element. The invention has a large amount of flux [Invention] Therefore, in one aspect of the present invention, a method for manufacturing a heat sink can be used as a combination of a colloidal colloid formed by a semiconductor light-emitting element as a temporary colloidal member. 'You can put the radiator, no need to pass through. Therefore, the semi-conducting 妒n # 镬° is placed on the +-conductor light-emitting element, and the heat-dissipating seat can be surely exerted two:; and the heat-sinking contact is in close contact with the heat-dissipating block, such as the heat-dissipating capability of the optical element, and the semiconductor can be effectively improved. In addition, the aspect is to provide... The manufacturing method of the hot seat's semiconductor light-emitting device and heat-dissipation =2 = 201212305 combination, so the heat sink can quickly derive the heat generated when the semiconductor light-emitting element operates, and the semiconductor light-emitting element can be used. The temperature drops rapidly. Therefore, it is possible to achieve an object of improving the operation product f of the semiconductor light-emitting element and effectively extending the life of the photovoltaic element. Another aspect of the present invention is to provide a method for fabricating a heat sink for a semiconductor light emitting device. [The heat sink is not covered on the side of the semiconductor light emitting device. Therefore, the heat sink does not block the light from the side of the semiconductor light emitting device. 'The light output flux of the semiconductor light-emitting element can be greatly improved. Hot seat ίί::: In the case of providing a semiconductor light-emitting element, the process temperature is low, and the process temperature is low, and the operation of the semiconductor device is reduced. Providing a kind of semiconductor light-emitting element, the direct-seat hot seat is directly connected!!:: stripping the gel as a temporary carrier, that is, the process is simple and easy to implement, and the light-emitting element is on the surface of the light-emitting element. The circuit board of the component has a circuit board provided with respect to the column I, wherein: a surface includes at least an if-surface and a second surface, and the second surface of the circuit board of the circuit board has at least - The through-holes are electrically connected, and r:, at least, the semiconductor light-emitting element (4) forms a liquid-emitting element on a substrate in a through-hole of the circuit board. The conductor is made of i-the-collar, and the colloid can be covered on the aforementioned circuit board, the electrode, and the half-filled through-hole. The liquid substrate is cured to remove the substrate to expose the second surface of the circuit board [S] 6 201212305, the semiconductor light emitting element and the peelable colloid. A conductive layer is formed overlying the exposed second surface of the circuit board, the semiconductor light emitting element and the strippable body. A metal substrate is formed on the conductive layer. Remove the peelable colloid. According to an embodiment of the invention, the substrate is a tape or a blue film. According to another embodiment of the present invention, between the step of removing the substrate and the step of forming the conductive layer, the method further comprises: performing a cleaning step of exposing the second surface of the circuit board, the semiconductor light emitting element and the peelable colloid, wherein This ✓ month cleaning step includes a plasma cleaning step or a wet cleaning step. According to still another embodiment of the present invention, the curing treatment may be a room temperature curing treatment, a heat curing treatment or an ultraviolet light irradiation treatment. Further, the temperature of the above curing treatment is preferably less than 3 〇 ° C. According to still another embodiment of the present invention, the step of forming the metal substrate may be performed by an electroplating method, an electroless plating (Plating) or a bonding method. By using the manufacturing method of the heat sink of the present invention, the semiconductor light emitting element can be directly in close contact with the heat sink, so that the heat sink can surely exert its heat dissipation performance, and can effectively improve the semiconductor light emitting power dissipation, thereby improving the semiconductor light emitting 7G piece. The quality of operation and the purpose of effectively extending the life of the photovoltaic element. Moreover, the shirt is wrapped on the side of the semi-conductive H-emitting member. Therefore, the light output from the side of the semiconductor light-emitting element is not affected, and the light output flux of the semiconductor light-emitting element can be greatly improved. In addition, the process temperature in the method of this month + semiconductor light-emitting device is lower than c. Therefore, it is possible to avoid damage to the operational characteristics such as light and electricity of the semiconductive n-light-emitting element. In addition, the method of the present invention utilizes a peelable colloid as a temporary 201212305 carrier, which allows the heat sink to be directly bonded to the semiconductor light emitting device. Thus, the process is simple and easy to implement and low in cost. [Embodiment] Referring to Figs. 1 to 6A and Figs. 7 to 9, there are shown a package process cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. In the present embodiment, the circuit board 102 is first provided, wherein the circuit board 102 can be, for example, a printed circuit board (the PCB circuit board 102 has a first surface 104 and a second surface 106 opposite to each other. On the first surface of the circuit board 102 At least two electrodes 110 and 112 are disposed on the substrate 104. The number of electrodes disposed on the first surface 104 of the circuit board 102 may be increased according to the increase of the subsequently disposed semiconductor light emitting elements 114. The circuit board 1〇2 may have at least The perforation 108 is consistent. The number of through holes of the circuit board 102 may be the same as the number of the semiconductor light emitting elements 114. Meanwhile, the semiconductor light emitting element 114 is provided. The semiconductor light emitting element 114 may be, for example, a light emitting diode or a laser diode. In this embodiment, the semiconductor light emitting device 114 is a light emitting diode, and the semiconductor light emitting device 114 includes a substrate 116, a first electrical semiconductor layer 118 on the substrate 116, and a first stacked portion. The light emitting layer 120 and the second electrical semiconductor layer 122 on the electrical semiconductor layer 118, the first electrical electrode 124 on the exposed portion of the first electrical semiconductor layer (1), and the bit a second electrical electrode 126 on the second electrical semiconductor layer 122. The first electrical property and the second electrical property are different electrical properties. For example, one of the first electrical property and the second electrical property It is an n-type and the other is a p-type. At the same time, a substrate 1 is provided, wherein the substrate excitation can be a sticky 201212305 tape. In an embodiment, the substrate 100 can be a blue film. As shown in Fig. 1, after the circuit board 102 is aligned with the semiconductor light-emitting device 1H, the circuit board 102 is attached and fixed to the substrate 100. When the circuit board 102 is fixed to the substrate 100, the second surface 106 of the circuit board 102 is placed. The semiconductor light-emitting elements 114 are disposed in the through-holes 108 of the circuit board 102. In the present embodiment, the semiconductor light-emitting elements 114 face up, and The back surface of the semiconductor light-emitting device 114 is attached to the substrate 1A. Next, as shown in Fig. 2, a liquid-like peelable colloid 128 is formed on the circuit board 102 and the circuit board 102 by, for example, a coating method. 110 and 112, semiconductor light emitting element 114 and substrate 1 And the peelable colloid 128 is filled in the through hole 1〇8 of the circuit board 1〇2. In the present embodiment, the peelable colloid 128 may be a thermosetting colloid. The peelable colloid 128 may have, for example, an acid resistance test property. Next, as shown in Fig. 3, the peelable colloid 128 is cured. The peelable colloid 128 may have a flat surface after being cured. In an example, it may be cured at room temperature (for example, 25). In a manner, the peelable colloid 128 is cured. In another example, the peelable colloid 128 can be cured by a heat curing treatment. In yet another example, the peelable colloid 28 can be performed by ultraviolet light irradiation treatment. Cured. In a preferred embodiment of the invention, the temperature at which the peelable colloid 128 is cured is less than 30 〇C. Then, the structure shown in Fig. 3 can be flipped first. The substrate 100 is then removed' to expose the second surface 〇6 of the circuit board 102, the semiconductor illuminating element 114, and the strippable body 128, as shown in Fig. 4. After the substrate 100 is removed, the semiconductor light-emitting element 114 except for the bottom surface, the side surface and the front surface of the semiconductor [S] 9 201212305 light-emitting element 114 are completely covered by the peelable colloid 128. In an embodiment, since the substrate 100 may be made of a material of a tape or a blue film, after the substrate 1 is removed, the second surface 106 of the circuit board 1 、 2, the semiconductor light-emitting element 114 and the peelable colloid are exposed. There may be residual glue remaining on 128. Therefore, the second surface 106 exposing the circuit board 102, the semiconductor light emitting element 114 and the strippable body 128 may be selectively cleaned according to the process requirements to remove the second surface 106 exposing the circuit board 1〇2. The semiconductor light-emitting element 114 and the residual glue on the peelable colloid 128. In an embodiment, the cleaning step of removing the residual glue may be a plasma cleaning step, such as cleaning with an oxygen plasma. In another embodiment, the step of removing the residual glue may be a wet cleaning step, such as cleaning the residue with acetone or a solution of methylene chloride. Since the peelable colloid 128 taken in the embodiment is thermosetting and has the characteristics of acid and alkali resistance, in the process of cleaning the residual glue, neither the plasma nor the wet cleaning acid solution can be peeled off. The colloid 128 causes damage. Next, as shown in FIG. 5, the conductive layer 130 is formed to cover the exposed circuit board 102 by, for example, an evaporation deposition method, a sputtering deposition method, or an electroless plating method. The two surfaces 106, the semiconductor light emitting element 114 and the strippable body 128. At this time, the side surface of the semiconductor light-emitting element 114 is completely covered by the peelable paste 128, so that the conductive layer 130 is not coated on the side surface of the semiconductor light-emitting element 114. The material of the conductive layer 130 is preferably a metal material having an adhesive property. In an embodiment, the material of the conductive layer 130 may be, for example, indium tin oxide (IT0), nitride button (TaN), titanium nitride (TiN), Ni (Ni), chromium (Cr), titanium (Ti), Tantalum (Ta), aluminum (A1), indium (In), nickel alloy, 201212305 chromium alloy, titanium alloy, combination gold, aluminum alloy, or indium alloy. One of the features of this embodiment is that the conductive layer 13 is not coated on the side surface of the semiconductor light emitting element 114, and thus the conductive layer 13 and the subsequently formed metal substrate 132 (please refer to FIG. 6A first) or 134 (first) Referring to the heat sink formed in FIG. 6B first, the side light of the semiconductor light emitting element 114 is not blocked, and the light output flux of the semiconductor light emitting element 114 can be greatly improved. In one embodiment, referring to Fig. 6A, a thicker metal substrate 132 may be formed over the conductive layer 130 by, for example, electrical or electroless plating. The conductive layer 13A and the metal substrate 132 can be combined into a heat sink of the semiconductor light emitting element 114. The metal substrate 丨32 is preferably made of a metal having excellent heat dissipation properties such as copper, iron/alloy, aluminum, tungsten, or an alloy of these metals. Metal substrate 132 typically has a greater thickness 'e, e.g., greater than 10/zm, to provide greater heat transfer and heat capacity. In another embodiment of the present invention, a metal substrate can be formed using a bonding method. Referring to FIG. 6B first, after the conductive layer 130 is formed, the metal substrate 134 having a large thickness can be provided first. Similarly, the material of the metal substrate 134 is preferably a metal having excellent heat dissipation properties such as copper, iron/nickel alloy, nickel, aluminum, crane, or an alloy of these metals. Further, the cured peelable colloid 128 is used as the support for the circuit board 1 and the semiconductor light-emitting element 114 and the conductive layer 130. The metal substrate 134 and the conductive layer 13 are bonded together. The conductive layer 130 and the metal substrate 134 can be combined into a heat sink of the semiconductor light-emitting device 114. In an embodiment, when the 'bonding is performed', the metal substrate 134 may first form 201212305 on a floor carrier (not shown), for example, on the (four) board, and thus the branch carrier board The conductive layer U0 is bonded. In another embodiment, if the metal substrate I34 is sized so that it has sufficient structural strength itself, the metal-based S 134 can be directly bonded to the conductive layer 130 without supporting the carrier. Next, referring to Fig. 7, after the fabrication of the metal substrate 132 of Fig. 6A is completed, the cured strippable body 128 can be removed to complete the fabrication of the heat sink of the semiconductor light emitting device 114. At this time, the packaging process of the semiconductor light emitting element 114 can be performed next. As shown in Fig. 8, the wires 136 and 138 are formed by wire bonding to complete the electrical connection between the semiconductor light emitting element 114 and the circuit board 1A2. The wire 136 is connected to the first electrical electrode 124 of the semiconductor light emitting element 114 and the electrode 112 on the circuit board 1〇2, and the wire 138 is connected to the second electrical electrode m of the semiconductor light emitting element m and the circuit board 1〇2. The other electrode 110. Then, as shown in FIG. 9, 'the encapsulant 14 形成 is formed to cover the semiconductor light emitting element 114, the circuit board 102 and the electrodes 11 〇 and 112 thereon, the wires 136 and 138, and the conductive layer 13 散热 of the heat sink. The through hole (10) of (10) protects the semiconductor light emitting element 114 from: electrical connection between the plates 102. At this time, the packaging process of the semiconductor light emitting element 114 is substantially completed. According to the embodiment of the present invention described above, an advantage of the present invention is that the method for fabricating the (four) seat of the present invention can utilize the formable body formed on the semiconductor light-emitting element as a temporary bearing, so that it is not necessary to pass the colloidal bonding. The heat sink can be placed directly on the semiconductor light emitting element. 12 201212305 Therefore, the semiconductor light-emitting component can be directly in close contact with the heat sink, so that the heat sink can surely exert its heat dissipation performance, and can effectively improve the heat dissipation capability of the semiconductor light-emitting component. According to the embodiment of the present invention, another advantage of the present invention is that since the method of the present invention directly bonds the semiconductor light emitting element to the heat sink, the heat sink can quickly derive the heat generated when the semiconductor light emitting element operates. The temperature of the semiconductor light emitting element can be rapidly lowered. Therefore, the purpose of improving the operational quality of the semiconductor light-emitting device and effectively extending the life of the photovoltaic element can be achieved. According to the embodiment of the present invention, another advantage of the present invention is that the manufacturing method of the present invention can prevent the side surface of the semiconductor light emitting element from being covered by the heat sink, so that the heat sink does not emit light to the side surface of the semiconductor light emitting element. Blocking is caused, and the light output flux of the semiconductor light emitting element can be greatly improved. According to the embodiment of the present invention, another advantage of the present invention is that the manufacturing method of the heat sink of the present invention has a process temperature of less than 30 ° C when the semiconductor light emitting element is fixed, so that light of the semiconductor light emitting element can be avoided. Damage caused by operational characteristics such as electricity. According to the embodiment of the present invention, it is a further advantage of the present invention that the heat sink can be directly bonded to the semiconductor light emitting element by using the peelable colloid as a temporary carrier. The heat sink process is simple and easy to implement, and the cost is low. While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. Therefore, [s] 13 201212305 ^When the invention is insured, it is defined as the "simplified description" and the other purposes, features, advantages and embodiments of the month b are more obvious and easy to understand. The description of the formula is as follows: FIGS. 1 to 6A and FIGS. 7 to 9 are cross-sectional views showing a packaging process of a semiconductor light-emitting device according to an embodiment of the present invention. Figure 6B is a schematic view showing the bonding of a semiconductor light-emitting element and a heat sink according to another embodiment of the present invention. [Main component symbol description] 100: substrate 102 circuit board 104: first surface 106 second surface 108: through hole 110 electrode 112: electrode 114 semiconductor light emitting element 116: substrate 118 first electrical semiconductor layer 120: light emitting layer 122 Two-electrode semiconductor layer 124: first electrical electrode 126 second electrical electrode 128: strippable body 130 conductive layer 132: metal substrate 134 metal substrate 136: wire 138 wire 140: encapsulant

Claims (1)

201212305 七、申請專利範圍: 1. 一種半導體發光元件之散熱座的製作方法,包含: 提供一電路板,其中該電路板具有相對之一第一表面 與一第二表面,且該電路板之該第一表面包含至少二電 極,該電路板具有至少一貫穿孔; 將該電路板之該第二表面與至少一半導體發光元件貼 設在一基板上,其中該半導體發光元件位於該電路板之該 貫穿孔中; 形成液態狀之一可剝膠體覆蓋在該電路板、該些電 極、該半導體發光元件與該基板上,且填充該貫穿孔; 對該可剝膠體進行一固化處理; 移除該基板,以暴露出該電路板之該第二表面、該半 導體發光元件與該可剝膠體; 形成一導電層覆蓋在暴露出之該電路板之該第二表 面、該半導體發光元件與該可剝膠體上; 形成一金屬基板於該導電層上;以及 移除該可剝膠體。 2. 如請求項1所述之方法,其中該基板係一膠帶。 3. 如請求項1所述之方法,其中該基板係一藍膜。 4. 如請求項3所述之方法,在移除該基板之步驟與形 成該導電層之步驟之間,更包含對暴露出該電路板之該第 [S) 15 201212305 二表面、該半導體發光元件與該可剝膠體進行一清潔步 驟,其中該清潔步驟包含一電漿清潔步驟或一濕式清潔步 赚〇 5. 如請求項1所述之方法,其中該固化處理係一常溫 固化處理。 6. 如請求項1所述之方法,其中該固化處理係一加熱 固化處理。 7. 如請求項1所述之方法,其中該固化處理係一紫外 光照射處理。 8.如請求項1所述之方法,其中該固化處理之溫度低 於 30。(:。201212305 VII. Patent application scope: 1. A method for manufacturing a heat sink for a semiconductor light emitting device, comprising: providing a circuit board, wherein the circuit board has a first surface and a second surface, and the circuit board The first surface includes at least two electrodes, the circuit board has at least a uniform perforation; the second surface of the circuit board and the at least one semiconductor light emitting element are attached to a substrate, wherein the semiconductor light emitting element is located at the circuit board Forming a liquid-like detachable colloid covering the circuit board, the electrodes, the semiconductor light-emitting element and the substrate, and filling the through-hole; performing a curing process on the peelable colloid; removing the substrate And exposing the second surface of the circuit board, the semiconductor light emitting element and the peelable colloid; forming a conductive layer covering the exposed second surface of the circuit board, the semiconductor light emitting element and the peelable colloid Forming a metal substrate on the conductive layer; and removing the peelable colloid. 2. The method of claim 1, wherein the substrate is a tape. 3. The method of claim 1, wherein the substrate is a blue film. 4. The method of claim 3, wherein the step of removing the substrate and the step of forming the conductive layer further comprises: exposing the second surface of the [S) 15 201212305 of the circuit board, the semiconductor light emitting The component is subjected to a cleaning step with the peelable colloid, wherein the cleaning step comprises a plasma cleaning step or a wet cleaning step. The method of claim 1, wherein the curing treatment is a room temperature curing treatment. 6. The method of claim 1, wherein the curing treatment is a heat curing treatment. 7. The method of claim 1, wherein the curing treatment is an ultraviolet light irradiation treatment. 8. The method of claim 1, wherein the curing treatment has a temperature of less than 30. (:. 9.如請求項1所述之方法,其中形成該金屬基板之步 驟係利用一電鍍方式或一無電電鍍方式。 10.如請求項1所述之方法,其中形成該金屬基板之 步驟係利用一鍵合方式。 [S) 169. The method of claim 1, wherein the step of forming the metal substrate is by an electroplating method or an electroless plating method. 10. The method of claim 1, wherein the step of forming the metal substrate is by a bonding method. [S) 16
TW99130238A 2010-09-07 2010-09-07 Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device TWI422079B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99130238A TWI422079B (en) 2010-09-07 2010-09-07 Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99130238A TWI422079B (en) 2010-09-07 2010-09-07 Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device

Publications (2)

Publication Number Publication Date
TW201212305A true TW201212305A (en) 2012-03-16
TWI422079B TWI422079B (en) 2014-01-01

Family

ID=46764545

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99130238A TWI422079B (en) 2010-09-07 2010-09-07 Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device

Country Status (1)

Country Link
TW (1) TWI422079B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499079A (en) * 2013-10-10 2014-01-08 昆山纯柏精密五金有限公司 Method for machining radiator of LED module
TWI602277B (en) * 2016-11-04 2017-10-11 恆勁科技股份有限公司 Package substrate and its fabrication method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI281272B (en) * 2005-06-07 2007-05-11 Alliance Optotek Corp Package structure of light emitting diode chip with high thermal conduction and the manufacturing method thereof
US9159888B2 (en) * 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
TWI362122B (en) * 2007-10-11 2012-04-11 Chi Mei Lighting Tech Corp Light-emitting diode package structure and method for manufacturing the same
TWI384684B (en) * 2008-10-29 2013-02-01 Automotive Res & Testing Ct Dual - frequency miniaturized antenna and its design method
TWI397200B (en) * 2009-01-08 2013-05-21 Chi Mei Lighting Tech Corp Light-emitting diode device, and package structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499079A (en) * 2013-10-10 2014-01-08 昆山纯柏精密五金有限公司 Method for machining radiator of LED module
TWI602277B (en) * 2016-11-04 2017-10-11 恆勁科技股份有限公司 Package substrate and its fabrication method

Also Published As

Publication number Publication date
TWI422079B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
EP2860777B1 (en) Led illumination module and led illumination apparatus
TWI328666B (en) Anodized metal substrate module
US9698563B2 (en) Flexible LED device and method of making
US7997760B2 (en) Enamel substrate for mounting light emitting elements, light emitting element module, illumination apparatus, display apparatus, and traffic signal
TW201032317A (en) Light-emitting diode light source module
JP2008277817A (en) Heat dissipation module and method for fabricating the same
KR100787705B1 (en) Embedded metal heat sink for semiconductor device and method for manufacturing the same
TW201242073A (en) Flexible light emitting semiconductor device having thin dielectric substrate
TWM498387U (en) Light emitting diode module package structure having thermal-electric separated function and electrical connection module
KR101051488B1 (en) Method for manufacturing light emitting diode unit, and light emitting diode unit manufactured by this method
TWI499100B (en) Light emitting diode carrier assemblies and method of fabricating the same
TW201205901A (en) LED light module and manufacturing method thereof
TW201242101A (en) Islanded carrier for light emitting device
TWI407536B (en) Method for manufacturing heat dissipation bulk of semiconductor device
KR20120100303A (en) Printed circuit board, light emitting module having the same, lighting unit having the light emitting unit and method of manufacturing the light emitting mudule
TW201212305A (en) Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device
CN104319346A (en) LED chip of high-thermal conductivity structure and preparation method of LED chip
US20140197434A1 (en) Light emitting diode device and method for manufacturing heat dissipation substrate
CN102403436B (en) Method for manufacturing heat sink of semi-conductor light emitting component
TWI362122B (en) Light-emitting diode package structure and method for manufacturing the same
US20080090334A1 (en) Method for Manufacturing Semiconductor Device
KR101381947B1 (en) Led module with thermoelectric semiconductor
JP2010087331A (en) Led mounted substrate
TWI443880B (en) Led pasting method
TWI658614B (en) Light emitting diode module package structure having thermal-electric separated function

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees