TWI397200B - Light-emitting diode device, and package structure and manufacturing method thereof - Google Patents

Light-emitting diode device, and package structure and manufacturing method thereof Download PDF

Info

Publication number
TWI397200B
TWI397200B TW98100536A TW98100536A TWI397200B TW I397200 B TWI397200 B TW I397200B TW 98100536 A TW98100536 A TW 98100536A TW 98100536 A TW98100536 A TW 98100536A TW I397200 B TWI397200 B TW I397200B
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
layer
electrode
element according
Prior art date
Application number
TW98100536A
Other languages
Chinese (zh)
Other versions
TW201027790A (en
Inventor
Changhsin Chu
Kuanqun Chen
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW98100536A priority Critical patent/TWI397200B/en
Publication of TW201027790A publication Critical patent/TW201027790A/en
Application granted granted Critical
Publication of TWI397200B publication Critical patent/TWI397200B/en

Links

Landscapes

  • Led Device Packages (AREA)

Description

發光二極體元件及其封裝結構與製造方法Light-emitting diode element, package structure and manufacturing method thereof

本發明是有關於一種發光元件,且特別是有關於一種發光二極體(LED)元件及其封裝結構與製造方法。The present invention relates to a light-emitting element, and more particularly to a light-emitting diode (LED) element, a package structure and a method of fabricating the same.

隨著發光二極體在日常照明與汽車頭燈等高亮度產品之應用上的大幅增加,發光二極體晶片之操作功率也隨之提高。然而,一般而言,發光二極體晶片之輸入功率只有約20%可轉為光能,而約80%的部分則會轉為熱能。因此,隨著發光二極體晶片之操作功率的日益提升,發光二極體晶片運作時所產生之熱也隨之增加,故發光二極體晶片對於散熱的需求也愈來愈高。With the dramatic increase in the use of light-emitting diodes in high-brightness products such as everyday lighting and automotive headlamps, the operating power of LEDs has also increased. However, in general, only about 20% of the input power of a light-emitting diode chip can be converted into light energy, and about 80% of the light is converted into heat. Therefore, as the operating power of the LED chip is increased, the heat generated by the operation of the LED chip is also increased, so that the demand for heat dissipation of the LED chip is also increasing.

目前,一種常應用於發光二極體晶片之封裝程序上的散熱技術為利用銀膠來將發光二極體晶片固定在具有散熱功能的封裝體上。如此一來,可透過封裝體來幫助發光二極體晶片散熱。然而,接合在發光二極體晶片與封裝體之間的銀膠的熱阻過大,而導致封裝體之散熱效能無法有效發揮,嚴重浪費了封裝體之散熱效能。At present, a heat dissipation technology commonly applied to a package process of a light-emitting diode wafer is to use silver paste to fix a light-emitting diode wafer on a package having a heat dissipation function. In this way, the package can be used to help dissipate heat from the LED chip. However, the thermal resistance of the silver paste bonded between the LED chip and the package is too large, and the heat dissipation performance of the package cannot be effectively exerted, which seriously wastes the heat dissipation performance of the package.

另一種應用於發光二極體晶片之封裝程序上的散熱技術為利用耐酸鹼膠帶的輔助,直接在發光二極體晶片之底部電鍍金屬散熱基座。因此,發光二極體晶片可不需透過銀膠,即可直接與金屬散熱基座接合,故整個發光二極體元件具有較大之散熱能力。然而,在此種散熱技術中,於金屬散熱基座電鍍後移除膠帶時,膠帶之殘膠會大量殘留在發光二極體晶片之正面上,這些殘膠無法有效去除,因而造成發光二極體晶片受損。其次,膠帶無法在後續金屬散熱基座的製作過程中有效保護發光二極體晶片之發光結構與電極,如此一來散熱金屬會鍍覆在發光二極體晶片之側面與正面,而造成發光二極體晶片的損毀,導致製程良率不佳,不符生產效益。而且,膠帶的運用並無法有效控制發光二極體晶片嵌入散熱金屬基座的深度,因此當發光二極體晶片嵌入散熱金屬基座的深度過大時,將導致發光二極體晶片之側光無法順利導出。雖然,可先在發光二極體晶片之側面鍍上反射鏡,再設置散熱金屬基座,但發光二極體晶片之側光經反射鏡導出後只能轉為正面軸向光,因而無法滿足需側邊發光之產品的應用。此外,耐酸鹼膠帶的價格非常昂貴,約為目前製程中廣泛使用之藍膜(Blue Tape)的十倍以上,而會導致製程成本大幅增加。再者,此種發光二極體元件的熱電分離設計不同於現有之發光二極體封裝模組,因此無法將此發光二極體元件直接套入現有之發光二極體封裝模組中,而需重新針對各種發光二極體產品來開發新的模組,如此將造成大量生產與應用上的困難。Another heat dissipation technique applied to the package process of a light-emitting diode wafer is to directly plate a metal heat sink base on the bottom of the light-emitting diode wafer with the aid of an acid-resistant tape. Therefore, the LED chip can be directly bonded to the metal heat sink base without passing through the silver paste, so that the entire LED component has a large heat dissipation capability. However, in this heat dissipation technology, when the metal heat sink base is removed after plating, the adhesive residue of the tape remains on the front side of the light emitting diode chip, and the residual glue cannot be effectively removed, thereby causing the light emitting diode. The body wafer is damaged. Secondly, the tape cannot effectively protect the light-emitting structure and the electrode of the LED chip during the fabrication process of the subsequent metal heat-dissipating pedestal, so that the heat-dissipating metal is plated on the side and the front side of the LED chip, thereby causing the light-emitting diode The damage of the polar body wafer leads to poor process yield and is inconsistent with production efficiency. Moreover, the use of the tape does not effectively control the depth of the light-emitting diode chip embedded in the heat-dissipating metal base. Therefore, when the depth of the light-emitting diode chip embedded in the heat-dissipating metal base is too large, the side light of the light-emitting diode chip cannot be caused. Smooth export. Although the mirror can be plated on the side of the LED chip and the heat sink metal base is disposed, the side light of the LED chip can only be converted into front axial light after being led out by the mirror, and thus cannot be satisfied. The application of products that require side lighting. In addition, the price of acid-resistant tape is very expensive, about ten times more than the blue film widely used in the current process, which will lead to a significant increase in process costs. Furthermore, the thermoelectric separation design of the LED component is different from the existing LED package module, so that the LED component cannot be directly inserted into the existing LED package module. It is necessary to re-develop new modules for various light-emitting diode products, which will cause a lot of production and application difficulties.

因此,本發明之目的就是在提供一種發光二極體元件及其製造方法,其無需使用銀膠,也無需採用耐酸鹼膠帶,即可使發光二極體晶片與散熱金屬層接合,故不僅可大幅提升發光二極體元件之散熱效能,更可有效降低製程成本。Therefore, the object of the present invention is to provide a light-emitting diode element and a method of manufacturing the same, which can bond a light-emitting diode wafer and a heat-dissipating metal layer without using silver glue or acid-base tape. The heat dissipation performance of the LED component can be greatly improved, and the process cost can be effectively reduced.

本發明之另一目的是在提供一種發光二極體元件及其製造方法,其在製作過程中所採用之光阻層不僅可有效保護發光二極體晶片之發光結構與電極,且有助於控制發光二極體晶片嵌入散熱金屬層之深度,因此可避免發光二極體晶片在後續金屬鍍膜的製程中受損,而可大幅提高製程良率,且可滿足側光發光二極體產品的應用。Another object of the present invention is to provide a light emitting diode element and a manufacturing method thereof, which can not only effectively protect the light emitting structure and the electrode of the light emitting diode chip but also contribute to the light resisting layer used in the manufacturing process. Controlling the depth of the light-emitting diode chip embedded in the heat-dissipating metal layer, thereby preventing the light-emitting diode chip from being damaged in the subsequent metal plating process, thereby greatly improving the process yield and satisfying the side light-emitting diode product. application.

本發明之又一目的是在提供一種發光二極體元件之封裝結構及其製造方法,其發光二極體元件之底部設有共晶材料層,因此元件底部之散熱金屬層可利用共晶材料層而透過紅外線等低溫加熱方式固定在封裝基座上,故可避免傳統接合元件與封裝基座之膠體的長時間高溫固化程序而造成發光二極體晶片的熱損壞,且共晶材料層也可降低熱阻而可提升散熱效果,更可滿足於現有封裝基座而無需更動封裝基座之熱電設計,有利於大量生產與應用。Another object of the present invention is to provide a package structure of a light-emitting diode element and a method for fabricating the same, wherein a eutectic material layer is disposed at the bottom of the light-emitting diode element, so that the heat-dissipating metal layer at the bottom of the element can utilize the eutectic material. The layer is fixed on the package base by low-temperature heating such as infrared rays, so that the long-term high-temperature curing process of the conventional bonding element and the package base can be prevented from causing thermal damage of the LED chip, and the eutectic material layer is also It can reduce the thermal resistance and improve the heat dissipation effect. It can also satisfy the existing package base without the thermoelectric design of the package base, which is beneficial to mass production and application.

根據本發明之上述目的,提出一種發光二極體元件及其封裝結構。發光二極體元件至少包含:一導熱金屬層具有相對之第一表面與第二表面,且導熱金屬層之第一表面包含一凹陷部;一共晶材料層設於導熱金屬層之第二表面;一導電層覆蓋在導熱金屬層之第一表面上;以及一發光二極體晶片嵌設在導熱金屬層之凹陷部中的導電層上,其中發光二極體晶片包含具不同電性之第一電極與第二電極。此外,發光二極體元件之封裝結構至少包含:一封裝基座具有一凹槽;上述之發光二極體元件設於凹槽中;一第一外部電極與第一電極電性連接;以及一第二外部電極與第二電極電性連接。According to the above object of the present invention, a light emitting diode element and a package structure thereof are proposed. The light emitting diode element comprises: a thermally conductive metal layer having opposite first and second surfaces, and the first surface of the thermally conductive metal layer comprises a recess; a eutectic material layer is disposed on the second surface of the thermally conductive metal layer; a conductive layer overlying the first surface of the thermally conductive metal layer; and a light emitting diode chip embedded on the conductive layer in the recess of the thermally conductive metal layer, wherein the light emitting diode chip comprises a first of different electrical properties Electrode and second electrode. In addition, the package structure of the LED component includes at least: a package base having a recess; the LED component is disposed in the recess; a first external electrode is electrically connected to the first electrode; The second external electrode is electrically connected to the second electrode.

依照本發明一較佳實施例,上述之共晶材料層之材料包含金(Au)、錫(Sn)、鎳(Ni)、鉻(Cr)、鈦(Ti)、鉭(Ta)、鋁(Al)、銦(In)、或其合金其中之一。According to a preferred embodiment of the present invention, the material of the eutectic material layer comprises gold (Au), tin (Sn), nickel (Ni), chromium (Cr), titanium (Ti), tantalum (Ta), aluminum ( One of Al), indium (In), or an alloy thereof.

根據本發明之目的,提出一種發光二極體元件及其封裝結構之製造方法。發光二極體元件之製造方法至少包含:設置至少一發光二極體晶片於一藍膜上,而使發光二極體晶片之一表面黏附在藍膜上;提供一透明暫時基板,其中透明暫時基板具有相對之第一表面與第二表面;形成一光阻層覆蓋透明暫時基板之第一表面;將發光二極體晶片壓設於光阻層中,其中發光二極體晶片包含一發光結構、與一第一電極位於發光結構上,且發光結構與第一電極埋設在光阻層中;移除藍膜,其中部分之光阻層殘留在發光二極體晶片之表面上;從透明暫時基板之第二表面朝第一表面的方向進行一曝光步驟,其中光阻層之殘留部分並未在曝光步驟中受到曝光;移除光阻層之殘留部分,而完全暴露出發光二極體晶片之表面;形成一導電層覆蓋於光阻層與發光二極體晶片之表面上;電鍍一導熱金屬層於導電層上;形成一共晶材料層於導熱金屬層之一表面上;以及移除光阻層與透明暫時基板。而發光二極體元件之封裝結構之製造方法更至少包含:提供一封裝基座,其中封裝基座具有一凹槽;將上述之發光二極體晶片設置於凹槽中,並使共晶材料層與凹槽之底面直接接合;以及電性連接第一電極與一第一外部電極、以及發光二極體元件之第二電極與一第二外部電極。In accordance with the purpose of the present invention, a method of fabricating a light emitting diode element and its package structure is provided. The method for manufacturing a light emitting diode device includes: disposing at least one light emitting diode chip on a blue film, and adhering one surface of the light emitting diode chip to the blue film; providing a transparent temporary substrate, wherein the transparent temporary The substrate has a first surface and a second surface opposite to each other; a photoresist layer is formed to cover the first surface of the transparent temporary substrate; and the light emitting diode wafer is pressed into the photoresist layer, wherein the light emitting diode chip comprises a light emitting structure And a first electrode is located on the light emitting structure, and the light emitting structure and the first electrode are buried in the photoresist layer; the blue film is removed, and part of the photoresist layer remains on the surface of the light emitting diode chip; An exposure step of the second surface of the substrate toward the first surface, wherein the remaining portion of the photoresist layer is not exposed during the exposing step; removing the remaining portion of the photoresist layer to completely expose the LED chip Forming a conductive layer covering the surface of the photoresist layer and the light emitting diode chip; plating a heat conductive metal layer on the conductive layer; forming a eutectic material layer on the heat conductive metal layer An upper surface; and removing the photoresist layer and the transparent substrate temporarily. The manufacturing method of the package structure of the light emitting diode component further comprises: providing a package base, wherein the package base has a recess; the above-mentioned light emitting diode wafer is disposed in the recess, and the eutectic material is provided The layer is directly bonded to the bottom surface of the recess; and electrically connecting the first electrode and the first external electrode, and the second electrode and the second external electrode of the LED component.

依照本發明一較佳實施例,上述之光阻層的材料為負型光阻,且光阻層之厚度較佳係大於10μm。According to a preferred embodiment of the present invention, the material of the photoresist layer is a negative photoresist, and the thickness of the photoresist layer is preferably greater than 10 μm.

請參照第1圖至第11A圖,其係繪示依照本發明一較佳實施例的一種發光二極體元件之製程剖面圖。在一示範實施例中,先提供藍膜100,其中藍膜100之材料為高分子聚合物,且此藍膜100可具有單面黏著特性或雙面黏著特性。在本發明中,藍膜100可取代一般價格昂貴之耐酸鹼膠帶,因此可大幅降低製程成本。接著,設置一或多個發光二極體晶片,例如垂直電極式之發光二極體晶片102a與平行電極式之發光二極體晶片102b,於藍膜100上,並使發光二極體晶片102a之表面104a與發光二極體晶片102b之表面104b黏附在藍膜100上。Please refer to FIG. 1 to FIG. 11A, which are cross-sectional views showing a process of a light emitting diode device according to a preferred embodiment of the present invention. In an exemplary embodiment, the blue film 100 is first provided, wherein the material of the blue film 100 is a high molecular polymer, and the blue film 100 may have a single-sided adhesive property or a double-sided adhesive property. In the present invention, the blue film 100 can replace the generally expensive acid-base tape, thereby greatly reducing the process cost. Next, one or more light emitting diode chips, such as a vertical electrode type light emitting diode chip 102a and a parallel electrode type light emitting diode chip 102b, are disposed on the blue film 100, and the light emitting diode chip 102a is disposed. The surface 104a and the surface 104b of the light-emitting diode wafer 102b are adhered to the blue film 100.

在一實施例中,發光二極體晶片102a主要包含第二電極112a、導電基板106a、發光結構108a與第一電極110a,其中第一電極110a與第二電極112a具有不同電性,例如其中之一電極為P型、另一電極為N型。如第1圖所示,在發光二極體晶片102a中,導電基板106a疊設在第二電極112a上,發光結構108a則例如可利用磊晶成長方式形成於導電基板106a上,第一電極110a設於部分之發光結構108a上。發光二極體晶片102a在後續製程中,具有需受到保護的部分,例如從第一電極110a向下延伸至發光結構108a,此需受到保護的部分具有厚度116a。另一方面,發光二極體晶片102b則例如可包含基板106b、發光結構108b、第一電極110b、第二電極112b與選擇性設置之第一反射層114,其中第一電極110b與第二電極112b具有不同電性,例如其中之一電極為P型、另一電極為N型,第一反射層114可例如為布拉格反射鏡(Distributed Bragg Reflector;DBR)。如第1圖所示,在發光二極體晶片102b中,基板106b疊設在第一反射層114上,發光結構108b則例如可利用磊晶成長方式、並配合例如微影蝕刻等圖案化技術,而形成於基板106b之表面118的一部分上,第二電極112b則設於基板106b之表面118的另一部分上,第一電極110b設於部分之發光結構108b上。發光二極體晶片102b在後續製程中,具有需受到保護的部分,例如從第一電極110b向下延伸至發光結構108b,此需受到保護的部分具有厚度116b。發光二極體晶片102a與102b之材料例如可採用氮化鎵(GaN)系列、磷化鋁鎵銦(AlGaInP)系列、硫化鉛(PbS)系列、碳化矽(SiC)系列、矽(Si)系列或砷化鎵(GaAs)系列。In one embodiment, the LED substrate 102a mainly includes a second electrode 112a, a conductive substrate 106a, a light emitting structure 108a and a first electrode 110a, wherein the first electrode 110a and the second electrode 112a have different electrical properties, such as One electrode is P-type and the other electrode is N-type. As shown in FIG. 1, in the LED wafer 102a, the conductive substrate 106a is stacked on the second electrode 112a, and the light-emitting structure 108a is formed on the conductive substrate 106a by, for example, epitaxial growth, the first electrode 110a. It is disposed on a portion of the light emitting structure 108a. The LED wafer 102a has a portion to be protected in a subsequent process, for example, extending downward from the first electrode 110a to the light emitting structure 108a, and the portion to be protected has a thickness 116a. On the other hand, the LED wafer 102b may include, for example, a substrate 106b, a light emitting structure 108b, a first electrode 110b, a second electrode 112b, and a selectively disposed first reflective layer 114, wherein the first electrode 110b and the second electrode 112b has different electrical properties, for example, one of the electrodes is P-type and the other electrode is N-type, and the first reflective layer 114 can be, for example, a Bragg Reflector (DBR). As shown in FIG. 1, in the light-emitting diode wafer 102b, the substrate 106b is stacked on the first reflective layer 114, and the light-emitting structure 108b can be formed by, for example, epitaxial growth and patterning techniques such as lithography etching. The second electrode 112b is formed on a portion of the surface 118 of the substrate 106b, and the second electrode 112b is disposed on another portion of the surface 118 of the substrate 106b. The first electrode 110b is disposed on a portion of the light emitting structure 108b. The LED wafer 102b has a portion to be protected in a subsequent process, for example, extending from the first electrode 110b down to the light emitting structure 108b, and the portion to be protected has a thickness 116b. The materials of the light-emitting diode chips 102a and 102b may be, for example, a gallium nitride (GaN) series, an aluminum gallium indium phosphide (AlGaInP) series, a lead sulfide (PbS) series, a tantalum carbide (SiC) series, or a bismuth (Si) series. Or gallium arsenide (GaAs) series.

接著,如第2圖所示,提供透明暫時基板120,其中此透明暫時基板120具有相對之表面122與124。透明暫時基板120較佳係選用可讓微影製程之曝光光源的光順利穿透的材料,例如可讓紫外光穿透之材料。接下來,利用例如塗布方式形成光阻層126均勻覆蓋在透明暫時基板120之表面122上。在一示範實施例中,光阻層126之材料例如可選用負型光阻。光阻層126應具有一定厚度,例如光阻層126之厚度128可大於發光二極體晶片102a之需受到保護之厚度116a與發光二極體晶片102b之需受到保護之厚度116b至少10μm以上。在一實施例中,光阻層126之厚度例如可大於10μm。Next, as shown in FIG. 2, a transparent temporary substrate 120 is provided, wherein the transparent temporary substrate 120 has opposing surfaces 122 and 124. The transparent temporary substrate 120 is preferably made of a material that allows the light of the exposure light source of the lithography process to penetrate smoothly, such as a material that allows ultraviolet light to penetrate. Next, the photoresist layer 126 is formed to be uniformly covered on the surface 122 of the transparent temporary substrate 120 by, for example, a coating method. In an exemplary embodiment, the material of the photoresist layer 126 may be, for example, a negative photoresist. The photoresist layer 126 should have a certain thickness. For example, the thickness 128 of the photoresist layer 126 can be greater than the thickness 116a of the light-emitting diode wafer 102a to be protected and the thickness 116b of the light-emitting diode wafer 102b to be protected by at least 10 μm. In an embodiment, the thickness of the photoresist layer 126 can be, for example, greater than 10 μm.

接下來,如第2圖所示,利用藍膜100之承載,將發光二極體晶片102a與102b予以倒轉,而使發光二極體晶片102a與102b與透明暫時基板120上之光阻層126相對。接著,如第3圖所示,將發光二極體晶片102a與102b壓設於光阻層126中,並控制這些發光二極體晶片102a與102b壓入光阻層126之深度130,其中此深度130需大於發光二極體晶片102a與102b之需受到保護之厚度116a與116b。在一實施例中,壓入之深度130例如可介於實質10μm與實質100μm之間。發光二極體晶片102a在壓入光阻層126後,發光二極體晶片102a之第一電極110a與發光結構108a完全埋設在光阻層126中。另外,發光二極體晶片102b在壓入光阻層126後,發光二極體晶片102b之第一電極110b、發光結構108b與第二電極112b完全埋設在光阻層126中。Next, as shown in FIG. 2, the LEDs 102a and 102b are inverted by the carrying of the blue film 100, and the LEDs 102a and 102b and the photoresist layer 126 on the transparent temporary substrate 120 are turned on. relatively. Next, as shown in FIG. 3, the LED chips 102a and 102b are pressed into the photoresist layer 126, and the depths 130 of the photodiode wafers 102a and 102b are pressed into the photoresist layer 126, wherein The depth 130 needs to be greater than the thicknesses 116a and 116b of the light-emitting diode wafers 102a and 102b to be protected. In an embodiment, the depth 130 of the press-in can be, for example, between substantially 10 μm and substantially 100 μm. After the light-emitting diode wafer 102a is pressed into the photoresist layer 126, the first electrode 110a and the light-emitting structure 108a of the light-emitting diode wafer 102a are completely buried in the photoresist layer 126. In addition, after the light-emitting diode wafer 102b is pressed into the photoresist layer 126, the first electrode 110b, the light-emitting structure 108b, and the second electrode 112b of the light-emitting diode wafer 102b are completely buried in the photoresist layer 126.

接著,將藍膜100撕除,並可依製程需求而選擇性對光阻層126進行烘烤,以利固定發光二極體晶片102a與102b。在撕除藍膜100時,藍膜100可能會帶起光阻層126部分表面區域,因此有一部分光阻層126之殘餘部分132會殘留在發光二極體晶片102a之表面104a與發光二極體晶片102b之表面104b上,如第4圖所示。在一示範實施例中,為避免這些光阻層126之殘餘部分132的存在造成發光二極體晶片102a和102b與後續形成在其表面104a和104b上的材料層之間的附著力下降,而將殘留在發光二極體晶片102a與102b之表面104a與104b上的光阻層126之殘餘部分132予以移除。因此,如第5圖所示,先進行背面曝光步驟,以從透明暫時基板120之表面124朝相對之表面122的方向進行曝光步驟。在此曝光步驟中,光阻層126之殘留部分132受到發光二極體晶片102a與102b的遮蔽,因此並未在受到曝光。接著,進行顯影步驟,此時由於光阻層126殘餘在發光二極體晶片102a與102b之表面104a與104b上的部分132並未受到曝光,因此可為顯影液順利移除,而完全暴露出發光二極體晶片102a與102b之表面104a與104b,如第6圖所示。在一實施例中,於顯影步驟後,可選擇性地進行清潔與烘烤程序,以去除殘餘之光阻微粒與污垢。Next, the blue film 100 is torn off, and the photoresist layer 126 is selectively baked according to process requirements to facilitate fixing the LED chips 102a and 102b. When the blue film 100 is torn off, the blue film 100 may bring up a portion of the surface area of the photoresist layer 126, so that a portion of the photoresist portion 126 remains on the surface 104a and the light-emitting diode of the light-emitting diode wafer 102a. The surface 104b of the bulk wafer 102b is as shown in Fig. 4. In an exemplary embodiment, to avoid the presence of residual portions 132 of the photoresist layer 126, the adhesion between the LED arrays 102a and 102b and the subsequently formed material layers on the surfaces 104a and 104b is reduced. The remaining portion 132 of the photoresist layer 126 remaining on the surfaces 104a and 104b of the LED chips 102a and 102b is removed. Therefore, as shown in FIG. 5, the back exposure step is first performed to perform an exposure step from the surface 124 of the transparent temporary substrate 120 toward the opposite surface 122. In this exposure step, the residual portion 132 of the photoresist layer 126 is shielded by the LED chips 102a and 102b and thus is not exposed. Next, a developing step is performed in which the portion 132 remaining on the surfaces 104a and 104b of the light-emitting diode wafers 102a and 102b is not exposed by the photoresist layer 126, so that the developer can be smoothly removed and completely exposed. The surfaces 104a and 104b of the photodiode wafers 102a and 102b are as shown in Fig. 6. In one embodiment, after the developing step, a cleaning and baking process can be selectively performed to remove residual photoresist particles and soil.

接著,如第7圖所示,在一示範實施例中,例如可利用蒸鍍(Evaporation)法、濺渡(Sputtering)法或無電鍍(Electroless Plating)法,形成導電層134覆蓋於光阻層126與發光二極體晶片102a與102b之表面104a與104b上。導電層134之製作可採共形(conformal)沉積方式。導電層134可為由至少二材料層所堆疊而成之複合結構層,或者可為一合金層。導電層134之材料例如可為氧化銦錫(ITO)、金、銀、鉑(Pt)、鈀、鎳、鉻、鈦、鉭、鋁、銦、鎢、銅、含鎳之合金、含鉻之合金、含鈦之合金、含鉭之合金、含鋁之合金、含銦之合金、含鎢之合金、或含銅之合金。在一實施例中,導電層134之厚度例如可小於實質3μm。在一些實施例中,於光阻層126之殘留部分132移除後,但尚未形成導電層134前,可選擇性地先形成緩衝層(未繪示)覆蓋在光阻層126和發光二極體晶片102a與102b之表面104a與104b上,而後才形成導電層134,以增進導電層134與發光二極體晶片102a和102b之間的黏附力。此緩衝層之材料例如可為氮化鈦或氮化鋁。Next, as shown in FIG. 7, in an exemplary embodiment, the conductive layer 134 may be formed over the photoresist layer by, for example, an evaporation method, a sputtering method, or an electroless plating method. 126 and the surfaces 104a and 104b of the LED chips 102a and 102b. The conductive layer 134 can be fabricated in a conformal deposition manner. The conductive layer 134 may be a composite structural layer formed by stacking at least two material layers, or may be an alloy layer. The material of the conductive layer 134 can be, for example, indium tin oxide (ITO), gold, silver, platinum (Pt), palladium, nickel, chromium, titanium, tantalum, aluminum, indium, tungsten, copper, alloy containing nickel, chromium-containing Alloys, alloys containing titanium, alloys containing niobium, alloys containing aluminum, alloys containing indium, alloys containing tungsten, or alloys containing copper. In an embodiment, the thickness of the conductive layer 134 can be, for example, less than substantially 3 μm. In some embodiments, after the residual portion 132 of the photoresist layer 126 is removed, but before the conductive layer 134 is formed, a buffer layer (not shown) may be selectively formed to cover the photoresist layer 126 and the light emitting diode. The surfaces 104a and 104b of the bulk wafers 102a and 102b are then formed with a conductive layer 134 to enhance the adhesion between the conductive layer 134 and the LED wafers 102a and 102b. The material of the buffer layer may be, for example, titanium nitride or aluminum nitride.

接下來,如第8圖所示,利用電鍍方式形成導熱金屬層136於導電層134上,其中此導熱金屬層136較佳係具有相當之厚度,以利發光二極體晶片102a與102b之散熱。在一示範實施例中,導熱金屬層136之厚度例如可介於實質50μm與實質500μm之間。導熱金屬層136之材料例如可為銅、銅合金、鐵鎳合金(Fe/Ni)、鎳、鎢(W)、鉬(Mo)、或上述金屬之任二種或任二種以上的合金。此導熱金屬層136具有相對之表面138與140,其中受到發光二極體晶片102a與102b突出於光阻層126表面的影響,與導電層134接合之表面138具有凹陷部142,而發光二極體晶片102a與102b即嵌設在導熱金屬層136之凹陷部142中的導電層134上。在一實施例中,完成導熱金屬層136之電鍍後,可依實際製程需求,而對導熱金屬層136之表面138額外進行研磨步驟,以降低導熱金屬層136之表面138的粗糙度,以利後續形成之材料層順利設置在此表面138上。在一實施例中,經研磨步驟後,導熱金屬層136之表面138的粗糙度例如可介於實質80與實質1μm之間。Next, as shown in FIG. 8, the thermally conductive metal layer 136 is formed on the conductive layer 134 by electroplating, wherein the thermally conductive metal layer 136 is preferably of a thickness to facilitate heat dissipation of the LED wafers 102a and 102b. . In an exemplary embodiment, the thickness of the thermally conductive metal layer 136 can be, for example, between substantially 50 μm and substantially 500 μm. The material of the heat conductive metal layer 136 may be, for example, copper, a copper alloy, an iron-nickel alloy (Fe/Ni), nickel, tungsten (W), molybdenum (Mo), or an alloy of any two or more of the above metals. The thermally conductive metal layer 136 has opposing surfaces 138 and 140, wherein the surface of the photoresist layer 102 is protruded from the surface of the photoresist layer 126, and the surface 138 bonded to the conductive layer 134 has a recess 142, and the light emitting diode The body wafers 102a and 102b are embedded on the conductive layer 134 in the recess 142 of the thermally conductive metal layer 136. In an embodiment, after the electroplating of the thermally conductive metal layer 136 is completed, the surface 138 of the thermally conductive metal layer 136 may be additionally subjected to a grinding step according to actual process requirements to reduce the roughness of the surface 138 of the thermally conductive metal layer 136. Subsequently formed material layers are smoothly disposed on this surface 138. In an embodiment, the roughness of the surface 138 of the thermally conductive metal layer 136 may be, for example, substantially 80 after the grinding step. Between 1 μm and parenchyma.

接著,如第9圖所示,利用例如蒸鍍法、濺渡法、無電鍍法或電鍍法,形成共晶材料層144於導熱金屬層136之表面138上,其中共晶材料層144具有相對之表面146與148,而共晶材料層144之表面146與導熱金屬層136之表面138直接接合。共晶材料層144例如可為由至少二材料層所堆疊而成之複合結構層、或可為合金層。共晶材料層144之材料例如可包含金、錫、鎳、鉻、鈦、鉭、鋁、銦、或其合金其中之一。在一實施例中,共晶材料層144之厚度例如可小於實質6μm。Next, as shown in FIG. 9, a eutectic material layer 144 is formed on the surface 138 of the thermally conductive metal layer 136 by, for example, an evaporation method, a sputtering method, an electroless plating method, or an electroplating method, wherein the eutectic material layer 144 has a relative Surfaces 146 and 148, while surface 146 of eutectic material layer 144 is directly bonded to surface 138 of thermally conductive metal layer 136. The eutectic material layer 144 may be, for example, a composite structural layer in which at least two material layers are stacked, or may be an alloy layer. The material of the eutectic material layer 144 may, for example, comprise one of gold, tin, nickel, chromium, titanium, tantalum, aluminum, indium, or alloys thereof. In one embodiment, the thickness of the eutectic material layer 144 can be, for example, less than substantially 6 [mu]m.

接下來,如第10圖所示,可利用例如剝離(Lift-off)法,而藉由有機溶劑來溶解光阻層126,來一併移除光阻層126及與其接合之透明暫時基板120,而暴露出發光二極體晶片102a之第一電極110a與發光結構108a、發光二極體晶片102b之第一電極110b、第二電極112b與發光結構108b、以及部分之導電層134。接著,可進行晶粒之切割,而將發光二極體晶片102a與102b予以分開,而完成如第11A圖所示之發光二極體元件150a與第11B圖所示之發光二極體元件150b的製作。Next, as shown in FIG. 10, the photoresist layer 126 and the transparent temporary substrate 120 bonded thereto may be removed by, for example, a lift-off method by dissolving the photoresist layer 126 by an organic solvent. The first electrode 110a and the light emitting structure 108a of the light emitting diode wafer 102a, the first electrode 110b of the light emitting diode wafer 102b, the second electrode 112b and the light emitting structure 108b, and a portion of the conductive layer 134 are exposed. Then, the dicing of the dies can be performed to separate the illuminating diode chips 102a and 102b, thereby completing the illuminating diode element 150a as shown in FIG. 11A and the illuminating diode element 150b shown in FIG. 11B. Production.

接著,即可進行發光二極體元件150a與150b之封裝程序。在一示範實施例中,如第12A圖所示,進行發光二極體元件150a之封裝程序時,可提供封裝基座152,其中封裝基座152可由絕緣材料所組成。封裝基座152可包含凹槽158。在一實施例中,封裝基座152之凹槽158的側面可選擇性地設有第二反射層170,以將發光二極體元件150a所發出之側向光往發光二極體元件150a的正向反射。接著,將發光二極體元件150a設置於封裝基座152之凹槽158中,並使共晶材料層144之表面148與凹槽158之底面160直接接合。再使發光二極體晶片102a之第一電極110a和第二電極112a分別與第一外部電極156a和第二外部電極154a電性連接。在一示範實施例中,第一外部電極156a與第二外部電極154a可例如嵌設於封裝基座152中,並延伸於封裝基座152之外側,其中部分之第一外部電極156a與部分之第二外部電極154a可延伸而暴露於凹槽158之底面160中。因此,將發光二極體元件150a設置於封裝基座152之凹槽158中時,可將發光二極體元件150a置於凹槽158之底面160中第二外部電極154a的暴露部分上,並利用紅外線加熱法、爐管加熱法或快速熱退火法使共晶材料層144之表面148與第二外部電極154a的暴露部分直接共晶接合,形成一共晶層(eutectic layer)144a,藉以使發光二極體晶片102a之第二電極112a經由下方之導電層134、導熱金屬層136與共晶層144a而與第二外部電極154a形成電性連接。其中,共晶層144a之材料例如可包含金、錫、鎳、鉻、鈦、鉭、鋁、銦、或其合金其中之一,共晶層144a之厚度例如可小於實質6μm。另一方面,電性連接發光二極體晶片102a之第一電極110a與第一外部電極156a時,則可以導線接合(Wire Bonding)方式而利用導線162來加以電性連接。然後,可形成封裝膠體168填入封裝基座152之凹槽158內,並使封裝膠體168覆蓋住凹槽158內之發光二極體元件150a、導線162、第一外部電極156a與第二外部電極154a,而完成發光二極體元件150a之封裝結構172a。Next, the package process of the light-emitting diode elements 150a and 150b can be performed. In an exemplary embodiment, as shown in FIG. 12A, when the package process of the light-emitting diode element 150a is performed, a package base 152 may be provided, wherein the package base 152 may be composed of an insulating material. Package base 152 can include a recess 158. In one embodiment, the side of the recess 158 of the package base 152 can be selectively provided with a second reflective layer 170 to illuminate the lateral light emitted by the LED component 150a toward the LED component 150a. Forward reflection. Next, the light emitting diode element 150a is disposed in the recess 158 of the package base 152, and the surface 148 of the eutectic material layer 144 is directly bonded to the bottom surface 160 of the recess 158. The first electrode 110a and the second electrode 112a of the LED wafer 102a are electrically connected to the first external electrode 156a and the second external electrode 154a, respectively. In an exemplary embodiment, the first external electrode 156a and the second external electrode 154a may be embedded in the package base 152, for example, and extend on the outer side of the package base 152, wherein a portion of the first external electrode 156a and a portion thereof The second outer electrode 154a can extend to be exposed in the bottom surface 160 of the recess 158. Therefore, when the light emitting diode element 150a is disposed in the recess 158 of the package base 152, the light emitting diode element 150a can be placed on the exposed portion of the second outer electrode 154a in the bottom surface 160 of the recess 158, and The surface 148 of the eutectic material layer 144 and the exposed portion of the second external electrode 154a are directly eutectic bonded by infrared heating, furnace tube heating or rapid thermal annealing to form a eutectic layer 144a, thereby illuminating The second electrode 112a of the diode wafer 102a is electrically connected to the second external electrode 154a via the lower conductive layer 134, the thermally conductive metal layer 136, and the eutectic layer 144a. The material of the eutectic layer 144a may include, for example, one of gold, tin, nickel, chromium, titanium, tantalum, aluminum, indium, or an alloy thereof, and the thickness of the eutectic layer 144a may be, for example, less than substantially 6 μm. On the other hand, when the first electrode 110a and the first external electrode 156a of the light-emitting diode wafer 102a are electrically connected, the wire 162 can be electrically connected by wire bonding. Then, the encapsulant 168 can be formed to fill the recess 158 of the package base 152, and the encapsulant 168 covers the LED body 150a, the wire 162, the first external electrode 156a and the second external portion in the recess 158. The electrode 154a completes the package structure 172a of the light-emitting diode element 150a.

在另一示範實施例中,如第12B圖所示,進行發光二極體元件150b之封裝程序時,同樣可提供包含凹槽158之封裝基座152。在一實施例中,封裝基座152之凹槽158的側面同樣可選擇性地設有第二反射層170,以利將側向光往發光二極體元件150b的正向反射。接著,將發光二極體元件150b設置於封裝基座152之凹槽158中,並使共晶材料層144之表面148與凹槽158之底面160直接接合。再以導線接合方式,而利用二導線164與166來分別電性連接發光二極體晶片102b之第一電極110b和第二電極112b與第一外部電極156b和第二外部電極154b。在一示範實施例中,第一外部電極156b與第二外部電極154b可例如嵌設於封裝基座152中,並延伸於封裝基座152之外側,其中部分之第一外部電極156b與部分之第二外部電極154b可延伸而暴露於凹槽158之底面160中。因此,將發光二極體元件150b設置於封裝基座152之凹槽158中時,可將發光二極體元件150b置於凹槽158之底面160中第一外部電極156b的暴露部分上,並利用紅外線加熱法、爐管加熱法或快速熱退火法使共晶材料層144之表面148與第一外部電極156b的暴露部分直接共晶接合,形成一共晶層144a,以增強發光二極體元件150b與封裝基座152之間的接合力,並提高發光二極體元件150b之散熱效率。然後,可形成封裝膠體168填入封裝基座152之凹槽158內,並使封裝膠體168覆蓋住凹槽158內之發光二極體元件150b、導線164與166、第一外部電極156b與第二外部電極154b,而完成發光二極體元件150b之封裝結構172b。In another exemplary embodiment, as shown in FIG. 12B, when the package process of the light emitting diode element 150b is performed, the package base 152 including the recess 158 may also be provided. In an embodiment, the side of the recess 158 of the package base 152 is also selectively provided with a second reflective layer 170 to facilitate lateral reflection of the lateral light toward the LED component 150b. Next, the light emitting diode element 150b is disposed in the recess 158 of the package base 152, and the surface 148 of the eutectic material layer 144 is directly bonded to the bottom surface 160 of the recess 158. The first and second electrodes 110b and 112b of the light-emitting diode 102b are electrically connected to the first and second external electrodes 156b and 154b, respectively, by wire bonding. In an exemplary embodiment, the first external electrode 156b and the second external electrode 154b may be embedded in the package base 152, for example, and extend on the outer side of the package base 152, wherein a portion of the first external electrode 156b and a portion thereof The second outer electrode 154b can extend to be exposed in the bottom surface 160 of the recess 158. Therefore, when the light emitting diode element 150b is disposed in the recess 158 of the package base 152, the light emitting diode element 150b can be placed on the exposed portion of the first outer electrode 156b in the bottom surface 160 of the recess 158, and The surface 148 of the eutectic material layer 144 is directly eutectic bonded to the exposed portion of the first external electrode 156b by infrared heating, furnace tube heating or rapid thermal annealing to form a eutectic layer 144a to enhance the light emitting diode element. The bonding force between the 150b and the package base 152 increases the heat dissipation efficiency of the light emitting diode element 150b. Then, the encapsulant 168 can be formed to fill the recess 158 of the package base 152, and the encapsulant 168 covers the LED component 150b, the wires 164 and 166, the first external electrode 156b and the first in the recess 158. The outer electrode 154b completes the package structure 172b of the light emitting diode element 150b.

由上述本發明之實施例可知,本發明之一優點就是因為在本發明之發光二極體元件及其製造方法中,無需使用銀膠,也無需採用耐酸鹼膠帶,即可使發光二極體晶片與散熱金屬層接合,因此不僅可大幅提升發光二極體元件之散熱效能,更可有效降低製程成本。It can be seen from the above embodiments of the present invention that one of the advantages of the present invention is that in the light-emitting diode element of the present invention and the method of manufacturing the same, it is possible to make the light-emitting diode without using silver glue or using an acid-resistant tape. The body wafer is bonded to the heat dissipation metal layer, so that the heat dissipation performance of the light emitting diode component can be greatly improved, and the process cost can be effectively reduced.

由上述本發明之實施例可知,本發明之另一優點就是因為在本發明之發光二極體元件及其製造方法中,其製作過程中所採用之光阻層不僅可有效保護發光二極體晶片之發光結構與電極,且有助於控制發光二極體晶片嵌入散熱金屬層之深度,因此可避免發光二極體晶片在後續金屬鍍膜的製程中受損,而可大幅提高製程良率,且可滿足側光發光二極體產品的應用。It can be seen from the above embodiments of the present invention that another advantage of the present invention is that in the light-emitting diode element of the present invention and the method of manufacturing the same, the photoresist layer used in the manufacturing process can not only effectively protect the light-emitting diode The light-emitting structure of the chip and the electrode help to control the depth of the light-emitting diode chip embedded in the heat-dissipating metal layer, thereby preventing the light-emitting diode chip from being damaged in the subsequent metal plating process, and greatly improving the process yield. And can meet the application of side light emitting diode products.

由上述本發明之實施例可知,本發明之又一優點就是因為在本發明之發光二極體元件之封裝結構及其製造方法中,其發光二極體元件之底部設有共晶材料層,因此元件底部之散熱金屬層可利用共晶材料層而透過紅外線等低溫加熱方式形成共晶層固定在封裝基座上。故,可避免傳統接合元件與封裝基座之膠體的長時間高溫固化程序而造成發光二極體晶片的熱損壞,且共晶材料層也可降低熱阻而可提升散熱效果,更可滿足於現有封裝基座而無需更動封裝基座之熱電設計,有利於大量生產與應用。According to the embodiment of the present invention, another advantage of the present invention is that, in the package structure of the light-emitting diode element of the present invention and the manufacturing method thereof, the bottom of the light-emitting diode element is provided with a eutectic material layer. Therefore, the heat dissipation metal layer at the bottom of the element can be fixed to the package base by using a eutectic material layer and forming a eutectic layer by low-temperature heating such as infrared rays. Therefore, the long-term high-temperature curing process of the conventional bonding component and the colloid of the package base can be avoided to cause thermal damage of the LED film, and the eutectic material layer can also reduce the thermal resistance and improve the heat dissipation effect, and is more satisfied. The existing package base does not require a thermoelectric design to change the package base, which is advantageous for mass production and application.

雖然本發明已以一較佳實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is intended that various modifications may be made without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

100...藍膜100. . . Blue film

102a...發光二極體晶片102a. . . Light-emitting diode chip

102b...發光二極體晶片102b. . . Light-emitting diode chip

104a...表面104a. . . surface

104b...表面104b. . . surface

106a...導電基板106a. . . Conductive substrate

106b...基板106b. . . Substrate

108a...發光結構108a. . . Light structure

108b...發光結構108b. . . Light structure

110a...第一電極110a. . . First electrode

110b...第一電極110b. . . First electrode

112a...第二電極112a. . . Second electrode

112b...第二電極112b. . . Second electrode

114...第一反射層114. . . First reflective layer

116a...厚度116a. . . thickness

116b...厚度116b. . . thickness

118...表面118. . . surface

120...透明暫時基板120. . . Transparent temporary substrate

122...表面122. . . surface

124...表面124. . . surface

126...光阻層126. . . Photoresist layer

128...厚度128. . . thickness

130...深度130. . . depth

132...部分132. . . section

134...導電層134. . . Conductive layer

136...導熱金屬層136. . . Thermally conductive metal layer

138...表面138. . . surface

140...表面140. . . surface

142...凹陷部142. . . Depression

144...共晶材料層144. . . Eutectic material layer

144a...共晶層144a. . . Eutectic layer

146...表面146. . . surface

148...表面148. . . surface

150a...發光二極體元件150a. . . Light-emitting diode component

150b...發光二極體元件150b. . . Light-emitting diode component

152...封裝基座152. . . Package base

154a...第二外部電極154a. . . Second external electrode

154b...第二外部電極154b. . . Second external electrode

156a...第一外部電極156a. . . First external electrode

156b...第一外部電極156b. . . First external electrode

158...凹槽158. . . Groove

160...底面160. . . Bottom

162...導線162. . . wire

164...導線164. . . wire

166...導線166. . . wire

168...封裝膠體168. . . Encapsulant

170...第二反射層170. . . Second reflective layer

172a...封裝結構172a. . . Package structure

172b...封裝結構172b. . . Package structure

第1圖至第11A圖係繪示依照本發明一較佳實施例的一種發光二極體元件之製程剖面圖。1 to 11A are cross-sectional views showing a process of a light emitting diode device in accordance with a preferred embodiment of the present invention.

第11B圖係繪示依照本發明之另一較佳實施例的一種發光二極體元件之剖面圖。Figure 11B is a cross-sectional view showing a light emitting diode element in accordance with another preferred embodiment of the present invention.

第12A圖係繪示依照本發明一較佳實施例的一種發光二極體元件之封裝結構的剖面圖。12A is a cross-sectional view showing a package structure of a light emitting diode device in accordance with a preferred embodiment of the present invention.

第12B圖係繪示依照本發明之另一較佳實施例的一種發光二極體元件之封裝結構的剖面圖。Figure 12B is a cross-sectional view showing a package structure of a light emitting diode element in accordance with another preferred embodiment of the present invention.

102a...發光二極體晶片102a. . . Light-emitting diode chip

110a...第一電極110a. . . First electrode

112a...第二電極112a. . . Second electrode

134...導電層134. . . Conductive layer

136...導熱金屬層136. . . Thermally conductive metal layer

144a...共晶層144a. . . Eutectic layer

148...表面148. . . surface

150a...發光二極體元件150a. . . Light-emitting diode component

152...封裝基座152. . . Package base

154a...第二外部電極154a. . . Second external electrode

156a...第一外部電極156a. . . First external electrode

158...凹槽158. . . Groove

160...底面160. . . Bottom

162...導線162. . . wire

168...封裝膠體168. . . Encapsulant

170...第二反射層170. . . Second reflective layer

172a...封裝結構172a. . . Package structure

Claims (81)

一種發光二極體元件,至少包含:一導熱金屬層,具有相對之一第一表面與一第二表面,且該導熱金屬層之該第一表面包含一凹陷部;一共晶材料層,設於該導熱金屬層之該第二表面;一導電層,覆蓋在該導熱金屬層之該第一表面上;以及一發光二極體晶片,嵌設在該導熱金屬層之該凹陷部中的該導電層上,其中該發光二極體晶片包含具不同電性之一第一電極與一第二電極。An illuminating diode component comprising: at least one thermally conductive metal layer having a first surface and a second surface; and the first surface of the thermally conductive metal layer comprises a recess; a eutectic layer is disposed on a second surface of the thermally conductive metal layer; a conductive layer overlying the first surface of the thermally conductive metal layer; and a light emitting diode wafer embedded in the recess of the thermally conductive metal layer On the layer, the light emitting diode chip comprises a first electrode and a second electrode having different electrical properties. 如申請專利範圍第1項所述之發光二極體元件,其中該發光二極體晶片更包含:一基板;以及一發光結構,設於該基板之一表面之一第一部分上,其中該第一電極設於部分之該發光結構上,且該第二電極設於該基板之該表面之一第二部分上。The light emitting diode device of claim 1, wherein the light emitting diode chip further comprises: a substrate; and a light emitting structure disposed on a first portion of one surface of the substrate, wherein the first An electrode is disposed on a portion of the light emitting structure, and the second electrode is disposed on a second portion of the surface of the substrate. 如申請專利範圍第1項所述之發光二極體元件,其中該發光二極體晶片更包含:一導電基板,設於該第二電極上;以及一發光結構,設於該導電基板上,其中該第一電極設於部分之該發光結構上。The light-emitting diode device of claim 1, wherein the light-emitting diode chip further comprises: a conductive substrate disposed on the second electrode; and a light-emitting structure disposed on the conductive substrate The first electrode is disposed on a portion of the light emitting structure. 如申請專利範圍第1項所述之發光二極體元件,更包含一緩衝層介於該導電層與該發光二極體晶片之間。The light-emitting diode component of claim 1, further comprising a buffer layer interposed between the conductive layer and the light-emitting diode wafer. 如申請專利範圍第4項所述之發光二極體元件,其中該緩衝層之材料為氮化鈦或氮化鋁。The light-emitting diode element according to claim 4, wherein the buffer layer is made of titanium nitride or aluminum nitride. 如申請專利範圍第1項所述之發光二極體元件,其中該共晶層之材料為一複合結構層或一合金層。The light-emitting diode element according to claim 1, wherein the material of the eutectic layer is a composite structural layer or an alloy layer. 如申請專利範圍第1項所述之發光二極體元件,其中該共晶材料層之材料包含金(Au)、錫(Sn)、鎳(Ni)、鉻(Cr)、鈦(Ti)、鉭(Ta)、鋁(Al)、銦(In)、或其合金其中之一。The light-emitting diode element according to claim 1, wherein the material of the eutectic material layer comprises gold (Au), tin (Sn), nickel (Ni), chromium (Cr), titanium (Ti), One of tantalum (Ta), aluminum (Al), indium (In), or an alloy thereof. 如申請專利範圍第1項所述之發光二極體元件,其中該共晶材料層之厚度小於實質6μm。The light-emitting diode element according to claim 1, wherein the thickness of the eutectic material layer is less than substantially 6 μm. 如申請專利範圍第1項所述之發光二極體元件,其中該導熱金屬層之材料為銅、銅合金、鐵鎳合金(Fe/Ni)、鎳、鎢(W)、鉬(Mo)、或其合金。The light-emitting diode element according to claim 1, wherein the material of the heat conductive metal layer is copper, copper alloy, iron-nickel alloy (Fe/Ni), nickel, tungsten (W), molybdenum (Mo), Or its alloy. 如申請專利範圍第1項所述之發光二極體元件,其中該導熱金屬層之厚度介於實質50μm與實質500μm之間。The illuminating diode component of claim 1, wherein the thickness of the thermally conductive metal layer is between substantially 50 μm and substantially 500 μm. 如申請專利範圍第1項所述之發光二極體元件,其中該導熱金屬層之該第二表面的粗糙度介於實質80與實質1μm之間。The illuminating diode component of claim 1, wherein the second surface of the thermally conductive metal layer has a roughness of substantially 80 Between 1 μm and parenchyma. 如申請專利範圍第1項所述之發光二極體元件,其中該導電層為一複合結構層或一合金層。The light-emitting diode component of claim 1, wherein the conductive layer is a composite structural layer or an alloy layer. 如申請專利範圍第1項所述之發光二極體元件,其中該導電層之材料為氧化銦錫(ITO)、金、銀、鉑(Pt)、鈀、鎳、鉻、鈦、鉭、鋁、銦、鎢、銅、含鎳之合金、含鉻之合金、含鈦之合金、含鉭之合金、含鋁之合金、含銦之合金、含鎢之合金、或含銅之合金。The luminescent diode component of claim 1, wherein the conductive layer is made of indium tin oxide (ITO), gold, silver, platinum (Pt), palladium, nickel, chromium, titanium, tantalum, aluminum. Indium, tungsten, copper, nickel-containing alloys, chromium-containing alloys, titanium-containing alloys, niobium-containing alloys, aluminum-containing alloys, indium-containing alloys, tungsten-containing alloys, or copper-containing alloys. 如申請專利範圍第1項所述之發光二極體元件,其中該導電層之厚度小於實質3μm。The light-emitting diode element according to claim 1, wherein the conductive layer has a thickness of less than substantially 3 μm. 一種發光二極體元件之封裝結構,至少包含:一封裝基座,具有一凹槽;一發光二極體元件,設於該凹槽中,其中該發光二極體元件包含:一導熱金屬層,具有相對之一第一表面與一第二表面,且該導熱金屬層之該第一表面包含一凹陷部;一共晶層,設於該導熱金屬層之該第二表面,且與該凹槽之一底面直接接合;一導電層,覆蓋在該導熱金屬層之該第一表面上;以及一發光二極體晶片,嵌設在該導熱金屬層之該凹陷部中的該導電層上,其中該發光二極體晶片包含具不同電性之一第一電極與一第二電極;一第一外部電極,與該第一電極電性連接;以及一第二外部電極,與該第二電極電性連接。A package structure of a light-emitting diode component, comprising: a package base having a recess; a light-emitting diode component disposed in the recess, wherein the light-emitting diode component comprises: a thermally conductive metal layer Having a first surface and a second surface, and the first surface of the thermally conductive metal layer includes a recess; a eutectic layer disposed on the second surface of the thermally conductive metal layer and the recess One of the bottom surfaces is directly bonded; a conductive layer covering the first surface of the thermally conductive metal layer; and a light emitting diode wafer embedded on the conductive layer in the recess of the thermally conductive metal layer, wherein The LED chip includes a first electrode and a second electrode having different electrical properties; a first external electrode electrically connected to the first electrode; and a second external electrode electrically coupled to the second electrode Sexual connection. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該發光二極體晶片更包含:一基板;以及一發光結構,設於該基板之一表面之一第一部分上,其中該第一電極設於部分之該發光結構上,且該第二電極設於該基板之該表面之一第二部分上。The package structure of the light-emitting diode device of claim 15, wherein the light-emitting diode chip further comprises: a substrate; and a light-emitting structure disposed on the first portion of one of the surfaces of the substrate, The first electrode is disposed on a portion of the light emitting structure, and the second electrode is disposed on a second portion of the surface of the substrate. 如申請專利範圍第16項所述之發光二極體元件之封裝結構,更至少包括二導線分別連接該第一電極與該第一外部電極、以及該第二電極與該第二外部電極。The package structure of the light-emitting diode element according to claim 16, further comprising at least two wires respectively connecting the first electrode and the first external electrode, and the second electrode and the second external electrode. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該發光二極體晶片更包含:一導電基板,設於該第二電極上;以及一發光結構,設於該導電基板上,其中該第一電極設於部分之該發光結構上。The package structure of the light-emitting diode device of claim 15, wherein the light-emitting diode chip further comprises: a conductive substrate disposed on the second electrode; and a light-emitting structure disposed on the conductive On the substrate, the first electrode is disposed on a portion of the light emitting structure. 如申請專利範圍第18項所述之發光二極體元件之封裝結構,更至少包括一導線連接該第一電極與該第一外部電極,其中該第二外部電極位於該凹槽之該底面,且該共晶材料層直接接合在該第二外部電極上。The package structure of the light-emitting diode element according to claim 18, further comprising at least one wire connecting the first electrode and the first external electrode, wherein the second external electrode is located on the bottom surface of the groove, And the layer of eutectic material is directly bonded to the second external electrode. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該發光二極體元件更包含一緩衝層介於該導電層與該發光二極體晶片之間。The package structure of the light-emitting diode element according to claim 15, wherein the light-emitting diode element further comprises a buffer layer interposed between the conductive layer and the light-emitting diode chip. 如申請專利範圍第20項所述之發光二極體元件之封裝結構,其中該緩衝層之材料為氮化鈦或氮化鋁。The package structure of the light-emitting diode element according to claim 20, wherein the buffer layer is made of titanium nitride or aluminum nitride. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該共晶層之材料為一複合結構層或一合金層。The package structure of the light-emitting diode element according to claim 15, wherein the material of the eutectic layer is a composite structure layer or an alloy layer. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該共晶層之材料包含金、錫、鎳、鉻、鈦、鉭、鋁、銦、或其合金其中之一。The package structure of the light-emitting diode element according to claim 15, wherein the material of the eutectic layer comprises one of gold, tin, nickel, chromium, titanium, tantalum, aluminum, indium, or an alloy thereof. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該共晶層之厚度小於實質6μm。The package structure of the light-emitting diode element according to claim 15, wherein the thickness of the eutectic layer is less than substantially 6 μm. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該導熱金屬層之材料為銅、銅合金、鐵鎳合金、鎳、鎢、鉬、或其合金。The package structure of the light-emitting diode element according to claim 15, wherein the material of the heat conductive metal layer is copper, a copper alloy, an iron-nickel alloy, nickel, tungsten, molybdenum, or an alloy thereof. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該導熱金屬層之厚度介於實質50μm與實質500μm之間。The package structure of the light-emitting diode element according to claim 15, wherein the thickness of the heat conductive metal layer is between substantially 50 μm and substantially 500 μm. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該導熱金屬層之該第二表面的粗糙度介於實質80與實質1μm之間。The package structure of the light-emitting diode element according to claim 15, wherein the roughness of the second surface of the heat conductive metal layer is substantially 80 Between 1 μm and parenchyma. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該導電層為一複合結構層或一合金層。The package structure of the light-emitting diode element according to claim 15, wherein the conductive layer is a composite structure layer or an alloy layer. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該導電層之材料為氧化銦錫、金、銀、鉑、鈀、鎳、鉻、鈦、鉭、鋁、銦、鎢、銅、含鎳之合金、含鉻之合金、含鈦之合金、含鉭之合金、含鋁之合金、含銦之合金、含鎢之合金、或含銅之合金。The package structure of the light-emitting diode element according to claim 15, wherein the material of the conductive layer is indium tin oxide, gold, silver, platinum, palladium, nickel, chromium, titanium, tantalum, aluminum, indium, Tungsten, copper, nickel-containing alloys, chromium-containing alloys, titanium-containing alloys, niobium-containing alloys, aluminum-containing alloys, indium-containing alloys, tungsten-containing alloys, or copper-containing alloys. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該導電層之厚度小於實質3μm。The package structure of the light-emitting diode element according to claim 15, wherein the thickness of the conductive layer is less than substantially 3 μm. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,更包含一封裝膠體填入該封裝基座之該凹槽,並覆蓋住該發光二極體元件。The package structure of the LED component of claim 15 further comprising an encapsulant filled in the recess of the package base and covering the LED component. 如申請專利範圍第15項所述之發光二極體元件之封裝結構,其中該第一外部電極與該第二外部電極嵌設在該封裝基座之中。The package structure of the light emitting diode device of claim 15, wherein the first outer electrode and the second outer electrode are embedded in the package base. 一種發光二極體元件之製造方法,至少包含:設置至少一發光二極體晶片於一藍膜上,而使該發光二極體晶片之一表面黏附在該藍膜上;提供一透明暫時基板,其中該透明暫時基板具有相對之一第一表面與一第二表面;形成一光阻層覆蓋該透明暫時基板之該第一表面;將該發光二極體晶片壓設於該光阻層中,其中該發光二極體晶片包含一發光結構、與一第一電極位於該發光結構上,且該發光結構與該第一電極埋設在該光阻層中;移除該藍膜,其中部分之該光阻層殘留在該發光二極體晶片之該表面上;從該透明暫時基板之該第二表面朝該第一表面的方向進行一曝光步驟,其中該光阻層之該殘留部分並未在該曝光步驟中受到曝光;移除該光阻層之該殘留部分,而完全暴露出該發光二極體晶片之該表面;形成一導電層覆蓋於該光阻層與該發光二極體晶片之該表面上;電鍍一導熱金屬層於該導電層上;形成一共晶材料層於該導熱金屬層之一表面上;以及移除該光阻層與該透明暫時基板。A method for manufacturing a light emitting diode device, comprising: disposing at least one light emitting diode chip on a blue film, and adhering one surface of the light emitting diode chip to the blue film; providing a transparent temporary substrate The transparent temporary substrate has a first surface and a second surface opposite to each other; a photoresist layer is formed to cover the first surface of the transparent temporary substrate; and the light emitting diode wafer is pressed into the photoresist layer The light emitting diode chip includes a light emitting structure, and a first electrode is disposed on the light emitting structure, and the light emitting structure and the first electrode are embedded in the photoresist layer; the blue film is removed, and a portion thereof is The photoresist layer remains on the surface of the light emitting diode chip; an exposure step is performed from the second surface of the transparent temporary substrate toward the first surface, wherein the residual portion of the photoresist layer is not Exposing in the exposing step; removing the residual portion of the photoresist layer to completely expose the surface of the LED chip; forming a conductive layer overlying the photoresist layer and the LED chip The upper surface; a thermally conductive metal plating layer on the conductive layer; total crystal material layer formed on one surface of the thermally conductive metal layer; and removing the photoresist layer and the transparent substrate temporarily. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該光阻層之材料為負型光阻。The method of manufacturing a light-emitting diode element according to claim 33, wherein the material of the photoresist layer is a negative photoresist. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該光阻層之厚度大於10μm。The method of manufacturing a light-emitting diode element according to claim 33, wherein the thickness of the photoresist layer is greater than 10 μm. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該發光二極體晶片壓入該光阻層之深度介於實質10μm與實質100μm之間。The method for manufacturing a light-emitting diode element according to claim 33, wherein the light-emitting diode wafer is pressed into the photoresist layer to a depth of between substantially 10 μm and substantially 100 μm. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該發光二極體晶片更包含:一基板,其中該發光結構設於該基板之一表面之一第一部分上;以及一第二電極,設於該基板之該表面之一第二部分上,其中該第二電極與該第一電極具不同電性。The method of manufacturing a light-emitting diode device according to claim 33, wherein the light-emitting diode chip further comprises: a substrate, wherein the light-emitting structure is disposed on a first portion of one surface of the substrate; A second electrode is disposed on a second portion of the surface of the substrate, wherein the second electrode is electrically different from the first electrode. 如申請專利範圍第37項所述之發光二極體元件之製造方法,其中將該發光二極體晶片壓設於該光阻層中的步驟更包含使該第二電極埋設於該光阻層中。The method for manufacturing a light-emitting diode device according to claim 37, wherein the step of pressing the light-emitting diode wafer in the photoresist layer further comprises embedding the second electrode in the photoresist layer. in. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該發光二極體晶片更包含:一第二電極,其中該第二電極與該第一電極具不同電性;以及一導電基板,設於該第二電極上,其中該發光結構設於該導電基板上。The method of manufacturing the illuminating diode device of claim 33, wherein the illuminating diode chip further comprises: a second electrode, wherein the second electrode and the first electrode have different electrical properties; A conductive substrate is disposed on the second electrode, wherein the light emitting structure is disposed on the conductive substrate. 如申請專利範圍第33項所述之發光二極體元件之製造方法,於移除該光阻層之該殘留部分之步驟與形成該導電層之步驟之間,更包含形成一緩衝層覆蓋於該光阻層與該發光二極體晶片之該表面上。The method for manufacturing a light-emitting diode element according to claim 33, further comprising: forming a buffer layer covering the step of removing the residual portion of the photoresist layer and forming the conductive layer The photoresist layer and the surface of the light emitting diode chip. 如申請專利範圍第40項所述之發光二極體元件之製造方法,其中該緩衝層之材料為氮化鈦或氮化鋁。The method for manufacturing a light-emitting diode element according to claim 40, wherein the material of the buffer layer is titanium nitride or aluminum nitride. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中形成該導電層之步驟係利用一蒸鍍法、一濺渡法、或一無電鍍法。The method for manufacturing a light-emitting diode element according to claim 33, wherein the step of forming the conductive layer is performed by an evaporation method, a sputtering method, or an electroless plating method. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該導電層為一複合結構層或一合金層。The method for manufacturing a light-emitting diode element according to claim 33, wherein the conductive layer is a composite structural layer or an alloy layer. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該導電層之材料為氧化銦錫、金、銀、鉑、鈀、鎳、鉻、鈦、鉭、鋁、銦、鎢、銅、含鎳之合金、含鉻之合金、含鈦之合金、含鉭之合金、含鋁之合金、含銦之合金、含鎢之合金、或含銅之合金。The method for manufacturing a light-emitting diode element according to claim 33, wherein the conductive layer is made of indium tin oxide, gold, silver, platinum, palladium, nickel, chromium, titanium, tantalum, aluminum, indium, Tungsten, copper, nickel-containing alloys, chromium-containing alloys, titanium-containing alloys, niobium-containing alloys, aluminum-containing alloys, indium-containing alloys, tungsten-containing alloys, or copper-containing alloys. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該導電層之厚度小於實質3μm。The method of manufacturing a light-emitting diode element according to claim 33, wherein the conductive layer has a thickness of less than substantially 3 μm. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該導熱金屬層之材料為銅、銅合金、鐵鎳合金、鎳、鎢、鉬、或其合金。The method for manufacturing a light-emitting diode element according to claim 33, wherein the material of the heat conductive metal layer is copper, a copper alloy, an iron-nickel alloy, nickel, tungsten, molybdenum, or an alloy thereof. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該導熱金屬層之厚度介於實質50μm與實質500μm之間。The method of manufacturing a light-emitting diode element according to claim 33, wherein the thickness of the heat conductive metal layer is between substantially 50 μm and substantially 500 μm. 如申請專利範圍第33項所述之發光二極體元件之製造方法,於電鍍該導熱金屬層之步驟與形成該共晶材料層之步驟之間,更至少包括對該導熱金屬層之該表面進行一研磨步驟。The method for manufacturing a light-emitting diode element according to claim 33, wherein the step of plating the thermally conductive metal layer and the step of forming the layer of the eutectic material further comprises at least the surface of the thermally conductive metal layer A grinding step is performed. 如申請專利範圍第48項所述之發光二極體元件之製造方法,其中經該研磨步驟後,該導熱金屬層之該表面的粗糙度介於實質80與實質1μm之間。The method for manufacturing a light-emitting diode element according to claim 48, wherein after the grinding step, the surface roughness of the thermally conductive metal layer is substantially 80 Between 1 μm and parenchyma. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中形成該共晶材料層之步驟係利用一蒸鍍法、一濺渡法、一無電鍍法、或一電鍍法。The method for fabricating a light-emitting diode element according to claim 33, wherein the step of forming the eutectic material layer is performed by an evaporation method, a sputtering method, an electroless plating method, or an electroplating method. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該共晶材料層為一複合結構層或一合金層。The method of manufacturing a light-emitting diode element according to claim 33, wherein the eutectic material layer is a composite structural layer or an alloy layer. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該共晶材料層之材料包含金、錫、鎳、鉻、鈦、鉭、鋁、銦、或其合金其中之一。The method for manufacturing a light-emitting diode element according to claim 33, wherein the material of the eutectic material layer comprises one of gold, tin, nickel, chromium, titanium, tantalum, aluminum, indium, or an alloy thereof. . 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中該共晶材料層之厚度小於實質6μm。The method of manufacturing a light-emitting diode element according to claim 33, wherein the thickness of the eutectic material layer is less than substantially 6 μm. 如申請專利範圍第33項所述之發光二極體元件之製造方法,其中移除該光阻層與該透明暫時基板之步驟係利用一剝離(Lift-off)法。The method of manufacturing a light-emitting diode element according to claim 33, wherein the step of removing the photoresist layer and the transparent temporary substrate utilizes a lift-off method. 一種發光二極體元件之封裝結構之製造方法,至少包含:形成一發光二極體元件,至少包括:設置至少一發光二極體晶片於一藍膜上,而使該發光二極體晶片之一表面黏附在該藍膜上;提供一透明暫時基板,其中該透明暫時基板具有相對之一第一表面與一第二表面;形成一光阻層覆蓋該透明暫時基板之該第一表面;將該發光二極體晶片壓設於該光阻層中,其中該發光二極體晶片包含一發光結構、一第一電極位於該發光結構上、與一第二電極,該第二電極與該第一電極具不同電性,且該發光結構與該第一電極埋設在該光阻層中;移除該藍膜,其中部分之該光阻層殘留在該發光二極體晶片之該表面上;從該透明暫時基板之該第二表面朝該第一表面的方向進行一曝光步驟,其中該光阻層之該殘留部分並未在該曝光步驟中受到曝光;移除該光阻層之該殘留部分,而完全暴露出該發光二極體晶片之該表面;形成一導電層覆蓋於該光阻層與該發光二極體晶片之該表面上;電鍍一導熱金屬層於該導電層上;形成一共晶材料層於該導熱金屬層之一表面上;以及移除該光阻層與該透明暫時基板;提供一封裝基座,其中該封裝基座具有一凹槽;將該發光二極體晶片設置於該凹槽中,並使該共晶材料層與該凹槽之一底面直接接合;以及電性連接該第一電極與一第一外部電極、以及該第二電極與一第二外部電極。A method for manufacturing a package structure of a light-emitting diode component, comprising: forming a light-emitting diode component, at least comprising: disposing at least one light-emitting diode chip on a blue film, and causing the light-emitting diode chip to a surface is adhered to the blue film; a transparent temporary substrate is provided, wherein the transparent temporary substrate has a first surface and a second surface; and a photoresist layer is formed to cover the first surface of the transparent temporary substrate; The light emitting diode chip is pressed into the photoresist layer, wherein the light emitting diode chip comprises a light emitting structure, a first electrode is located on the light emitting structure, and a second electrode, the second electrode and the first electrode An electrode has different electrical properties, and the light emitting structure and the first electrode are embedded in the photoresist layer; the blue film is removed, and a portion of the photoresist layer remains on the surface of the LED chip; And exposing an exposure step from the second surface of the transparent temporary substrate toward the first surface, wherein the remaining portion of the photoresist layer is not exposed in the exposing step; removing the residue of the photoresist layer And completely exposing the surface of the light-emitting diode wafer; forming a conductive layer covering the photoresist layer and the surface of the light-emitting diode wafer; plating a thermal conductive metal layer on the conductive layer; forming a eutectic material layer on one surface of the thermally conductive metal layer; and removing the photoresist layer and the transparent temporary substrate; providing a package pedestal, wherein the package pedestal has a recess; the illuminating diode chip Provided in the recess, and directly bonding the eutectic material layer to a bottom surface of the recess; and electrically connecting the first electrode and a first external electrode, and the second electrode and a second external electrode . 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該光阻層之材料為負型光阻。The method of manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the material of the photoresist layer is a negative photoresist. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該光阻層之厚度大於10μm。The method of fabricating a package structure for a light-emitting diode element according to claim 55, wherein the photoresist layer has a thickness greater than 10 μm. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該發光二極體晶片壓入該光阻層之深度介於實質10μm與實質100μm之間。The method of manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the light-emitting diode wafer is pressed into the photoresist layer to a depth of between substantially 10 μm and substantially 100 μm. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該發光二極體晶片更包含:一反射層;以及一基板,設於該反射層上,其中該發光結構設於該基板之一表面之一第一部分上,且該第二電極設於該基板之該表面之一第二部分上。The method of manufacturing a package structure for a light-emitting diode device according to claim 55, wherein the light-emitting diode chip further comprises: a reflective layer; and a substrate disposed on the reflective layer, wherein the light-emitting layer The structure is disposed on a first portion of one surface of the substrate, and the second electrode is disposed on a second portion of the surface of the substrate. 如申請專利範圍第59項所述之發光二極體元件之封裝結構之製造方法,其中將該發光二極體晶片壓設於該光阻層中的步驟更包含使該第二電極埋設於該光阻層中。The method of manufacturing a package structure for a light-emitting diode device according to claim 59, wherein the step of pressing the light-emitting diode chip in the photoresist layer further comprises embedding the second electrode in the In the photoresist layer. 如申請專利範圍第59項所述之發光二極體元件之封裝結構之製造方法,其中電性連接該第一電極與一第一外部電極、以及該第二電極與一第二外部電極之步驟係利用二導線。The method for manufacturing a package structure of a light-emitting diode device according to claim 59, wherein the step of electrically connecting the first electrode and a first external electrode, and the second electrode and a second external electrode The system utilizes two wires. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該發光二極體晶片更包含:一導電基板,設於該第二電極上;以及一發光結構,設於該導電基板上,其中該第一電極設於部分之該發光結構上。The method of manufacturing a package structure for a light-emitting diode device according to claim 55, wherein the light-emitting diode chip further comprises: a conductive substrate disposed on the second electrode; and a light-emitting structure On the conductive substrate, the first electrode is disposed on a portion of the light emitting structure. 如申請專利範圍第62項所述之發光二極體元件之封裝結構之製造方法,其中電性連接該第一電極與一第一外部電極時係利用一導線,且該第二外部電極位於該凹槽之該底面,該共晶材料層與該第二外部電極直接接合。The method of manufacturing a package structure for a light-emitting diode device according to claim 62, wherein electrically connecting the first electrode and a first external electrode utilizes a wire, and the second external electrode is located The bottom surface of the recess, the eutectic material layer is directly bonded to the second external electrode. 如申請專利範圍第63項所述之發光二極體元件之封裝結構之製造方法,其中該共晶材料層與該第二外部電極之接合係利用一紅外線加熱法、一爐管加熱法或一快速熱退火法。The method for manufacturing a package structure of a light-emitting diode element according to claim 63, wherein the bonding of the eutectic material layer and the second external electrode is performed by an infrared heating method, a furnace tube heating method or a Rapid thermal annealing. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中於移除該光阻層之該殘留部分之步驟與形成該導電層之步驟之間,形成該發光二極體元件之步驟更包含形成一緩衝層覆蓋於該光阻層與該發光二極體晶片之該表面上。The method of fabricating a package structure for a light-emitting diode element according to claim 55, wherein the step of forming the conductive layer is performed between the step of removing the residual portion of the photoresist layer and the step of forming the conductive layer The step of the polar body component further includes forming a buffer layer overlying the photoresist layer and the surface of the light emitting diode chip. 如申請專利範圍第65項所述之發光二極體元件之封裝結構之製造方法,其中該緩衝層之材料為氮化鈦或氮化鋁。The method of manufacturing a package structure for a light-emitting diode element according to claim 65, wherein the material of the buffer layer is titanium nitride or aluminum nitride. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中形成該導電層之步驟係利用一蒸鍍法、一濺渡法、或一無電鍍法。The method for fabricating a package structure for a light-emitting diode element according to claim 55, wherein the step of forming the conductive layer is performed by an evaporation method, a sputtering method, or an electroless plating method. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該導電層為一複合結構層或一合金層。The method of manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the conductive layer is a composite structure layer or an alloy layer. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該導電層之材料為氧化銦錫、金、銀、鉑、鈀、鎳、鉻、鈦、鉭、鋁、銦、鎢、銅、含鎳之合金、含鉻之合金、含鈦之合金、含鉭之合金、含鋁之合金、含銦之合金、含鎢之合金、或含銅之合金。The manufacturing method of the package structure of the light-emitting diode element according to claim 55, wherein the material of the conductive layer is indium tin oxide, gold, silver, platinum, palladium, nickel, chromium, titanium, tantalum, aluminum. Indium, tungsten, copper, nickel-containing alloys, chromium-containing alloys, titanium-containing alloys, niobium-containing alloys, aluminum-containing alloys, indium-containing alloys, tungsten-containing alloys, or copper-containing alloys. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該導電層之厚度小於實質3μm。The method of manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the thickness of the conductive layer is less than substantially 3 μm. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該導熱金屬層之材料為銅、銅合金、鐵鎳合金、鎳、鎢、鉬、或其合金。The method for manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the material of the heat conductive metal layer is copper, a copper alloy, an iron-nickel alloy, nickel, tungsten, molybdenum, or an alloy thereof. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該導熱金屬層之厚度介於實質50μm與實質500μm之間。The method of manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the thickness of the heat conductive metal layer is between substantially 50 μm and substantially 500 μm. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中於電鍍該導熱金屬層之步驟與形成該共晶材料層之步驟之間,形成該發光二極體元件之步驟更至少包括對該導熱金屬層之該表面進行一研磨步驟。The method of fabricating a package structure for a light-emitting diode element according to claim 55, wherein the step of forming the thermally conductive metal layer and the step of forming the layer of the eutectic material form the light-emitting diode element The step further includes at least a step of grinding the surface of the thermally conductive metal layer. 如申請專利範圍第73項所述之發光二極體元件之封裝結構之製造方法,其中經該研磨步驟後,該導熱金屬層之該表面的粗糙度介於實質80與實質1μm之間。The manufacturing method of the package structure of the light-emitting diode element according to claim 73, wherein the surface roughness of the heat conductive metal layer is substantially 80 after the grinding step Between 1 μm and parenchyma. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中形成該共晶材料層之步驟係利用一蒸鍍法、一濺渡法、一無電鍍法、或一電鍍法。The method for manufacturing a package structure of a light-emitting diode element according to claim 55, wherein the step of forming the eutectic material layer is performed by a vapor deposition method, a sputtering method, an electroless plating method, or a Electroplating method. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該共晶材料層為一複合結構層或一合金層。The method for fabricating a package structure for a light-emitting diode element according to claim 55, wherein the eutectic material layer is a composite structure layer or an alloy layer. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該共晶材料層之材料包含金、錫、鎳、鉻、鈦、鉭、鋁、銦、或其合金其中之一。The method for manufacturing a package structure of a light-emitting diode element according to claim 55, wherein the material of the eutectic material layer comprises gold, tin, nickel, chromium, titanium, tantalum, aluminum, indium, or an alloy thereof one of them. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該共晶材料層之厚度小於實質6μm。The method of fabricating a package structure for a light-emitting diode element according to claim 55, wherein the thickness of the eutectic material layer is less than substantially 6 μm. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中移除該光阻層與該透明暫時基板之步驟係利用一剝離法。The method of manufacturing a package structure for a light-emitting diode element according to claim 55, wherein the step of removing the photoresist layer and the transparent temporary substrate utilizes a lift-off method. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,於電性連接該第一電極與一第一外部電極、以及該第二電極與一第二外部電極之步驟後,更包含形成一封裝膠體填入該封裝基座之該凹槽,並覆蓋住該發光二極體元件。The method for manufacturing a package structure of a light-emitting diode device according to claim 55, wherein the step of electrically connecting the first electrode and a first external electrode, and the second electrode and a second external electrode Thereafter, the method further comprises forming a package colloid filling the recess of the package base and covering the LED component. 如申請專利範圍第55項所述之發光二極體元件之封裝結構之製造方法,其中該第一外部電極與該第二外部電極嵌設在該封裝基座之中。The method of fabricating a package structure for a light-emitting diode element according to claim 55, wherein the first external electrode and the second external electrode are embedded in the package base.
TW98100536A 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof TWI397200B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98100536A TWI397200B (en) 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98100536A TWI397200B (en) 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201027790A TW201027790A (en) 2010-07-16
TWI397200B true TWI397200B (en) 2013-05-21

Family

ID=44853301

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98100536A TWI397200B (en) 2009-01-08 2009-01-08 Light-emitting diode device, and package structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI397200B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422079B (en) * 2010-09-07 2014-01-01 Univ Kun Shan Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device
TWI488342B (en) * 2012-07-18 2015-06-11 華夏光股份有限公司 Semiconductor light emitting device and manufacturing method thereof
CN103579469A (en) * 2012-07-18 2014-02-12 华夏光股份有限公司 Semiconductor light-emitting device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096114A1 (en) * 2005-09-27 2007-05-03 Nichia Corporation Light emitting apparatus
US20070170563A1 (en) * 2006-01-26 2007-07-26 Chien Chung Chen Light emitting module and process thereof
TWM342620U (en) * 2008-04-11 2008-10-11 Int Semiconductor Tech Ltd Light emitting diode package structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096114A1 (en) * 2005-09-27 2007-05-03 Nichia Corporation Light emitting apparatus
US20070170563A1 (en) * 2006-01-26 2007-07-26 Chien Chung Chen Light emitting module and process thereof
TW200729539A (en) * 2006-01-26 2007-08-01 Litmx Inc Making method for the circuit board of separated light emitting diode
TWM342620U (en) * 2008-04-11 2008-10-11 Int Semiconductor Tech Ltd Light emitting diode package structure

Also Published As

Publication number Publication date
TW201027790A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
US7179670B2 (en) Flip-chip light emitting diode device without sub-mount
TW563262B (en) Light emitting diodes including modifications for submount bonding and manufacturing methods therefor
JP4655029B2 (en) Light emitting device and method for manufacturing semiconductor light emitting element
JP5693375B2 (en) Semiconductor light emitting device
CN100347866C (en) Light emitting diodes including barrier layers/sublayers and manufacturing methods therefor
TWI300277B (en) Method for manufacturing gallium nitride light emitting diode devices
TWI297537B (en) Embedded metal heat sink for semiconductor device and method for manufacturing the same
JP5148647B2 (en) Semiconductor light emitting device, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device
TW201526280A (en) LED and light emitting device
JP6367175B2 (en) Semiconductor light emitting device
JP6384202B2 (en) Method for manufacturing light emitting device
WO2008039573A1 (en) Vertical led with eutectic layer
TWI305960B (en) Light emitting diode and method manufacturing the same
US20080057603A1 (en) Light Emitting Diode and Method of Making the Same
JP4409560B2 (en) Manufacturing method of heat sink of semiconductor element
JPWO2014097642A1 (en) Electronic component package and manufacturing method thereof
TWI397200B (en) Light-emitting diode device, and package structure and manufacturing method thereof
JP6854715B2 (en) Manufacturing method of light emitting device
TW201225227A (en) Method for manufacturing heat dissipation bulk of semiconductor device
TWI483419B (en) Light-emitting diode and method for manufacturing the same
TWI312564B (en) Method for manufacturing semiconductor device
TWI424594B (en) Light-emitting diode device and method for manufacturing the same
WO2016186667A1 (en) Led module and related fabrication methods
TWI447933B (en) Vertical led with eutectic layer
TWI419362B (en) High luminous efficiency solid state light emitting element and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees