TWI362122B - Light-emitting diode package structure and method for manufacturing the same - Google Patents

Light-emitting diode package structure and method for manufacturing the same Download PDF

Info

Publication number
TWI362122B
TWI362122B TW96138017A TW96138017A TWI362122B TW I362122 B TWI362122 B TW I362122B TW 96138017 A TW96138017 A TW 96138017A TW 96138017 A TW96138017 A TW 96138017A TW I362122 B TWI362122 B TW I362122B
Authority
TW
Taiwan
Prior art keywords
emitting diode
layer
light
light emitting
electrode
Prior art date
Application number
TW96138017A
Other languages
Chinese (zh)
Other versions
TW200917524A (en
Inventor
Kuo Yuin Li
Yankuin Su
Kuanqun Chen
Chunliang Lin
Original Assignee
Chi Mei Lighting Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Lighting Tech Corp filed Critical Chi Mei Lighting Tech Corp
Priority to TW96138017A priority Critical patent/TWI362122B/en
Publication of TW200917524A publication Critical patent/TW200917524A/en
Application granted granted Critical
Publication of TWI362122B publication Critical patent/TWI362122B/en

Links

Description

1362122 九、發明說明 【發明所屬之技術領域】 • 本發明是有關於一種發光二极轴,T.U . .. 極體(Light-emitting DI〇de,· led)封裝結構及其製造方法 • 次且特別是有關於一種 .具有❹熱效能之發光二極體封裝結構及其製造方法。 【先前技術】 赢/對於高功率發光二極體元件而言,如何在其運轉期間迅 參速散熱,以解決元件溫度快速上升'而影響之操作品質'甚 而燒毀元件的問題,為元件運用上相當重要的課題。目前, 種改善發光二極體兀件之散熱問題的方式係朝提升發光 二極體晶粒本身之散熱能力的方向著手,在此攆方式中,係 利用晶片鍵合技術,先將原生之低導熱且不透光基板取下, 再以高散熱且透明之基板取代。 另一種改善發光二極體元件之散熱問題的方式係朝封 裝架構的方向著手。其中一種常見方法係以銲錫或高導熱樹 •脂取代傳統之低導熱樹脂’來固定發光二極體晶粒於金屬基 板或金屬導熱架上。然而,銲錫或高導熱樹脂之熱傳導係數 . 遠小於金屬,而仍無法滿足高功率發光二極體元件之散熱需 求。 另一種方法則係直接在發光二極體晶粒下製作金屬美 板或金屬導熱架,以取代一般利用低導熱樹脂、銲錫或高導 熱树脂來黏合發光二極體晶粒與金屬基板或金屬導熱竿的 技術。然而,金屬基板或金屬導熱架與封裝膠體之間無法達 到穩定且可靠的接合效果,而相當容易引發封裝膠體剝離的 6 1362122 問題。 又一種方法則係直接以金屬核心印刷電路板(metal .core PCB)來取代傳統之玻纖環氧印刷電路板(FR4 PCB),但 金屬核心印刷電路板t二金屬層之間的介電層的熱傳導率 •不佳’因此對於發光二極體封裝結構之散熱能力的提升相當 有限。 因此,隨著市場對高功率發光二極體元件之需求的曰益 提高’虽需一種可製作出具有高散熱效能之發光二極體封裝 鲁結構的技術。 【發明内容】 因此,本發明之目的就是在提供一種發光二極體封裝結 構,其可利用電鍍技術直接在發光二極體晶粒底面形成金屬 基板,因此發光二極體晶粒與金屬基板之間並無黏著樹脂的 存在,而可大幅提升發光二極體封裝結構之散熱性。 之喪』^ 8月之另—目的是在提供—種發光二極體封裝結構 方法,其在金屬基板之表面上設有陶瓷層,由於陶瓷 層與封裝膠體之間具有較 之接人有較大之接&力,因此可提高封裝膠體 定性進而可增進發光二極體封裝結構之良率與穩 構,至:包本括發:之上述目的,提出-種發光二極體封裝結 -陶究層:於:属金屬基板;一金屬黏著層設於金屬基板上; 對之第-側盥第f著層上;至少—發光二極體晶粒具有相 側與第二側,1 一 嵌設於陶究岸之—矣/、 發先二極體晶粒之第一側 曰. 面中’至少一電極墊設於陶瓷層之前述 7 1362122 至v-導線對應電性連接在至p發光二極體 弟二側上之一第一電極與至少一電極墊之間:以及一封裝膠 體包覆在至少一發光二極體晶粒、至少—導線、至少—電極 墊之至夕彳分、以及陶瓷層之前述表面之至少一部分上。 依照本發明一較佳實施例,前述之陶究層之材料係選自 於由氮化鋁與氧化鋁所組成之一族群。 根據本發明之目的,提出一種發光二極體封裝結構之製 也方法,至少包括:提供一暫時基板,其中暫時基板之一表 面上覆設有一高分子聚合物黏貼層;設置至少一發光二極體 晶粒於高分子聚合物黏貼層中,其中至少一發光二極體晶粒 具有相對之第一側與第二側,且至少一發光二極體之第二侧 嵌=於间分子聚合物黏貼層中;形成一陶瓷層覆蓋在至少一 發光二極體晶粒與高分子聚合物黏貼層上,以使至少一發光 二極體晶粒之第一側嵌設在陶瓷層之一表面中;形成一金屬 黏著層覆蓋在陶究層上;電錢—金屬基板於金屬黏著層上; 移除同分子聚合物黏貼層與暫時基板;設置至少一電極墊 於陶瓷層之前述表面;形成至少一導線電性連接在至少一發 光一極體晶粒之第二側上之第一電極與至少一電極墊之 間;以及形成一封裝膠體包覆在至少一發光二極體晶粒、至 少一導線、至少一電極墊之至少一部A、以及陶兗層之前述 表面之至少一部分上。 依照本發明一較佳實施例,上述設置至少—電極墊之步 驟至少包括利用至少一黏著層,以對應將至少一電極墊黏設 在陶瓷層之上述表面上。 根據本發明之另—目的,提出一種發光二極體封裝結構 8 IJ02I22 之製&方法,至少包括:提供一暫時基板,其中暫時基板之 表面上覆設有一尚分子聚合物黏貼層;設置至少一發光二 ·..極體a曰粒與至少一電極墊於高分子聚合物黏貼層上,其中至 .^發光—極體晶粒與至少一電極墊均具有相對之第一側 、弟侧且至;一發光二極體之第二側與至少一電極墊之 第二側均嵌設於高分子聚合物黏貼層中;形成一陶瓷層覆蓋 在至乂 一發光一極體晶粒、至少一電極墊與高分子聚合物黏 貼層上’以使至少一發光二極體晶粒之第一側與至少一電極 二之第:側嵌設在陶瓷層之一表面中;形成一金屬黏著層覆 盖在陶变層上·’電鑛—金屬基板於金屬黏著層上;移除高分 子聚合物黏貼層與暫時基板;形成至少—導線電性連接在至 少-發光二極體晶粒之第二側上之第—電極與至少一電極 墊之第二側之間;以及形成一封裝膠體包覆在少一 極體晶粒、至少一導線、至少—電極執々復在乂發先— ^ 冤極墊之至少一部分、以及 陶究層之表面之至少一部分上。 依照本發明一較佳實施例’上述之高分子聚合物黏貼層 w 係一雙面膠帶。 【實施方式】 本發明揭露一種發光二極體封裝处 衣、、·。構及其製造方法。為 了使本發明之敘述更加詳盡與完備, j翏照下列描述並配合 第1圖至第16圖之圖式。 請參照第1圖至第8圖,其係繪示依照本發明一較 施例的一種發光二極體封裝結構之贺 胃 成程剖面圖,其中的第 2A圖係繪示一種發光二極體晶粒型式 、1362122 IX. Description of the Invention [Technical Fields of the Invention] The present invention relates to a light-emitting diode, a TU.. (Light-emitting DI〇de, · led) package structure and a manufacturing method thereof. In particular, there is a light-emitting diode package structure having a thermal efficiency and a method of manufacturing the same. [Prior Art] Win/For high-power LED components, how to quickly dissipate heat during their operation to solve the problem of rapid rise in component temperature and affect the quality of the component, even burning components. A very important topic. At present, the way to improve the heat dissipation problem of the light-emitting diode element is to improve the heat dissipation capability of the light-emitting diode die itself. In this way, the wafer bonding technique is used to firstly lower the originality. The thermally conductive and opaque substrate is removed and replaced with a highly heat-dissipating and transparent substrate. Another way to improve the heat dissipation problem of the LED components is toward the direction of the package architecture. One of the common methods is to replace the conventional low thermal conductivity resin with solder or high thermal conductivity resin to fix the LED die on a metal substrate or metal thermal shelf. However, the thermal conductivity of solder or high thermal conductivity resin is much smaller than that of metal, and it still cannot meet the heat dissipation requirements of high power LED components. Another method is to directly fabricate a metal plate or a metal heat-conducting frame under the light-emitting diode die instead of generally using a low-heat-conducting resin, solder or a highly thermally conductive resin to bond the light-emitting diode die to the metal substrate or metal heat conduction. Awkward technology. However, a stable and reliable bonding effect between the metal substrate or the metal heat-conducting frame and the encapsulant is not achieved, and the problem of the colloid peeling of the encapsulant is quite easy. Another method is to replace the traditional glass fiber epoxy printed circuit board (FR4 PCB) directly with a metal core printed circuit board (metal.core PCB), but the dielectric layer between the metal layers of the metal core printed circuit board The thermal conductivity is poor. Therefore, the improvement in the heat dissipation capability of the LED package structure is rather limited. Therefore, as the market's demand for high-power light-emitting diode components is increased, it is required to produce a light-emitting diode package structure having high heat dissipation performance. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light emitting diode package structure that can directly form a metal substrate on a bottom surface of a light emitting diode die by using an electroplating technique, thereby illuminating a diode die and a metal substrate. There is no adhesive resin between them, which can greatly improve the heat dissipation of the LED package structure. The mourning" ^ Another in August - the purpose is to provide a method of light-emitting diode package structure, which is provided with a ceramic layer on the surface of the metal substrate, because the ceramic layer and the encapsulant have a better connection The connection between the large and the amp; can improve the encapsulation colloid characterization and thus improve the yield and stability of the illuminating diode package structure, to: the above purpose: to propose a kind of luminescent diode package junction - The ceramic layer is: a metal substrate; a metal adhesive layer is disposed on the metal substrate; on the first side of the f-layer; at least - the light-emitting diode has a phase side and a second side, 1 Embedded in the shore of the pottery bank - 矣 /, the first side of the first diode 曰. In the surface of the at least one electrode pad is placed in the ceramic layer of the above 7 1362122 to v- wire correspondingly electrically connected to p Between the first electrode and the at least one electrode pad on the two sides of the light-emitting diode: and an encapsulant coated on at least one of the light-emitting diode dies, at least the wire, and at least the electrode pad And at least a portion of the aforementioned surface of the ceramic layer. According to a preferred embodiment of the present invention, the material of the ceramic layer is selected from the group consisting of aluminum nitride and aluminum oxide. According to an object of the present invention, a method for fabricating a light emitting diode package structure includes at least providing a temporary substrate, wherein a surface of one of the temporary substrates is covered with a polymer adhesive layer; and at least one light emitting diode is disposed The bulk crystal grains are in the high molecular polymer adhesive layer, wherein at least one of the light emitting diode crystal grains has a first side and a second side opposite to each other, and the second side of the at least one light emitting diode is embedded in the intermediate molecular polymer Forming a ceramic layer over the at least one light-emitting diode die and the polymer adhesive layer, so that the first side of the at least one light-emitting diode die is embedded in one surface of the ceramic layer Forming a metal adhesive layer covering the ceramic layer; the electric money-metal substrate on the metal adhesive layer; removing the same molecular polymer adhesive layer and the temporary substrate; and providing at least one electrode pad on the aforementioned surface of the ceramic layer; forming at least a wire electrically connected between the first electrode and the at least one electrode pad on the second side of the at least one light emitting body die; and forming an encapsulant coated on the at least one light emitting diode crystal , At least one wire, at least one of the at least one electrode pad A, and the surface of the ceramic layers on at least a portion Yan. In accordance with a preferred embodiment of the present invention, the step of arranging at least the electrode pads includes at least one adhesive layer for adhering at least one of the electrode pads to the surface of the ceramic layer. According to another aspect of the present invention, a method for manufacturing a light emitting diode package structure 8 IJ02I22 includes at least: providing a temporary substrate, wherein a surface of the temporary substrate is covered with a molecular polymer adhesive layer; a light-emitting two-.. polar body a particle and at least one electrode pad on the polymer adhesive layer, wherein the light-polar body grain and the at least one electrode pad have opposite first side, the young side And a second side of the light emitting diode and a second side of the at least one electrode pad are embedded in the polymer adhesive layer; forming a ceramic layer covering the first light emitting body, at least An electrode pad and a polymer adhesive layer are disposed such that a first side of the at least one light emitting diode die and a first side of the at least one electrode are embedded in a surface of the ceramic layer; forming a metal adhesive layer Covering the pottery layer · 'Electrical-metal substrate on the metal adhesion layer; removing the polymer adhesive layer and the temporary substrate; forming at least - the wire is electrically connected to at least the second of the LED die The first electrode on the side Between the second sides of the at least one electrode pad; and forming an encapsulant coated on at least a portion of the first die, at least one wire, at least one of the electrodes, at least a portion of the first pad, and At least part of the surface of the pottery layer. According to a preferred embodiment of the present invention, the above polymer adhesive layer w is a double-sided tape. [Embodiment] The present invention discloses a light-emitting diode package, . Structure and its manufacturing method. In order to make the description of the present invention more detailed and complete, reference is made to the following description in conjunction with the drawings of Figures 1 through 16. Please refer to FIG. 1 to FIG. 8 , which are cross-sectional views showing a light-emitting diode package structure according to a preferred embodiment of the present invention, wherein FIG. 2A shows a light-emitting diode. Grain pattern,

式的剖面示意圖,第2B 9 係繪示另一種發4: _ i也Schematic diagram of the section, the 2B 9 series shows another type of hair 4: _ i also

一極體晶粒型式的剖面示意圖,第 圖則係繪示第2A圖盥 向弟2C 中,製作發光二極體封㈣n範實施例 於暫時基㈣。之=2结構:’先提供暫時基板,並 表面102上覆蓋一層具有黏性之高分 合物黏貼層104,釦货,门 如第1圖所示。在一實施例尹,高分子 合物黏貝占層104可為—雔而政盤社卞# ^ 巧雙面膠帶。接下來,提供一或多個發 光一極體晶粒,例如笛1 A jgj & _ 如第2Α圖所不之水平導通型的發光二極 體晶粒106a、或者箆A schematic cross-sectional view of a one-pole crystal pattern, the second drawing is shown in Figure 2A, in the 2C, to produce a light-emitting diode package (four) n-fan embodiment in the temporary base (four). = 2 structure: 'The temporary substrate is provided first, and the surface 102 is covered with a viscous high-component adhesive layer 104, and the door is buckled as shown in Fig. 1. In one embodiment, Yin, the polymer compound occupant layer 104 can be - 雔 and Zheng Pan She 卞 # ^ Qiao double-sided tape. Next, one or more light-emitting diode crystal grains are provided, such as a flute 1 A jgj & _ a horizontally-conducting light-emitting diode die 106a as shown in Fig. 2, or 箆

在弟2B圖所不之垂直導通型的發光二極體 晶粒 106b,其中窃 r光一極體日曰粒i〇6a與發光二極體晶粒 雜分別具有相對之第一側110&與108a、以及相對之第— 側ll〇b與108b。並將發光二極體晶粒1〇6&或i〇6b設置在 高分子聚合物|纟貼層104中,而使發光二極體晶粒1〇以之 第一側108a、或發光二極體晶粒丨〇6b之第二側1 〇朴嵌設 在高分子聚合物黏貼層104中,並使發光二極體晶粒1〇以 之第一側110a或發光二極體晶粒l〇6b之第一側1][〇b暴露 出,如第2 C圖之上視圖所示。如第2 a圖所示之實施例, 水平導通型的發光二極體晶粒l〇6a至少包括具有不同電性 之二電極112a與114a,例如一者為ρ型電極且另—者為N 塑電極,其中此二電極Ii2a與I14a均同位於發光二極體晶 粒106a之第二侧108a上,且這些電極ii2a與U4a均埋設 在高分子聚合物黏貼層104之中。另一方面,如第2B圖所 示之實施例’垂直導通型的發光二極體晶粒1 〇6b至少包括 一電極112b,其中此電極112b位於發光二極體晶粒丨〇6b 之第二側108b上’且電極112b埋設在面分子聚合物黏貼層 104之中。在另一實施例中,垂直導通型的發光二極體晶粒 10 1362122 可:括具不同電性之二電極,且這些電極分別位於發光二極 粒之相對二側,如第2B圖所示之發光二極體晶粒⑺补 :—側108b與第一側UOb。以下製程以水平導通型之發 光二椏體晶粒106a作為舉例說明。 接著’利用例如沉積方式形成陶瓷層U6覆蓋在發光二 極體阳粒l〇6a與高分子聚合物黏貼層刚上。由於發光二 極體阳粒106a之第-側I1Ga突出於高分子聚合物點貼層In the vertical conduction type light-emitting diode die 106b, which is not shown in FIG. 2B, the thief light-polar one-day solar cell 〇6a and the light-emitting diode die have opposite first sides 110& and 108a, respectively. And relative to the first side ll 〇 b and 108 b. And the light-emitting diode crystal 1〇6& or i〇6b is disposed in the high-molecular polymer layer 104, and the first side 108a or the light-emitting diode of the light-emitting diode die The second side 1 of the bulk crystal crucible 6b is embedded in the polymer adhesive layer 104, and the first side 110a or the light emitting diode crystal grain of the light emitting diode is 1〇 The first side of 6b is 1][〇b exposed, as shown in the top view of Figure 2C. As shown in the embodiment shown in FIG. 2a, the horizontally-conducting light-emitting diode lens 16a includes at least two electrodes 112a and 114a having different electrical properties, for example, one is a p-type electrode and the other is N. The plastic electrode, wherein the two electrodes Ii2a and I14a are located on the second side 108a of the LED die 106a, and the electrodes ii2a and U4a are embedded in the polymer adhesive layer 104. On the other hand, as shown in FIG. 2B, the 'vertical conduction type light-emitting diode die 1 〇 6b includes at least one electrode 112b, wherein the electrode 112b is located at the second of the light-emitting diode die 6b. The side 108b is 'and the electrode 112b is embedded in the surface molecular polymer adhesive layer 104. In another embodiment, the vertically conductive LED die 10 1362122 can include two electrodes having different electrical properties, and the electrodes are respectively located on opposite sides of the LED, as shown in FIG. 2B. The light-emitting diode die (7) complements: the side 108b and the first side UOb. The following process is exemplified by a horizontally-on type of light-emitting diode body film 106a. Next, a ceramic layer U6 is formed by, for example, deposition to cover the light-emitting diode positive particles l6a and the high-molecular polymer adhesive layer. Since the first side of the light-emitting diode cation 106a protrudes from the polymer polymer dot layer

1〇4 ^面,因此當陶变層116形成後,發光二極體晶粒购 之第一側UOa可嵌設在陶£層116與發光二極體晶粒_ 接口的表面118中’如第3圖所示。在—實施例卜陶竞層 之材料可選自於由氮化紹(A1N)與氧化铭⑷㈣所组成 之-族群。由於陶究層116具有極佳之導熱性,因此陶究層 1 一 Μ直接形成在發光二極體晶粒1()6&之底面上,可將發光 -極體晶粒106a運轉時所產生之熱迅速傳導而出,而可快 速降低發光二極體晶粒丨06a之操作溫度。 …如第4圖所示’待陶究層116形成後,利用例如沉積方 式形成金屬黏著層120覆蓋在陶瓷層116上,以利後續形成 之金屬基板m(請先參照第5圖)能順利成長且穩固接合於 陶£層116之上。金屬黏著層12〇可包括依序堆疊在陶竟層 116上之鎮層、銀層與金層,亦即金屬黏著層120可包括一 鎳層/銀層/金層結構。 -接著,利用例如電鍍方式形成金屬基板122覆蓋在金屬 黏著層120上’而形成如第5圖所示之結構。在一實施例令, 金屬基板122之材料可選自於由銅與銅合金所組成之一族 ^在另一實施例中’金屬基板I”之材料可選自於由錦與 1362122 鎳合金所以之-料4於發光二極體晶粒⑽a之底面 係直接與導熱性佳之陶瓷層116接合,而陶瓷I ιΐ6之底面 又依序接合有高導熱性之金屬黏著層12〇與金屬基板122, 因此發光二極體晶粒106a所產生之熱可經由陶瓷層116、 金屬钻著層120與金屬基板122而迅速傳導出。 /寺金屬基板12 2形成後,可利用有機溶劑,例如丙酮, 高分子聚合物黏貼層104’藉以使暫時基板⑽與發 極體晶粒106a及發光二極體晶粒106&所設的金屬基板 ^刀開同分子聚合物黏貼層丨〇4與暫時基板1〇〇移除 後,暴露出發光二極體晶粒1〇6a之第二側Mb、設於第二 側1〇8a上之電極U2a與114a、以及陶瓷層116之表面118, 如第6圖所示。 。月參照第7圖,由於發光二極體晶粒1〇6&之二電極 112a,U4a均位於發光二極體晶粒1〇6&之第二側1〇8&, _匕提仏一電極墊128,以分別對應電極llh與114^在 丁範實鉍例中,這些電極墊128可透過黏著層130而貼附 陶瓷層116之暴露表面118上,其中黏著層13〇之材料可 】如為%氧樹脂。在—實施例中,每個電極墊至少包括 序隹且在陶瓷層116之表面118上之氧化鋁層124以及金 屬層 12 6,宜》Φ μ /、Τ金屬層丨26之材料可為金,而氧化鋁層124 ^ 藍寶石板’亦即電極墊128可為鍍有金之藍寶石板。 13著利用例如打線接合(Wire Bonding)方式形成二導線 32以分別電性連接這些電極墊128之金屬層126與位於 务先—極體晶粒1()6&之第:側lG8a上之對應電極U2a及 如第7圈所示。在另一實施例中,當發光二極體晶粒 12 ^62122 蛀米用如帛2B圖所示之垂直導通型發光二極體晶粒 時’發光二極體晶粒106b所暴露出之第二側1〇朴上僅設有 :極112b’因此可僅在陶竞層川之暴露表自ιΐ8上設置 -電極墊m即可’並形成一導· 132來電性連接電:墊 8之金屬層126與發光二極體晶粒l〇6b之第二侧1〇8b 的電極112b。 然後,形成封裝膠體(Encapsulant)134完全包覆住發光 二極體晶粒106a與導線132,並包覆住電極墊128之^少 •-部分以及陶瓷Μ 116之暴露表自118之至少_冑分上,: 元成發光二極體封裝結構136之製作,如第8圖所示。在— 實施例中,可利用點膠機(Dispenser)來對發光二極體晶粒 腕進行封膠動作。封裝膝體134之材料可例如為石夕膠 (Silicone)或環氧樹脂。 請參照第9圖至第16圖,其係繪示依照本發明另一較 佳=施例的一種發光二極體封裝結構之製程剖面圖。在另— 示範實施例中,製作發光二極體封裝結構時,先提供暫時基 •板,並於暫時基板200之表面2〇2上覆蓋一層具有黏: 之高分子聚合物黏貼層204,如第9圖所示。在一實施例中, . 高分子聚合物黏貼層204可為一雙面膠帶。接下來,提供一 •或多個發光二極體晶粒206,其令發光二極體晶粒2〇6係水 平導通型的發光二極體晶粒,然在其他實施例中,亦可提供 • 如第2B圖所示之垂直導通型的發光二極體晶粒1〇6b。發光 . 二極體晶粒206具有相對之第一側210與208。接著,提供 二電極墊220,其十每個電極墊22〇具有相對之第一側238 與第二側236。再將發光二極體晶粒2〇6與電極墊22〇同時 13 1362122 設置在高分子聚合物黏貼層204中,而使發光二極體晶粒 206之第二側208、以及電極墊22〇之第二側236嵌設在高 分子聚合物勒貼層204中,並使發光二極體晶粒2〇6之第一 側210與電極墊220之第一側238暴露出,如第ι〇圖所示。 在本示範實施例中,水平導通型的發光二極體晶粒2〇6至少 包括具有不同電性之二電極212與214,例如一者為p型電 極且另一者為N型電極,其中此二電極212與2i4均同位 於發光二極體晶粒2〇6之第二側208上,且這些電極212 與214均埋設在高分子聚合物黏貼層204之中。因此,提供 一電極墊220 ’以分別對應於發光二極體晶粒2〇6之電極22 與 214。 在另一實施例令,當發光二極體晶粒係採用如第2B圖 所不之垂直導通型發光二極體晶粒1 〇6b時,發光二極體晶 粒106b所暴露出之第二側108b上僅設有電極Ii2b,因此 可僅設置—電極墊220於高分子聚合物黏貼層204中即可。 在一示範實施例中,每個電極墊22〇至少包括依序堆疊在高 分子聚合物黏貼層204上之金屬層218與氧化鋁層216,其 中金屬層218之材料可為金,而氧化鋁層216可為一藍寶石 板,亦即電極墊220可為鍍有金之藍寶石板.當電極墊22〇 壓設在高分子聚合物黏貼層204之中時,電極墊22〇之金屬 層218較佳係完全埋設在高分子聚合物黏貼層2〇4中。 接著,利用例如沉積方式形成陶瓷層222覆蓋在發光二 極體晶粒206之第一側21〇、電極塾22〇之第一側238、與 高分子聚合物黏貼層2〇4上。由於發光二極體晶粒2〇6之第 一側210與電極墊22〇之第一側23 8均突出於高分子聚合物 14 1362122 黏貼層204表面,因此當陶瓷層222形成後,發光二極體晶 粒206之第一側21〇與電極墊22〇之第一側238的氧化鋁層 ·. 216可嵌設在陶瓷層222與發光二極體晶粒2〇6接合的表^ 224中,如第11圖所示《«在一實施例中,陶瓷層222之材 料可選自於由氮化鋁與氧化鋁所組成之一族群β由於陶瓷層 222具有極佳之導熱性,因此陶瓷層222直接形成在發光二 極體晶粒206之底面上’可將發光二極體晶粒2〇6運作時所 產生之熱迅速導出,而可快速降低發光二極體晶粒206之操 作溫度。 如第12圖所示,待陶瓷層222形成後,利用例如沉積 方式形成金屬黏著層226覆蓋在陶瓷層222上,以利後續形 成之金屬基板228(請先參照第丨3圖所示)能順利成長且穩 固接合於陶瓷層222之上。金屬黏著層226可包括依序堆疊 在陶瓷層222上之鎳層、銀層與金層,亦即金屬黏著層226 可包括一鎳層/銀層/金層結構。 接著,利用例如電鍍方式形成金屬基板228覆蓋在金屬 黏著層226上,而形成如第13圖所示之結構。在一實施例 中,金屬基板22 8之材料可選自於由銅與銅合金所組成之一 *私群。在另一實施例中,金屬基板228之材料可選自於由鎳 •與鎳合金所組成之一族群。由於發光二極體晶粒206之底面 係直接與導熱性佳之陶瓷層222接合,而陶瓷層222之底面 又依序接合有高導熱性之金屬黏著層226與金屬基板228, 因此發光二極體晶粒206所產生之熱可經由陶瓷層222、金 屬黏著層226與金屬基板228而快速導出。 完成金屬基板228之成長後,可利用有機溶劑,例如丙 15 1362122 獅’來移除高分子聚合物黏貼層204,藉以使暫時基板200 與發光二極體晶粒206及發光二極體晶粒206所設的金屬基 板228分開。高分子聚合物黏貼層204與暫時基板2〇〇移除 後,暴露出發光二極體晶粒2〇6之第二側2〇8 '設於發光二 極體晶粒206之第二側208上之電極212與214、電極墊220 之第二侧206的金屬層218、以及陶瓷層222之表面224, 如第14圖所示。1〇4^ face, so when the ceramic layer 116 is formed, the first side UOa of the light-emitting diode die can be embedded in the surface 118 of the ceramic layer 116 and the light-emitting diode die_interface Figure 3 shows. In the embodiment, the material of the pottery layer may be selected from the group consisting of nitriding (A1N) and oxidizing (4) (4). Since the ceramic layer 116 has excellent thermal conductivity, the ceramic layer 1 is directly formed on the bottom surface of the light-emitting diode die 1()6&, which can be generated when the light-emitting body die 106a is operated. The heat is quickly conducted out, and the operating temperature of the light-emitting diode chip 丨06a can be quickly lowered. As shown in FIG. 4, after the ceramic layer 116 is formed, the metal adhesion layer 120 is formed on the ceramic layer 116 by, for example, deposition, so that the subsequently formed metal substrate m (please refer to FIG. 5 first) can be smoothly performed. It grows and is firmly bonded to the layer 116. The metal adhesion layer 12〇 may include a town layer, a silver layer and a gold layer which are sequentially stacked on the ceramic layer 116, that is, the metal adhesion layer 120 may include a nickel layer/silver layer/gold layer structure. - Next, the metal substrate 122 is formed on the metal adhesion layer 120 by, for example, electroplating to form a structure as shown in Fig. 5. In an embodiment, the material of the metal substrate 122 may be selected from a group consisting of copper and a copper alloy. In another embodiment, the material of the 'metal substrate I' may be selected from the nickel alloy of 1362122. The material 4 is directly bonded to the ceramic layer 116 having good thermal conductivity on the bottom surface of the light-emitting diode (10)a, and the metal adhesion layer 12〇 and the metal substrate 122 of the high thermal conductivity are sequentially bonded to the bottom surface of the ceramic I ΐ6. The heat generated by the light-emitting diode die 106a can be quickly conducted through the ceramic layer 116, the metal drill layer 120, and the metal substrate 122. After the formation of the temple metal substrate 12 2, an organic solvent such as acetone or a polymer can be used. The polymer adhesive layer 104' is used to make the temporary substrate (10) and the emitter crystal grain 106a and the light-emitting diode die 106& the metal substrate provided with the molecular polymer adhesive layer 4 and the temporary substrate 1 After removal, the second side Mb of the light-emitting diode die 1〇6a, the electrodes U2a and 114a provided on the second side 1〇8a, and the surface 118 of the ceramic layer 116 are exposed, as shown in FIG. Referring to Figure 7, due to the light-emitting diode die 1 6& 2 electrodes 112a, U4a are located on the second side of the light-emitting diode die 1〇6&1&8;, _匕 仏 an electrode pad 128, respectively, corresponding to the electrodes 11h and 114^ in Ding Fanshi In an example, the electrode pads 128 can be attached to the exposed surface 118 of the ceramic layer 116 through the adhesive layer 130. The material of the adhesive layer 13 can be, for example, a % oxygen resin. In the embodiment, each electrode pad The aluminum oxide layer 124 and the metal layer 12 6 including at least the surface of the ceramic layer 116 and the metal layer 12 6 may be gold, and the aluminum oxide layer 124 ^ sapphire plate That is, the electrode pad 128 may be a gold-plated sapphire plate. 13 Two wires 32 are formed by wire bonding, for example, to electrically connect the metal layers 126 of the electrode pads 128 and the first-pole crystals. The first electrode of the particle 1 () 6 &: the corresponding electrode U2a on the side lG8a and as shown in the seventh circle. In another embodiment, when the light-emitting diode crystal 12 ^ 62122 蛀 m is used as shown in Figure 2B The second side of the light-emitting diode die 106b exposed by the vertical conduction type light-emitting diode die Peach only has: pole 112b' so it can be set only on the exposed table of Tao Jing layer Chuan from the ΐ 8 electrode pad and can form a guide · 132 call connection: the metal layer 126 of the pad 8 and the light The electrode 112b of the second side 1b 8b of the diode die l〇6b. Then, an encapsulant 134 is formed to completely cover the LED die 106a and the wire 132, and cover the electrode pad 128. The exposure table of the less--parts and the ceramics Μ 116 is at least _ 118, and the fabrication of the luminescent diode package structure 136 is as shown in FIG. In the embodiment, a dispenser can be used to seal the LED die of the light-emitting diode. The material encapsulating the knee 134 can be, for example, a Silicone or an epoxy. Referring to Figures 9 through 16, there is shown a process cross-sectional view of a light emitting diode package structure in accordance with another preferred embodiment of the present invention. In another exemplary embodiment, when fabricating the LED package structure, a temporary substrate is provided, and a surface of the temporary substrate 200 is covered with a layer of adhesive polymer 204 having a viscosity: Figure 9 shows. In an embodiment, the polymer adhesive layer 204 can be a double-sided tape. Next, one or more light emitting diode dies 206 are provided, which enable the light emitting diode dies 2 〇 6 to be horizontally conductive type luminescent diode dies, but in other embodiments, • Vertical conduction type light-emitting diode crystal 1〇6b as shown in Fig. 2B. Luminescence. The diode die 206 has opposing first sides 210 and 208. Next, a two electrode pad 220 is provided, each of which has an opposite first side 238 and second side 236. Then, the light-emitting diode die 2〇6 and the electrode pad 22〇 are simultaneously disposed in the polymer adhesive layer 204, and the second side 208 of the light-emitting diode die 206 and the electrode pad 22 are disposed. The second side 236 is embedded in the polymer polymer layer 204, and exposes the first side 210 of the LED die 2〇6 and the first side 238 of the electrode pad 220, such as the first layer The figure shows. In the exemplary embodiment, the horizontally-conducting light-emitting diode die 2〇6 includes at least two electrodes 212 and 214 having different electrical properties, for example, one is a p-type electrode and the other is an N-type electrode, wherein The two electrodes 212 and 2i4 are both located on the second side 208 of the LED die 2〇6, and the electrodes 212 and 214 are buried in the polymer adhesive layer 204. Therefore, an electrode pad 220' is provided to correspond to the electrodes 22 and 214 of the light-emitting diode die 2〇6, respectively. In another embodiment, when the LED pattern is a vertical conduction type LED pattern 1 〇 6b as shown in FIG. 2B, the second portion of the LED pattern 106b is exposed. Only the electrode Ii2b is provided on the side 108b, so that only the electrode pad 220 may be provided in the polymer adhesive layer 204. In an exemplary embodiment, each of the electrode pads 22A includes at least a metal layer 218 and an aluminum oxide layer 216 which are sequentially stacked on the polymer adhesive layer 204. The material of the metal layer 218 may be gold and alumina. The layer 216 can be a sapphire plate, that is, the electrode pad 220 can be a gold-plated sapphire plate. When the electrode pad 22 is pressed and placed in the polymer adhesive layer 204, the metal pad 218 of the electrode pad 22 is The best system is completely embedded in the polymer adhesive layer 2〇4. Next, a ceramic layer 222 is formed, for example, by deposition, overlying the first side 21 of the light-emitting diode die 206, the first side 238 of the electrode 22, and the polymer adhesive layer 2〇4. Since the first side 210 of the LED die 2〇6 and the first side 23 8 of the electrode pad 22 protrude from the surface of the polymer 14 1362122 adhesive layer 204, when the ceramic layer 222 is formed, the light is emitted. The first side 21 of the polar body 206 and the first layer 238 of the electrode pad 22 may be embedded in the surface of the ceramic layer 222 and the LED die 2〇6. In the embodiment, as shown in FIG. 11, the material of the ceramic layer 222 may be selected from a group consisting of aluminum nitride and aluminum oxide. Since the ceramic layer 222 has excellent thermal conductivity, The ceramic layer 222 is directly formed on the bottom surface of the light-emitting diode die 206. The heat generated by the operation of the light-emitting diode die 2〇6 can be quickly derived, and the operation of the light-emitting diode die 206 can be quickly reduced. temperature. As shown in FIG. 12, after the ceramic layer 222 is formed, a metal adhesion layer 226 is formed on the ceramic layer 222 by, for example, deposition, so as to facilitate the subsequent formation of the metal substrate 228 (please refer to FIG. 3 first). It grows smoothly and is firmly bonded to the ceramic layer 222. The metal adhesion layer 226 may include a nickel layer, a silver layer and a gold layer which are sequentially stacked on the ceramic layer 222, that is, the metal adhesion layer 226 may include a nickel layer/silver layer/gold layer structure. Next, a metal substrate 228 is formed on the metal adhesion layer 226 by, for example, electroplating to form a structure as shown in Fig. 13. In one embodiment, the material of the metal substrate 228 may be selected from one of a group consisting of copper and a copper alloy. In another embodiment, the material of the metal substrate 228 may be selected from the group consisting of nickel and nickel alloys. Since the bottom surface of the light-emitting diode die 206 is directly bonded to the ceramic layer 222 having good thermal conductivity, and the bottom surface of the ceramic layer 222 is sequentially bonded with the high thermal conductivity metal adhesion layer 226 and the metal substrate 228, the light-emitting diode is The heat generated by the die 206 can be quickly derived via the ceramic layer 222, the metal bond layer 226, and the metal substrate 228. After the growth of the metal substrate 228 is completed, the polymer adhesive layer 204 can be removed by using an organic solvent such as C 15 1362122 Lion's, thereby making the temporary substrate 200 and the light emitting diode die 206 and the light emitting diode crystal grains. The metal substrate 228 provided in 206 is separated. After the high molecular polymer adhesive layer 204 and the temporary substrate 2 are removed, the second side 2 〇 8 ′ exposing the light emitting diode die 2 〇 6 is disposed on the second side 208 of the light emitting diode die 206 . The electrodes 212 and 214, the metal layer 218 of the second side 206 of the electrode pad 220, and the surface 224 of the ceramic layer 222 are as shown in FIG.

,接著,利用例如打線接合方式形成二導線23〇,以分別 電性連接這些電極墊22〇之金屬層218與位於發光二極體晶 粒206之第二侧208上之對應電極212及214,如第丨5圖 所示。在另一實施例中,當發光二極體晶粒係採用如第2b 圖所示之垂直導通型發光二極體晶粒1〇61?時,發光二極體 晶粒106b所暴露出之第二側1〇扑上僅設有電極,且 陶瓷層222之暴露表面224僅設有一電極墊22〇,因此可僅 形成一導線230來電性連接電極墊 屬層2 1 8與發光二極體晶粒丨〇6b 220之第二側236上的金 之第二側108b上的電極 112b- 然後,可利用點膠機來形成封裝膠體232完全包覆住發 光二極體晶粒206與導線23(),並包覆住電極墊22。之至少 -部分以及陶U 222之暴露表面224之至少—部分上,而 完成發光二極體封裝結構234之製作,如第16圖所示。封 裝膠體232之材料可例如為矽膠或環氧樹脂。 β由上述之示範實施例可知,本發明之實施例之-優點就 是因為發光二極體封裝纟士播Λ 裝、。構可利用電鍍技術直接在發光二 極體晶粒底面形成金屬基板,因此發光二極體晶粒與金屬基 16 1362122 板之間並無黏著樹脂的存在, 結構之散熱性。 在而了大幅鍉升發光二極體封裝 由上述示範實施例可 光二極體封裝結構之製造方:發明之另一優點就是因為發 陶究層,由於陶二封=係在:屬基㈣^ 此可提高封裝谬體之接合^靠产之S具。有較大之接合力’因 裝結構之良率與穩定性。义’而可增進發光二極體封 雖’’、、本發明已以-較佳實施例揭露如上,缺1並非用以 限定本發明,任何在. 上"、、其並非甩以 離本菸1領域令具有通常知識者,在不脫 離本發明之精神和範圍内, 本發明之伴m A、B s 了作各種之更動與潤飾,因此 “圍“見後附之申請專利範園所界定者為準。 【圖式簡單說明】 第1圖至第8圖係拎千# _丄々 双 S 、依…、本發明一較佳實施例的一種 發光二極體封裝結構之製程也例的種 種發光二極體晶粒型式的音’、2A圖係繪示- 八的剖面不意圖,第2B佴洽-e 絲 光二極體晶粒型式的剖面音 ,'、-不 2A圖與第2B圖之上視圖。… 2C圖則係繪示第 第9圖至第丨6圖係㈣依照本發明另 -種發光二極體封裝結構之製程剖面圖。 则的 【主要元件符號說明】 1〇〇:暫時基板 m:表面 104:高分子聚合物黏貼層 106a:發光二極體θThen, two wires 23 are formed by wire bonding, for electrically connecting the metal layers 218 of the electrode pads 22 and the corresponding electrodes 212 and 214 on the second side 208 of the LED die 206, respectively. As shown in Figure 5. In another embodiment, when the light-emitting diode die is a vertical conduction type light-emitting diode die 1〇61? as shown in FIG. 2b, the exposed light-emitting diode die 106b is exposed. The electrode on the two sides is provided with only the electrode, and the exposed surface 224 of the ceramic layer 222 is only provided with an electrode pad 22〇, so that only one wire 230 can be electrically connected to the electrode pad layer 2 18 and the light emitting diode crystal. The electrode 112b on the second side 108b of the gold on the second side 236 of the crucible 6b 220 - then, the encapsulant can be formed using the dispenser to completely enclose the LED die 206 and the conductor 23 ( ) and cover the electrode pad 22. At least a portion of the exposed surface 224 of the ceramic U 222 is at least partially formed to complete the fabrication of the LED package structure 234, as shown in FIG. The material of the encapsulant 232 can be, for example, silicone or epoxy. As is apparent from the above-described exemplary embodiments, the advantage of the embodiment of the present invention is that the light-emitting diode packages are packaged in a gentleman's clothing. The structure can directly form a metal substrate on the bottom surface of the light-emitting diode by electroplating technology, so that there is no adhesive resin between the light-emitting diode die and the metal substrate 16 1362122, and the structure has heat dissipation. In the case of a substantially soaring light-emitting diode package, the above-described exemplary embodiment of the photodiode package structure is manufactured: another advantage of the invention is that because of the ceramic layer, since the ceramic seal is in the base: (four) ^ This can improve the bonding of the package body to the S tool. There is a greater bonding force' due to the yield and stability of the structure. Although the present invention has been disclosed in the preferred embodiment, the present invention is not limited to the present invention, and any of the above is not limited to The smoke 1 field has a general knowledge, and the accompanying m A, B s of the present invention can be used for various changes and refinements without departing from the spirit and scope of the present invention. The definition is subject to change. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 8 are diagrams showing a process of manufacturing a light-emitting diode package structure according to a preferred embodiment of the present invention, and various light-emitting diodes. The sound pattern of the body grain type, 2A is shown in the figure - the profile of the eight is not intended, the cross-section sound of the 2B佴-e mercerized diode pattern, ', - not 2A and 2B . The 2C diagram shows the 9th to 6th drawings. (IV) A process sectional view of another LED package structure according to the present invention. [Major component symbol description] 1〇〇: temporary substrate m: surface 104: polymer adhesive layer 106a: light-emitting diode θ

^ _ ••發光二極ItU 17 1362122^ _ ••Lighting diodes ItU 17 1362122

108a 第二側 110a 第一側 112a 電極 114a 電極 118 : 表面 122 : 金屬基板 126 : 金屬層 130 : 黏著層 134 : 封裝膠體 200 ·· 暫時基板 204 : 高分子聚合物黏貼層 206 : 發光二極體晶粒 210 : 第一側 214 : 電極 218 : 金屬詹 222 : 陶瓷層 226 : 金屬黏著層 230 : 導線 234 : 發光二極體封裝結才肩 236 : 第二側 108b :第二側 110b :第一側 112b :電極 116 :陶瓷層 120 :金屬黏著層 124 :氧化鋁層 128 :電極墊 132 :導線 136 :發光二極體封裝結構 202 :表面 208 :第二側 212 :電極 21 6 ··氧化鋁層 220 :電極墊 224 :表面 2 2 8 :余屬基板 232 :封裝膠體 238 :第一側 18108a second side 110a first side 112a electrode 114a electrode 118: surface 122: metal substrate 126: metal layer 130: adhesive layer 134: encapsulant 200 · temporary substrate 204: polymer adhesive layer 206: light emitting diode Die 210: first side 214: electrode 218: metal 222: ceramic layer 226: metal adhesion layer 230: wire 234: light emitting diode package junction shoulder 236: second side 108b: second side 110b: first Side 112b: electrode 116: ceramic layer 120: metal adhesion layer 124: aluminum oxide layer 128: electrode pad 132: wire 136: light emitting diode package structure 202: surface 208: second side 212: electrode 21 6 · alumina Layer 220: electrode pad 224: surface 2 2 8 : residual substrate 232: encapsulant 238: first side 18

Claims (1)

1362122 f11牟10卓12藤▲換頁 ‘補态I !十、申請專利範圍 l —種發光二極體封裝結構,至少包括: • 一金屬基板; • 一金屬黏著層,設於該金屬基板上; .一陶瓷層,設於該金屬黏著層上; 至少一發光二極體晶粒,具有相對之一第一側與一第二 側,其中該至少一發光二極體晶粒之該第叫則嵌設:該陶究 鲁層之一表面中; 至少一電極墊,嵌設於該陶瓷層之該表面中; 至少一導線,對應電性連接在該至少—發光二極體晶粒 之該第二側上之一第一電極與該至少一電極墊之間;以及 一封裝膠體,包覆在該至少一發光二極體晶粒、該至少 一導線、該至少一電極墊之至少一部分、以及該陶瓷層之該 表面之至少一部分上。 • 2.如申明專利範圍第1項所述之發光二極體封裝結 構,其中該金屬基板之材料係選自於由銅與銅合金所組成之 一族群。 3·如申請專利範圍第1項所述之發光二極體封裝結 構’其中該金屬基板之材料係選自於由鎳與鎳合金所組成之 一族群。 4.如申請專利範圍第1項所述之發光二極體封裝結 1362122 礙- 構’其中該金屬黏著層句杯 拍a/ζβ a, ~Γ~Ζ----------^ 增巴栝一鎳層/銀層/金層(Ni/Ag/Au)結 構0 之一族群 5.如申咕專利範圍第i項所述之發光二極體封裝結 構’其中該陶瓷層之材料係選自於由氮化鋁與氧化鋁所組成 6. 如申月專#!範圍第i項所述之發光二極體封裝結 構’其中該至少·"電極塾至少包括依序堆疊在㈣£層之該 表面上一氧化銘層以及—金屬層。 7. 如申請專利範圍帛6項所述之發光二極體封裝結 構’其中該金屬層之材料為金。 8 ·如申η月專和範目帛6 ;^所述之發光二極體封裝結 構’其中該金屬層不與該陶瓷層接觸。 9.如申請專利範圍第i項所述之發光二極體封褒結 構,其中該封裝膠體之材料為矽膠或環氧樹脂。 H).如申請專利範圍第i項所述之發光二極體封裝結 構’其中該至少一發光二極體晶粒係一垂直導通型發光二極 體晶粒。 U.如申請專利範圍第i項所述之發光二極體封裝結 20 1362122 .,¾.. .·;二 構,其中該至少一發光二極體晶粒係一水^•導二極 體晶粒,且該發光二極體封裝結構包括二電極墊與二導^, 2中該些電極墊分別it過該#導線而對應電性連接該至少 一發光二極體晶粒之該第二側的該第—電極與一第二電極。 12.如申請專利範圍第i項所述之發光二極體封裝結 構’更至少包括至少-黏著層,以對應將該至少—電極塾黏 設在該陶瓷層之該表面上。 13. 如申請專利範圍第12項所述之發光二極體封裝結 構’其中該黏著層之材料為環氧樹脂。 14. 一種發光二極體封裝結構之製造方法,至少包括: 一提供一暫時基板’其中該暫時基板之一表面上覆設有一 高分子聚合物黏貼層; -X置至少-發光二極體晶粒與至少一電極墊於該高分 子聚合物黏貼層上,其中該至少一發光二極體晶粒盥該至少 -電極墊均具有相對之一第一側與一第二側,且該至二發 光二極體之該第二側與該至少一電極墊 电桠蛩之该第二側均嵌設 於該高分子聚合物黏貼層中; 形成-陶究層覆蓋在該至少一發光二極體晶粒、該至少 電極墊與该尚分子聚合物黏貼層上,以使該至少—發光二 極體晶粒之該第一側與該至少一電 7 电规它&适第—側嵌設在 *亥陶瓷層之一表面中; 形成一金屬黏著層覆蓋在該陶瓷層上; 21 1362122 電鍍一金屬基板於該金屬黏著層上;ι 移除該高分子聚合物黏貼層與該暫時基板; 形成至少一導線電性連接在該至少一發光二極體晶粒 之該第二側上之一第一電極與該至少一電極墊之該第二側 之間;以及 形成一封裝膠體包覆在該至少一發光二極體晶粒、該至 少一導線、該至少一電極墊之至少一部分、以及該陶瓷層之 該表面之至少一部分上。 15.如申請專利範圍第14項所述之發光二極體封裝結 構之製造方法’其中該局分子聚合物黏貼層係一雙面膠帶。 16. 如申請專利範圍第μ項所述之發光二極體封裝結 構之製造方法,其中該至少一電極墊至少包括依序堆疊在該 陶瓷層之該表面上之一氧化鋁層以及一金屬層,且該氧化鋁 層之一部分嵌設在該陶瓷層之該表面中。 17. 如申請專利範圍第16項所述之發光二極體封裝妹 構之製造方法’其中該金屬層之材料為金。 1 8.如申請專利範圍第14項所述之發光二極體封裝結 構之製造方法,其中該至少一發光二極體晶粒係一垂直導通 型發光二極體晶粒。 19.如申請專利範圍第14項所述之發光二極體封裝結 22 I £* } 1362122 2^11 ^10 % I ';;:' 4 構之製造方法,其申該至少一發光二極體平i通 » : 型發光二極體晶粒並包括一第二電極設於該第二侧,且設置 該至少〆發光_一極體晶粒與該至少一電極藝之步驟包括設 ’ 置二電極墊分別對應於該第一電極與該第二電極,而形成該 • 至少一導線之步驟係形成二導線以分別電性連接該些電極 塾與對應之該第一電極與該第二電極。 20. 如申請專利範圍第14項所述之發光二極體封裝結 構之製造方法,其中該陶瓷層之材料係選自於由氮化鋁與氧 化铭所組成之一族群。 21. 如申請專利範圍第14項所述之發光二極體封裝結 構之製造方法,其中該金屬黏著層包括一鎳層/銀層/金層結 構。 22.如申請專利範圍第14項所述之發光二極體封裝結 籲構之製造方法,其中該金屬基板之材料係選自於由銅與銅合 金所組成之一族群。 23. 如申請專利範圍第14項所述之發光二極體封裝結 構之製造方法,其中該金屬基板之材料係選自於由鎳與鎳合 金所組成之一族群。 24. 如申請專利範圍第14項所述之發光二極體封裝結 構之製造方法’其中該封裝膠體之材料為矽膠或環氧樹脂。 231362122 f11牟10卓12藤▲Change page 'Complementary state I! X. Patent application scope l--Light-emitting diode package structure, at least: • A metal substrate; • A metal adhesive layer, disposed on the metal substrate; a ceramic layer disposed on the metal adhesion layer; at least one light emitting diode die having a first side and a second side, wherein the first portion of the at least one light emitting diode die Embedded in the surface of one of the ceramic layers; at least one electrode pad embedded in the surface of the ceramic layer; at least one wire correspondingly electrically connected to the at least one of the light emitting diode grains Between one of the first electrodes on the two sides and the at least one electrode pad; and an encapsulant coated on the at least one light emitting diode die, the at least one wire, at least a portion of the at least one electrode pad, and The ceramic layer is on at least a portion of the surface. 2. The light emitting diode package structure of claim 1, wherein the material of the metal substrate is selected from the group consisting of copper and copper alloy. 3. The light-emitting diode package structure of claim 1, wherein the material of the metal substrate is selected from the group consisting of nickel and a nickel alloy. 4. The light-emitting diode package 1362122 as described in claim 1 of the patent scope is a structure in which the metal adhesion layer is a/ζβ a, ~Γ~Ζ---------- ^ Zengba 栝 a nickel layer / silver layer / gold layer (Ni / Ag / Au) structure 0 a group of groups 5. The light emitting diode package structure as described in claim i of the scope of the invention, wherein the ceramic layer The material is selected from the group consisting of aluminum nitride and aluminum oxide. 6. The light-emitting diode package structure as described in the item [i] of the scope of the invention, wherein the at least < (4) The surface of the layer of oxidized layer and the metal layer. 7. The light-emitting diode package structure as claimed in claim 6 wherein the material of the metal layer is gold. 8. The light-emitting diode package structure as described in the application of the present invention, wherein the metal layer is not in contact with the ceramic layer. 9. The luminescent diode sealing structure of claim i, wherein the encapsulant is made of silicone or epoxy. H). The light emitting diode package structure of claim i wherein the at least one light emitting diode die is a vertical conductive type light emitting diode die. U. The light-emitting diode package of claim 1, wherein the at least one light-emitting diode chip is a water-based diode. a dies, and the illuminating diode package structure includes a second electrode pad and a second electrode, wherein the electrode pads respectively pass through the # wire and electrically connect the second electrode of the at least one illuminating diode die The first electrode and the second electrode of the side. 12. The light emitting diode package structure of claim i further comprises at least an adhesive layer corresponding to the at least one electrode layer being adhered to the surface of the ceramic layer. 13. The light emitting diode package structure of claim 12, wherein the material of the adhesive layer is an epoxy resin. A method for manufacturing a light emitting diode package structure, comprising: providing a temporary substrate, wherein a surface of one of the temporary substrates is covered with a polymer adhesive layer; - X is disposed at least - a light emitting diode crystal And at least one electrode pad is disposed on the polymer adhesive layer, wherein the at least one light-emitting diode chip has at least one of the first side and the second side, and the second electrode The second side of the light emitting diode and the second side of the at least one electrode pad are embedded in the polymer adhesive layer; forming a ceramic layer covering the at least one light emitting diode a die, the at least one electrode pad and the polymer layer are adhered to the first side of the at least one light emitting diode die and the at least one electrical device Forming a metal adhesive layer on the surface of the ceramic layer; 21 1362122 plating a metal substrate on the metal adhesive layer; ι removing the polymer adhesive layer and the temporary substrate; Forming at least one wire Between the first electrode on the second side of the at least one light emitting diode die and the second side of the at least one electrode pad; and forming an encapsulant coated on the at least one light emitting a polar body die, the at least one wire, at least a portion of the at least one electrode pad, and at least a portion of the surface of the ceramic layer. 15. The method of manufacturing a light emitting diode package according to claim 14, wherein the molecular polymer adhesive layer is a double-sided tape. 16. The method of fabricating a light emitting diode package according to claim 5, wherein the at least one electrode pad comprises at least one of an aluminum oxide layer and a metal layer sequentially stacked on the surface of the ceramic layer. And one of the aluminum oxide layers is partially embedded in the surface of the ceramic layer. 17. The method of fabricating a light emitting diode package according to claim 16, wherein the material of the metal layer is gold. The method of fabricating a light emitting diode package according to claim 14, wherein the at least one light emitting diode die is a vertical conductive light emitting diode die. 19. The method of manufacturing a light-emitting diode package according to claim 14, wherein the at least one light-emitting diode is applied to the light-emitting diode package 22 I £* } 1362122 2^11 ^10 % I '; a type of light-emitting diode: and a second electrode is disposed on the second side, and the step of disposing the at least one of the light-emitting diode and the at least one electrode includes setting The two electrode pads respectively correspond to the first electrode and the second electrode, and the step of forming the at least one wire forms two wires to electrically connect the electrodes and the corresponding first electrode and the second electrode respectively . 20. The method of fabricating a light emitting diode package according to claim 14, wherein the material of the ceramic layer is selected from the group consisting of aluminum nitride and oxidized. 21. The method of fabricating a light emitting diode package according to claim 14, wherein the metal adhesion layer comprises a nickel layer/silver layer/gold layer structure. 22. The method of fabricating a light emitting diode package according to claim 14, wherein the material of the metal substrate is selected from the group consisting of copper and copper alloy. 23. The method of fabricating a light emitting diode package according to claim 14, wherein the material of the metal substrate is selected from the group consisting of nickel and nickel alloy. 24. The method of fabricating a light emitting diode package according to claim 14, wherein the material of the encapsulant is silicone or epoxy. twenty three
TW96138017A 2007-10-11 2007-10-11 Light-emitting diode package structure and method for manufacturing the same TWI362122B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96138017A TWI362122B (en) 2007-10-11 2007-10-11 Light-emitting diode package structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96138017A TWI362122B (en) 2007-10-11 2007-10-11 Light-emitting diode package structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW200917524A TW200917524A (en) 2009-04-16
TWI362122B true TWI362122B (en) 2012-04-11

Family

ID=44726415

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96138017A TWI362122B (en) 2007-10-11 2007-10-11 Light-emitting diode package structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI362122B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485823B (en) * 2010-07-08 2015-05-21 Subtron Technology Co Ltd Semiconductor package structure and fabricating method of semiconductor package structure
TWI422079B (en) * 2010-09-07 2014-01-01 Univ Kun Shan Method for manufacturing a heat dissipation bulk of a semiconductor light-emitting device

Also Published As

Publication number Publication date
TW200917524A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US6614103B1 (en) Plastic packaging of LED arrays
US9674938B2 (en) Flexible LED device for thermal management
EP1253650B1 (en) Surface-mount type light emitting diode and method for manufacturing the same
TWI584501B (en) Flexible led device with wire bond free die
US9123869B2 (en) Semiconductor device with a light emitting semiconductor die
KR20120002916A (en) Led module, led package, and wiring substrate and manufacturing method thereof
TWI420695B (en) Compound semiconductor device package module structure and fabricating method thereof
TW201032317A (en) Light-emitting diode light source module
JP4910220B1 (en) LED module device and manufacturing method thereof
JP2015144147A (en) LED module
US20130062656A1 (en) Thermally enhanced optical package
JP2013110298A (en) Electronic component mounting package, electronic component package, and methods for manufacturing the same
US20100270580A1 (en) Substrate based light source package with electrical leads
TWI472067B (en) Optical package and method of manufacturing the same
TWI362122B (en) Light-emitting diode package structure and method for manufacturing the same
KR101051690B1 (en) Optical package and manufacturing method of the same
JP2019523560A (en) Light emitting device and manufacturing method thereof
JP2004172636A (en) Light emitting diode and its manufacturing method
KR101129002B1 (en) Optical package and manufacturing method of the same
TW201123412A (en) A light emission module with high-efficiency light emission and high-efficiency heat dissipation and applications thereof
TW201006000A (en) Light emitting diode and method of making the same
US20080090334A1 (en) Method for Manufacturing Semiconductor Device
KR101146659B1 (en) Optical package and manufacturing method of the same
KR101136392B1 (en) Optical package and manufacturing method of the same
KR101128991B1 (en) Side view optical package and manufacturing method of the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees