201204509 六、發明說明: 【發明所屬之技術領域】 本發明之實施例係關於用以研磨基材(諸如半導體基 材)之研磨系統。更特定言之,係關於用以監控研磨系統 之部件的方法及設備。 【先前技術】 化學機械研磨(CMP)是一種普遍用在高密度積體電路 之製造以平坦化或研磨所沈積在基材上之材料層的製 程°可提供基材到位於研磨系統上之研磨站,並且將基 材固定在載具頭中,載具頭係可控制地推動基材使基材 抵靠移動的研磨墊。在研磨流體的存在下’藉由提供基 材之特徵側的接觸以及相對於研磨墊來移動基材,可有 效地利用CMP。材料從基材之特徵側被移除,其中基材 之特徵側係經由化學與機械作用的組合與研磨表面接 觸。 通常,載具頭包括一固定環,固定環圍繞基材且可促 進基材在載具頭中之固持。通常,在研磨期間’固定環 之一或多個表面係接觸研磨墊。儘管固定環適於忍受多 個基材的研磨’但接觸研磨墊的該等表面會經歷磨損, 並且疋期更換固定環是有必要的。因此,ID定環之檢測 疋有必要的’以監控磨損且決定更換間隔。 般之檢測方法是耗時的’需要人員實體地操縱站中 4 201204509 的《卩件,並且需要將研磨系統停機。此外,一般之方法 可能需要部分拆卸研磨站且從站移除載具頭,此舉會使 系統内的其他部件暴露於污染。 。所以H-種可促進固定環之監控且不需要實體地 操縱固定環或將研磨系統停機的方法及設備。 【發明内容】 本發明大體而言提供一種可促進研磨系統内之固定環 之監控的方法及設備,以決定固定環之狀況及/或評估固 定環之使用期限。在一實施例中,提供一種設備。此設 備包括:一載具頭,載具頭可在基材被固定在載具頭中 時移動於介於用來研磨基材之至少一個研磨站之間的一 行進路徑中;以及一傳送站,傳送站用以傳送基材至載 具頭與自載具頭傳送基材’載具頭具有一固定環以及一 設置在載具頭之行進路徑中的感應器,感應器能夠操作 以提供可指示固定環之狀況的度量。 在另一實施例中’提供一種傳送站’傳送站設置在一 研磨模組中且用以傳送基材於一基村傳送裝置與至少一 個載具頭之間。傳送站包括:一裝載杯組件,裝載杯組 件具有一主體,主體的尺寸可接收一基材與—固定環之 至少一部分’固定環耦接到至少一個載具頭;以及一感 應器,感應器設置在主體上,感應器能夠操作以提供可 指示固定環之狀況的度量,其中基材包括一第一半徑, 201204509 並且感應器定位在主體上且位在一第二半徑處,第二半 徑大於第一半徑。 在另一貫施例中’提供一種用以監控一固定環之至少 一個表面的方法,固定環耦接到一載具頭。此方法包括 以下步驟:將載具頭移動,使載具頭鄰近設置在一研磨 模組中^一感應器裝置;從感應器裝置朝向固定環傳送 能量;接收從固定環所反射之能量;以及基於接收之能 量’決定固定環之一狀況。 【實施方式】 本發明大體而言提供可促進研磨系統内之固定環的監 控方法及設備,以決定固定環之磨損及/或評估固定環之 使用期限。描述一工具上(on_tool)監控裝置,該工具上 監控裝置係提供固定環的監控,而不需要實體地操縱固 定環或將研磨系統停機。此外,來自監控裝置之資料可 被k供到控制器且被用來調整後續之研磨製程。 第1圖為研磨系統1〇〇的平面圖,研磨系統1〇〇具有 研磨模組1〇5及基材傳送裝置,研磨系統1〇〇適於電化 學機械研磨及/或化學機械研磨。研磨模組1〇5包括設置 在環境受控的外殼115内之第一研磨站u〇a、第二研磨 站110B及第三研磨站110C。基材傳送裝置(諸如轉盤η” 係移動基材於研磨站110A、11〇3與u〇c之間。研磨站 應、膽、應之任-者可執行平坦化或研磨製程, 201204509 以從基材之特徵側移除材料,而在特徵側上形成平坦表 面。模組 105 可以是更大之研磨系統(諸如201204509 VI. Description of the Invention: [Technical Field of the Invention] Embodiments of the present invention relate to a polishing system for grinding a substrate such as a semiconductor substrate. More specifically, it relates to methods and apparatus for monitoring components of a grinding system. [Prior Art] Chemical mechanical polishing (CMP) is a process commonly used in the manufacture of high-density integrated circuits to planarize or grind a layer of material deposited on a substrate. The substrate can be provided to the polishing on the polishing system. The station is secured to the carrier head and the carrier head controllably urges the substrate against the moving polishing pad. In the presence of a grinding fluid, CMP can be utilized effectively by providing contact on the characteristic side of the substrate and moving the substrate relative to the polishing pad. The material is removed from the feature side of the substrate wherein the characteristic side of the substrate is in contact with the abrasive surface via a combination of chemical and mechanical action. Typically, the carrier head includes a retaining ring that surrounds the substrate and facilitates retention of the substrate in the carrier head. Typically, one or more surfaces of the retaining ring contact the polishing pad during grinding. Although the retaining ring is adapted to withstand the grinding of multiple substrates, the surfaces that contact the polishing pad experience wear and it is necessary to replace the retaining ring during the flood season. Therefore, the detection of the ID ring is not necessary to monitor wear and determine the replacement interval. The detection method is time-consuming, requiring personnel to physically manipulate the equipment in the station, and the grinding system needs to be shut down. In addition, the general method may require partial disassembly of the grinding station and removal of the carrier head from the station, which may expose other components within the system to contamination. . Therefore, H-type methods and apparatus that facilitate monitoring of the stationary ring and do not require physical manipulation of the retaining ring or shutdown of the grinding system. SUMMARY OF THE INVENTION The present invention generally provides a method and apparatus for facilitating monitoring of a retaining ring within a polishing system to determine the condition of the retaining ring and/or to assess the life of the retaining ring. In an embodiment, an apparatus is provided. The apparatus includes: a carrier head movable in a travel path between at least one polishing station for polishing a substrate while the substrate is secured in the carrier head; and a transfer station The transfer station is configured to transport the substrate to the carrier head and the self-propelled head transfer substrate. The carrier head has a fixed ring and a sensor disposed in the travel path of the carrier head. The sensor is operable to provide A metric indicating the condition of the stationary ring. In another embodiment, a "transfer station" transfer station is provided in a polishing module for transporting a substrate between a base transfer device and at least one carrier head. The transfer station includes: a loading cup assembly having a body sized to receive a substrate and at least a portion of the retaining ring a fixed ring coupled to the at least one carrier head; and a sensor, sensor Disposed on the body, the sensor is operable to provide a metric indicative of the condition of the retaining ring, wherein the substrate includes a first radius, 201204509 and the sensor is positioned on the body and is at a second radius, the second radius being greater than First radius. In another embodiment, a method for monitoring at least one surface of a retaining ring coupled to a carrier head is provided. The method includes the steps of: moving a carrier head such that the carrier head is disposed adjacent to a sensor module in an abrasive module; transmitting energy from the sensor device toward the stationary ring; receiving energy reflected from the stationary ring; Based on the received energy 'determines a condition of the fixed ring. [Embodiment] The present invention generally provides a method and apparatus for monitoring a retaining ring in a polishing system to determine wear of the retaining ring and/or to assess the life of the retaining ring. An on-tool monitoring device is described on which the monitoring device provides monitoring of the stationary ring without physically manipulating the stationary ring or shutting down the grinding system. In addition, data from the monitoring device can be supplied to the controller and used to adjust subsequent grinding processes. Fig. 1 is a plan view of a polishing system 1A having a polishing module 1〇5 and a substrate transfer device, and the polishing system 1 is suitable for electrochemical mechanical polishing and/or chemical mechanical polishing. The grinding module 1〇5 includes a first polishing station u〇a, a second polishing station 110B, and a third polishing station 110C disposed within the environmentally controlled housing 115. The substrate transfer device (such as the turntable η) is a moving substrate between the polishing stations 110A, 11〇3 and u〇c. The polishing station should be able to perform a flattening or grinding process, 201204509 The feature side of the substrate removes the material while forming a flat surface on the feature side. The module 105 can be a larger grinding system (such as
REFLEXION®、REFLEXION® LK、REFLEXION® LK ECMPTM、MIRRA MESA®及 REFLEXION GT™研磨 /系統 且可從美國加州聖大克勞拉市之應用材料公司購得,儘 管可使用其他研磨系統)的一部分。其他研磨模組(包括 使用其他類型之研磨墊、帶、可索引之網式墊或上述組 合的彼等研磨墊,以及使基材相對於研磨表面來移動於 旋轉、線性或其他平面運動的彼等研磨墊)亦可受益於本 文描述之實施例。 在一實施例中,研磨模組1 05之研磨站110A- 11 0C之 各者係適於執行一般之化學機械研磨(CMP)製程。或 者’第一研磨站11 〇 A可經配置以執行電化學機械平坦化 (ECMP)製程’而第二研磨站u〇B與第三研磨站u〇c可 執行CMP製程。在製程之一實施例中,基材具有被形成 在其中且被覆蓋有阻障層的特徵定義,且基材具有被設 置在阻障層上方的導電材料,基材可使得導電材料在第 —研磨站110A與第二研磨站u〇B中藉由cmp製程以 兩步驟來移除,而阻障層在第三研磨站11 0C中藉由第三 CMP製程來處理,以在基材上形成平坦化表面。 在一實施例中,系統100包括模組基座118,模組基 座支撐研磨站11〇A、11〇B及u〇c、傳送站及 轉盤125。研磨站U〇A、110B及110C之各者包括研磨 流體輸送臂128 ’研磨流體輸送臂128適於在研磨製程 201204509 期間將研磨流體輸送到研磨表δ 175。複數個調節裝置 130圖示為耦接到模組基座m且可移動於方向A,以為 了選擇性地將調節裝置130置放在研磨站u〇A、u〇B 及11 0C之各者上方。傳送站12〇大體上可促進基材135 經由濕式機器人140來傳送至系統1〇〇與自系統1〇〇傳 送基材135。通常,濕式機器人14〇將基材135傳送於 傳送站120與工廠界面(未圖示)之間,其中工廠界面可 括…办模組、度罝褒置及一或多個基材儲存匣盒。傳 送站120包含第一緩衝站145、第二緩衝站15〇、傳送機 器人155及裝載杯組件16〇。傳送機$人155係將基材 傳送於第-緩衝站145、第二緩衝站15〇與裝載杯组件 16〇之間。裝載杯組件16〇包括監控裝置162,監控裝置 162耦接到控制器。 轉盤125包括複數個臂17〇,並且各個臂支撐載 具頭165A-165D。載具頭165(:及165D以及兩臂17〇之 一部分係圖示為虛線,以致可看到傳送站12〇與研磨站 hoc之研磨表面175。研磨表面175包含設置在可旋轉 平台(在此圖中未圖示)上之墊組件的上表面。載具頭 165A 165D之各者包括致動器168。轉盤125係將載具 頭165A-165D移動於傳送站120與研磨站n〇A、u〇B 及110C之間,並且致動器168適於將載具頭 相對於轉盤U5移動。轉盤125是可索弓丨的(indexable), 以使得載具頭M5A-M5D可以藉由使用者定義的順序被 移動於研磨站110A、11〇B、11〇c與傳送站12〇之間。 201204509 載具頭165A-165D之各者係在研磨製程期間將一種基材 135固定在研磨站n〇A_11〇c上。每個研磨站包括超過 一個載具頭的其他研磨模組(諸如reflexi〇n 〇丁以研磨 系統)亦可適於受益於本文描述之實施例。載具頭 165A-165D之各者可在各個臂17〇之縱向軸中移動。可 在傳送站120A處將經研磨之基材135從各個載具頭 165A-165D傳送。另外,可在傳送站12〇處將未經研磨 之基材I35傳送至各個載具頭165A-165D。如參考載具 頭165D所示,载具頭㈣可沿著臂17〇之縱向軸移動 於由虛線指示的行進路徑164,以容許載具頭165〇能接 近裝載杯組件160且促進基材之傳送。 在一實施例中,轉# 125係依序地前進於逆時針方向 (方向B) ’以將載具頭165A165D移動於研磨站 110A-11GC與傳送站12G上方。在處理期間該四個載 八頭165 A 165D之二個具有基材被固定在載具頭 165A-165D中,並且設置在研磨站u〇A、ii〇b、 上方以在研磨站 110A、110B、110C上執行研磨製程。 藉由將基㈣動於料站之間,基材135㈣地被處 理,同時基材135被固定在相同的载具頭165A_165d 中在f例十,二個載具頭165A_165C含有基材,並 且推動基材135朝向研磨站UGA、議及iiqc之研磨REFLEXION®, REFLEXION® LK, REFLEXION® LK ECMPTM, MIRRA MESA® and REFLEXION GTTM Grinding/Systems are available from Applied Materials, Inc., of Santa Clara, Calif., although some other grinding systems are available. Other grinding modules (including the use of other types of polishing pads, tapes, indexable mesh pads or combinations thereof) and the movement of the substrate relative to the abrasive surface for rotational, linear or other planar motion The polishing pad can also benefit from the embodiments described herein. In one embodiment, each of the polishing stations 110A-110C of the grinding module 105 is adapted to perform a general chemical mechanical polishing (CMP) process. Or the 'first polishing station 11 〇 A can be configured to perform an electrochemical mechanical planarization (ECMP) process' and the second polishing station u 〇 B and the third polishing station u 〇 c can perform a CMP process. In one embodiment of the process, the substrate has a feature definition formed therein and covered with a barrier layer, and the substrate has a conductive material disposed over the barrier layer, the substrate being such that the conductive material is at the first The polishing station 110A and the second polishing station u〇B are removed in two steps by the cmp process, and the barrier layer is processed in the third polishing station 110C by a third CMP process to form on the substrate. Flatten the surface. In one embodiment, system 100 includes a module base 118 that supports grinding stations 11A, 11B, and u〇c, a transfer station, and a turntable 125. Each of the polishing stations U〇A, 110B, and 110C includes a grinding fluid delivery arm 128. The abrasive fluid delivery arm 128 is adapted to deliver abrasive fluid to the polishing table δ 175 during the polishing process 201204509. A plurality of adjustment devices 130 are illustrated coupled to the module base m and movable in direction A for selectively placing the adjustment device 130 in each of the polishing stations u〇A, u〇B, and 11 0C Above. The transfer station 12A generally facilitates transfer of the substrate 135 to the system 1 and the self-system 1 via substrate 135 via the wet robot 140. Typically, the wet robot 14 transports the substrate 135 between the transfer station 120 and a factory interface (not shown), wherein the factory interface can include a module, a level, and one or more substrate storage ports. box. The transfer station 120 includes a first buffer station 145, a second buffer station 15A, a transport robot 155, and a load cup assembly 16A. The conveyor $person 155 transports the substrate between the first buffering station 145, the second buffering station 15A, and the loading cup assembly 16A. The loading cup assembly 16A includes a monitoring device 162 that is coupled to the controller. The turntable 125 includes a plurality of arms 17A, and each arm supports the carrier heads 165A-165D. The carrier heads 165 (: and 165D and one of the two arms 17 系 are shown as dashed lines so that the transfer station 12 〇 and the grinding surface hoc of the grinding station hoc can be seen. The grinding surface 175 comprises a rotatable platform (here) The upper surface of the pad assembly is not shown. Each of the carrier heads 165A 165D includes an actuator 168. The carousel 125 moves the carrier heads 165A-165D to the transfer station 120 and the polishing station n〇A, Between B and 110C, and actuator 168 is adapted to move the carrier head relative to turntable U5. Turntable 125 is indexable so that carrier heads M5A-M5D can be used by the user The defined order is moved between the polishing stations 110A, 11B, 11〇c and the transfer station 12A. 201204509 Each of the carrier heads 165A-165D secures a substrate 135 to the polishing station during the polishing process. 〇A_11〇c. Other grinding modules including more than one carrier head per polishing station (such as reflexi〇n 以 以 to the grinding system) may also be adapted to benefit from the embodiments described herein. Carrier head 165A-165D Each of them can move in the longitudinal axis of each arm 17〇. It can be at the transfer station 120A The ground substrate 135 is transferred from each of the carrier heads 165A-165D. Alternatively, the unground substrate I35 can be transferred to the respective carrier heads 165A-165D at the transfer station 12A. As with the reference carrier head 165D As shown, the carrier head (4) can be moved along the longitudinal axis of the arm 17's to the travel path 164 indicated by the dashed lines to allow the carrier head 165(R) to access the loading cup assembly 160 and facilitate the transfer of the substrate. In one embodiment The turn #125 is sequentially advanced in the counterclockwise direction (direction B) to move the carrier head 165A165D over the polishing station 110A-11GC and the transfer station 12G. During the processing, the four eight-headed 165 A 165D two The substrate is fixed in the carrier heads 165A-165D and disposed above the polishing stations u〇A, ii〇b, to perform a polishing process on the polishing stations 110A, 110B, 110C. By moving the base (four) Between the stations, the substrate 135 (four) is treated while the substrate 135 is fixed in the same carrier head 165A_165d in the f example ten, the two carrier heads 165A_165C contain the substrate, and push the substrate 135 toward the grinding station UGA , and the grinding of iiqc
表面I75在研磨期間,含有基材之載具頭165A-165C 被旋轉於逆時針方向(方向c),而研磨表面m被旋轉於 逆時針方向(方向D)。 201204509 當三個載具頭(在此實例中圖示為載具頭i65Ai65c) 被使用在站U〇A-11〇C時,載具頭U5D鄰近傳送站 12〇,其中基材傳送製程在傳…20處發生。當該三個 載具頭165A-165C執行研磨製程時,載具頭i65D可閒 置長達一時段。在此時段期間,載具頭1651)在傳送站 120處是準備在一接著的循環中用在研磨站ii〇a中。載 具頭165D可沿著行進路徑164前進,以接近傳送站 120。當載具頭165D位在傳送站12〇處時,載具頭165D 可卸載經研磨之基材135且被清洗,並且接收新的未研 磨之基材135以為了用在研磨站u〇A的研磨製程。在一 實施例中,使用設置在傳送站丨2〇中之監控裝置丨62來 檢測載具頭165D。 研磨表面175係被粗糙化,以促進材料從基材135的 機械移除。研磨墊之研磨表面175可以是聚合材料,聚 合材料可以是完全介電的,以在研磨製程期間促進材料 從基材135的移除。或者’研磨墊之研磨表面ι75可以 疋至少部分導電的,以在電化學機械研磨(ECMp)製程中 促進材料從基材的電化學溶解。可使用之適當之聚合材 料包括聚氨基甲酸酯、聚碳酸酯、氟化聚合物、pTFE、 PTFA、聚苯硫醚(pps)或上述組合,及用在研磨基材表面 之其他研磨材料。在一實施例中,研磨墊之研磨表面】75 包括諸如開放小孔或封閉小孔之聚氨基甲酸酯材料的聚 合材料,該聚合材料通常用在為了研磨半導體基材之研 磨墊之製造。在另一實施例中’研磨墊之研磨表面175 201204509 可含有固定磨姓粒。诵堂,厂 研磨期間,研磨流體係被 輸送到研磨墊之研磨表面175。 掖 研磨流體可以是漿料或 電解質流體’取決於所传用沾 吏用的研磨製程和研磨墊類型。 第2圖為第1圖之傳送站 ^ 20之一貫施例的部分剖視 圖。如上所述,傳送站12G包括裝载杯組件副,裝載 杯組件160鄰近第—緩衝站⑷。第一緩_ 145可以 是經配置以支撐基材135之鈐λ + &, 之輸入或輸出緩衝站。傳送機 器人155係將基材135傳送於第_緩衝站145與裝載杯 組件160之間’裝載杯级件160係促進基材到載具頭 165D的傳送。 在-實施例中,第-緩衝站145切經研磨之基材 135’以容許濕式機器人14〇(第丄圖)將騎135傳送到 工廢界面’而為了後續的研磨及/或儲存。在另—實施例 中’第-缓衝4 U5支撐未研磨之基材135,以容許載 具頭165D接收基材135,而為了在研磨站u〇A上研磨。 在一實施例中,傳送機器人155經配置以將基材135傳 送於第一緩衝站145與裝載杯組件16〇之間,以容許載 具頭165D接收基材135,如第2圖之虛線所示。 載具頭165D耦接到軸200,軸200耦接到馬達215, 馬達215經配置以將載具頭165£)相對於臂17〇橫向地移 動於線性運動(X及/或γ方向)。載具頭165〇亦包括致 動器或馬達21 0 ’用以將載具頭165D相對於臂i 7〇升高 或降低於Z方向。載具頭165D亦耦接到旋轉致動器或 馬達220,旋轉致動器或馬達220適於將載具頭165D相 201204509 對於臂170繞著旋轉軸旋轉。設置在栽具頭165D上之馬 達210、215及220亦經配置以提供载具頭165D相對於 研磨塾之研磨表面175(第1圖)的移動。在一實施例中, 馬達2 10、2 1 5及220經配置以將載具頭i 65D相對於旋 轉之研磨表面175旋轉,並提供向下力以在處理期間推 動被固定在載具頭165D中之基材135使基材135抵靠研 磨墊之研磨表面i75。第2圖所示之載具頭165D結構和 操作可代表第1圖之載具頭165A_165C,並且為了簡潔 起見’不再描述載具頭165A-165C。 載具頭165D包括主體225,主體225被固定環23〇所 圍繞。載具頭165D亦含有一或多個囊室235A、235B, 囊室235A、235B鄰近可撓膜240。當基材135被固定在 載具頭165D中時,可撓膜240係接觸基材135之背側。 囊至235A及235B耦接到第一可變壓力源245A,第一 可變壓力源245A係選擇性地輸送流體到囊室235八及 235B以施加力到可撓膜24〇。在一實施例中,囊室235A 係施加力到可撓膜240之外區域,而囊室235]5係施加力 到可撓膜240之中心區域。從囊室235A及235B被施加 到可撓膜240之力係被傳送到基材135之部分,並可用 以推動基材135之部分朝向研磨墊(未圖示)之研磨表 面。第一可變壓力源245A經配置以獨立地輸送流體到囊 室235A及235B之各者,以經由可撓膜24〇控制到基材 135之分離區域的力。此外,可在載具頭135中提供真 空埠(未圖示)’以施加吸力到基材135之背側,而促進 12 201204509 基材135在載具頭165〇中的固定。可使用之載具頭i65D 之實例包括可從美國加州聖大克勞拉市之應用材料公司During the polishing of the surface I75, the carrier heads 165A-165C containing the substrate are rotated in the counterclockwise direction (direction c), and the polishing surface m is rotated in the counterclockwise direction (direction D). 201204509 When three carrier heads (illustrated as carrier head i65Ai65c in this example) are used at station U〇A-11〇C, carrier head U5D is adjacent to transfer station 12〇, where the substrate transfer process is transmitting ...20 occurrences. When the three carrier heads 165A-165C perform the grinding process, the carrier head i65D can be idle for a period of time. During this time period, the carrier head 1651) is ready for use in the polishing station ii〇a at the transfer station 120 in a subsequent cycle. The carrier head 165D can advance along the travel path 164 to access the transfer station 120. When the carrier head 165D is positioned at the transfer station 12, the carrier head 165D can unload the ground substrate 135 and be cleaned, and receive a new unground substrate 135 for use in the polishing station u〇A. Grinding process. In one embodiment, the carrier head 165D is detected using a monitoring device 62 disposed in the transfer station. The abrasive surface 175 is roughened to facilitate mechanical removal of material from the substrate 135. The abrasive surface 175 of the polishing pad can be a polymeric material that can be fully dielectric to facilitate removal of material from the substrate 135 during the polishing process. Alternatively, the abrasive surface ι 75 of the polishing pad can be at least partially electrically conductive to facilitate electrochemical dissolution of the material from the substrate during an electrochemical mechanical polishing (ECMp) process. Suitable polymeric materials which may be used include polyurethanes, polycarbonates, fluorinated polymers, pTFE, PTFA, polyphenylene sulfide (pps) or combinations thereof, as well as other abrasive materials used to polish the surface of the substrate. In one embodiment, the abrasive surface of the polishing pad 75 comprises a polymeric material such as an open aperture or a closed aperture polyurethane material that is typically used in the fabrication of abrasive pads for polishing semiconductor substrates. In another embodiment, the abrasive surface 175 201204509 of the polishing pad may contain a fixed abrasive particle. During the grinding process, the abrasive flow system is delivered to the abrasive surface 175 of the polishing pad.研磨 The abrasive fluid can be a slurry or electrolyte fluid' depending on the type of abrasive process and polishing pad used for the application. Figure 2 is a partial cross-sectional view of the consistent embodiment of the transfer station ^ 20 of Figure 1. As noted above, the transfer station 12G includes a load cup assembly pair adjacent the first buffer station (4). The first buffer 145 may be an input or output buffer station configured to support 钤λ + & The conveyor robot 155 conveys the substrate 135 between the first buffer station 145 and the loading cup assembly 160. The loading cup stage 160 facilitates the transfer of the substrate to the carrier head 165D. In an embodiment, the first buffer station 145 cuts the ground substrate 135' to allow the wet robot 14 (Fig.) to transfer the ride 135 to the work waste interface' for subsequent grinding and/or storage. In another embodiment, the 'first buffer 4 U5 supports the unground substrate 135 to allow the carrier head 165D to receive the substrate 135 for grinding on the polishing station u〇A. In one embodiment, the transfer robot 155 is configured to transfer the substrate 135 between the first buffer station 145 and the loading cup assembly 16A to allow the carrier head 165D to receive the substrate 135, as indicated by the dashed line in FIG. Show. The carrier head 165D is coupled to a shaft 200 that is coupled to a motor 215 that is configured to move the carrier head 165 relative to the arm 17 〇 laterally in linear motion (X and/or gamma directions). The carrier head 165A also includes an actuator or motor 21 0 ' for raising or lowering the carrier head 165D relative to the arm i 7 于 in the Z direction. The carrier head 165D is also coupled to a rotary actuator or motor 220 that is adapted to rotate the carrier head 165D phase 201204509 about the arm 170 about the axis of rotation. The motors 210, 215 and 220 disposed on the tool head 165D are also configured to provide movement of the carrier head 165D relative to the abrasive surface 175 (Fig. 1) of the polishing pad. In an embodiment, the motors 2 10, 2 15 and 220 are configured to rotate the carrier head i 65D relative to the rotating grinding surface 175 and provide a downward force to be secured to the carrier head 165D during processing. The substrate 135 is placed against the abrasive surface i75 of the polishing pad. The structure and operation of the carrier head 165D shown in Fig. 2 may represent the carrier head 165A_165C of Fig. 1, and the carrier heads 165A-165C will not be described again for the sake of brevity. The carrier head 165D includes a body 225 that is surrounded by a retaining ring 23''. The carrier head 165D also contains one or more pockets 235A, 235B adjacent the flexible membrane 240. When the substrate 135 is secured in the carrier head 165D, the flexible film 240 contacts the back side of the substrate 135. The bladders 235A and 235B are coupled to a first variable pressure source 245A that selectively delivers fluid to the bladder chambers 235 and 235B to apply a force to the flexible membrane 24A. In one embodiment, the bladder chamber 235A applies a force to an area outside the flexible membrane 240, and the bladder chamber 235]5 applies a force to a central region of the flexible membrane 240. The force applied from the bladder chambers 235A and 235B to the flexible film 240 is transferred to the portion of the substrate 135 and can be used to push a portion of the substrate 135 toward the abrasive surface of the polishing pad (not shown). The first variable pressure source 245A is configured to independently deliver fluid to each of the chambers 235A and 235B to control the force to the separation region of the substrate 135 via the flexible membrane 24〇. In addition, a vacuum (not shown) can be provided in the carrier head 135 to apply suction to the back side of the substrate 135 to facilitate the fixation of the 12 201204509 substrate 135 in the carrier head 165. Examples of available carrier heads i65D include Applied Materials, Inc., from Santa Clara, California, USA
構得的 TITAN HEAD™、ΤΪΤΑΝ CONTOUR™及 TITAN PROFILER1^載具頭。 在一實施例中’固定環23〇藉由致動器232耦接到主 體225。致動器232是由第二可變壓力源245B來控制。 第一可變壓力源245B係提供流體到致動器232或從致動 器232移除流體,此舉使得固定環23〇能相對於載具頭 165D之主體225移動於至少z方向。第二可變壓力源 245B係獨立於由馬達21〇所提供的移動,適於提供固定 環230之Z方向移動。第二可變壓力源245B可藉由施 加負壓或正壓到致動器232及/或固定環230來提供固定 環230的移動。在一態樣中,在研磨製程期間,壓力被 施加到固定環230以推動固定環23。朝向研磨塾(未圖示) 之研磨表面175(第1圖)。第一可變壓力源245a及第二 可變壓力源245B之各者可浦到控制器,以促進研磨配 方(polish recipe)的執行,其中該研磨配方係在研磨製程 期間自動地控制到基材i 3 5之區域的壓力。 隹唧靨裂程期 4 1 ®叫 I / ^ 0 固定環230亦可促進研磨流體在研磨表面π上的获 送’並產生因和研磨表面175接觸所造成之摩擦的敎: 在研磨製程期間,流體傳送和產生之熱可具有優點 研磨表面175之接觸係使得固定環23〇磨損。固定環⑼ 之表面之磨損會影響研磨製程,並且固定環23〇最終將 13 201204509 需要更換。所以,必彡頁令I丨 乂屬疋期地評估固 以決定磨損和更換間隔。 衣230之厚度, 在-實施例中’固定環23 組件_中之監控裝置162來 置在裝載杯 装載杯組件16〇日夺,固定環23〇田载具頭1㈣鄰近 固定環230之磨損的資料可_ *面可被感應且表示 盥Μ , 貢枓可被傳送到控制器。控制器可Constructed TITAN HEADTM, ΤΪΤΑΝ CONTOURTM and TITAN PROFILER1^ carrier heads. In an embodiment, the retaining ring 23 is coupled to the body 225 by an actuator 232. Actuator 232 is controlled by a second variable pressure source 245B. The first variable pressure source 245B provides fluid to or removes fluid from the actuator 232, which causes the retaining ring 23 to move in at least the z-direction relative to the body 225 of the carrier head 165D. The second variable pressure source 245B is adapted to provide Z-direction movement of the stationary ring 230 independently of the movement provided by the motor 21A. The second variable pressure source 245B can provide movement of the stationary ring 230 by applying a negative or positive pressure to the actuator 232 and/or the retaining ring 230. In one aspect, during the grinding process, pressure is applied to the retaining ring 230 to urge the retaining ring 23. The polishing surface 175 (Fig. 1) facing the polishing crucible (not shown). Each of the first variable pressure source 245a and the second variable pressure source 245B can be passed to a controller to facilitate execution of a polish recipe that is automatically controlled to the substrate during the polishing process The pressure in the area of i 3 5 . The splitting period 4 1 ® is called I / ^ 0. The retaining ring 230 can also promote the transfer of the grinding fluid on the grinding surface π and generate friction due to contact with the grinding surface 175: during the grinding process The fluid transfer and generated heat may have the advantage that the contact of the abrasive surface 175 causes the retaining ring 23 to wear. The wear on the surface of the retaining ring (9) affects the grinding process and the retaining ring 23〇 will eventually be replaced by 13 201204509. Therefore, the page must be ordered to evaluate the wear and replacement intervals. The thickness of the garment 230, in the embodiment - the monitoring device 162 in the 'fixing ring 23 assembly _ is placed on the loading cup loading cup assembly for 16 days, the fixing ring 23 is the wear of the taring carrier head 1 (four) adjacent to the fixing ring 230 The data can be sensed and the surface can be sensed and indicated, and the Gongga can be transmitted to the controller. Controller can
與螢幕連通,以對使用去助_ t 紅市』IS J t使用者顯不資料。來自監 之貝料係用以預測及/或確定固定環2 置 固定環230之使用期限與 '以、、疋 更换在—實施例中,資料可 才曰不固定環230之厚度。替代 替代地或另外,控制器可以是 可在製程配方中分柄眘, 枓且貝施校正測量以補償研磨製 程中固定環23〇之磨 傻展 磨扣的糸統控制器。因此,來自監控 裝置162之資料係用以決^固定環咖之使用期限與更 換’並且可額外地作為被用來調整研磨製程的控制旋 此外’在具有含固定環之多個載具頭的系統中,可 利用來自監控裝置162之f料來獨立於系統中之其他多 個载具頭上之其他多個固定環’調整個別固定環的製程 配方。舉例而言,儘管該等個別固定環可能以不同速率 磨損可調整用於一個載具頭上之一個固定環之製程 配方,而可將在其餘多個載具頭上之其他多個固定環上 之其他多個製程配方維持成相同。 第3圖為傳送站120之另一實施例的示意性剖視圖, 傳送站120可與第1圖之研磨系統100 —起使用。傳送 站丨2〇包括裝載杯組件16〇,並且載具頭i65D設置成鄰 14 201204509 近裝載杯組件160。在此實施例中,當載具頭l65D沒有 被用來在第1圖之研磨站110A_110C上進行研磨時,裝 載杯組件1 60經配置以作為適於清潔載具頭】65]〇的清洗 站 300 « 在一實施例中,裝載杯組件160包括主體3〇5,主體 305具有耦接到基座3〇9之參考圓錐體或環3〇7。可藉由 第一致動器310A使環307與基座3〇9相對於模組基座 118移動。第一致動器31〇A可用以相對於模組基座ιΐ8 移動主體305於至少線性方向(2:方向)。裴載杯組件16〇 亦包括托架320,托架32〇適於支撐基材135(如虛線所 示)。托架320耦接到第二致動器31〇B,第二致動器3i〇b 適於升高與降低托架320之支撐表面321。第二致動器 310B可藉由相對於主體3〇5移動支撐表面321於2方向 而促進將基材135傳送至載具頭165D或自載具頭165〇 傳送基材13 5。 主體305亦包括複數個喷嘴3 15,該等喷嘴3丨5用以 當托架320上不存在基材時清洗載具頭165D。該等喷嘴 315與加壓流體供應器33〇流體連通。加壓流體供應器 33〇含有流體(諸如去離子水),流體係經由喷嘴315被施 加以/月4載具碩l65D。在一實施例中,托架之支撐 表面32 1經配置以作為具有多個開放區域之環,以容許 來自喷嘴315之清潔流體能撞擊載具頭165D。清潔流體 係明洗可月b留置在載具頭i65D上的來自研磨製程之研 磨流體和其他碎片。清洗站3GG亦含有形成在基座309 15 201204509 中而作為排出孔之開σ 325,以選擇性地移除從載具頭 165D脫落的流體和研磨碎片。 在此實施例中’清洗站3〇〇包括監控裝置162,監控 裝置162包含㈣到控制器之感應器335 =感應器335 適於«固定環230之厚度τ。在一實施例中,感應器 335疋超音波感應器。感應器335可搞接到主體3〇5或 嵌設在主冑305 β,以傳送且接收音波。音波被傳送到 控制器卩提供可指示固定環23〇之厚度Τ的度量。在 實施例中,固定環230包含兩個環狀部分,諸如上部 刀 及下邛分355Β。在一實施例中,上部分355Α 及下部分355Β可含有在CMp製程中為化學惰性的材 料,諸如金屬材料、陶瓷材料或塑膠材料。在一實施例 中,下邛分355B含有塑膠,例如聚苯硫醚(pps)、聚醚 醚酮(PEEK)'含碳之peek材料、含TEFL0N®之PEEK 材料或複合材料。上部分355A可含有比下部分355β更 剛硬或緻密的材料。在一實施例中,上部分3 5 5 A含有不 銹鋼、鋁、鉬或陶瓷材料。 在操作之一實例中’感應器335被安裝在主體3〇5之 著陸區域345之主動表面340上。著陸區域345可被定 義成環307之底表面之區域,其中固定環23〇之下部分 355B在此處會接觸環307之表面。主動表面34〇可在定 位固定環230的著陸區域345處與環307之表面齊平。 在一實施例中’音波係被傳送到且通過固定環23 〇之下 部分355B,並且從上部分355A被反射。經反射之信號 16 201204509Connected to the screen, in order to use the help _ t Red City "IS J t users show no information. The shell material from the monitor is used to predict and/or determine the life span of the retaining ring 230 and the replacement of the retaining ring 230 with the ', 疋, 疋, in the embodiment, the data may not be the thickness of the ring 230. Alternatively or additionally, the controller may be a controller that can be shredded in the process recipe and that is calibrated to compensate for the snagging of the retaining ring 23 in the grinding process. Therefore, the data from the monitoring device 162 is used to determine the lifespan and replacement of the fixed ring coffee and can additionally be used as a control spin used to adjust the grinding process, in addition to having multiple carrier heads with fixed rings. In the system, the process recipe from the monitoring device 162 can be used to adjust the individual stationary ring process recipe independently of the other plurality of stationary rings on the other plurality of carrier heads in the system. For example, although the individual retaining rings may be worn at different rates, the process recipe for one of the retaining rings on one of the carrier heads may be adjusted, and the other plurality of retaining rings on the remaining plurality of carrier heads may be Multiple process recipes remain the same. 3 is a schematic cross-sectional view of another embodiment of a transfer station 120 that can be used with the lapping system 100 of FIG. The transfer station 丨2〇 includes a loading cup assembly 16〇, and the carrier head i65D is disposed adjacent to the 14 201204509 near-load cup assembly 160. In this embodiment, when the carrier head 165D is not being used for grinding on the polishing station 110A-110C of Figure 1, the loading cup assembly 160 is configured to act as a cleaning station suitable for cleaning the carrier head. 300 « In one embodiment, the loading cup assembly 160 includes a body 3〇5 having a reference cone or ring 3〇7 coupled to the base 3〇9. The ring 307 and the base 3〇9 can be moved relative to the module base 118 by the first actuator 310A. The first actuator 31A can be used to move the body 305 in at least a linear direction (2: direction) relative to the module base ι8. The carrier cup assembly 16A also includes a bracket 320 that is adapted to support the substrate 135 (as shown by the dashed lines). The bracket 320 is coupled to the second actuator 31〇B, and the second actuator 3i〇b is adapted to raise and lower the support surface 321 of the bracket 320. The second actuator 310B facilitates the transfer of the substrate 135 to the carrier head 165D or the self-loading head 165 传送 transport substrate 13 5 by moving the support surface 321 in two directions relative to the body 3〇5. The body 305 also includes a plurality of nozzles 315 for cleaning the carrier head 165D when no substrate is present on the carrier 320. The nozzles 315 are in fluid communication with the pressurized fluid supply 33. The pressurized fluid supply 33 〇 contains a fluid (such as deionized water), and the flow system is applied via a nozzle 315 to the carrier. In one embodiment, the support surface 32 1 of the carrier is configured to act as a ring having a plurality of open areas to allow cleaning fluid from the nozzle 315 to impact the carrier head 165D. The cleaning fluid is the grinding fluid and other debris from the grinding process that is retained on the carrier head i65D. The cleaning station 3GG also contains an opening σ 325 formed in the susceptor 309 15 201204509 as a discharge orifice to selectively remove fluid and abrasive debris that has fallen off the carrier head 165D. In this embodiment, the cleaning station 3 includes a monitoring device 162 that includes (iv) a sensor 335 to the controller = the sensor 335 is adapted to «the thickness τ of the retaining ring 230. In one embodiment, the inductor 335 is an ultrasonic sensor. The sensor 335 can be coupled to the main body 3〇5 or embedded in the main unit 305β to transmit and receive sound waves. The sound waves are transmitted to the controller and provide a measure that indicates the thickness Τ of the retaining ring 23〇. In an embodiment, the retaining ring 230 includes two annular portions, such as an upper knife and a lower jaw 355. In one embodiment, the upper portion 355Α and the lower portion 355Β may contain materials that are chemically inert in the CMp process, such as metallic materials, ceramic materials, or plastic materials. In one embodiment, the lower jaw portion 355B contains a plastic such as polyphenylene sulfide (pps), polyetheretherketone (PEEK) 'carbonaceous peek material, TEEK0N® containing PEEK material or composite material. Upper portion 355A may contain a material that is stiffer or denser than lower portion 355[beta]. In one embodiment, the upper portion 3 5 5 A contains stainless steel, aluminum, molybdenum or ceramic materials. In one example of operation, the inductor 335 is mounted on the active surface 340 of the landing zone 345 of the body 3〇5. The landing zone 345 can be defined as the area of the bottom surface of the ring 307 where the portion 355B below the retaining ring 23b contacts the surface of the ring 307. The active surface 34A can be flush with the surface of the ring 307 at the landing zone 345 of the stationary retaining ring 230. In one embodiment, the acoustic system is transmitted to and through the lower portion 355B of the stationary ring 23 and is reflected from the upper portion 355A. Reflected signal 16 201204509
被傳送到控制器且被用來決定固定環230之下部分355B 之厚度T。厚度T隨著時間的改變可指示固定環之 磨損。 第4圖為傳送站丨20之另一實施例的示意性剖視圖, 傳送站120可與第丨圖之研磨系統1〇〇 一起使用。在此 實施例中,裝载杯組件16〇經配置以作為清洗站4〇〇, 實質上類似於第3圖所示之實施例。為了簡潔起見,將 不再重複類似於第3圖傳送站12〇的傳送站120之元件。 在此實施例中,監控裝置162包含感應器335,感應 器335是渴電流感應器且適於測量下部分355B之厚度 τ。在此實施例中,下部分355B之接觸表面4〇5會接觸 環307之主動表面340。在其他實施例中,可在固定環 230與環307相隔時利用感應器335。在—態樣中,適於 作為渦電流感應器之感應器3 3 5可被用來測量主動表面 340與固定環23 0之上部分355A之接觸表面4〇5之間的 位移。位移係對應於至少固定環23〇之下部分355B之厚 度的改變。當固定環230之下部分355B接觸主動表面 340時,或當下部分355B被保持成與主動表面34〇相隔 一恆定距離時,可決定位移。 第5A圖為具有一或多個溝槽5〇〇之固定環23〇之一實 施例的部分平面圖。各個—或多個溝# 5〇"皮形成在固 定環230中,而位在介於固定環23〇之接觸表面4〇5盥 溝槽500之底冑505之間的期望深度處。各個設置在固 定環 230上之溝槽500可用 以藉由在研磨製程期間增加 17 201204509It is transmitted to the controller and used to determine the thickness T of the portion 355B below the stationary ring 230. The change in thickness T over time can indicate the wear of the retaining ring. Figure 4 is a schematic cross-sectional view of another embodiment of a transfer station 20 that can be used with the grinding system 1A of the figure. In this embodiment, the loading cup assembly 16 is configured to act as a cleaning station 4 substantially similar to the embodiment illustrated in FIG. For the sake of brevity, elements of the transfer station 120 similar to the transfer station 12A of Figure 3 will not be repeated. In this embodiment, the monitoring device 162 includes an inductor 335 that is a thirst current sensor and is adapted to measure the thickness τ of the lower portion 355B. In this embodiment, the contact surface 4〇5 of the lower portion 355B contacts the active surface 340 of the ring 307. In other embodiments, the inductor 335 can be utilized when the retaining ring 230 is spaced from the ring 307. In the aspect, an inductor 3 3 5 suitable as an eddy current sensor can be used to measure the displacement between the active surface 340 and the contact surface 4〇5 of the portion 355A above the stationary ring 230. The displacement corresponds to at least a change in the thickness of the portion 355B below the stationary ring 23〇. The displacement can be determined when the lower portion 355B of the retaining ring 230 contacts the active surface 340, or when the lower portion 355B is held at a constant distance from the active surface 34A. Figure 5A is a partial plan view of one embodiment of a retaining ring 23'' having one or more grooves 5''. Each of the plurality or grooves #5〇" skin is formed in the fixed ring 230 at a desired depth between the contact surface 4〇5 of the fixed ring 23〇 and the bottom turn 505 of the groove 500. The trenches 500, each disposed on the fixed ring 230, can be used to increase during the polishing process 17 201204509
速度將載具頭165D旋轉, 處的感應。因此,·sre+A* 以提供固定環230之多個位置The speed will be the rotation of the carrier head 165D, the induction. Therefore, ·sre+A* to provide multiple positions of the retaining ring 230
第5B圖為傳送站12〇之另一實施例的示意性剖視圖, 該傳送站120可與第1圖之研磨系統ι〇〇以及第5A圖所 示之固定環23 0 —起使用。固定環23〇包含一或多個溝 槽500 ’該等溝槽500具有由接觸表面405及底部505 界定的深度D’。溝槽500之深度D,的改變係對應於固定 環230之厚度的改變。在一實施例中,感應器335可耦 接到環307或嵌設在環307内。感應器335可以是光學 感應器、渦電流感應器、超音波感應器或其他適當之感 應裝置。在-實施例+,感應器335是超音波感應器, 超音波感應器經配置以傳送且接收撞擊到接觸表面4〇5 之音波(被圖示成信號510)。音波被傳送到控制器以提供 可扎不溝槽500之深度D,及因而可指示固定環23〇之厚 度的度量,無論固定環23〇 |以乾式或濕式來感應皆 可。因此,接觸表面4〇5與底部5〇5之間所測量的溝槽 5〇〇之深度可決定磨損’而不需要固定環23〇與裝載杯 組件160之其他部分之間的實體接觸。可以預定之旋轉 π•多個溝槽500。或者,載具頭 18 201204509 在一實施例中,監控裝置162之位置是位於基材135 之區域的外侧’以避免非感興趣之基材135或載具頭ι65 之部分的任何不利感應。舉例而言,在圓形基材的情況 中,基材135包括第一半徑Ri。在一實施例中,對於2〇〇 mm直徑之基材,第一半徑R】包括約1〇〇 之半徑。 在另一實施例中,對於300 mm直徑之基材,第一半徑 I包括約150 mm之半徑。在一實施例中’監控裝置162 疋位在第二半徑R2處,第二半徑R2是大於第一半徑R, 或位於第一半徑Ri的外側。對於2〇〇mm基材第二半 徑R2可與中心線C,相隔大於約100 mm,諸如約105 mm 至約120 mm。在另一實例中’對於3〇〇 mm基材,第二 半仏R2 了與中心線相隔大於約wo mm,諸如約155 mm至約i70mme中心線σ可以是裝載杯組件16〇之幾 何形I中〜及/或載具頭i 65D之中心。因此,監控裝置 162的疋位可避免非感興趣之基材135或載具頭165D之 部分的任何不利感應。 :第6圖為傳送站12〇之另一實施例的示意性剖視圖, 該傳送站120可與第1圖之研磨系統100 —起使用。在 此實施例巾,裝載杯組件i 6〇類似於第3圖、第4圖和 第5圖所示之實施例。為了簡潔起見,將不再重複類似 於第3圖-第5圖傳送站12〇的傳送站12〇之元件。在一 實&例中m疋環23〇包含—或多個溝槽则,且類似 於第5圖之固定環23〇之實施例。 在此實施例中’監控裝置162包含感應器335,感應 19 201204509 器335是超音波感應器’儘管可使用光學感應器、渦電 流感應器或其他適當之感應裝置。在一實施例中,當固 疋壤230位於感應器335之視線(line-of-sight)或視野 (field of View)中時,可使用感應器335。在其他實施例 中’當固定環230至少部分地設置在裝載杯組件16〇中 時,可使用感應器335。在一態樣中,感應器335包括 管狀導管600,管狀導管600設置成鄰近感應器335 ^管 狀導管600耦接到流體供應器605,流體供應器605係 輸送諸如去離子水之流體以環繞感應器335之信號路 徑。流體係被用來去除不受控之空氣,其中該不受控之 空氣可能影響來自感應器3 3 5之信號。在一實施例中, 固疋環23 0之接觸表面4〇5係直接地接觸環3〇7之主動 表面340。在另一實施例中,管狀導管6〇〇耦接到致動 器610’致動器610可容許管狀導管6〇〇相對於環3〇7 之主動表面340延伸且縮回。當載具頭165D沒有接觸環 307時,可朝向接觸表面405將管狀導管600致動(如虛 線所示)到的鄰近固定環23〇之接觸表面4〇5的位置。管 狀導管600可包含感應器335之至少一部分,感應器335 之至少一部分和管狀導管6〇〇 一起朝向固定環23〇之接 觸表面405移動。當不需要感應器335時’致動器61〇 亦可將管狀導管600縮回。 第7圖疋流程圖,流程圖圖示方法700之一實施例。 在705,將具有固定環230之載具頭165D移動使載具頭 165D鄰近I控裝置162。在一實施例中,監控裝置162 201204509 設置在研磨模組105内之裝載杯組件ι6〇上。在其他實 施例中,監控裝置162可鄰近傳送站12〇或位於鄰近傳 送站120之載具頭165D之行進路徑中或位於研磨模組 105之其他位置上。監控襞置162包括感應器335,並且 月b量從感應器335被傳送(如71〇所示)。能量可以是超 曰波、光波或磁場或磁性信號。在715,從固定環23〇 反射之能量被感應器335接收。所反射之能量可來自固 定% 23 0之表面的内表面或外表面。在72〇,基於所接 收之能量,決定固定環之狀況。所反射之信號可被提供 到控制器,以獲得可指示固定環23〇之狀況(例如固定環 230或固定環230之部分之厚度,或可與固定環23〇之 厚度相關聯的固定環230之溝槽5〇〇之深度)的度量。可 利用資料,以決定固定環23〇之更換間隔及/或後續研磨 製程中之變數的調整。 本文描述之實施例係提供用以監控固定環23〇之表面 狀況的方法及設備,其中該固定環23〇設置在研磨站中 之載具頭(諸如本文描述之載具頭165A_165D)上。監控 裝置162係被描述成可安裝在工具上(〇n t〇〇i),並且在 實施例中可感應多個研磨循環之間的固定環23〇狀 況。可藉由使用者以作為常規監控之部分的預定間隔或 可基於使用者吾好以所選擇的間隔,而設定固定環23〇 的感應。來自監控裝置162之資料被提供到控制器,其 中控制器可用以監控固定環23〇之磨損、決定固定環23〇 之使用期限及/或決定固定環230之更換間隔。在一態樣 21 201204509 中’來自監控裝置162之資料可用以預測固定環23〇之 使用期限且促進在可用的使用期限終止時固定環23〇之 更換。在另一態樣中,來自監控裝置丨62之資料可用以 預測使用期限且促進方便的更換間隔(若固定環23〇沒有 完全被磨損)。 本文描述之監控裝置162之實施例可將載具頭 165A-165D與固定環230之實體操縱及/或和載具頭 1 65A 1 65D與固疋環230的機械接觸減到最少或去除。 舉例而言,諸如卡鉗的機械測量裝置需要與固定環23〇 接觸。在測量期間與機械測量裝置的接觸會損壞固定環 230,此舉接著在處理期間會損壞研磨表面。可在工 具内進行測量,並且不需要將研磨系統停機。此外,不 需要將固定環230完全地乾燥以進行測量。監控裝置 被安裝在X具上’以致環境被包含在環境受控的外殼 115(第】圖)内。因此’本文描述之監控裝置162係提供 定衣230之監控,而幾乎不會潛在地損壞操縱或接觸 載具頭165A-165D及/或破壞研磨模组1〇5之環境。此方 法及-又備亦可將耗時且可能不精確的視覺檢測予以去除 或減到最少。此外,可將產能最大化,此U為研磨系 統不需要為了進行固定環23()之測量及/或觀察而停機。 此外’固定環230磨損資料可作為研磨製程期間的控 制變數》舉例而古,— ° 右固定環230包含溝槽500且溝槽 、、頁「了預定量的磨損’可調整-或多個研磨參數, 補償任何對於研磨均句性之固定環230 ·厚度效應。在 22 201204509 一實例中’可調整研磨參數(諸如載具頭165A_165D之旋 轉速度及向下力)’以解決固定環23〇之磨損且模仿幾乎 沒有磨損之固定環230的研磨效應。在一態樣中,可將 載具頭165A-165D之旋轉速度予以加速,以促進研磨流 體之傳送且在研磨表面175上產生熱,此實質等於幾乎 沒有磨損之固定環230的效應。 在另一實例中’在固定環230之使用期限期間,可利 用固定環230磨損資料來將晶圓内非均勻性減到最少。 可以自動化製程控制系統來利用固定環230磨損資料, 其中該自動化製程控制系統耦接到多區域載具頭(諸如 第2圖所示之載具頭165D)中的囊室235A及235B。此 外’自動化製程控制系統可與第2圖所示之載具頭165D 上之致動器232連通。在一態樣中,回應於固定環230 之厚度的改變’可變更由致動器232施加到外區域(囊室 23 5 A)及/或固定環23 0之壓力》可基於固定環23 0之厚 度資料即時地進行由囊室235A及235B施加到基材之壓 力及/或施加到固定環230之壓力的改變。因此,可基於 固定環230之磨損藉由操控研磨參數來控制被研磨之基 材的移除速率、移除輪廓及/或拓撲。此外,由於可調整 各個載具頭165A-165D之研磨參數,可將載具頭至載具 頭的變化減到最小。 本文描述之實施例係提供可促進研磨系統内之固定環 之監控的方法及設備,以決定固定環之狀況及/或評估固 定環之使用期限。在一實施例中,提供一種設備。此設 23 201204509 備包括:一載具頭,載具頭可在基材被固定在載具頭中 時移動於介於用來研磨基材之至少一個研磨站之間的行 進路徑中;以及一傳送站,傳送站用以傳送基材至载具 頭與自載具頭傳送基材,載具頭具有固定環以及設置在 載具頭之行進路徑中的感應器,感應器能夠操作以提供 可指示固定環之狀況的度量。 在另一實施例中,提供一種傳送站,傳送站設置在研 磨模組中且用以傳送基材於基材傳送裝置與至少一個載 具碩之間。傳送站包括:一裝載杯組件,裝載杯組件具 有主體,主體的尺寸可接收基材及固定環之至少一部 分’固定環輕接到至少一個載具頭;以及一感應器,感 應器設置在主體上’感應器能夠操作以提供可指示固定 環之狀況的度量,其中基材包括第一半徑,並且感應器 定位在主體上且位於第二半徑處’第二半徑大於第一半 徑。 m述内容係針對本發明之實施例,但可在不脫離 本發明之基本範嗨下設想出本發明之其他及進一步實施 例0 【圖式簡單說明】 因此’可詳細理解本發明之 之上述特徵結構之方式,即 上文簡要概述之本發明之更特定描述可參照實施例進 仃,其令—些實施例在附圖中圖示。然而,應注意的是, 24 201204509 附圖僅圖示本發3月< 本發明範疇構成限制 之典型實施例,且因此不欲視為會對 制,因為本發明可允許其他等效實施 第1圖為研磨系統之一實施例的平面圖。 第2圖為傳送站之-實施例的部分剖視圖,該傳送站 可被用在第1圖之研磨系統中。 第3圖為傳送站之另一實施例的示意性剖視圖,該傳Fig. 5B is a schematic cross-sectional view showing another embodiment of the transfer station 12, which can be used together with the grinding system ι of Fig. 1 and the retaining ring 203 shown in Fig. 5A. The retaining ring 23A includes one or more grooves 500' which have a depth D' defined by the contact surface 405 and the bottom 505. The change in the depth D of the trench 500 corresponds to a change in the thickness of the fixed ring 230. In an embodiment, the inductor 335 can be coupled to the ring 307 or embedded within the ring 307. The sensor 335 can be an optical sensor, an eddy current sensor, an ultrasonic sensor, or other suitable sensing device. In the embodiment +, the sensor 335 is an ultrasonic sensor configured to transmit and receive an acoustic wave (illustrated as signal 510) that impinges on the contact surface 4〇5. The sound waves are transmitted to the controller to provide a measure of the depth D of the groove 500, and thus the thickness of the retaining ring 23, regardless of whether the retaining ring 23〇 is dry or wet. Thus, the depth of the groove 5〇〇 measured between the contact surface 4〇5 and the bottom 5〇5 can determine wear' without requiring physical contact between the retaining ring 23〇 and other portions of the loading cup assembly 160. It can be scheduled to rotate π• a plurality of grooves 500. Alternatively, the carrier head 18 201204509 In one embodiment, the position of the monitoring device 162 is located outside of the area of the substrate 135' to avoid any undesired induction of portions of the substrate 135 or carrier head ι65 that are not of interest. For example, in the case of a circular substrate, substrate 135 includes a first radius Ri. In one embodiment, for a 2 mm diameter substrate, the first radius R] comprises a radius of about 1 。. In another embodiment, for a 300 mm diameter substrate, the first radius I comprises a radius of about 150 mm. In one embodiment, the monitoring device 162 is clamped at a second radius R2 that is greater than the first radius R or located outside of the first radius Ri. For a 2 mm substrate, the second radius R2 can be greater than about 100 mm from the centerline C, such as from about 105 mm to about 120 mm. In another example, for a 3 mm substrate, the second half of the R2 is separated from the centerline by more than about wo mm, such as about 155 mm to about i70 mme. The centerline σ can be the geometry of the loading cup assembly 16〇. Medium ~ and / or the center of the carrier i 65D. Thus, the clamping of the monitoring device 162 can avoid any adverse sensing of the non-interesting substrate 135 or portions of the carrier head 165D. 6 is a schematic cross-sectional view of another embodiment of a transfer station 12, which can be used with the lapping system 100 of FIG. In this embodiment, the loading cup assembly i 6 is similar to the embodiment shown in Figures 3, 4 and 5. For the sake of brevity, the components of the transfer station 12A similar to the transfer station 12A of Figs. 3 to 5 will not be repeated. In a real case, the m疋 ring 23〇 includes—or a plurality of grooves, and is similar to the embodiment of the fixed ring 23〇 of Fig. 5. In this embodiment the 'monitoring device 162 includes an inductor 335, and the sensing 19 201204509 335 is an ultrasonic sensor' although an optical sensor, eddy current sensor or other suitable sensing device can be used. In an embodiment, the inductor 335 can be used when the solid earth 230 is located in the line-of-sight or field of view of the sensor 335. In other embodiments, the inductor 335 can be used when the retaining ring 230 is at least partially disposed in the loading cup assembly 16A. In one aspect, the inductor 335 includes a tubular conduit 600 disposed adjacent the inductor 335. The tubular conduit 600 is coupled to a fluid supply 605 that delivers a fluid such as deionized water to surround the induction The signal path of the 335. The flow system is used to remove uncontrolled air, which may affect the signal from the sensor 335. In one embodiment, the contact surface 4〇5 of the retaining ring 230 directly contacts the active surface 340 of the ring 3〇7. In another embodiment, the tubular catheter 6 is coupled to the actuator 610'. The actuator 610 can allow the tubular catheter 6 to extend and retract relative to the active surface 340 of the ring 3A. When the carrier head 165D is not in contact with the ring 307, the tubular conduit 600 can be actuated (as indicated by the dashed line) toward the contact surface 405 to a position adjacent the contact surface 4〇5 of the retaining ring 23〇. The tubular conduit 600 can include at least a portion of the inductor 335 with at least a portion of the inductor 335 moving together with the tubular conduit 6A toward the contact surface 405 of the retaining ring 23A. The actuator 61 can also retract the tubular conduit 600 when the inductor 335 is not needed. 7 is a flow chart illustrating an embodiment of a method 700. At 705, the carrier head 165D having the retaining ring 230 is moved such that the carrier head 165D is adjacent to the I-control device 162. In one embodiment, the monitoring device 162 201204509 is disposed on the loading cup assembly ι6 in the grinding module 105. In other embodiments, the monitoring device 162 can be adjacent to the transport station 12 or in the travel path of the carrier head 165D adjacent to the transfer station 120 or at other locations of the abrasive module 105. The monitoring device 162 includes a sensor 335, and the monthly b amount is transmitted from the sensor 335 (as shown at 71). The energy can be super chopping, light or magnetic or magnetic. At 715, the energy reflected from the stationary ring 23" is received by the inductor 335. The reflected energy can come from the inner or outer surface of the surface to which the % 30 0 is fixed. At 72 〇, the condition of the fixed ring is determined based on the received energy. The reflected signal can be provided to the controller to obtain a condition that can indicate the condition of the retaining ring 23 (eg, the thickness of the portion of the retaining ring 230 or the retaining ring 230, or the retaining ring 230 that can be associated with the thickness of the retaining ring 23A). A measure of the depth of the trench 5〇〇). The data can be used to determine the adjustment interval of the retaining ring 23〇 and/or the adjustment of the variables in the subsequent grinding process. Embodiments described herein provide methods and apparatus for monitoring the surface condition of the retaining ring 23, wherein the retaining ring 23 is disposed on a carrier head (such as the carrier head 165A-165D described herein) in the polishing station. The monitoring device 162 is described as being mountable on a tool (并且n t〇〇i) and, in an embodiment, can sense a fixed ring 23 condition between a plurality of grinding cycles. The sensing of the retaining ring 23A can be set by the user at a predetermined interval as part of the conventional monitoring or based on the user's choice of the interval. Information from the monitoring device 162 is provided to the controller, where the controller can be used to monitor the wear of the retaining ring 23, determine the life of the retaining ring 23, and/or determine the replacement interval of the retaining ring 230. In one aspect 21 201204509, the information from the monitoring device 162 can be used to predict the life of the stationary ring 23〇 and facilitate the replacement of the retaining ring 23〇 at the end of the useful life period. In another aspect, the data from the monitoring device 62 can be used to predict the lifespan and facilitate a convenient replacement interval (if the retaining ring 23 is not completely worn). Embodiments of the monitoring device 162 described herein may minimize physical manipulation of the carrier heads 165A-165D and the retaining ring 230 and/or mechanical contact with the carrier head 1 65A 1 65D and the retaining ring 230. For example, a mechanical measuring device such as a caliper needs to be in contact with the retaining ring 23A. Contact with the mechanical measuring device during the measurement can damage the retaining ring 230, which can then damage the abrasive surface during processing. Measurements can be made within the tool and there is no need to shut down the grinding system. In addition, it is not necessary to completely dry the retaining ring 230 for measurement. The monitoring device is mounted on the X-device so that the environment is contained within the environmentally controlled housing 115 (Fig.). Thus, the monitoring device 162 described herein provides for monitoring of the garment 230 without substantially damaging the environment in which the handle heads 165A-165D are manipulated or contacted and/or the abrasive modules 1〇5 are destroyed. This method and - can also remove or minimize visual inspections that are time consuming and potentially inaccurate. In addition, capacity can be maximized, which is a need for the grinding system to be shut down for measurement and/or observation of the stationary ring 23(). In addition, the 'fixing ring 230 wear data can be used as a control variable during the grinding process'. For example, the right fixing ring 230 includes the groove 500 and the groove, the page "a predetermined amount of wear" can be adjusted - or a plurality of grinding Parameters, compensate for any fixed ring 230 thickness effect for grinding uniformity. In an example of 22 201204509 'adjustable grinding parameters (such as the rotational speed of the carrier head 165A_165D and the downward force)' to solve the fixed ring 23 Wear and mimic the abrasive effect of the stationary ring 230 with little wear. In one aspect, the rotational speed of the carrier heads 165A-165D can be accelerated to facilitate the transfer of the abrasive fluid and generate heat on the abrasive surface 175. Substantially equal to the effect of the stationary ring 230 with little wear. In another example, during the life of the stationary ring 230, the wear ring 230 wear data can be utilized to minimize in-wafer non-uniformity. Automated process control The system utilizes the wear ring 230 wear data, wherein the automated process control system is coupled to a multi-zone carrier head (such as the carrier head 165D shown in FIG. 2) The chambers 235A and 235B. Further, the 'automated process control system can be in communication with the actuator 232 on the carrier head 165D shown in Fig. 2. In one aspect, in response to the change in thickness of the retaining ring 230' The change of the pressure applied by the actuator 232 to the outer region (the capsule chamber 23 5 A) and/or the retaining ring 230 can be instantaneously applied to the substrate by the chambers 235A and 235B based on the thickness data of the retaining ring 230. The pressure and/or the change in pressure applied to the retaining ring 230. Thus, the rate of removal, removal of the profile, and/or topology of the substrate being ground can be controlled based on the wear of the retaining ring 230 by manipulating the grinding parameters. The variation of the carrier head to the carrier head can be minimized by adjusting the grinding parameters of the individual carrier heads 165A-165D. The embodiments described herein provide methods and apparatus that facilitate monitoring of the stationary ring within the polishing system. To determine the condition of the retaining ring and/or to evaluate the life of the retaining ring. In one embodiment, an apparatus is provided. The device 23 201204509 includes: a carrier head on which the carrier head can be fixed Moving in the middle of the head a travel path between at least one polishing station for grinding a substrate; and a transfer station for transporting the substrate to the carrier head and the self-supporting head transfer substrate, the carrier head having a retaining ring and setting In the sensor in the path of travel of the carrier head, the sensor is operable to provide a metric that can indicate the condition of the stationary ring. In another embodiment, a transfer station is provided that is disposed in the lapping module and used to The transfer substrate is disposed between the substrate transfer device and the at least one carrier. The transfer station includes: a loading cup assembly having a body, the body being sized to receive the substrate and at least a portion of the retaining ring To at least one carrier head; and an inductor disposed on the body - the sensor is operable to provide a metric indicative of a condition of the retaining ring, wherein the substrate includes a first radius and the sensor is positioned on the body and Located at the second radius 'the second radius is greater than the first radius. The present invention is directed to the embodiments of the present invention, but other and further embodiments of the present invention can be devised without departing from the basic scope of the invention. The manner in which the features are structured, that is, the more detailed description of the invention, which is briefly summarized above, may be referred to the embodiments, which are illustrated in the drawings. However, it should be noted that the drawings of 201204509 are merely illustrative of typical embodiments of the present invention, which are limited by the scope of the invention, and therefore are not intended to be considered as a system, as the invention may allow other equivalent implementations. 1 is a plan view of one embodiment of a grinding system. Figure 2 is a partial cross-sectional view of an embodiment of a transfer station that can be used in the polishing system of Figure 1. Figure 3 is a schematic cross-sectional view of another embodiment of a transfer station, the pass
第4圖為傳送站之另一實施例的示意性剖視圖,該傳 送站可與第1圖之研磨系統一起使用。 第5A圖為固定環之一實施例的部分平面圖。 第5B圖為傳送站之另一實施例的示意性剖視圖,該傳 送站可與第1圖之研磨系統一起使用。 第6圖為傳送站之另一實施例的示意性剖視圖,該傳 送站可與第1圖之研磨系統一起使用》 第7圖是一流程圖,流程圖圖示方法之一實施例。 為促進理解,在可能時使用相同的元件符號來指定該 等圖式共有的相同元件。預期,一個實施例中揭示的元 件可有利地用於其他實施例而不需特別詳述。 【主要元件符號說明】 B 方向 C'中心線 A 方向 C 方向 25 201204509 D 方向 T 厚度 R2 第二半徑 105 研磨模組 110B 第二研磨站 115 外殼 120 傳送站 128 研磨流體輸送臂 135 基材 145 第一缓衝站 155 傳送機器人 162 監控裝置 165A-165D 載具頭 170 臂 200 轴 215 馬達 225 主體 232 致動器 240 可撓膜 245B 第二可變壓力 305 主體 309 基座 310B 第二致動器 320 托架 D' 深度 Ri 第一半徑 100 研磨系統 110A 第一研磨站 110C 第三研磨站 118 模組基座 125 轉盤 130 調節裝置 140 濕式機器人 150 第二緩衝站 160 裝載杯組件 164 行進路徑 168 致動器 175 研磨表面 210 馬達 220 旋轉致動器 230 固定環 235A-235B 囊室 245A 第一可變壓 300 清洗站 307 環 310A 第一致動器 315 噴嘴 321 支撐表面 26 201204509 325 開口 335 感應器 340 主動表面 345 著陸區域 355A 上部分 355B 下部分 400 溝槽 405 接觸表面 410 信號 500 溝槽 505 底部 510 信號 600 管狀導管 605 流體供應器 610 致動器 700 方法 705-720 步驟 27Figure 4 is a schematic cross-sectional view of another embodiment of a transfer station that can be used with the lapping system of Figure 1. Figure 5A is a partial plan view of one embodiment of a retaining ring. Figure 5B is a schematic cross-sectional view of another embodiment of a transfer station that can be used with the lapping system of Figure 1. Figure 6 is a schematic cross-sectional view of another embodiment of a transfer station that can be used with the lapping system of Figure 1 . Figure 7 is a flow chart illustrating one embodiment of the method. To facilitate understanding, the same component symbols are used wherever possible to specify the same components that are common to the drawings. It is contemplated that the elements disclosed in one embodiment may be advantageously utilized in other embodiments without particular detail. [Main component symbol description] B direction C' center line A direction C direction 25 201204509 D direction T thickness R2 second radius 105 grinding module 110B second polishing station 115 housing 120 transfer station 128 grinding fluid transfer arm 135 substrate 145 A buffer station 155 transfer robot 162 monitoring device 165A-165D carrier head 170 arm 200 shaft 215 motor 225 body 232 actuator 240 flexible film 245B second variable pressure 305 body 309 base 310B second actuator 320 Bracket D' Depth Ri First Radius 100 Grinding System 110A First Grinding Station 110C Third Grinding Station 118 Module Base 125 Turntable 130 Adjusting Device 140 Wet Robot 150 Second Buffer Station 160 Loading Cup Assembly 164 Travel Path 168 Actuator 175 Abrasive Surface 210 Motor 220 Rotary Actuator 230 Retaining Ring 235A-235B Chamber 245A First Variable Pressure 300 Cleaning Station 307 Ring 310A First Actuator 315 Nozzle 321 Support Surface 26 201204509 325 Opening 335 Sensor 340 Active surface 345 landing area 355A upper part 355B lower part 400 groove 405 contact table Face 410 signal 500 groove 505 bottom 510 signal 600 tubular conduit 605 fluid supply 610 actuator 700 method 705-720 step 27