TW201202491A - Crucible for use in a directional solidification furnace - Google Patents

Crucible for use in a directional solidification furnace Download PDF

Info

Publication number
TW201202491A
TW201202491A TW100103495A TW100103495A TW201202491A TW 201202491 A TW201202491 A TW 201202491A TW 100103495 A TW100103495 A TW 100103495A TW 100103495 A TW100103495 A TW 100103495A TW 201202491 A TW201202491 A TW 201202491A
Authority
TW
Taiwan
Prior art keywords
base
crucible
directional solidification
thermal conductivity
plate
Prior art date
Application number
TW100103495A
Other languages
Chinese (zh)
Inventor
Richard J Phillips
Balaji Devulapalli
Steven L Kimbel
Aditya J Deshpande
Original Assignee
Memc Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memc Singapore Pte Ltd filed Critical Memc Singapore Pte Ltd
Publication of TW201202491A publication Critical patent/TW201202491A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

A directional solidification furnace comprises a crucible assembly including a crucible for containing a melt having walls and a base with an opening therein, a crucible support for supporting the crucible, and a lid covering the crucible. A plate is received in the opening in the base. The plate has a higher thermal conductivity than that of the base. The base can include a composite having an additive such that the composite base has a higher thermal conductivity than a comparable without the additive.

Description

201202491 六、發明說明: 【發明所屬之技術領域】 本發明整體而言係關於定向固化爐,且更明確而言,本 發明係關於一種用於改良固化速率之定向固化爐。 【先前技術】 固化爐(諸如圖1中所示之固化爐且整體指示為1〇〇)通常 被用於多晶矽鑄錠之生產中。圖}之該定向固化爐1〇〇包括 一坩堝102,該坩堝1〇2係由具有石墨支撐壁之一坩堝支撐 件103所支撐,該等石墨支撐壁向該坩堝提供結構剛性。 該坩堝102包含若干壁1〇4(坩堝支撐壁)及一基座1〇6。該坩 堝102典型係由石英或另一種可承受高溫同時保持本質上 無活性之合適材料而建構。 該坩堝102及坩堝支撐件103連同一蓋112形成一内總成 1 05。此内總成1 〇5亦可包含被設置於該基座1 〇6之下方之 一熱交換器107。加熱器1〇8被定位於該等壁1〇4之周圍且 位於一容器110内。該等加熱器1〇8可適當地為輻射加熱 器,其等係經組態以施加熔融該坩堝内之進料所必需之 熱。此實施例之進料為矽’但亦可預想其他材料。 側絕緣體109係可設置於該坩堝之周圍且係可藉由例如 垂直運動而部分打開。一旦該矽進料已熔融,則可將一冷 卻媒體引入該熱交換器107及/或該絕緣體1〇9中,以幫助 實現石夕之定向固化。該等加熱器108之熱輸出係可調整, 以使得向該熔融物111施加較少之熱。可藉由使得該等加 熱器108移動離開該坩堝102,尤其係自該坩堝基座1〇6而201202491 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates generally to a directional solidification furnace, and more particularly to a directional solidification furnace for improving a curing rate. [Prior Art] A curing oven (such as the curing oven shown in Fig. 1 and generally indicated as 1 〇〇) is generally used in the production of polycrystalline tantalum ingots. The directional solidification oven 1 of Fig. 1 includes a crucible 102 supported by a support member 103 having a graphite support wall that provides structural rigidity to the crucible. The crucible 102 includes a plurality of walls 1〇4 (坩埚 support walls) and a base 1〇6. The crucible 102 is typically constructed of quartz or another suitable material that can withstand high temperatures while remaining essentially inactive. The crucible 102 and the crucible support member 103 are joined to the same cover 112 to form an inner assembly 105. The inner assembly 1 〇 5 may also include a heat exchanger 107 disposed below the susceptor 1 〇6. The heater 1〇8 is positioned around the walls 1〇4 and located within a container 110. The heaters 1〇8 may suitably be radiant heaters that are configured to apply the heat necessary to melt the feed within the crucible. The feed for this example is 矽' but other materials are also envisioned. The side insulator 109 can be disposed around the crucible and can be partially opened by, for example, vertical movement. Once the crucible feed has melted, a cooling medium can be introduced into the heat exchanger 107 and/or the insulator 1〇9 to aid in the directional solidification of the stone. The heat output of the heaters 108 is adjustable such that less heat is applied to the melt 111. The heaters 108 can be moved away from the crucible 102, particularly from the crucible base 1〇6.

153828.doc S 201202491 移開來相對於該坩堝而調整該等加熱器1〇8之位置。 在該坩堝102已填充矽之後,便將圍繞該坩堝之區域予 以岔封以與外側周圍隔絕。為了幫助使該坩堝】〇2與外側 環境隔離,該坩堝被放置於形成該爐之一部分之容器ιι〇 内。該容器110内之壓力接著減小。該容器11〇内之氛圍中 之内容物亦可得以監視及控制。 接著將該坩堝102及該進料加熱至一足以使矽熔融之溫 度。在已該進料已完全熔融之後,該進料係以一有控制速 率而冷卻,以實現一定向固化結構。該有控制之冷卻速率 係藉由減少由該等加熱器1〇8而施加之熱之量及位置、圍 繞該坩堝!02之絕緣體109中之一排熱孔之移動或打開或一 冷卻媒體經由該熱交換器107(例如,一冷卻板)之循環之任 何組合而達成。任何此等方法使熱自該坩堝1〇2之表面轉 移離開。若㈣㈣2之該基座⑽之冷卻速率大於該堆禍 之該等壁104之冷卻速率’則產生具有主要軸向熱梯度之 相對平坦、水平固化等溫線。因&,該鑄錠固化最接近該 增堝102之較冷卻側之區域且在一遠離該堆場之該側之方 向上行進。該炼融物U1之最後待固化部分一般位於該鑄 鍵之頂部。 ,對在定向固化爐中生產多晶石夕鑄錠之一大考量是自原材 料石夕產生-鑄錠所需要之時間。該鎮鍵固化之速率直接影 響由該等原材料形成該鑄錠所需要之時間量。 此背景段落意在向讀者介紹此項技術之可能與本揭示内 容之多個態樣關聯之各個態樣,下文將描述及/或申請此 153828.doc 201202491 等態樣。據信此論述有助於向讀者提供背景資訊來促成更 好地理解本揭示内容之該多個態樣。因此,應理解,此等 敍述係就本文而而言,且並非對先前技術之認可。 【發明内容】 本發明之第一態樣係包括一坩堝總成之一定向固化爐。 該坩堝總成包含用於容納一熔融物之坩堝,該坩堝包含若 干^•及基座,a亥基座中具有一開口。一堆禍支撐件支樓 該坩堝且一盍覆蓋該坩堝。一板被收納於該基座中之該開 口中。該板之導熱率高於該基座之導熱率。 本發明之另一態樣為包括一坩堝總成之一定向固化爐。 "亥掛禍總成包含用於容納—溶融物之—掛禍,該掛禍包含 右干壁及一複合物基座。一坩堝支撐件支撐該坩堝且一蓋 覆盍該坩堝β該複合物基座包含-添加劑,使得該複合物 基座之導熱率咼於不具有該添加劑之一同等基座之導埶 率。 ’、、、 本發明之另-態樣為在—^向固化爐中生產—鑄鍵之方 =該方法包括熔融該爐之-掛财之—料料,以形成 —液態熔融物。該坩堝包含具有一第一部分及一第二部分 =一基座。該帛一部*之導熱率高於該第二部分之導二 率接著熱係赵由該掛禍之該基座而自該炫融物轉移。熱 =由該基座之該第-部分而轉移之速率大於經由該第二部 分而轉移之速率。熱自該熔融物轉移導致該熔融物之固化 及該铸鍵之產生。 可存在對與上述之態樣„之特徵之各種精^亦可在 153828.doc 201202491 上述之態樣中併入進一步之特徵。此等精製及額外特徵可 個別地或組合存在。例如,下文關於所圖解說明之實施例 而淪述之各種特徵係可單獨或組合地併入上述之態樣中之 任何者中。 【實施方式】 在下文圖中,相似之參考符號指示相似之元件。 圖2、3、及4分別展示用於任何定向固化爐(諸如圖工中 所不之該爐100)中之一坩堝2〇〇之一第一實施例之一俯視 平面圖、橫截面圖及放大圖。該坩禍2〇〇具有一基座 2〇6(般稱為「第二部分」)及自該基座向上延伸之四個壁 2〇4。該基座206及該等壁204可形成為一體或接合在一 起’使传將§亥炫融物111(圖1)容納於其中。該基座206具有 一上表面208及一下表面210及一於該上表面與該下表面之 間延伸之開口 220。 該開口 220係藉由形成於該坩堝2〇〇中之一空隙所界定, 戎開口係由四個側222而限制《在其他實施例中,該開口 220係可為除了矩形之外之其他形狀,諸如圓形、橢圓形 或任何其他合適之形狀且被放置於該開口中之板25〇根據 該開口之形狀而定形》該開口 22〇係可藉由加工或移除基 座206之一區段而形成於該坩堝2〇〇中。在其他實施例中, 该開口 220係可在該坩堝2〇〇之製造期間而形成。 該開口 220鄰近該基座206之該上表面208之一長度為L且 一寬度為W且鄰近該下表面210之一長度為L,且一寬度為 W'。該等側222中之各者遠離該坩堝2〇〇之該等壁204而向 153828.doc • 6 - 201202491 内傾斜,使得長度L大於長度L’且寬度W大於寬度W'。在 一些實施例中,長度L、L·、寬度W及W'可介於50 mm至 630 mm之間。如在圖4中可更清晰看見,該等側222相對於 該基座206的該下表面210成大約45度角。然而,在不脫離 該等實施例之範疇之基礎上,該等側222亦可以一不同的 角度而定向。例如,在一些實施例中,該等侧222係可以 相對於該基座206之該下表面210大約成35度而定向。 具有四個側252之一板250(—般稱為「第一部分」)之大 小經設定而適於定位於該開口 220内。雖然本文之該等實 施例揭示將該板250放置於該坩堝200之該基座206中,亦 可將額外之板放置於所有或任何壁204内。此外,在一些 實施例中’可能不使用該板250,而是可將類似於該板250 之若干板放置於所有或任何壁204内。 該板250係由一導熱率高於該坩堝200之該基座206之導 熱率之材料製成。在一實施例中,該板25〇係可由熔融石 英製成。在一些實施例中,該板25〇之一導熱率為大約 3W/m°K ’相較之下’該基座2〇6之一典型導熱率為 lW/m°K。在其他實施例中,該板25〇係由具有高於該坩堝 200之該基座206之導熱率、高於該熔融之熔點之任 何材料製成。例如,該板25〇可由Mg〇、A1N、SiC、石墨 或MgO與SiC之一複合物所製成。根據一些實施例,該板 250可能僅可使用一次’此次使用之後即被移除且修復或 丟棄。在其他實施例中,該板2s〇在被移除之前可多次使 用0 153828.doc 201202491 該板250之一厚度為Tl,Τι大體上等於鄰近該板25〇之該 坩堝200之該基座2〇6之一厚度丁2。在一些實施例中,乃可 介於5 mm至25 mm之間且I可介於5 mm至25 mm之間。在 其他實施例中,該板250之厚度L可大於或小於該基座206 之厚度Τ'2。如在圖4中可見’該板25〇之四個側252具有對 應於該開口 220之該等側222之一傾斜輪廓,使得該板與該 開口之s亥等側對準。該開口之傾斜側222形成一第一角 度,該第一角度與由該板250之該四個側252之該傾斜輪廓 所形成之一第二角度互補。因此,該開口 22〇之該等側222 及該板250之該等側252之幾何形狀導致該熔融物ηι之重 量使得該板之該等側抵壓在該開口之該等側上。可使用一 黏合劑來進一步將該板25〇緊固於該開口 22〇之該等側222 内,使得该熔融物111無法在開口與該板之間行進穿過。 在一些實施例中,該黏合劑為一注漿成型氧化矽化合物 256。為了圖解說明之目的,圖4中所示之接頭254之大小 及容納於該接頭254中之注漿成型氧化矽化合物256之量係 在相當程度之放大。在使用該坩堝2〇〇之前,可用膠帶或 其他材料密封介於該板250與該基座2〇6之該下表面21〇之 間之一接頭。將呈流體狀態之注漿成型氧化矽256傾倒於 鄰近該基座206之該上表面208之該接頭254中。該液態注 衆成型氧化石夕256中之溶劑接著蒸發,且氧化石夕留下成爲 一接頭進料。接著燒製該坩堝2〇〇,以固化該接頭254中之 該注漿成型氧化矽256。 圖5及圖6分別展示用於任何定向固化爐(諸如『中所示 153828.doc 201202491 · 之該爐100)中之一坩堝300之一第二實施例之一俯視平面 0杈截面圖。δ亥坩堝300具有一基座306(—般稱為「第 一邰刀」)及自該基座向上延伸之四個壁3〇4。該基座 纟土 304係可形成為-體或接合在-起,使得將該熔融物 ιιι(圖1)容納於其中。該基座3〇6具有一上表面3〇8及一下 表面310凹部320自該下表面310朝向該上表面308而向 上k伸但疋不會行進穿過該基座306之該上表面308。 一具有四個側352之一板350(一般稱為「第一部分」)之 大小經設定而適於定位於該凹部32〇内。在其他實施例 中,該凹部320及板350可能並非矩形,而是可為圓形、橢 圓形或任何其他合適之形狀。雖然本文之實施例揭示將該 板350放置於5玄掛禍3〇〇之該基座306中之該凹部320中,亦 可將額外之板放置於任何或所有的壁3〇4内。此外,可能 不使用該板350’而是將若干板放置於任何或所有壁3〇4 内。 §亥基座306之一部分360使該板350與設置於該坩堝中之 該熔融物隔離。該部分360阻止該熔融物損壞、磨損或腐 姓該板350。根據一些實施例,該部分36〇之一厚度 Tp〇RTi〇N可介於1 mm至2〇 mm之間,而該板350之一厚度 * Tplate可介於1 mm至20 mm之間,且該基座306之一厚度 TBASE可介於1 mm至20 mm之間。此外,雖然圖中展示該 板厚度TPLATE與該部分之厚度τ p〇RTi〇N—致,該厚度亦可 變化。由於該板350係由該基座306之該部分360而與該熔 融物111隔離,因此’該板在被更換之前可多次使用。153828.doc S 201202491 Move away to adjust the position of these heaters 1〇8 relative to the 坩埚. After the crucible 102 has been filled with crucibles, the area surrounding the crucible is sealed to be isolated from the outside. To help isolate the 〇2 from the outside environment, the raft is placed in a container ιι that forms part of the furnace. The pressure within the vessel 110 is then reduced. The contents of the atmosphere within the container 11 can also be monitored and controlled. The crucible 102 and the feed are then heated to a temperature sufficient to melt the crucible. After the feed has been completely melted, the feed is cooled at a controlled rate to achieve a solidified structure. The controlled cooling rate is achieved by reducing the amount and location of heat applied by the heaters 1〇8! The movement or opening of one of the exhaust holes in the insulator 109 of 02 or a cooling medium is achieved by any combination of cycles of the heat exchanger 107 (e.g., a cooling plate). Any such method transfers heat away from the surface of the crucible 1〇2. If the cooling rate of the susceptor (10) of (4) (4) 2 is greater than the cooling rate of the walls 104 of the stack, a relatively flat, horizontally solidified isotherm having a major axial thermal gradient is produced. Because of &, the ingot solidifies closest to the area of the cooler side of the booster 102 and travels in a direction away from the side of the stack. The last portion to be cured of the smelt U1 is generally at the top of the cast bond. One of the major considerations for the production of polycrystalline stone ingots in a directional solidification furnace is the time required to produce the ingot from the original material. The rate of cure of the bond directly affects the amount of time required to form the ingot from the raw materials. This background paragraph is intended to introduce the reader to various aspects of the technology that may be associated with the various aspects of the disclosure, which are described below and/or applied to the 153828.doc 201202491. It is believed that this discussion will help provide the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Therefore, it is to be understood that such statements are herein and are not an admission of prior art. SUMMARY OF THE INVENTION A first aspect of the present invention includes a directional solidification furnace of a crucible assembly. The crucible assembly includes a crucible for containing a melt, the crucible including a plurality of openings, and an opening therein. A pile of scaffolding support towers should cover the raft. A plate is received in the opening in the base. The thermal conductivity of the plate is higher than the thermal conductivity of the susceptor. Another aspect of the invention is a directional solidification oven comprising a one-turn assembly. "Hai hang disaster assembly contains a smash for containing - the melt, which contains the right drywall and a composite pedestal. A composite support member supports the crucible and a cover covering the crucible β. The composite base includes an additive such that the thermal conductivity of the composite base is less than the conductivity of the equivalent base of one of the additives. Another aspect of the present invention is the production of a bond in a curing oven. The method includes melting the material of the furnace to form a liquid melt. The crucible includes a first portion and a second portion = a pedestal. The thermal conductivity of the first portion is higher than the second conductivity of the second portion, and then the thermal system is transferred from the blister by the susceptor of the catastrophe. Heat = the rate of transfer from the first portion of the susceptor is greater than the rate at which the second portion is transferred. The transfer of heat from the melt results in solidification of the melt and production of the cast bond. There may be further features in the above-described aspects of the features of the above-described aspects. These features may also be incorporated in the above-described aspects of 153828.doc 201202491. These refinements and additional features may exist individually or in combination. For example, The various features described in the illustrated embodiments may be incorporated in any of the above-described aspects, either individually or in combination. [Embodiment] In the following figures, like reference numerals indicate similar elements. 3, 4, and 4 respectively show a top plan view, a cross-sectional view, and an enlarged view of one of the first embodiments of any one of the directional solidification furnaces (such as the furnace 100 not shown in the drawings). The trouble 2 has a base 2〇6 (commonly referred to as a "second part") and four walls 2〇4 extending upward from the base. The pedestal 206 and the walls 204 can be formed as one piece or joined together to accommodate the shovel 111 (Fig. 1) therein. The base 206 has an upper surface 208 and a lower surface 210 and an opening 220 extending between the upper surface and the lower surface. The opening 220 is defined by a void formed in the crucible 2, and the opening is limited by four sides 222. In other embodiments, the opening 220 can be other than a rectangle. A plate 25, such as a circle, an ellipse or any other suitable shape and placed in the opening, is shaped according to the shape of the opening. The opening 22 can be processed or removed by a region of the base 206. The segment is formed in the 坩埚2〇〇. In other embodiments, the opening 220 can be formed during manufacture of the crucible. The opening 220 is adjacent to the upper surface 208 of the base 206 and has a length L and a width W and a length adjacent to the lower surface 210 is L and a width W'. Each of the sides 222 is inclined away from the walls 204 of the 坩埚2〇〇 and into the 153828.doc • 6 - 201202491 such that the length L is greater than the length L' and the width W is greater than the width W'. In some embodiments, the lengths L, L·, widths W and W' may be between 50 mm and 630 mm. As can be seen more clearly in Figure 4, the sides 222 are at an angle of approximately 45 degrees with respect to the lower surface 210 of the base 206. However, the sides 222 can also be oriented at different angles without departing from the scope of the embodiments. For example, in some embodiments, the sides 222 can be oriented at approximately 35 degrees relative to the lower surface 210 of the base 206. The size of one of the four sides 252, 250 (generally referred to as the "first portion"), is configured to be positioned within the opening 220. While these embodiments herein disclose placing the panel 250 in the pedestal 206 of the crucible 200, additional panels may be placed in all or any of the walls 204. Moreover, the plate 250 may not be used in some embodiments, but rather several plates similar to the plate 250 may be placed in all or any of the walls 204. The plate 250 is made of a material having a thermal conductivity higher than that of the susceptor 206 of the crucible 200. In one embodiment, the plate 25 can be made of fused quartz. In some embodiments, one of the plates 25 has a thermal conductivity of about 3 W/m ° K ′ and a typical thermal conductivity of the susceptor 2 〇 6 is lW/m°K. In other embodiments, the plate 25 is made of any material having a higher thermal conductivity than the susceptor 206 of the crucible 200, above the melting point of the melt. For example, the plate 25 can be made of Mg 〇, A1N, SiC, graphite or a composite of MgO and SiC. According to some embodiments, the board 250 may only be used once 'after this use, it is removed and repaired or discarded. In other embodiments, the plate 2s can be used multiple times before being removed. 0 153828.doc 201202491 One of the plates 250 has a thickness T1, which is substantially equal to the base of the crucible 200 adjacent to the plate 25 One of the thicknesses of 2〇6 is 2. In some embodiments, it can be between 5 mm and 25 mm and I can be between 5 mm and 25 mm. In other embodiments, the thickness L of the plate 250 can be greater or less than the thickness Τ '2 of the pedestal 206. As can be seen in Figure 4, the four sides 252 of the plate 25 have an oblique profile corresponding to one of the sides 222 of the opening 220 such that the plate is aligned with the side of the opening. The angled side 222 of the opening defines a first angle that is complementary to a second angle formed by the sloped profile of the four sides 252 of the panel 250. Thus, the geometry of the sides 222 of the opening 22 and the sides 252 of the plate 250 results in the weight of the melt η such that the sides of the plate abut against the sides of the opening. An adhesive can be used to further secure the plate 25 to the sides 222 of the opening 22, such that the melt 111 cannot travel between the opening and the plate. In some embodiments, the binder is a slip cast yttrium oxide compound 256. For purposes of illustration, the size of the joint 254 shown in Figure 4 and the amount of the cast-formed cerium oxide compound 256 contained in the joint 254 are substantially amplified. Prior to use of the crucible, a joint between the plate 250 and the lower surface 21 of the base 2〇6 may be sealed with tape or other material. A grout-formed yttrium oxide 256 in a fluid state is poured into the joint 254 adjacent the upper surface 208 of the susceptor 206. The solvent in the liquid-injected shaped oxide oxide 256 is then evaporated and the oxidized oxide remains as a joint feed. The crucible is then fired to cure the grout-formed cerium oxide 256 in the joint 254. Figures 5 and 6 respectively show a top plan cross-sectional view of a second embodiment of one of the 坩埚300s of any directional solidification furnace, such as the one shown in 153828.doc 201202491. The δ 坩埚 300 has a pedestal 306 (generally referred to as a "first trowel") and four walls 3 〇 4 extending upward from the pedestal. The pedestal alumina 304 can be formed as a body or joined so that the melt ιιι (Fig. 1) is contained therein. The base 3〇6 has an upper surface 3〇8 and a lower surface 310 recess 320 extending from the lower surface 310 toward the upper surface 308 to the upper k but does not travel through the upper surface 308 of the base 306. A plate 350 having one of four sides 352 (generally referred to as a "first portion") is sized to be positioned within the recess 32A. In other embodiments, the recess 320 and the plate 350 may not be rectangular, but may be circular, elliptical or any other suitable shape. Although embodiments herein disclose that the plate 350 is placed in the recess 320 in the base 306 of the shackle, additional panels may be placed in any or all of the walls 3〇4. In addition, instead of using the plate 350', several plates may be placed in any or all of the walls 3〇4. A portion 360 of the pedestal 306 isolates the plate 350 from the melt disposed in the crucible. This portion 360 prevents the melt from being damaged, worn or eroded by the plate 350. According to some embodiments, one of the thicknesses Tp 〇 RTi 〇 N of the portion 36 可 may be between 1 mm and 2 〇 mm, and one of the thicknesses of the plate 350 * Tplate may be between 1 mm and 20 mm, and One of the susceptors 306 may have a thickness TBASE between 1 mm and 20 mm. Further, although the figure shows that the plate thickness TPLATE is the same as the thickness τ p 〇 RTi 〇 N of the portion, the thickness may also vary. Since the plate 350 is isolated from the melt 111 by the portion 360 of the base 306, the plate can be used multiple times before being replaced.

153828.doc -9- S 201202491 該板350係藉由任何接合機構(諸如黏合劑或緊固件)而 附接至該基座306。在一些實施例中,使用注漿成型氧化 矽來將該板360緊固至該凹部320。在其他實施例中,該凹 部320與該板350之間之一摩擦配合將該板固持於該凹部 中。 該板350係由一導熱率高於該坩堝300之該基座306之導 熱率之材料製成。在一實施例中,該板35〇係可由熔融石 英製成。在此等實施例中,該板35〇及該基座3〇6之該部分 3 60之一組合有效導熱率(]^汀)為至多約1〇|/111。1(:,相較之 下’該基座306之一典型導熱率為! w/m°K。 在其他實施例中’該板350係由導熱率高於該坩堝3〇〇之 該基座306之導熱率之任何材料製成。例如,該板35〇係可 由 MgO ' AIN、SiC、石墨或 MgO與 SiC、Si02與 AIN、Si02 與MgO及Si〇2與Ti〇2之複合物而製成。此外,由於該板 350係由該部分36〇而與該熔融物lu隔離,原本不適於與 該炫融物接觸之材料(例如,Ti〇2)可用於該板350之構造 中。 表1 _____ Tbass ^PORTIOK TpLATE ^PORTION ^ΡΙΑΤΕ kef f 20 ~5 15 1 3 2 20 "Το~· 10 1 3 1.5 20 on 5 1 3 1.2 15 1 50 3.77 20 To~~" 10 1 50 1,96 20 "15' 5 1 50 1.32 20 ~2 18 1 50 8.47 如上文之表1中所示,該基座306之有效導熱率(keff)係取 153828.doc 201202491 決於該部分360之導熱率(Kp〇rtion)及板350之導熱率 (KpLATE)及其等之厚度 5 TpORTION 及T PLATE ° 該板350與該部 分360之組合有效導熱率(keff)係取決於該板之組合物及該 板及該部分之該厚度。該基座306之組合導熱率表示為: kef f 三153828.doc -9-S 201202491 The plate 350 is attached to the base 306 by any engagement mechanism, such as an adhesive or fastener. In some embodiments, the plate 360 is fastened to the recess 320 using a slip cast yttria. In other embodiments, a friction fit between the recess 320 and the plate 350 holds the plate in the recess. The plate 350 is made of a material having a thermal conductivity higher than that of the susceptor 306 of the crucible 300. In one embodiment, the plate 35 can be made of fused quartz. In these embodiments, the combination of the plate 35〇 and one of the portions 3 60 of the pedestal 3〇6 has an effective thermal conductivity (= ^ )) of at most about 1 〇 | / 111. 1 (:, compared The lower one of the susceptors 306 has a typical thermal conductivity of !w/m°K. In other embodiments, the plate 350 is any material having a thermal conductivity higher than the thermal conductivity of the susceptor 306 of the 坩埚3〇〇. For example, the plate 35 can be made of MgO ' AIN, SiC, graphite or MgO and SiC, SiO 2 and AIN, SiO 2 and MgO, and a composite of Si 〇 2 and Ti 〇 2 . The 350 series is isolated from the melt lu by the portion 36〇, and a material that is not suitable for contact with the dazzle (for example, Ti〇2) can be used in the construction of the plate 350. Table 1 _____ Tbass ^PORTIOK TpLATE ^ PORTION ^ΡΙΑΤΕ kef f 20 ~5 15 1 3 2 20 "Το~· 10 1 3 1.5 20 on 5 1 3 1.2 15 1 50 3.77 20 To~~" 10 1 50 1,96 20 "15' 5 1 50 1.32 20 ~ 2 18 1 50 8.47 As shown in Table 1 above, the effective thermal conductivity (keff) of the susceptor 306 is 153828.doc 201202491 depends on the thermal conductivity (Kp〇rtion) of the portion 360 and Board 350 The thermal conductivity (KpLATE) and its thickness 5 TpORTION and T PLATE ° The effective thermal conductivity (keff) of the plate 350 and the portion 360 depends on the composition of the plate and the thickness of the plate and the portion. The combined thermal conductivity of the pedestal 306 is expressed as: kef f III

TbaseTbase

T PLATE TFORTION -Η--T PLATE TFORTION -Η--

PL ATE k PORTION J 圖7及圖8分別展示用於任何定向固化爐(諸如圖1中所示 之該爐100)中之一坩堝400之一第三實施例之一俯視平面 圖及橫截面圖。該坩堝400具有一基座406(—般稱為「第 二部分」)及自該基座向上延伸之四個壁404。該基座406 及該等壁404係可形成為一體或接合在一起,使得可將該 熔融物111(圖1)容納於其中。該基座406具有一上表面408 及一下表面410。 該基座406具有一導熱率增加之部分450(—般稱為「第 一部分」)。雖然本文之實施例揭示將該部分450放置於該 坩堝400之該基座406中,可將額外之部分放置於任何或所 有該等壁404内。此外,可能並不使用該部分450,而是將 若干導熱率增加之部分放置於任何或所有該等壁404内。 該部分450包含一種或多種添加劑材料452,其等與形成 該基座406之材料相互混合,以形成一複合物。為了清晰 起見,圖7中所示之添加劑材料4 5 2之數量經大大減少且該 等添加劑材料之相對尺寸則大大增加。該添加劑材料452 之導熱率高於形成該基座406之材料之導熱率。因此,該 153828.doc 11PL ATE k PORTION J Figures 7 and 8 show a top plan view and a cross-sectional view, respectively, of a third embodiment of one of the crucibles 400 used in any directional solidification furnace, such as the furnace 100 shown in Figure 1. The crucible 400 has a base 406 (generally referred to as a "second portion") and four walls 404 extending upwardly from the base. The base 406 and the walls 404 can be formed integrally or joined together such that the melt 111 (Fig. 1) can be received therein. The base 406 has an upper surface 408 and a lower surface 410. The pedestal 406 has a portion 450 (generally referred to as the "first portion") having an increased thermal conductivity. Although embodiments herein disclose placing the portion 450 in the base 406 of the crucible 400, additional portions may be placed within any or all of the walls 404. In addition, the portion 450 may not be used, but rather portions of increased thermal conductivity may be placed in any or all of the walls 404. The portion 450 includes one or more additive materials 452 that are intermixed with the material from which the susceptor 406 is formed to form a composite. For the sake of clarity, the amount of additive material 425 shown in Figure 7 is greatly reduced and the relative size of the additive materials is greatly increased. The thermal conductivity of the additive material 452 is higher than the thermal conductivity of the material forming the susceptor 406. Therefore, the 153828.doc 11

S 201202491 =1〇6之:°部分之經増高之導熱率-般為該㈣。。之 «座之剩餘部分及該等壁404之導熱 圍。該部分450中之添加劑材⑽係可選自能夠在= 傷之建構期間與形成該基座偏之材料相互混合之任 料。例如,該添加劑材料452可為Mg〇、SiC、A1N或Ti〇2 中之任一者或其等之一組合。 2 圖9、10及U分別展示用於任何定向固化爐(諸如圖艸 所示之該爐_中之,5〇〇之一第四實施例之—俯視 平面圖及橫截面圖。該㈣5⑽具有—基座5G6(—般稱為 「第二部分」)及自該基座向上延伸之四個壁綱。該基座 506及該等壁5〇4係可形成為—體或接合在—起,使得可將 該熔融物ill(圖1)容納於其中。該基座5〇6具有一上表面 508及一下表面510。一開口52〇在該上表面5〇8與該下表面 5 1 0之間延伸。 該開口 520係由形成於該坩堝5〇〇中之之一空隙而界定, 該開口 520係由四個侧522而限制。該開口 52〇係可藉由加 工或移除基座506之一區段而形成於該坩堝5〇〇中。在其他 實施例中,該開口 520係可在該坩堝5〇〇之製造期間形成, 使得無需移除該基座之一區段來形成該開口。 該基座506之一部分530自該開口 520之該等側522而向内 延伸且遠離該等壁5 04。該部分5 3 0自該底面5 10而測量之 之一厚度為I ’ I小於該基座506之厚度τ4。因此,該部 分530自該基座506向外延伸且形成一凸緣結構。 一板550( —般稱為「第一部分」)之大小經設定而適於 153828.doc -12- 201202491 放置於該開口 520内。,在其他實施例中’該開口 52〇及板 550可能並非矩形,且相反地可為圓形、橢圓形或任何其 他合適之形狀。雖然本文之該等實施例揭示將該板55〇放 置於該坩堝500之該基座506中,可將若干額外之板放置於 f何或所有該等壁5〇4内。此外,可能並不使用板55〇,而 是將若干板放置於任何或所有該等壁5〇4内。 該板550係由一導熱率高於該坩堝5〇〇之該基座5〇6之導 熱率之材料而製成。在一實施例中,該板55〇係可由熔融 石英製成。在一些實施例中,該板55〇之一導熱率(幻大約 為3 W/m* K,相較之下,該基座5〇6之一典型導熱率為 1 w/mpK。在其他實施例中,該板55〇係由導熱率高於該 坩堝500之該基座506之導熱率、熔點高於該熔融物iu之 熔點之材料而製成。例如,該板55〇係可由Mg〇、A1N、 Sic、石墨或Mg〇與Sic之一複合物而製成。 該板550具有沿其圓周自該板55〇之剩餘部分而向外延伸 之一唇緣部分552。該唇緣部分之一寬度W1約等於自該基 座506之該等侧522而延伸之該部分53〇之一寬度W2。在使 用期間,該唇緣部分552被定位於該基座5〇6之該部分53〇 之正上方。該基座506之唇緣部分552及部分53〇因此形成 搭接接頭。因此,該板55〇及基座5〇6之該搭接接頭導致 該熔融物111之重量使得該板與該基座接觸。可使用一黏 合劑來進一步將該板55〇緊固於該開口 52〇内,使得該熔融 物無法在該開口與該板之間行進穿過。在一些實施例中, 該黏合劑為注漿成型氧化矽化合物556。在該坩堝5〇〇之使 153828.doc -13- 201202491 用之前’可以-膠帶或其他材料密封介於該板55〇與該基 座5〇6之該下表面510之間之-接頭554。將液態之注聚成 型氧切556傾倒於鄰近該基座506之該上表面细之該接 頭554中。接著該液體注漿成型氧化矽556中之溶劑蒸發, 且該氧切留下成為接頭進料。接著可燒製該掛塌5〇X〇, 以固化該接頭554中之該注漿成型氧化矽556。 上文就圖2至圖11所描述之該等坩堝之該等基座之增高 之導熱率導致經由該等各別基座之熱通量(即,熱能:流 動)增加。經由該㈣之該基座之熱通量增加導致容納於 該坩堝内之該熔融物之固化速率增加。在一些實施例中, 該固化速率係可較習知坩堝中所表現出之速率增加2倍至3 倍。 因此,該熔融物的固化速率之增加減少該熔融物冷卻且 ,成該固化鑄錠所需之時間量。形成該熔融物所需之時間 里之減少可增加使用與上述坩堝相似之坩堝來在定向固化 爐中生產鑄錠之速率(即,生產率)。 圖12繪示使用圖2至圖丨丨中所示之坩堝中之任何者在一 定向固化爐中生產一鑄錠之一示例性方法600。如上所 述,該爐包含一坩堝,該坩堝之—基座具有一第一部分 (例如,該板250、該板350、該部分45〇或該板55〇)及一第 二部分(例如,該基座206、該基座3〇6、該基座4〇6或該基 座506)。該第一部分之導熱率高於該第二部分之導熱率。 在該示例性實施例中,該第一部分之導熱率為該第二部分 之導熱率之至少兩倍。 153828.doc • 14· 201202491 首先用石夕進料裝填該掛禍。方法_接著始於方塊61〇, 使該石夕進料炫融’以形成一液態溶融物。在方塊㈣中, 熱係經由該坩堝之至少該基座而自該熔融物轉移。熱經由 該第-部分而轉移之速率大於熱經由該第二部分而轉移之 速率&自該熔融物之轉移使得該熔融物固化成為一鑄 鍵。 雖然已就多個特定實施例描述了本發明,應認識到,在 申請專利範ϋ之精神及料下,可對本發明進行修改。 在介紹本揭示内容或其實施例之元件時,冠詞「一」 (a an)邊」(the、said)意味著存在一個或多個該元 件。術語「包括」(compring)、「包含」(including) '「具 有」(having)意在包含性且意味著可存在除了所列舉之元 件之外之額外元件》使用指示一特定定向(例如,「頂部」 (top)、「底部」(bottom)、「側」(side)等等)係為了便於描 述且並不要求所述之物件呈任何特定之定向。 在不脫離本發明之範疇之基礎上,可對上述之構造及方 法做出各種變化,上文描述中所包含且附圖中所展示之所 有物件應被解讀為闡釋性而非限制性。 【圖式簡單說明】 圖1係根據一實施例之一定向固化爐之一部分示意性橫 截面圖; 圖2係用於圖1中之該定向固化爐之一坩堝之一第一實施 例之一俯視平面圖; 圖3係圖2之該坩堝之沿圖2之3_3線而截取之一橫戴面 153828.doc •15- 201202491 fSI · 園, 圖4係圖3之一放大部分; 圖5係用於圖1中之該定向固化爐中之一坩堝之一第二實 施例之一俯視平面圖; 圓6係圖5之該坩堝之沿圖5之6-6線而截取之一橫截面 圖; 圖7係用於圖1之該定向固化爐中之一坩堝之一第三實施 例之一俯視平面圖; 圖8係圖7之s亥掛禍沿圖7之8 - 8線而截取之·—橫截面圖., 圖9係用於圖1之該定向固化爐中之一坩塥之一第四實施 例之一俯視平面圖; 圖10係圖9之該坩堝之沿圖9之10-10線而截取之一橫截 面圖; 圖11係圖10之一放大部分;及 圖12係繪示使用圖2至圖U中所示之該等坩堝中之任一 者而在一定向固化爐中生產鑄錠之一方法之一流程圖。 【主要元件符號說明】 & $ ° 100 定向固化爐 102 坩堝 103 堆堝支撐件 104 壁 105 内總成 106 基座 107 熱交換器 153828.doc ·Ι6- 201202491 108 加熱器 109 側絕緣體 110 容器 111 溶融物 111 熔融物 112 蓋 200 坩堝 204 壁 206 基座 208 上表面 210 下表面 220 開口 222 側 250 板 252 側 254 黏合劑 256 注漿成型氧化矽化合物 300 坩堝 304 壁 306 基座 308 上表面 310 下表面 320 凹部 350 板 153828.doc -17- 201202491 352 360 400 404 406 408 410 450 452 500 504 506 508 510 520 522 530 550 552 554 側 基座306之一部分 坩堝 壁 基座 上表面 下表面 基座406之一部分 添加劑材料 坩堝 壁 基座 上表面 下表面 開口 開口 520之側 基座506之一部分 板 唇緣部分 接頭 注漿成型氧化矽化合物 153828.doc -18- 556S 201202491 =1〇6: The thermal conductivity of the part of the ° section is generally the same (4). . The remaining part of the seat and the heat conduction of the walls 404. The additive material (10) in the portion 450 can be selected from those which are capable of intermixing with the material forming the susceptor bias during construction of the wound. For example, the additive material 452 can be any combination of Mg〇, SiC, A1N, or Ti〇2, or a combination thereof. 2 Figures 9, 10 and U respectively show a top plan view and a cross-sectional view of any of the directional solidification ovens (such as the one shown in Fig. 5, the fifth embodiment of the furnace). The (4) 5 (10) has - a base 5G6 (generally referred to as a "second portion") and four wall segments extending upwardly from the base. The base 506 and the walls 5〇4 can be formed as a body or a joint. The molten material ill (Fig. 1) is accommodated therein. The base 5〇6 has an upper surface 508 and a lower surface 510. An opening 52 is disposed on the upper surface 5〇8 and the lower surface 5 1 0 The opening 520 is defined by a gap formed in the 坩埚5〇〇, the opening 520 being limited by four sides 522. The opening 52 can be processed or removed by the susceptor 506. One of the segments is formed in the crucible 5. In other embodiments, the opening 520 can be formed during manufacture of the crucible, such that one of the subsections need not be removed to form the A portion 530 of the base 506 extends inwardly from the sides 522 of the opening 520 and away from the wall 504. The portion 5 3 One of the thicknesses measured from the bottom surface 5 10 is I'I is less than the thickness τ4 of the base 506. Thus, the portion 530 extends outwardly from the base 506 and forms a flange structure. The size of the "first part" is generally set to fit within 153828.doc -12-201202491. In other embodiments, the opening 52 and the plate 550 may not be rectangular, and conversely It may be circular, elliptical or any other suitable shape. While these embodiments herein disclose that the plate 55 is placed in the base 506 of the file 500, a number of additional plates may be placed in or All of the walls 5〇4. In addition, instead of using the plate 55〇, several plates are placed in any or all of the walls 5〇4. The plate 550 is made of a higher thermal conductivity than the 坩埚5 The base plate 5 is made of a material having a thermal conductivity. In one embodiment, the plate 55 can be made of fused silica. In some embodiments, the plate 55 has a thermal conductivity ( The illusion is about 3 W/m* K, compared to a typical thermal conductivity of 1 w/mpK for the base 5〇6. In the embodiment, the plate 55 is made of a material having a thermal conductivity higher than the thermal conductivity of the susceptor 506 of the crucible 500 and a melting point higher than the melting point of the melt iu. For example, the plate 55 can be Mg〇, A1N, Sic, graphite or a composite of Mg〇 and Sic. The plate 550 has a lip portion 552 extending outwardly from the remainder of the plate 55〇 along its circumference. One of the widths W1 is approximately equal to one of the widths W2 of the portion 53 延伸 extending from the sides 522 of the base 506. The lip portion 552 is positioned at the portion of the base 5〇6 during use. 53〇 is directly above. The lip portion 552 and portion 53 of the base 506 thus form a lap joint. Thus, the lap joint of the plate 55 and the base 5〇6 causes the weight of the melt 111 to bring the plate into contact with the base. An adhesive may be used to further secure the plate 55〇 into the opening 52〇 such that the melt cannot travel between the opening and the plate. In some embodiments, the binder is a slip cast yttrium oxide compound 556. The joint 554 between the plate 55A and the lower surface 510 of the base 5〇6 is sealed with a tape or other material before the 153828.doc -13-201202491. A liquid injection molding oxygen 556 is poured into the joint 554 which is adjacent to the upper surface of the susceptor 506. The solvent in the liquid cast-formed cerium oxide 556 is then evaporated and the oxygen cut remains as a joint feed. The collapse 5〇X〇 can then be fired to cure the cast-formed yttrium oxide 556 in the joint 554. The increased thermal conductivity of the susceptors of the enthalpy described above with respect to Figures 2 through 11 results in an increase in heat flux (i.e., thermal energy: flow) through the respective susceptors. An increase in the heat flux of the susceptor via the (four) causes an increase in the solidification rate of the melt contained in the crucible. In some embodiments, the cure rate can be increased from 2 to 3 times the rate exhibited by conventional enthalpy. Thus, an increase in the rate of solidification of the melt reduces the amount of time required for the melt to cool and cool the ingot. The reduction in the time required to form the melt increases the rate at which the ingot (i.e., productivity) is produced in a directional solidification furnace using a crucible similar to that described above. Figure 12 illustrates an exemplary method 600 of producing an ingot in a directional solidification oven using any of the crucibles illustrated in Figures 2 through 。. As described above, the furnace includes a crucible having a first portion (eg, the plate 250, the plate 350, the portion 45〇 or the plate 55〇) and a second portion (eg, the The base 206, the base 3〇6, the base 4〇6 or the base 506). The first portion has a higher thermal conductivity than the second portion. In the exemplary embodiment, the first portion has a thermal conductivity that is at least twice the thermal conductivity of the second portion. 153828.doc • 14· 201202491 First use the Shi Xi feed to fill the hazard. The method _ then begins at block 61 〇, causing the radish feed to swell to form a liquid melt. In block (4), heat is transferred from the melt via at least the susceptor of the crucible. The rate of heat transfer through the first portion is greater than the rate at which heat is transferred via the second portion & the transfer from the melt causes the melt to solidify into a bond. While the invention has been described in terms of various specific embodiments, it will be understood that When introducing elements of the present disclosure or its embodiments, the article "a" or "said" means that one or more of the elements are present. The terms "comp", "including" and "having" are meant to be inclusive and mean that there may be additional elements in addition to the recited elements that are used to indicate a particular orientation (eg, " Top (top), "bottom", "side", etc.) are for convenience of description and do not require that the article be in any particular orientation. Various changes may be made in the above-described constructions and methods without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial schematic cross-sectional view of a directional solidification furnace according to an embodiment; FIG. 2 is one of the first embodiments of the directional solidification furnace of FIG. Figure 3 is a cross-sectional 153828.doc •15- 201202491 fSI · garden, Figure 4 is a magnified part of Figure 3 along line 3_3 of Figure 2; Figure 5 is a magnified part of Figure 3; 1 is a top plan view of one of the second embodiment of the directional solidification furnace of FIG. 1; a circle 6 is a cross-sectional view of the ridge of FIG. 5 taken along line 6-6 of FIG. 5; 7 is a top plan view of one of the third embodiments used in one of the directional solidification furnaces of FIG. 1; FIG. 8 is a cross-sectional view taken along line 8-8 of FIG. Figure 9 is a top plan view of a fourth embodiment of one of the directional solidification ovens of Figure 1; Figure 10 is the line of Figure 9 along line 10-10 of Figure 9 One of the cross-sectional views is taken; FIG. 11 is an enlarged portion of FIG. 10; and FIG. 12 is a diagram showing the use of any of the above-described ones shown in FIGS. 2 to U. One method of producing a flowchart of one ingot to a curing oven. [Main component symbol description] & $ ° 100 Directional curing oven 102 坩埚103 Stacking support 104 Wall 105 Internal assembly 106 Base 107 Heat exchanger 153828.doc ·Ι6- 201202491 108 Heater 109 Side insulator 110 Container 111 Melt 111 Melt 112 Cover 200 坩埚 204 Wall 206 Base 208 Upper Surface 210 Lower Surface 220 Opening 222 Side 250 Plate 252 Side 254 Adhesive 256 Paste Formed Cerium Oxide Compound 300 坩埚 304 Wall 306 Base 308 Upper Surface 310 Surface 320 recess 350 plate 153828.doc -17- 201202491 352 360 400 404 406 408 410 450 452 500 504 506 508 510 520 522 530 550 552 554 one side of the side base 306 part of the wall base upper surface lower surface base 406 A part of the additive material 坩埚 wall base upper surface lower surface opening 520 side pedestal 506 part of the plate lip part joint grouting yttrium oxide compound 153828.doc -18- 556

Claims (1)

201202491 七、申請專利範圍: 1· 一種定向固化爐,其包括: —坩堝總成,其包含: —用於容納一熔融物之坩堝,該坩堝包含若干壁及 一基座,該基座中具有一開口; —支撐該坩堝之坩堝支稽件, —覆蓋該掛禍之蓋;及 一被收納於該基座中之該開口中之板,該板之導熱 率大於該基座之導熱率。 2·如叫求項丨之定向固化爐,其中該開口延伸穿過該基 座,該開口具有成一第一角度之傾斜壁且該板具有成一 與該第一角度互補之第二角度之傾斜壁。 3. 如請求項丨之定向固化爐,其中該開口延伸穿過該基 座,由該基座中之一空隙而界定之該開口具有四個侧, 忒基座之一部分自該等侧而向内延伸,以形成一凸緣結 構。 、、" 4. 如請求们之定向固化爐’其中該板之厚度大體上等於 該基座之厚度。 5·如請求们之定向固化爐,其中該板係由—黏合劑而緊 固至該基座。 6. 如請求们之定向固化爐,其中該板之導熱率為該基座 之導熱率之至少兩倍。 7. 如請求項1之定向固化爐,其進一步包括: 一熱交換器,其被設置於該坩堝支撐件之該基座之 153828.doc 201202491 方。 8·如請求項1之定向固化爐,其中該坩堝係由石墨製成。 9_如請求項1之定向固化爐,其進一步包括: 一個或多個可移動加熱器’其(其等)係可移除地設置 於該坩堝支撐件之周圍。 10·如請求項1之定向固化爐,其進一步包括: 可移除絕緣體’其被設置於該坩堝之周圍。 11. 如請求項1之定向固化爐,其中該等坩堝壁包含四個被 接合在一起之壁,使得將該液態熔融物容納於其中。 12. 如請求们之定向固化爐’其中該基座具有一上表面及 -下表面’該開口並不延伸穿過該基座,該開口被設置 於該下表面中且形成該下表面中之一凹部之一部分。 13. 如請求項12之定向固化爐,其中該板被設置於該凹部中 且係藉由該基座而與該坩堝中之該熔融物隔離。 14. 一種定向固化爐,其包括: 一坩堝總成,其包含: —用於容納一熔融物之坩堝,該坩堝包含若干壁及 一複合物基座; 一支撐該坩堝之坩堝支揮件, —覆蓋該掛禍之蓋;且 該複合物基座包含一添加劑’使得該複合物基座之 導熱率高於不具有該添加劑之一同等基座之導熱率。 15. 如請求項14之定向固化爐,盆 八Τ孩添加劑係選自包括 Mg〇、Sic、Α1Ν及Ti02之群組。 153828.doc 201202491 16· = 4求項14之定向固化爐’其中該等料壁之至少— 分包含該添加劑’使得該等坩堝壁之該部分之二: 於。亥壁之不具有該添加劑之一部分之導熱率。 “ n 17·如請求項16之定向固化爐,其中該添加劑係 Mg〇、SiC' A1N及Ti〇2之群組。 匕栝 18, 一種在一定向固化爐中生產一鑄錠之方法,其包括: 使该爐之一坩堝中之一矽、 形成一液態熔 ,該坩堝包含一基座,該基座之至少一第一部分之 導熱率高於該基座之一第二部分之導熱率;及°刀之 使熱自該溶融物經由該掛禍之至少該基座而轉移其 :毛由該基座之該第一部分而轉移之速率大於熱經由 a亥弟—部分而轉移之速率, 其中熱自該熔融物之該轉移導致該熔融物之固化及 該鑄錠之產生。 19. 如β月求項17之方法,其進—乡包括在炫融該石夕進料之前 用該矽進料裝填該坩堝。 20. 如π求項17之方法,其中熱經由該基座之該第一部分而 轉移,6亥基座之该第-部分之導熱率為該基座之該第二 部分之導熱率之至少兩倍。 153828.doc201202491 VII. Patent Application Range: 1. A directional solidification furnace comprising: a crucible assembly comprising: - a crucible for containing a melt, the crucible comprising a plurality of walls and a base, the base having An opening; a support member for supporting the beak, a cover covering the hazard; and a plate received in the opening in the base, the thermal conductivity of the plate being greater than the thermal conductivity of the base. 2. The directional solidification oven of the present invention, wherein the opening extends through the base, the opening having an inclined wall at a first angle and the plate having an inclined wall forming a second angle complementary to the first angle . 3. The directional solidification oven of claim 1, wherein the opening extends through the pedestal, the opening defined by a gap in the pedestal having four sides, a portion of the stern base from the sides The inner extension extends to form a flange structure. ,, " 4. The directional solidification furnace of the requester, wherein the thickness of the plate is substantially equal to the thickness of the susceptor. 5. A directional solidification oven as claimed, wherein the plate is secured to the base by an adhesive. 6. A directional solidification oven as claimed, wherein the plate has a thermal conductivity that is at least twice the thermal conductivity of the susceptor. 7. The directional solidification furnace of claim 1, further comprising: a heat exchanger disposed on the pedestal of the base of the crucible support 153828.doc 201202491. 8. The directional solidification furnace of claim 1, wherein the lanthanide is made of graphite. 9) The directional solidification furnace of claim 1, further comprising: one or more movable heaters (which are removably disposed around the crucible support). 10. The directional solidification furnace of claim 1, further comprising: a removable insulator 'which is disposed around the crucible. 11. The directional solidification furnace of claim 1 wherein the walls comprise four walls joined together such that the liquid melt is contained therein. 12. The directional solidification oven of claimant, wherein the base has an upper surface and a lower surface, the opening does not extend through the base, the opening being disposed in the lower surface and forming in the lower surface One part of a recess. 13. The directional solidification oven of claim 12, wherein the plate is disposed in the recess and is isolated from the melt in the crucible by the susceptor. 14. A directional solidification furnace comprising: a crucible assembly comprising: - a crucible for containing a melt, the crucible comprising a plurality of walls and a composite base; a support for the crucible, Covering the cover; and the composite base comprises an additive such that the thermal conductivity of the composite base is higher than the thermal conductivity of the same base without one of the additives. 15. The directional curing oven of claim 14 wherein the pottery is selected from the group consisting of Mg〇, Sic, Α1Ν, and Ti02. 153828.doc 201202491 16· = 4 The directional solidification furnace of claim 14 wherein at least a portion of the walls comprises the additive such that the portion of the walls of the wall is: The wall of Haibi does not have a thermal conductivity of a part of the additive. [n17] The directional solidification furnace of claim 16, wherein the additive is a group of Mg〇, SiC' A1N, and Ti〇2. 匕栝18, a method of producing an ingot in a directional solidification furnace, The method comprises: forming one of the crucibles of the furnace to form a liquid melt, the crucible comprising a base, wherein the first portion of the base has a thermal conductivity higher than a thermal conductivity of the second portion of the base; And the knives transfer heat from the smelt to the susceptor via at least the susceptor: the rate at which the hair is transferred from the first portion of the susceptor is greater than the rate at which heat is transferred via the a hai-part, wherein The transfer of heat from the melt results in solidification of the melt and production of the ingot. 19. As in the method of β month, the method of entering the township includes the use of the intrusion before the melting of the stone. 20. The method of claim 17, wherein the method of claim 17, wherein the heat is transferred via the first portion of the pedestal, and the thermal conductivity of the first portion of the 6-well pedestal is the second portion of the pedestal At least twice the thermal conductivity. 153828.doc
TW100103495A 2010-01-28 2011-01-28 Crucible for use in a directional solidification furnace TW201202491A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US29913310P 2010-01-28 2010-01-28

Publications (1)

Publication Number Publication Date
TW201202491A true TW201202491A (en) 2012-01-16

Family

ID=43858054

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103495A TW201202491A (en) 2010-01-28 2011-01-28 Crucible for use in a directional solidification furnace

Country Status (7)

Country Link
US (1) US20110180229A1 (en)
EP (1) EP2529043A1 (en)
JP (1) JP2013518028A (en)
KR (1) KR20120128643A (en)
CN (1) CN102741462A (en)
TW (1) TW201202491A (en)
WO (1) WO2011092659A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201245474A (en) * 2011-05-12 2012-11-16 Hon Hai Prec Ind Co Ltd Evaporation source device and a coating method using the same
FR2979638A1 (en) * 2011-09-05 2013-03-08 Commissariat Energie Atomique DEVICE FOR MANUFACTURING CRYSTALLINE MATERIAL FROM A NON-UNIFORM THERMAL RESISTANCE CUP
DE102012202589A1 (en) * 2012-02-21 2013-08-22 Evonik Degussa Gmbh Use for a crucible
CN102808214B (en) * 2012-08-30 2015-06-10 天威新能源控股有限公司 Combined-type protection plate for ingot casting crucible
DE102014102980B4 (en) 2014-03-06 2017-12-21 Ald Vacuum Technologies Gmbh Hybrid crucible for the crystallization of materials, use of the hybrid crucible, process for the production of crystalline material and crystalline product
US11326271B2 (en) 2020-02-20 2022-05-10 Globalwafers Co., Ltd. Methods for forming a unitized crucible assembly
US11377751B2 (en) 2020-02-20 2022-07-05 Globalwafers Co., Ltd. Crucible molds

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015657A (en) * 1975-09-03 1977-04-05 Dmitry Andreevich Petrov Device for making single-crystal products
US4243471A (en) * 1978-05-02 1981-01-06 International Business Machines Corporation Method for directional solidification of silicon
US4256530A (en) * 1978-12-07 1981-03-17 Crystal Systems Inc. Crystal growing
GB2041236A (en) * 1979-01-18 1980-09-10 Crystal Syst Method and apparatus for growing crystals
GB2084978B (en) * 1980-09-26 1984-07-04 Crystal Syst Growing silicon ingots
US4764195A (en) * 1987-05-20 1988-08-16 Corning Glass Works Method of forming reinforced glass composites
DE4022389C2 (en) * 1990-07-13 1995-06-08 Leybold Ag Melting and pouring furnace
DE4236827A1 (en) * 1992-10-30 1994-05-05 Wacker Chemitronic Appts. for prodn. of semiconductor blocks - comprises casting mould with side walls and base, and heater to heat mould
JPH11138512A (en) * 1997-11-14 1999-05-25 Phoenix:Kk Box and its manufacture and its apparatus for manufacture
US6200385B1 (en) * 2000-03-20 2001-03-13 Carl Francis Swinehart Crucible for growing macrocrystals
FR2853913B1 (en) * 2003-04-17 2006-09-29 Apollon Solar CUTTER FOR A DEVICE FOR MANUFACTURING A BLOCK OF CRYSTALLINE MATERIAL AND METHOD OF MANUFACTURE
JP2006282495A (en) * 2005-03-10 2006-10-19 Kyocera Corp Mold and method for manufacturing polycrystalline silicon ingot using same
FR2895749B1 (en) * 2006-01-04 2008-05-02 Apollon Solar Soc Par Actions DEVICE AND METHOD FOR MANUFACTURING BLOCK OF CRYSTALLINE MATERIAL
EP1811064A1 (en) * 2006-01-12 2007-07-25 Vesuvius Crucible Company Crucible for treating molten silicon
WO2007148987A1 (en) * 2006-06-23 2007-12-27 Rec Scanwafer As Method and crucible for direct solidification of semiconductor grade multi-crystalline silicon ingots
KR20090024802A (en) * 2006-06-23 2009-03-09 알이씨 스캔웨이퍼 에이에스 Device and method for production of semiconductor grade silicon
US20100203350A1 (en) * 2007-07-20 2010-08-12 Bp Corporation Noth America Inc. Methods and Apparatuses for Manufacturing Cast Silicon from Seed Crystals

Also Published As

Publication number Publication date
JP2013518028A (en) 2013-05-20
EP2529043A1 (en) 2012-12-05
KR20120128643A (en) 2012-11-27
US20110180229A1 (en) 2011-07-28
WO2011092659A1 (en) 2011-08-04
CN102741462A (en) 2012-10-17

Similar Documents

Publication Publication Date Title
TW201202491A (en) Crucible for use in a directional solidification furnace
TWI529130B (en) Apparatus and method for directional solidification of silicon
CN103813983B (en) Directional solidification system and method
KR20080097138A (en) Crucibles for melting titanium alloys
JP2014534401A5 (en)
JP2012522710A (en) Crucible for producing silicon suitable for semiconductor production
JP6576193B2 (en) Electrocast refractory tax tone and melting kiln
TW201016902A (en) Mold for producing a silica crucible
CN103917699B (en) From the device of the crucible manufacture crystalline material with non-homogeneous thermal resistance
JP2003290882A (en) Side weir ceramic plate for twin-roll type thin sheet continuous casting
CN105246620B (en) Covering flux and method for silicon purifying
CN104928756A (en) Crucible
JP2015020941A (en) Container for silicon casting
JPH0429614B2 (en)
JP6075625B2 (en) Silicon casting apparatus and silicon casting method
WO2020012544A1 (en) Ceramic filter and manufacturing method therefor
JP2007210860A (en) Casting mold for producing polycrystalline silicon cast piece
JPS609566B2 (en) skid button
JP2005029405A (en) Plate-like silicon manufacturing apparatus
TW201217592A (en) Crystal growth apparatus with ceramic coating and methods for preventing molten material breach in a crystal growth apparatus
JP6457549B2 (en) Hybrid crucible for material crystallization
US20080176054A1 (en) Layer material for high-temperature use
JP6522963B2 (en) Casting apparatus and method of manufacturing ingot
JP2022507411A (en) Refractory and its formation method
JPS59174265A (en) Mold for casting and unidirectional solidifying method