JP6522963B2 - Casting apparatus and method of manufacturing ingot - Google Patents

Casting apparatus and method of manufacturing ingot Download PDF

Info

Publication number
JP6522963B2
JP6522963B2 JP2015014400A JP2015014400A JP6522963B2 JP 6522963 B2 JP6522963 B2 JP 6522963B2 JP 2015014400 A JP2015014400 A JP 2015014400A JP 2015014400 A JP2015014400 A JP 2015014400A JP 6522963 B2 JP6522963 B2 JP 6522963B2
Authority
JP
Japan
Prior art keywords
mold
plate
cooling means
mold holder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015014400A
Other languages
Japanese (ja)
Other versions
JP2015163575A (en
Inventor
洋平 坂井
洋平 坂井
将司 長谷川
将司 長谷川
康夫 糸賀
康夫 糸賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015014400A priority Critical patent/JP6522963B2/en
Publication of JP2015163575A publication Critical patent/JP2015163575A/en
Application granted granted Critical
Publication of JP6522963B2 publication Critical patent/JP6522963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋳造用装置およびインゴットの製造方法に関する。   The present invention relates to a casting apparatus and a method of manufacturing an ingot.

多結晶シリコン等のインゴットを作製するための一般的な鋳造用装置の一例を図12に示す。図12に示すように、鋳造用装置Sは上部構造S1と下部構造S2とからなる。   An example of a general casting apparatus for producing an ingot of polycrystalline silicon or the like is shown in FIG. As shown in FIG. 12, the casting apparatus S comprises an upper structure S1 and a lower structure S2.

上部構造S1には、原料シリコンを溶融するための坩堝11が配置されており、坩堝11の周囲には加熱手段12が配置されている。そして、坩堝11からその下方に配置された下部構造S1にシリコンの融液4が供給される。   In the upper structure S1, a crucible 11 for melting the raw material silicon is disposed, and a heating means 12 is disposed around the crucible 11. Then, the silicon melt 4 is supplied from the crucible 11 to the lower structure S1 disposed therebelow.

下部構造S2には、シリコン融液4が注ぎ込まれる開口部1cを有し、内壁に離型材層2を有する鋳型1が配置されている。この鋳型1の外側には断熱材3が設けられている。さらに、鋳型1の下方には鋳型ホルダ5および冷却手段7が設けられている。また、鋳型1の上方には、鋳型1内の融液4を加熱して、その凝固を制御するための鋳型加熱手段6が配置されている。   The lower structure S2 has an opening 1c into which the silicon melt 4 is poured, and a mold 1 having a release material layer 2 on the inner wall is disposed. A heat insulating material 3 is provided outside the mold 1. Further, a mold holder 5 and a cooling means 7 are provided below the mold 1. Further, above the mold 1, a mold heating means 6 for heating the melt 4 in the mold 1 to control the solidification thereof is disposed.

鋳型1は、例えば、1つの底部材1aと4つの側部材1bとを組み合わせて構成される。離型材層2は鋳型1の内壁にコーティングされている。断熱材3は鋳型側壁部からの抜熱を抑制する。   The mold 1 is configured, for example, by combining one bottom member 1 a and four side members 1 b. The release material layer 2 is coated on the inner wall of the mold 1. The heat insulator 3 suppresses heat removal from the mold sidewall.

鋳型1の上方から鋳型加熱手段6で融液4を加熱する。そして、冷却手段7によって鋳型1内の融液4を下方から冷却することによって、鋳型1内の融液4および固化したインゴットに上方から下方に向かう温度分布勾配を形成することができる。これにより、融液4を下部から上部へ向けて一方向凝固させて、多結晶シリコンのインゴットを得ることができる(例えば、下記の特許文献1を参照)。   The melt 4 is heated by the mold heating means 6 from above the mold 1. Then, by cooling the melt 4 in the mold 1 from the lower side by the cooling means 7, it is possible to form a temperature distribution gradient from the upper side to the lower side in the melt 4 in the mold 1 and the solidified ingot. Thereby, the melt 4 can be directionally solidified from the bottom to the top to obtain an ingot of polycrystalline silicon (see, for example, Patent Document 1 below).

また、一方向凝固のための鋳型1の底部の冷却方法として、鋳型ホルダ5の中心部材と外周部材の熱伝導率を異ならせることで、鋳型1の底部材1aの中心部と側部材1bの直下部とからの抜熱量の比を調整する方法が提案されている(下記の特許文献2を参照)。   Further, as a method of cooling the bottom of the mold 1 for one-way solidification, by making the thermal conductivity of the central member and the peripheral member of the mold holder 5 different, the central portion of the bottom member 1a of the mold 1 and the side member 1b There has been proposed a method of adjusting the ratio of heat removal from the portion directly below (see Patent Document 2 below).

また、格子状の貫通部を有するチルプレート(鋳型ホルダ5に相当)を鋳型1に接触させ、その下方位置に吸熱板(冷却手段7に相当)を設けて、熱輻射および熱伝導を用いて鋳型1を冷却する方法も提案されている(下記の特許文献3を参照)。   Further, a chill plate (corresponding to the mold holder 5) having a grid-like penetrating portion is brought into contact with the mold 1, and a heat absorbing plate (corresponding to the cooling means 7) is provided below it, using heat radiation and heat conduction. A method for cooling the mold 1 has also been proposed (see Patent Document 3 below).

特開平9−263489号公報Unexamined-Japanese-Patent No. 9-263489 gazette 特開2005−152985号公報JP, 2005-152985, A 特開2002−103610号公報JP, 2002-103610, A

融液4は、鋳型1の底部材1aと側部材1bとからの抜熱、および融液4の上部表面からの抜熱・加熱に応じて冷却されて凝固する。この時、凝固時および凝固後の冷却中において、インゴットの温度分布および凝固速度がインゴット中の残留応力の要因となる。そして、この残留応力によって、インゴット中の結晶欠陥が生成するので、インゴットの切
断時に結晶欠陥が起因となったクラックが発生する。
The melt 4 is cooled and solidified according to the heat removal from the bottom member 1 a and the side member 1 b of the mold 1 and the heat removal / heating from the upper surface of the melt 4. At this time, during solidification and during cooling after solidification, the temperature distribution of the ingot and the solidification rate cause the residual stress in the ingot. And, since the crystal defects in the ingot are generated due to the residual stress, the cracks caused by the crystal defects are generated at the time of cutting the ingot.

そこで、本発明の目的の一つは、シリコンを主成分とするインゴットを鋳造する際に、鋳型の底面からの抜熱量を容易に制御することができて、インゴットにクラック等が生じにくくすることができる鋳造用装置およびインゴットの製造方法を提供することにある。   Therefore, one of the objects of the present invention is to make it possible to easily control the amount of heat removal from the bottom of the mold when casting an ingot containing silicon as a main component, and to make it difficult for cracks to occur in the ingot. It is an object of the present invention to provide a casting apparatus and an ingot manufacturing method that can

上記目的を達成するため、本発明の一形態に係る鋳造用装置は、底部を有し、シリコンを主成分とする融液を保持し凝固させる鋳型と、該鋳型の前記底部の下方に配置されて、
上面に冷却面を有する冷却手段と、該冷却手段の前記冷却面と前記鋳型の前記底部との間に、前記底部に対して非接触の状態で配置されているとともに前記冷却手段の前記冷却面に対して一主面が対向している板状部材と、を備え、前記板状部材は、前記鋳型の前記底部および前記冷却手段の前記冷却面のそれぞれに対向する部位に貫通孔を有し、前記鋳型および前記冷却手段に接触し、前記板状部材を保持し、開口部を有する鋳型ホルダをさらに備え、前記鋳型ホルダの開口部面積に対する前記板状部材の貫通孔の面積比率が0.02以上0.8以下である。
In order to achieve the above object, a casting apparatus according to one aspect of the present invention has a bottom, and a mold for holding and solidifying a silicon-based melt and a mold disposed under the bottom of the mold ,
Between the cooling means having a cooling surface on the upper surface, the cooling face of the cooling means and the bottom of the mold, the cooling face of the cooling means is disposed in non-contact with the bottom. A plate-like member whose main surface is opposed to the plate-like member, and the plate-like member has through holes at portions facing the bottom of the mold and the cooling surface of the cooling means, respectively. A mold holder which contacts the mold and the cooling means , holds the plate member, and further includes a mold holder having an opening, and the area ratio of the through hole of the plate member to the opening area of the mold holder is 0. It is more than 02 and less than 0.8.

本発明の一形態に係るインゴットの製造方法は、前記鋳型内にシリコンの融液を入れた後に、前記板状部材によって前記鋳型からの抜熱量を調整しながら前記融液を前記鋳型の底部から上方へ一方向に凝固させる。   In the method of manufacturing an ingot according to an aspect of the present invention, after the silicon melt is put into the mold, the melt is adjusted from the bottom of the mold while adjusting the heat removal amount from the mold by the plate member Solidify upward in one direction.

上記の鋳造用装置およびインゴットの製造方法によれば、鋳型の底部からの冷却手段による抜熱量を容易に制御できるので、凝固時および凝固後冷却中のインゴット内の温度分布および温度勾配の制御が容易になる。これにより、インゴット内の残留応力を低減することができて、インゴット中に転位などの結晶欠陥が生成にくくなり、結晶欠陥に起因する、クラック発生を低減できる。   According to the above-described casting apparatus and method for producing an ingot, since the heat removal amount by the cooling means from the bottom of the mold can be easily controlled, control of the temperature distribution and temperature gradient in the ingot during solidification and after solidification is carried out. It will be easier. As a result, residual stress in the ingot can be reduced, and crystal defects such as dislocations are less likely to be generated in the ingot, and cracking due to crystal defects can be reduced.

図1は本発明の一実施形態に係る鋳造用装置の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a casting apparatus according to an embodiment of the present invention. 図2は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図2(a)は平面図、図2(b)は図2(a)のA−A線断面図である。Fig. 2 is a view showing a plate-like member constituting the casting apparatus according to the embodiment of the present invention, Fig. 2 (a) is a plan view, and Fig. 2 (b) is an AA of Fig. 2 (a). FIG. 図3は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図3(a)は平面図、図3(b)は図3(a)のA−A線断面図である。Fig. 3 is a view showing a plate-like member constituting the casting apparatus according to the embodiment of the present invention, Fig. 3 (a) is a plan view, and Fig. 3 (b) is an AA of Fig. 3 (a). FIG. 図4は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図4(a)は平面図、図4(b)は図4(a)のA−A線断面図である。Fig. 4 is a view showing a plate-like member constituting the casting apparatus according to the embodiment of the present invention, Fig. 4 (a) is a plan view, and Fig. 4 (b) is an AA of Fig. 4 (a). FIG. 図5は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図5(a)は平面図、図5(b)は図5(a)のA−A線断面図である。Fig. 5 is a view showing a plate-like member constituting the casting apparatus according to the embodiment of the present invention, Fig. 5 (a) is a plan view, and Fig. 5 (b) is an AA of Fig. 5 (a). FIG. 図6は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図6(a)は平面図、図6(b)は図6(a)のA−A線断面図である。Fig. 6 is a view showing a plate-like member constituting the casting apparatus according to the embodiment of the present invention, Fig. 6 (a) is a plan view, and Fig. 6 (b) is an AA of Fig. 6 (a). FIG. 図7は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図7(a)は平面図、図7(b)は図7(a)のA−A線断面図である。FIG. 7 is a view showing a plate-like member constituting the casting apparatus according to an embodiment of the present invention, FIG. 7 (a) is a plan view, and FIG. 7 (b) is an AA of FIG. 7 (a). FIG. 図8は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図8(a)は平面図、図8(b)は図8(a)のA−A線断面図である。Fig. 8 is a view showing a plate-like member constituting the casting apparatus according to the embodiment of the present invention, Fig. 8 (a) is a plan view, and Fig. 8 (b) is an AA of Fig. 8 (a). FIG. 図9は本発明の一実施形態に係る鋳造用装置の変形例を示す断面図である。FIG. 9 is a cross-sectional view showing a modification of the casting apparatus according to an embodiment of the present invention. 図10は本発明の一実施形態に係る鋳造用装置の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the casting apparatus according to an embodiment of the present invention. 図11は本発明の一実施形態に係る鋳造用装置の変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a modification of the casting apparatus according to the embodiment of the present invention. 図12は従来の一般的な鋳造用装置の一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of a conventional casting apparatus.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、図面はいずれも模式的に示されたものである。   Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The drawings are all shown schematically.

図1に示すように、本実施形態の鋳造用装置Sは上部構造S1と下部構造S2とからなる。上部構造S1において、シリコンを主成分とする原料シリコンを溶融するための坩堝11が配置されている。なお、ここで「Aを主成分」という場合、Aが50質量%以上含まれることをいうものとし、以下の説明においても同様とする。坩堝11は、例えば高純度石英または黒鉛などからなる溶解坩堝11aが保持坩堝11bに保持されている。また、溶解坩堝11aおよび保持坩堝11bの周囲には坩堝加熱手段12が配置されている。坩堝加熱手段は、例えば、溶解坩堝11aおよび保持坩堝11bに対する上方、側方、下方など複数に分かれて配置されてもよい。溶解坩堝11a内に入れられたシリコン原料は、抵抗加熱式のヒーターまたは誘導加熱式のコイルなどからなる坩堝加熱手段12によって加熱溶融されて融液4となる。そして、溶解坩堝11aおよび保持坩堝11bの底部に設けた出湯口などの融液供給手段によって鋳型1内に融液4が注湯される。なお、前記出湯口を底部に設けない場合に、溶解坩堝11aおよび保持坩堝11bを傾動させるなどによって、溶解坩堝11aおよび保持坩堝11bの下方に配置された鋳造用装置Sの下部構造S2に融液4を供給してもよい。   As shown in FIG. 1, the casting apparatus S of this embodiment comprises an upper structure S1 and a lower structure S2. In the upper structure S1, a crucible 11 for melting raw material silicon containing silicon as a main component is disposed. Here, when "A is referred to as a main component", it means that A is contained at 50% by mass or more, and the same applies to the following description. For the crucible 11, a melting crucible 11 a made of, for example, high purity quartz or graphite is held by a holding crucible 11 b. Moreover, the crucible heating means 12 is arrange | positioned around the melting crucible 11a and the holding crucible 11b. For example, the crucible heating means may be divided into a plurality of parts, such as the upper side, the side, and the lower side with respect to the melting crucible 11a and the holding crucible 11b. The silicon raw material placed in the melting furnace 11 a is heated and melted by the crucible heating means 12 composed of a resistance heating heater or an induction heating coil or the like to become a melt 4. Then, the melt 4 is poured into the mold 1 by melt supply means such as a tapping hole provided at the bottom of the melting pot 11a and the holding pot 11b. In the case where the outlet is not provided at the bottom, the lower structure S2 of the casting apparatus S disposed below the melting rod 11a and the holding rod 11b by tilting the melting rod 11a and the holding rod 11b, etc. You may supply four.

下部構造S2において、融液4が注ぎ込まれる鋳型1が配置され、その外側周囲に断熱材3が設けられている。鋳型1の底部に接して鋳型1および断熱材3を保持するための鋳型ホルダ5が設けられ、さらにその下方に冷却手段7が設けられている。また、鋳型1の上方には、鋳型1内に入れられた融液4の凝固を制御するための鋳型加熱手段6が配置されている。後で詳述するが、鋳型1に近い側から第1鋳型ホルダ5a、板状部材8および第2鋳型ホルダ5bが配置されている。板状部材8は鋳型1の底部に対して非接触の状態で配置されていて、冷却手段7の冷却面7aに対して一主面が対向している。また、板状部材8は冷却手段7の冷却面7aに対しても非接触の状態で配置されている。   In the lower structure S2, a mold 1 into which the melt 4 is poured is disposed, and a heat insulating material 3 is provided around the outside thereof. A mold holder 5 for holding the mold 1 and the heat insulating material 3 is provided in contact with the bottom of the mold 1 and a cooling means 7 is provided below the mold holder 5. Further, above the mold 1, a mold heating means 6 for controlling the solidification of the melt 4 placed in the mold 1 is disposed. As will be described in detail later, the first mold holder 5a, the plate member 8 and the second mold holder 5b are arranged from the side close to the mold 1. The plate-like member 8 is disposed in non-contact with the bottom of the mold 1, and one main surface is opposed to the cooling surface 7 a of the cooling means 7. The plate member 8 is also disposed in a non-contact state with the cooling surface 7 a of the cooling means 7.

鋳型1は、例えば黒鉛、炭素繊維強化炭素材料、石英またはセラミックス(シリカ、アルミナまたは窒化珪素など)などからなり、底部材1a、側部材1bおよび上方開口部1cを有する。鋳型1は1つの部材で構成されていてもよいし、1つの底部材1aと複数(通常は4つ)の側部材1bとを組み合わせた、分割および組み立てが可能な分割鋳型などで構成されてもよい。なお、分割鋳型の場合、底部材1aと側部材1bとは、ボルト(不図示)などで固定することによって分割可能に組み立てられたり、底部材1aと側部材1bとが嵌まる枠部材(不図示)で固定することによって分割可能に組み立てられる。   The mold 1 is made of, for example, graphite, carbon fiber reinforced carbon material, quartz or ceramics (silica, alumina, silicon nitride or the like), and has a bottom member 1a, a side member 1b and an upper opening 1c. The mold 1 may be composed of one member, or may be composed of a split mold or the like which can be divided and assembled by combining one bottom member 1a and a plurality of (usually four) side members 1b. It is also good. In the case of a split mold, the bottom member 1a and the side member 1b are assembled so as to be dividable by fixing them with a bolt (not shown) or the like, or a frame member (in which the bottom member 1a and the side member 1b fit) Can be divided into pieces by fixing them as shown.

また、鋳型1の内表面には、鋳型1とインゴットとが融着して、インゴットを鋳型1から取り出す際にインゴットが破損しないように、離型材層2が塗布されている。離型材層2は以下のようにして鋳型1の内表面に設ける。まず、スラリーを作製する。スラリーは、窒化珪素(Si)、炭化珪素(SiC)、酸化珪素(SiO)などの粉末、またはそれらの混合粉末を、適当なバインダー(例えばポリビニルアルコール(PVA))と、溶剤(例えば水)とに混合して作製する。そして、スラリーを鋳型1の内面に塗布またはスプレーなどの手段でコーティングする。具体的には、例えば、0.4〜0.6μm程度の平均粒径を有する窒化シリコンの粉体を、濃度が5〜15質量%程度のPVA水溶液に混合してスラリー状とし、これをへらまたは刷毛などを用いて鋳型1の内表面に塗布する。そして、この状態で自然乾燥またはホットプレートに載せて乾燥させて脱脂処理する。その後、鋳型1内に融液4を注湯する、あるいは、鋳型1内に原料シリコンを投入して加熱溶融する。なお、離型材層2は材質または平均粒径の異なる複数種類の粉体を混合したものであってもよい。 Further, on the inner surface of the mold 1, the mold release material layer 2 is applied so that the mold 1 and the ingot are fused and the ingot is not broken when the ingot is taken out from the mold 1. The release material layer 2 is provided on the inner surface of the mold 1 as follows. First, a slurry is prepared. The slurry may be a powder of silicon nitride (Si 3 N 4 ), silicon carbide (SiC), silicon oxide (SiO 2 ), etc., or a mixed powder thereof with a suitable binder (eg, polyvinyl alcohol (PVA)) and a solvent (eg, polyvinyl alcohol). For example, it is mixed with water and made. Then, the slurry is coated on the inner surface of the mold 1 by means such as coating or spraying. Specifically, for example, a powder of silicon nitride having an average particle diameter of about 0.4 to 0.6 μm is mixed with a PVA aqueous solution having a concentration of about 5 to 15% by mass to form a slurry, which is made into a spatula. Alternatively, it is applied to the inner surface of the mold 1 using a brush or the like. Then, in this state, it is placed on natural drying or a hot plate, dried and degreased. Thereafter, the melt 4 is poured into the mold 1 or the raw material silicon is put into the mold 1 and heated and melted. In addition, the release material layer 2 may be a mixture of multiple types of powder having different materials or different average particle sizes.

断熱材3は鋳型1の側面からの抜熱を抑制するものであり、耐熱性および断熱性などを考慮した材質のものが用いられる。断熱材3としては、グラファイトフェルトなど、主成分をカーボンとする材質が望ましい。特に、その表面をカーボンを主成分とするペースト
でコーティング処理を行ったものを用いれば、劣化しにくいので望ましい。
The heat insulating material 3 suppresses heat removal from the side surface of the mold 1 and is made of a material in consideration of heat resistance, heat insulation and the like. The heat insulator 3 is preferably made of a material such as graphite felt, whose main component is carbon. In particular, it is preferable to use a paste whose surface is coated with a paste containing carbon as a main component, since it is difficult to deteriorate.

鋳型1の側面を断熱材3によって断熱するとともに、鋳型1の上部からは鋳型加熱手段6によって加熱する。そして、鋳型1を固定した鋳型ホルダ5の下部に、冷却手段7を接触または接近させることによって、鋳型1の下部から鋳型ホルダ5を通して抜熱し、下部から上部へ向かう方向に融液4を一方向凝固させる。   The side face of the mold 1 is thermally insulated by the heat insulating material 3, and the upper part of the mold 1 is heated by the mold heating means 6. Then, the cooling means 7 is brought into contact with or approached to the lower part of the mold holder 5 to which the mold 1 is fixed, heat is removed from the lower part of the mold 1 through the mold holder 5, and the melt 4 is unidirectionally directed from the lower part to the upper part. Coagulate.

鋳型加熱手段6としては、抵抗加熱式のヒータまたは誘導加熱式のコイルなどを用いることができる。   As the mold heating means 6, a resistance heating heater or an induction heating coil can be used.

また、冷却手段7は、例えばステンレスなどの熱伝導性の良好な材質からなり、内部に水などの冷媒を循環させるなどの構造を有する。冷却手段7によって、鋳型1内の高温の融液4から鋳型ホルダ5を通して効果的に抜熱できる。   Further, the cooling means 7 is made of, for example, a material having a good thermal conductivity such as stainless steel, and has a structure such as circulating a refrigerant such as water inside. The cooling means 7 can effectively remove heat from the high temperature melt 4 in the mold 1 through the mold holder 5.

インゴットの凝固後は、インゴットを冷却して断熱材3を取り外す。そして、最後に鋳型1からインゴットを取り出すことによって多結晶シリコンインゴットが完成する。   After solidification of the ingot, the ingot is cooled and the heat insulating material 3 is removed. Finally, by taking out the ingot from the mold 1, a polycrystalline silicon ingot is completed.

図1、図9〜11に示すように、鋳型ホルダ5は少なくとも第1鋳型ホルダ5aを有しており、鋳型1を保持するとともに、板状部材8を保持している。   As shown in FIGS. 1 and 9 to 11, the mold holder 5 has at least a first mold holder 5 a, and holds the mold 1 and also holds the plate member 8.

第1鋳型ホルダ5aは開口部を有しおり、この開口部以外の領域で鋳型1に接し、鋳型1から熱伝導による抜熱をするものである。また、板状部材8は、鋳型1の中央部の下方に鋳型1に非接触の状態で配置されて、鋳型1からの熱輻射による抜熱量を調節する機能を有する。板状部材8は、それを他の構造の板状部材と適宜交換するだけで、鋳型1の底部からの抜熱量の調整が可能となる。   The first mold holder 5a has an opening, and is in contact with the mold 1 in a region other than the opening, and removes heat from the mold 1 by heat conduction. Further, the plate-like member 8 is disposed below the central portion of the mold 1 in a non-contact state with the mold 1 and has a function of adjusting the heat removal amount by the heat radiation from the mold 1. The plate-like member 8 can adjust the heat removal amount from the bottom of the mold 1 only by replacing it with a plate-like member having another structure as appropriate.

また、鋳型ホルダ5は、熱伝導による抜熱をする第2鋳型ホルダ5bをさらに有していてもよい。第2鋳型ホルダ5bは、開口部を有し、この開口部以外の領域で冷却手段7に接し、熱伝導による抜熱をする。この場合、鋳型ホルダ5は、例えば図10に示すように、第1鋳型ホルダ5aと第2鋳型ホルダ5bとが一体的に構成されていれば、組み立てが容易になる。さらに、高温の鋳型1からこれよりも低温の鋳型ホルダ5、そしてさらに低温の冷却手段7への熱伝導が、鋳型ホルダ5の組み立て精度および使用に伴う継時的変化の影響を受けにくいのでよい。また、鋳型ホルダ5は、例えば図11に示すように、熱伝導を良好にできて作製しやすいように、第1鋳型ホルダ5aと第2鋳型ホルダ5bとを別体として、両者が接触するように構成してもよい。   In addition, the mold holder 5 may further include a second mold holder 5b that removes heat by heat conduction. The second mold holder 5 b has an opening, contacts the cooling means 7 in the area other than the opening, and removes heat by heat conduction. In this case, as shown in FIG. 10, for example, if the first mold holder 5a and the second mold holder 5b are integrally configured, the mold holder 5 can be easily assembled. Furthermore, it is preferable that the heat conduction from the high temperature mold 1 to the lower temperature mold holder 5 and further to the low temperature cooling means 7 is insusceptible to the assembly accuracy of the mold holder 5 and the change over time with use. . Further, for example, as shown in FIG. 11, the mold holder 5 is in contact with the first mold holder 5a and the second mold holder 5b as separate bodies so that the heat conduction can be made good and it is easy to manufacture. You may configure it.

鋳型ホルダ5の材質としては、使用温度域で形状に大きな変形が無く、製造するインゴットの特性に悪影響を与えるような物質の発生が無い安定な材料であればよい。鋳型ホルダ5は、例えば、セラミックス、石英、金属または黒鉛(グラファイト)などが使用可能である。なお、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは同じ材質でもよい。特に、鋳型ホルダ5は、例えば、熱伝導度が80〜150W/(m・K)の等方性黒鉛、熱伝導度が4〜60W/(m・K)の炭素繊維強化炭素材料、熱伝導度が0.1〜0.5W/(m・K)の黒鉛製フェルトを使用することができる。   The material of the mold holder 5 may be any stable material which does not have a large deformation in its shape in the operating temperature range and does not generate a substance which adversely affects the characteristics of the ingot to be produced. For example, ceramics, quartz, metal or graphite (graphite) can be used as the mold holder 5. The first mold holder 5a and the second mold holder 5b may be the same material. In particular, the mold holder 5 is, for example, an isotropic graphite having a thermal conductivity of 80 to 150 W / (m · K), a carbon fiber reinforced carbon material having a thermal conductivity of 4 to 60 W / (m · K), a thermal conductivity A graphite felt having a degree of 0.1 to 0.5 W / (m · K) can be used.

板状部材8は、熱輻射量等が調節できる調節用の貫通孔8aを、鋳型1の底部および冷却手段7の冷却面7aのそれぞれに対向する部位に設けている板状の部材である。板状部材8は、例えば2mm〜30mm程度の厚みの板に孔あけ加工するだけでよい。このため、鋳型ホルダ5全体を加工して抜熱量等を調整する場合と比べて安価であり、交換および取り付け作業も容易となる。また、板状部材8の外観形状に特に制限はなく、平面視して例えば円形等であってもよい。   The plate-like member 8 is a plate-like member in which through holes 8a for adjusting the amount of heat radiation and the like can be adjusted, in portions facing the bottom of the mold 1 and the cooling surface 7a of the cooling means 7, respectively. For example, the plate member 8 may be drilled only to a plate having a thickness of about 2 mm to 30 mm. For this reason, it is cheap compared with the case where the mold holder 5 whole is processed and the amount of heat removal etc. is adjusted, and replacement | exchange and attachment work also become easy. Moreover, there is no restriction | limiting in particular in the external appearance shape of the plate-shaped member 8, For example, circular view etc. may be carried out in planar view.

また、板状部材8は鋳型ホルダ5と同様な理由によって鋳型ホルダ5と同一材質でもよいが、例えば、板状部材8を、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bよりも熱伝導率の小さい材質としてもよい。これにより、鋳型1の底部から冷却手段7への伝熱のうち、第1鋳型ホルダ5aと第2鋳型ホルダ5bとで熱伝導を、板状部材8で鋳型1からの熱輻射をそれぞれ主として制御することができる。また、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは炭素繊維強化炭素材料または黒鉛製フェルトで構成して、板状部材8は等方性黒鉛材料で構成することによって、板状部材8を、第1鋳型ホルダ5aと第2鋳型ホルダ5bよりも熱伝導率を小さくすることができる。これにより、互いに異なる熱伝導率の鋳型ホルダ5および板状部材8を用いることによって抜熱の制御がしやすくなる。   The plate-like member 8 may be made of the same material as the mold holder 5 for the same reason as the mold holder 5. For example, the plate-like member 8 has a thermal conductivity higher than that of the first mold holder 5a and the second mold holder 5b. It may be a small material. Thus, of the heat transfer from the bottom of the mold 1 to the cooling means 7, heat conduction is mainly controlled by the first mold holder 5a and the second mold holder 5b, and heat radiation from the mold 1 is mainly controlled by the plate member 8. can do. The first mold holder 5a and the second mold holder 5b are made of a carbon fiber reinforced carbon material or a felt made of graphite, and the plate member 8 is made of an isotropic graphite material, whereby the plate member 8 is The thermal conductivity can be smaller than that of the first mold holder 5a and the second mold holder 5b. Thus, the heat removal can be easily controlled by using the mold holder 5 and the plate-like member 8 having different thermal conductivities.

板状部材8による抜熱量(熱輻射量)の調整は、鋳型の底部外側の面積に対する第1鋳型ホルダ5aの開口部面積Saおよび第2鋳型ホルダ5bの開口部面積Sc(本実施形態ではSa=Sc)と、板状部材8に形成された貫通孔(開口部)の総面積Sbの比率(貫通孔面積比率)R1=Sb/Sa、R2=Sb/Sc(本実施形態ではR1=R2)で調整できる。ここで、貫通孔面積比率R1およびR2は、それぞれ0〜1の間で調整可能である。なお、本実施形態において、Sa=Scとして、R1=R2としたのは、鋳型ホルダ5において、熱伝導により抜熱する領域と、熱輻射により抜熱する領域とを区別することで、抜熱量の制御をしやすくするためである。   The adjustment of the heat removal amount (heat radiation amount) by the plate member 8 is based on the opening area Sa of the first mold holder 5a and the opening area Sc of the second mold holder 5b with respect to the area outside the bottom of the mold (Sa in this embodiment) = Sc), ratio of total area Sb of through holes (openings) formed in the plate member 8 (through hole area ratio) R1 = Sb / Sa, R2 = Sb / Sc (in the embodiment, R1 = R2 It can be adjusted with). Here, the through hole area ratios R1 and R2 can be adjusted between 0 and 1, respectively. In the present embodiment, the reason that R1 = R2 is set as Sa = Sc is because the mold holder 5 distinguishes the heat-removing area from the heat-removing area and the heat-removing area from the heat-removing area. To facilitate control of the

図2に示すように、板状部材8には、平面視で円形状の貫通孔8aを1つだけ設けてもよいし、図3〜5に示すように、複数の貫通孔8aを設けてもよい。また、図3〜8に示すように、各貫通孔の形状、面積、数、位置等を調整することが可能である。また、例えば図3〜5に示すように、貫通孔8aの配置を中央部(板状部材8を平面視した際、外形と中心を同じくする相似形の面積が、外形面積の1/4以下の領域)と端部(板状部材8を平面視した際、外形と中心を同じくする相似形の面積が、外形面積の1/4よりも広い領域)とで変えるなど、適宜設計することも可能である。これにより、鋳型1の底面からの抜熱量(熱輻射量)の分布を調整して、インゴット形状(インゴットの底面積、高さ)、鋳造用装置の個体差、継時的変化(例えば、炉内の断熱材の使用回数など)に適した抜熱量分布を得ることもできる。   As shown in FIG. 2, only one circular through hole 8a may be provided on the plate member 8 in a plan view, or a plurality of through holes 8a may be provided as shown in FIGS. It is also good. Moreover, as shown to FIGS. 3-8, it is possible to adjust the shape, area, number, position, etc. of each through-hole. Further, for example, as shown in FIGS. 3 to 5, the arrangement of the through holes 8 a is at the central portion (when the plate-like member 8 is viewed in plan, the area of the similar shape having the same outer shape and center is 1/4 or less of the outer surface area The area may be designed appropriately, for example, by changing the area of (1) and the end (in a planar view of the plate member 8, the area of a similar shape having the same shape and center as the area larger than 1⁄4 of the area). It is possible. Thereby, the distribution of heat removal amount (heat radiation amount) from the bottom surface of the mold 1 is adjusted, and the ingot shape (bottom area and height of the ingot), individual difference of the casting apparatus, change over time (for example, furnace It is also possible to obtain a heat dissipation distribution suitable for the number of times the heat insulating material is used, and the like.

また、図7,8に示すように、板状部材8の複数の貫通孔8aが冷却手段7が位置する側に向かって広がっていてもよい。これにより、各貫通孔8aからの熱輻射が拡散して冷却手段7に達することができるので、抜熱を効率よく行わせることができる。   Further, as shown in FIGS. 7 and 8, the plurality of through holes 8 a of the plate-like member 8 may extend toward the side where the cooling means 7 is located. Thereby, the heat radiation from each through hole 8a can be diffused and reach the cooling means 7, so that heat removal can be performed efficiently.

本実施形態においては、貫通孔面積比率R1(=R2)が0.02〜0.80、さらに望ましくは0.04〜0.5であれば、インゴットに発生する応力およびクラックを低減できるのでよい。   In the present embodiment, if the through hole area ratio R1 (= R2) is 0.02 to 0.80, more preferably 0.04 to 0.5, it is preferable because the stress and crack generated in the ingot can be reduced. .

また、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは、鋳型1および鋳型1内のシリコンを機械的に支持または保持するための機械的強度が求められる。このため、例えば、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは炭素繊維強化炭素材料で構成してもよい。また、この場合に、板状部材8は等方性黒鉛材料、黒鉛フェルト、セラミックスまたは高融点金属などで構成してもよい。このように、鋳型ホルダ5および板状部材8を、機械的または物理的性質が互いに異なる材質の組合せで使用してもよい。   The first mold holder 5a and the second mold holder 5b are required to have mechanical strength for mechanically supporting or holding silicon in the mold 1 and the mold 1. Therefore, for example, the first mold holder 5a and the second mold holder 5b may be made of a carbon fiber reinforced carbon material. Further, in this case, the plate-like member 8 may be made of isotropic graphite material, graphite felt, ceramics, high melting point metal or the like. Thus, the mold holder 5 and the plate-like member 8 may be used in combination of materials whose mechanical or physical properties are different from each other.

鋳型ホルダ5を、鋳型1および冷却手段7に接触させて、熱伝導によって抜熱を行う場合、各部材の寸法等の変化(特に、接触面の平面度の経時変化)によって、接触状況が変化して、抜熱量の調整が不安定となりやすい。本実施形態による鋳造用装置Sでは、抜熱量を調整するための板状部材8は、少なくとも鋳型1と非接触であるので、熱輻射によっ
て抜熱量を調整することができる。このため、鋳型ホルダ5および板状部材8の経時変化の影響が小さく、冷却手段7による安定した抜熱量を得ることができる。
When the mold holder 5 is brought into contact with the mold 1 and the cooling means 7 and heat removal is carried out by heat conduction, the contact situation changes due to changes in dimensions and the like of each member (in particular, temporal change in flatness of contact surface) As a result, adjustment of the heat removal amount tends to be unstable. In the casting apparatus S according to the present embodiment, since the plate-like member 8 for adjusting the heat removal amount is not in contact with at least the mold 1, the heat removal amount can be adjusted by heat radiation. For this reason, the influence of the temporal change of the mold holder 5 and the plate-like member 8 is small, and it is possible to obtain a stable heat removal amount by the cooling means 7.

冷却手段7は、上部の冷却面で鋳型ホルダ5と接している。そして、冷却手段7を板状部材8と非接触にして、第1鋳型ホルダ5aまたは第2鋳型ホルダ5bに冷却手段7が接触している。これにより、冷却手段7の冷却面7aには、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bを介して熱伝導によって抜熱する領域と、板状部材8を介して熱輻射によって抜熱する領域とを形成できる。この場合、熱伝導制御に寄与する領域は接触面積を大きくして、熱輻射制御に寄与する領域は熱輻射の反射を小さく(熱の吸収を大きく)するように、鋳型ホルダ5と板状部材8との表面に、例えば凹凸形状のような加工を施すと効率的な抜熱ができるのでよい。   The cooling means 7 is in contact with the mold holder 5 at the upper cooling surface. Then, with the cooling means 7 not in contact with the plate member 8, the cooling means 7 is in contact with the first mold holder 5a or the second mold holder 5b. Thereby, on the cooling surface 7a of the cooling means 7, a region for heat removal by heat conduction via the first mold holder 5a and the second mold holder 5b, and a region for heat radiation by heat radiation via the plate-like member 8 And can be formed. In this case, the mold holder 5 and the plate-like member are configured such that the area contributing to the heat conduction control increases the contact area and the area contributing to the heat radiation control reduces reflection of heat radiation (increases heat absorption). For example, it is preferable to apply a process such as a concavo-convex shape to the surface of No. 8 because efficient heat removal can be performed.

冷却手段7による抜熱量は、冷却手段7に供給される冷媒(水など)の流量、冷媒の供給時と排出時との温度差をモニターすることによって測定可能である。本実施形態の板状部材8の交換によって、抜熱量を最適な範囲にできる。これにより、凝固中および凝固後冷却中のインゴットの温度勾配および温度分布を最適化することができる。   The heat removal amount by the cooling means 7 can be measured by monitoring the flow rate of the refrigerant (water or the like) supplied to the cooling means 7 and the temperature difference between the supply time and discharge time of the refrigerant. By exchanging the plate-like member 8 of the present embodiment, the heat removal amount can be made in the optimum range. This makes it possible to optimize the temperature gradient and temperature distribution of the ingot during solidification and cooling after solidification.

鋳型ホルダ5は、図10、11に示すように、鋳型1の周辺部は第1鋳型ホルダ5aおよび第2鋳型ホルダ5bを通じて伝熱によって鋳型1を抜熱し、鋳型1の底部における中央部は板状部材8を介して熱輻射によって鋳型1を抜熱してもよい。これにより、鋳型1の底部がシリコンの融点に近い鋳造初期(熱輻射による抜熱が支配的)と、鋳造中期以降(伝熱による抜熱が支配的)とのそれぞれについて、所望の抜熱量および抜熱量分布を得ることができる。   In the mold holder 5, as shown in FIGS. 10 and 11, the peripheral part of the mold 1 removes heat from the mold 1 by heat transfer through the first mold holder 5a and the second mold holder 5b, and the central part at the bottom of the mold 1 is a plate The mold 1 may be removed by heat radiation through the bar-like member 8. Thereby, the desired heat removal amount and the heat removal desired for each of the casting initial stage (heat removal by heat radiation is dominant) and the middle stage of casting (heat removal by heat transfer is dominant) at which the bottom of the mold 1 is close to the melting point of silicon. A heat extraction distribution can be obtained.

以上のように、本実施形態の鋳型用装置Sによれば、冷却手段7の冷却面7aと鋳型1の底部との間に、鋳型1の底部に対して非接触の状態で配置されていて、冷却手段7の冷却面7aに対して一主面が対向している板状部材8を備えている。これにより、鋳型1の底面からの冷却手段7による抜熱量を容易に制御できて、凝固時および凝固後冷却中のインゴット中の温度分布および温度勾配の制御を容易にできる。そして、インゴット内の残留応力を低減することができて、インゴット中に転位などの結晶欠陥が生成にくくなり、結晶欠陥に起因する、クラック発生を低減できる。   As described above, according to the mold apparatus S of the present embodiment, the apparatus is disposed between the cooling surface 7 a of the cooling means 7 and the bottom of the mold 1 in a non-contact state with the bottom of the mold 1. The plate-like member 8 whose main surface is opposed to the cooling surface 7 a of the cooling means 7 is provided. Thereby, the heat removal amount by the cooling means 7 from the bottom surface of the mold 1 can be easily controlled, and the control of the temperature distribution and temperature gradient in the ingot during solidification and cooling after solidification can be facilitated. Then, residual stress in the ingot can be reduced, and crystal defects such as dislocations are less likely to be generated in the ingot, and crack generation due to crystal defects can be reduced.

なお、本発明は上述した実施形態に限定されない。例えば、インゴットとして単結晶または擬似単結晶を製造する鋳型用装置に適用することも可能である。また、鋳型1内には予め配置した固体のシリコン原料を鋳型1内で加熱溶融して融液4を得てもよく、その後、融液4を鋳型1の底部から上部へ一方向凝固させるようにしてもよい。   The present invention is not limited to the embodiment described above. For example, it is also possible to apply to an apparatus for a mold for producing a single crystal or a pseudo single crystal as an ingot. Alternatively, a solid silicon raw material arranged in advance in the mold 1 may be heated and melted in the mold 1 to obtain the melt 4, and then the melt 4 is unidirectionally solidified from the bottom to the top of the mold 1 You may

以下、本発明の実施例について説明する。   Hereinafter, examples of the present invention will be described.

鋳型1の部材として、高純度黒鉛からなる厚み2mmの側部材1bを4枚と、厚み5mmの底部材1aを1枚とを準備した。平均粒径0.5μmの窒化シリコン粉末と平均粒径20μmの二酸化珪素粉末とを秤量して、10質量%のポリビニルアルコール水溶液で攪拌混合してスラリー状にし離型材を得た。この離型材を側部材1bおよび底部材1aの表面に刷毛を用いて塗布した。そして、これをホットプレートに載せて乾燥し、離型材層2を得た。その後、離型材層2が内側になるように、側部材1bおよび底部材1aを組み合わせて、内寸500mm×500mm、深さ200mmの鋳型1を作製した。   As members of the mold 1, four side members 1 b of 2 mm in thickness made of high purity graphite and one bottom member 1 a of 5 mm in thickness were prepared. A silicon nitride powder having an average particle diameter of 0.5 μm and a silicon dioxide powder having an average particle diameter of 20 μm were weighed and stirred and mixed with a 10% by mass polyvinyl alcohol aqueous solution to form a slurry and obtain a mold release material. The release material was applied to the surfaces of the side member 1b and the bottom member 1a using a brush. Then, this was placed on a hot plate and dried to obtain a release material layer 2. Then, the side member 1b and the bottom member 1a were combined so that the mold release material layer 2 was inside, and a mold 1 having an inner size of 500 mm × 500 mm and a depth of 200 mm was produced.

この鋳型1の外周を覆うように、図1に示す形状の黒鉛からなる断熱材3を配置した。なお、断熱材3の厚みは30mmとした。   A heat insulating material 3 made of graphite having a shape shown in FIG. 1 was disposed so as to cover the outer periphery of the mold 1. In addition, the thickness of the heat insulating material 3 was 30 mm.

さらに、鋳型1の下部には鋳型1と断熱材3を保持するの鋳型ホルダ5を配置した。また、第1鋳型ホルダ5aと第2鋳型ホルダ5bは厚みが25mmの等方性黒鉛製であり、上方から見た時に同じ位置に同形状の開口部を設けたものを用いた。また、板状部材8は厚みが5mmの炭素繊維強化炭素材料製の板状部材に、平面視で円形の貫通孔8aを設けたものを用いた。表1に示すように、板状部材8の貫通孔8aは面積比率(大きさと数)、配置を変更したものを複数用意し、板状部材8を交換しながら、繰り返しインゴットの製造を行った。   Furthermore, a mold holder 5 for holding the mold 1 and the heat insulating material 3 was disposed below the mold 1. Further, the first mold holder 5a and the second mold holder 5b are made of isotropic graphite having a thickness of 25 mm, and provided with openings of the same shape at the same position when viewed from above. The plate-like member 8 used was a plate-like member made of a carbon fiber reinforced carbon material having a thickness of 5 mm and provided with a circular through hole 8 a in a plan view. As shown in Table 1, a plurality of through holes 8a of the plate-like member 8 were prepared with different area ratios (size and number) and different arrangement, and the ingot was repeatedly manufactured while replacing the plate-like member 8 .

ここで、実施例の条件No.2〜7は、図2に示すように円形の貫通孔8aを1つ形成してその面積を段階的に大きくしたものを用いた。また、条件No.8,9は円形の貫通孔8aを複数形成し、貫通孔8aを均一に形成した場合(図4を参照)と比べて、条件No.8では端部側の貫通孔の数(密度)を小さくし(図5を参照)、条件No.9では中央部の貫通孔の数(密度)を小さくした(図3を参照)。また、比較のため貫通孔を形成していない板状部材8も使用した(条件No.1)。   Here, condition No. of the example. 2 to 7 used one in which one circular through hole 8a was formed as shown in FIG. 2 and the area was gradually increased. Moreover, condition No. As compared with the case where the plurality of circular through holes 8a are formed and the through holes 8a are formed uniformly (refer to FIG. 4), the condition No. 8 and 9 have the same condition No. In No. 8, the number (density) of through holes on the end side is reduced (see FIG. 5). In No. 9, the number (density) of through holes in the central portion was reduced (see FIG. 3). Moreover, the plate-shaped member 8 which has not formed the through-hole for comparison was also used (condition No. 1).

これらの鋳型1、断熱材3、鋳型ホルダ5は、鋳造用装置Sの冷却手段7上の所定位置
にセットした。冷却手段7はステンレス製であり、上部に面積が1600cmの板状部を有し、内部に水を循環させたものを用いた。また、冷却手段7は水の流量および供給時、排出時の水温を測定して抜熱量を実測した。表1に、インゴットの凝固開始後3時間の抜熱量を記載した。また、鋳型加熱手段6として黒鉛ヒーターを所定位置に配置した。
The mold 1, the heat insulator 3 and the mold holder 5 were set at predetermined positions on the cooling means 7 of the casting apparatus S. The cooling means 7 is made of stainless steel, has a plate-like portion with an area of 1600 cm 2 at the top, and has water circulated inside. Moreover, the cooling means 7 measured the water flow rate and the water temperature at the time of discharge | emission at the time of supply, and measured the heat removal amount. Table 1 shows the heat removal amount for 3 hours after the start of solidification of the ingot. In addition, a graphite heater was disposed at a predetermined position as the mold heating means 6.

その後、坩堝11内に固体の原料シリコンを充填し、鋳造用装置Sの内部を11kPa
に減圧したアルゴン雰囲気とした。そして、黒鉛ヒーターからなる坩堝加熱手段12を用いて原料シリコンを融点(1414℃)以上に加熱して融液を作製した。さらに、黒鉛ヒーターからなる鋳型加熱手段6を用いて1000℃に加熱した鋳型1の内部に坩堝11から85kgの融液を注湯した。
Thereafter, solid raw material silicon is filled in the crucible 11, and the inside of the casting apparatus S is 11 kPa.
The atmosphere was reduced to argon. Then, the raw material silicon was heated to the melting point (1414 ° C.) or more using the crucible heating means 12 composed of a graphite heater to prepare a melt. Furthermore, a melt of 11 to 85 kg was poured into the interior of the mold 1 heated to 1000 ° C. using the mold heating means 6 consisting of a graphite heater.

次に、鋳型加熱手段6によって融液4の上面を加熱しながら、冷却手段7を鋳型ホルダ5に接触させて融液4を一方向凝固させて多結晶シリコンのインゴットを作製した。そして、固化したインゴットを冷却して鋳型1から取り出した。このインゴットをバンドソーを用いて切断し、インゴットの切断面におけるクラックの発生状況を調べた。   Next, while the upper surface of the melt 4 was heated by the mold heating means 6, the cooling means 7 was brought into contact with the mold holder 5 to solidify the melt 4 in one direction, and an ingot of polycrystalline silicon was produced. Then, the solidified ingot was cooled and taken out of the mold 1. The ingot was cut using a band saw, and the occurrence of cracks on the cut surface of the ingot was examined.

これらの結果を表1に示す。表1の評価結果において、凝固時間とインゴットのクラックの発生状況とを記号で示した。各記号の意味は通りである。   The results are shown in Table 1. In the evaluation results of Table 1, the solidification time and the occurrence of cracks in the ingot are indicated by symbols. The meaning of each symbol is as follows.

<凝固時間>
○:凝固時間が十分短く(貫通孔の面積比率が1の時の凝固時間を100%としての125%以下)、生産性が良好である。
△:凝固時間が短く(貫通孔の面積比率が1の時の凝固時間を100%として125%よりも長く、150%以下)、生産性は問題にならない程度である。
×:凝固時間が長く(貫通孔の面積比率が1の時の凝固時間を100%として150%以上)、生産性を低下させる。
<Coagulation time>
Good: The solidification time is sufficiently short (the solidification time when the area ratio of the through holes is 1 is 125% or less, assuming 100%), and the productivity is good.
Δ: The solidification time is short (the solidification time when the area ratio of the through holes is 1 is 100%, is longer than 125% and is 150% or less), and the productivity is not a problem.
X: The solidification time is long (the solidification time when the area ratio of the through holes is 1 is 100% and 150% or more), and the productivity is reduced.

<クラック状況>
○:クラックが全く観察されなかった。
△:クラックわずかに認められたが歩留りに影響のない許容範囲(インゴットとして使用可能)である。
×:歩留りに影響を与える(インゴットとして使用できない)クラックが認められた。
<Crack status>
○: no cracks were observed at all.
Δ: Crack slightly observed but acceptable range without affecting the yield (can be used as an ingot).
X: Cracks affecting yield (cannot be used as ingots) were observed.

Figure 0006522963
Figure 0006522963

表1から明らかなように、鋳型用装置Sに本実施例の鋳型ホルダ5を用いることで、クラックの低減されたインゴットが生産性良く、製造できることが確認できた。特に、貫通孔面積比率R1またはR2が0.02〜0.80であれば、凝固時間およびクラックの状況が許容範囲内であった(条件No.2〜6を参照)。さらに、貫通孔面積比率R1またはR2が0.04〜0.5(条件No.3〜5を参照)であれば、クラックの発生は見られなかった。また、貫通孔の配置態様は、板状部材8の中央部よりも端部に貫通孔を多く(貫通孔の平面視した場合の孔面積を多くして抜熱量を大きく)配置した方が、クラックの発生をより低減する効果が高かった(条件No.8,9を参照)。また、冷却手段の抜熱量には最適値(本実施例においては凝固後3時間で42〜58kWh)があることを確認した。融液4の凝固後3時間で42kWhよりも小さい場合、または58kWhよりも大きい場合には、インゴットの応力が大きくなって、クラックが発生しやすくなることを確認した。さらに、板状部材8の貫通孔8aの形状を平面視で円形以外に角形状等の種々の形状を用いた場合でも円形と同様な効果を確認できた。   As apparent from Table 1, by using the mold holder 5 of the present embodiment for the mold apparatus S, it has been confirmed that an ingot with reduced cracks can be manufactured with high productivity. In particular, when the through hole area ratio R1 or R2 was 0.02 to 0.80, the solidification time and the condition of the crack were within the allowable range (see Condition Nos. 2 to 6). Furthermore, when the through hole area ratio R1 or R2 was 0.04 to 0.5 (see conditions No. 3 to 5), no generation of cracks was observed. In the arrangement of the through holes, the through holes are arranged more at the end than at the central portion of the plate-like member 8 (the hole area in the plan view of the through holes is increased to increase the heat removal amount), The effect of reducing the occurrence of cracks was high (see conditions No. 8 and 9). In addition, it was confirmed that there is an optimum value (42 to 58 kWh in 3 hours after solidification) in the heat extraction amount of the cooling means. In the case where it is smaller than 42 kWh or larger than 58 kWh in 3 hours after solidification of the melt 4, it was confirmed that the stress of the ingot becomes large and the crack is easily generated. Furthermore, even when the shape of the through hole 8a of the plate-like member 8 is various shapes such as a square other than circular in plan view, the same effect as the circular can be confirmed.

1 :鋳型
1a:底部材
1b:側部材
1c:上部開口部
2 :離型材層
3 :断熱材
4 :融液
5:鋳型ホルダ
5a:第1鋳型ホルダ
5b:第2鋳型ホルダ
6 :鋳型加熱手段
7 :冷却手段
8 :板状部材
8a:貫通孔
S :鋳造用装置
1: mold 1a: bottom member 1b: side member 1c: upper opening 2: release material layer 3: heat insulating material 4: melt 5: mold holder 5a: first mold holder 5b: second mold holder 6: mold heating means 7: Cooling means 8: Plate-like member 8a: through hole S: device for casting

Claims (5)

底部を有し、シリコンを主成分とする融液を保持し凝固させる鋳型と、
該鋳型の前記底部の下方に配置されて、上面に冷却面を有する冷却手段と、
該冷却手段の前記冷却面と前記鋳型の前記底部との間に、前記底部に対して非接触の状態で配置されているとともに前記冷却手段の前記冷却面に対して一主面が対向している板状部材と、を備え、
前記板状部材は、前記鋳型の前記底部および前記冷却手段の前記冷却面のそれぞれに対向する部位に貫通孔を有し、
前記鋳型および前記冷却手段に接触し、前記板状部材を保持し、開口部を有する鋳型ホルダをさらに備え、
前記鋳型ホルダの開口部面積に対する前記板状部材の貫通孔の面積比率が0.02以上0.8以下である鋳造用装置。
A mold which has a bottom and holds and solidifies a silicon-based melt;
Cooling means disposed below the bottom of the mold and having a cooling surface on the top surface;
Between the cooling surface of the cooling means and the bottom of the mold, the main surface is disposed in non-contact with the bottom and facing the cooling surface of the cooling means And a plate-like member
The plate-like member has through holes at portions facing the bottom of the mold and the cooling surface of the cooling means, respectively.
The mold holder further comprises a mold holder which contacts the mold and the cooling means , holds the plate-like member, and has an opening.
The apparatus for casting whose area ratio of the through-hole of the said plate-shaped member with respect to the opening part area of the said mold holder is 0.02 or more and 0.8 or less.
前記板状部材は、前記冷却手段の前記冷却面に対して非接触の状態で配置されている請求項1に記載の鋳造用装置。   The casting apparatus according to claim 1, wherein the plate-like member is disposed in non-contact with the cooling surface of the cooling means. 前記板状部材は、前記鋳型ホルダよりも熱伝導率が小さい材料で構成されている請求項1または2に記載の鋳造用装置。   The casting apparatus according to claim 1, wherein the plate-like member is made of a material having a thermal conductivity smaller than that of the mold holder. 前記板状部材の前記貫通孔は、前記冷却手段が位置する側に向かって広がっている請求項1乃至3のいずれかに記載の鋳造用装置。   The casting apparatus according to any one of claims 1 to 3, wherein the through hole of the plate-like member extends toward the side where the cooling means is located. 請求項1乃至4のいずれかに記載の鋳造用装置を用いて、前記鋳型内にシリコンの融液を入れた後に、前記板状部材によって前記鋳型からの抜熱量を調整しながら前記融液を前記鋳型の底部から上方へ一方向に凝固させるインゴットの製造方法。   The melt for silicon is put into the mold using the casting apparatus according to any one of claims 1 to 4, and then the melt is adjusted while adjusting the heat removal amount from the mold by the plate-like member. The manufacturing method of the ingot made to solidify in one direction upward from the bottom part of the said casting_mold | template.
JP2015014400A 2014-01-29 2015-01-28 Casting apparatus and method of manufacturing ingot Expired - Fee Related JP6522963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015014400A JP6522963B2 (en) 2014-01-29 2015-01-28 Casting apparatus and method of manufacturing ingot

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014014632 2014-01-29
JP2014014632 2014-01-29
JP2015014400A JP6522963B2 (en) 2014-01-29 2015-01-28 Casting apparatus and method of manufacturing ingot

Publications (2)

Publication Number Publication Date
JP2015163575A JP2015163575A (en) 2015-09-10
JP6522963B2 true JP6522963B2 (en) 2019-05-29

Family

ID=54186691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014400A Expired - Fee Related JP6522963B2 (en) 2014-01-29 2015-01-28 Casting apparatus and method of manufacturing ingot

Country Status (1)

Country Link
JP (1) JP6522963B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280050A1 (en) * 2008-04-25 2009-11-12 Applied Materials, Inc. Apparatus and Methods for Casting Multi-Crystalline Silicon Ingots
TW201142093A (en) * 2010-03-12 2011-12-01 Gt Solar Inc Crystal growth apparatus with load-centered aperture, and device and method for controlling heat extraction from a crucible
KR101345747B1 (en) * 2011-08-18 2013-12-30 한국화학연구원 The Apparatus for Semiconductor or Metal Oxide Ingot
JP5312713B1 (en) * 2011-08-30 2013-10-09 京セラ株式会社 Manufacturing method of semiconductor ingot
CN102392293A (en) * 2011-10-31 2012-03-28 杭州精功机电研究所有限公司 Crystal silicon ingot furnace thermal field thermal gate control device and control method thereof
JP2013112582A (en) * 2011-11-30 2013-06-10 Sharp Corp Apparatus for producing polycrystalline silicon ingot, polycrystalline silicon ingot, polycrystalline silicon wafer, polycrystalline silicon solar cell and polycrystalline solar cell module
US20130152851A1 (en) * 2011-12-15 2013-06-20 Spx Corporation Bulk Growth Grain Controlled Directional Solidification Device and Method

Also Published As

Publication number Publication date
JP2015163575A (en) 2015-09-10

Similar Documents

Publication Publication Date Title
JPWO2005092791A1 (en) Silicon casting apparatus and method for manufacturing polycrystalline silicon ingot
JP2006273666A (en) Silicon melting crucible, silicon casting device using the same, and method for casting polycrystalline silicon ingot
JP4863637B2 (en) Silicon casting apparatus and method for casting polycrystalline silicon ingot
KR20120128643A (en) Crucible for use in a directional solidification furnace
JP2006282495A (en) Mold and method for manufacturing polycrystalline silicon ingot using same
JP2007015905A (en) Polycrystalline silicon ingot, polycrystalline silicon substrate and solar battery element and casting process for polycrystalline silicon ingot
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
JP6522963B2 (en) Casting apparatus and method of manufacturing ingot
JP4497943B2 (en) Silicon casting mold and silicon casting apparatus using the same
JP6075625B2 (en) Silicon casting apparatus and silicon casting method
KR101136930B1 (en) Crucible for manufacturing silicon ingot with detachable crucible
JP2015020941A (en) Container for silicon casting
JP4817761B2 (en) Method for manufacturing semiconductor ingot and solar cell element
JP2002308616A (en) Method for producing polycrystalline silicon
JP4484501B2 (en) Silicon casting equipment
JP2004322195A (en) Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
JP4741221B2 (en) Polycrystalline silicon casting method, polycrystalline silicon ingot, polycrystalline silicon substrate and solar cell element using the same
JP6724614B2 (en) Crystal growth equipment
JP4480357B2 (en) Plate silicon manufacturing equipment
JP4868757B2 (en) Manufacturing method of semiconductor ingot
JP5701287B2 (en) Dopant material, semiconductor substrate, solar cell element, and method for producing dopant material
JP2006272373A (en) Mold and casting apparatus using the same, and method for producing polycrystalline silicon
JP4340124B2 (en) Silicon casting equipment
JP4365669B2 (en) Silicon casting mold
JP4693932B1 (en) Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees