JP4365669B2 - Silicon casting mold - Google Patents

Silicon casting mold Download PDF

Info

Publication number
JP4365669B2
JP4365669B2 JP2003398215A JP2003398215A JP4365669B2 JP 4365669 B2 JP4365669 B2 JP 4365669B2 JP 2003398215 A JP2003398215 A JP 2003398215A JP 2003398215 A JP2003398215 A JP 2003398215A JP 4365669 B2 JP4365669 B2 JP 4365669B2
Authority
JP
Japan
Prior art keywords
mold
silicon
release material
bottom plate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003398215A
Other languages
Japanese (ja)
Other versions
JP2005152986A (en
Inventor
宏史 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003398215A priority Critical patent/JP4365669B2/en
Publication of JP2005152986A publication Critical patent/JP2005152986A/en
Application granted granted Critical
Publication of JP4365669B2 publication Critical patent/JP4365669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)

Description

本発明はシリコン鋳造用鋳型とその製造方法に関し、特に太陽電池などを形成するための多結晶シリコン鋳造用鋳型に関するものである。   The present invention relates to a silicon casting mold and a method for manufacturing the same, and more particularly to a polycrystalline silicon casting mold for forming a solar cell or the like.

従来から太陽電池を形成するための半導体基板の一種として多結晶シリコンが用いられている。このような多結晶シリコンは、高温度で加熱溶融させたシリコン融液を鋳型内に注湯して鋳型上部から加熱し下部から冷却し一方向凝固させることによって形成したり、あるいはシリコン原料を鋳型内に入れて一旦溶解させた後に鋳型上部から加熱し下部から冷却し一方向凝固させることによって形成している。   Conventionally, polycrystalline silicon has been used as a kind of semiconductor substrate for forming solar cells. Such polycrystalline silicon is formed by pouring a silicon melt heated and melted at a high temperature into a mold and heating it from the upper part of the mold and cooling it from the lower part to solidify in one direction. It is formed by being melted once and then heated from the upper part of the mold, cooled from the lower part and solidified in one direction.

このような鋳型としては、通常、分割可能である黒鉛からなる鋳型の内表面に離型材を被覆したものや、一体構造であるシリカからなる鋳型の内表面に離型材を被覆したものが用いられる。一般的に離型材としてはシリコンの窒化物である窒化珪素(Si)、シリコンの炭化物である炭化珪素(SiC)、シリコンの酸化物である酸化珪素(SiO)等の粉末が用いられ、これらの粉末を適当なバインダーと溶剤とから構成される溶液中に混合して攪拌してスラリーとし、鋳型内壁に被覆若しくはスプレー等の手段でコーティングしたり、窒化珪素や酸化珪素などの溶射皮膜を被覆したりすることが公知の技術として知られている(例えば、非特許文献1参照)。
15th Photovoltaic Specialists Conf. (1981), P576〜P580, "A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUE FOR POLYCRYSTALLINE SOLAR GRADE SILICON"
As such a mold, those in which a mold release material is coated on the inner surface of a mold made of graphite that is separable or those in which a mold release material is coated on the inner surface of a mold made of silica that is an integral structure are usually used. . Generally, as a release material, silicon nitride (Si 3 N 4 ) which is a silicon nitride, silicon carbide (SiC) which is a silicon carbide, silicon oxide (SiO 2 ) which is an oxide of silicon, or the like is used. These powders are mixed in a solution composed of an appropriate binder and solvent and stirred to form a slurry, which is coated on the inner wall of the mold by means of coating or spraying, or sprayed with silicon nitride or silicon oxide. It is known as a known technique to coat a film (for example, see Non-Patent Document 1).
15th Photovoltaic Specialists Conf. (1981), P576-P580, "A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUE FOR POLYCRYSTALLINE SOLAR GRADE SILICON"

しかしながら、上記のような鋳型を用いてシリコン融液を一方向凝固させる場合、固液界面形状をフラットにし、凝固膨張応力を上方へ逃げさせるようにするが、事実上、側壁の完全断熱は難しく、横方向の膨張が生じため、鋳型に大きな応力が加わり、凝固、冷却過程において鋳塊内部に残留した応力により鋳塊を切断、スライスする工程において、切断表面にクラックが発生し、作業効率が悪くなったり、製造歩留まりを低下させるという問題があった。   However, when the silicon melt is unidirectionally solidified using the mold as described above, the solid-liquid interface shape is flattened and the solidification expansion stress is allowed to escape upward. In the process of cutting and slicing the ingot due to the stress remaining inside the ingot during the solidification and cooling process, cracks are generated on the cut surface due to the lateral expansion, and the work efficiency is improved. There have been problems of worsening and lowering the manufacturing yield.

また、上述の問題を解決するためには、一様な凝固速度、凝固方向で結晶を冷却固化させ、熱的応力分布が一様な健全な鋳塊が得ること必要であるが、通常、一方向凝固現象を論じる場合、凝固速度X(m/s)、冷却速度θ(K/s)、温度勾配G(K/s)の特性値の制御が重要であり、それには凝固界面でのG/X比を大きくすることが必要である。しかしながら、鋳型内でふつうに凝固させただけでは必要なG/X比を達成することができないので、GとXをそれぞれ独立に制御してGを大きく、Xを小さくするために、通常、鋳型引出し式一方向凝固炉や、パワーダウン式一方向凝固炉などの種々の一方向凝固炉が用いられる。   In order to solve the above problems, it is necessary to cool and solidify the crystal at a uniform solidification rate and solidification direction to obtain a healthy ingot with a uniform thermal stress distribution. When discussing the directional solidification phenomenon, it is important to control the characteristic values of the solidification rate X (m / s), the cooling rate θ (K / s), and the temperature gradient G (K / s). It is necessary to increase the / X ratio. However, since the necessary G / X ratio cannot be achieved simply by solidifying the mold within the mold, it is usually necessary to control G and X independently to increase G and decrease X. Various unidirectional solidification furnaces such as a drawer-type unidirectional solidification furnace and a power-down unidirectional solidification furnace are used.

しかし、このような一方向凝固炉を用いれば、理想的な一方向凝固組織を有する健全な鋳塊を得られるが、装置導入の初期投資に費用が嵩んだり、また、種々の鋳塊サイズに柔軟に対応できないといった問題があった。   However, if such a unidirectional solidification furnace is used, a sound ingot having an ideal unidirectional solidification structure can be obtained. However, the initial investment for introducing the apparatus is expensive, and various ingot sizes are available. There was a problem that it was not possible to respond flexibly.

本発明はこのような問題に鑑みてなされたものであり、シリコン鋳塊の切断工程においてシリコン鋳塊表面に発生する縦割れや横割れといった表面欠陥が発生しないシリコンの鋳塊を得ることを目的としている。   The present invention has been made in view of such problems, and an object of the present invention is to obtain a silicon ingot that does not cause surface defects such as vertical cracks and transverse cracks generated on the surface of the silicon ingot in the silicon ingot cutting step. It is said.

本発明者らは上記目的を簡便且つ経済性に優れた方法で達成することを検討し、その成果を本発明として具現化した。すなわち、1枚の矩形又は正方形底板と4枚の矩形又は正方形側板を互いに嵌合し箱型に組み立て、その内面に窒化珪素と酸化珪素のうち少なくとも1つ以上の粉体と有機バインダー水溶液で構成される離型材スラリーを塗布した上方開放型鋳型において、前記底板と側板で構成する4つの角隅部と8つの稜線部とからなる係止部における離型材の形状を略R形状に塗布するとともに、前記底板と側板の面部の離型材厚みをt1、前記係止部における離型材厚みをt2とした場合、√2×t1<t2を満足することを特徴とする。   The inventors of the present invention have studied to achieve the above object by a simple and economical method, and have realized the result as the present invention. That is, one rectangular or square bottom plate and four rectangular or square side plates are fitted together and assembled into a box shape, and the inner surface is composed of at least one powder of silicon nitride and silicon oxide and an organic binder aqueous solution. In the upper open mold in which the release material slurry is applied, the shape of the release material in the engaging portion composed of the four corners and the eight ridges formed by the bottom plate and the side plate is applied in a substantially R shape. When the release material thickness of the surface portions of the bottom plate and the side plate is t1, and the release material thickness at the locking portion is t2, √2 × t1 <t2 is satisfied.

(作用)
本発明のシリコン鋳造用鋳型は、1枚の矩形底板と4枚の矩形側板を互いに嵌合し箱型に組み立て、その内面に窒化珪素と酸化珪素のうち少なくとも1つ以上の粉体と有機バインダー水溶液で構成される離型材スラリーを塗布した上方開放型鋳型において、前記底板と側板で構成する4つの角隅部と8つの稜線部とからなる係止部における離型材の形状を略R形状に塗布するとともに、前記底板と側板の面部の離型材厚みをt1、前記係止部における離型材厚みをt2とした場合、√2×t1<t2を満足することを特徴とするようにしたことで、前記底板と側板で構成する4つの角隅部と8つの稜線部とからなる係止部において熱応力による歪を緩和することができるので、シリコン鋳塊の切断の際に、切断面に縦割れや横割れといったクラックを発生することを防げる。
(Function)
The silicon casting mold of the present invention includes a rectangular bottom plate and four rectangular side plates fitted together to form a box shape, and at least one powder of silicon nitride and silicon oxide and an organic binder on its inner surface In the upper open mold to which the release material slurry composed of an aqueous solution is applied, the shape of the release material in the engaging portion composed of the four corners and the eight ridges composed of the bottom plate and the side plate is made substantially R-shaped. In addition to applying, when the release material thickness of the surface portion of the bottom plate and the side plate is t1, and the release material thickness of the locking portion is t2, √2 × t1 <t2 is satisfied. Since the strain due to thermal stress can be reduced at the engaging portion composed of the four corners and the eight ridges formed by the bottom plate and the side plate, the silicon ingot is vertically cut when the silicon ingot is cut. Such as cracks and side cracks Prevent the possible to generate a click.

更に図面を用いて上述の理由を具体的に説明する。   Further, the above reason will be specifically described with reference to the drawings.

図7は直交差分法で数値計算した鋳型内部を高温度、鋳型外部を低温度に保温した場合のある一定時間後の鋳型縦断面の等温線図を示す。ここで、(a)は本発明のシリコン鋳造用鋳型の場合、(b)は底板と側板で構成する4つの角隅部と8つの稜線部とからなる係止部における離型材の形状をR形状にしない場合を示す。また図中の矢印線は、凝固の方向を示す。   FIG. 7 shows an isotherm diagram of the longitudinal section of the mold after a certain time when the inside of the mold is kept at a high temperature and the outside of the mold is kept at a low temperature, which is numerically calculated by the orthogonal difference method. Here, (a) is the mold for silicon casting of the present invention, and (b) is the shape of the mold release material at the locking portion composed of four corners and eight ridges formed by the bottom plate and the side plate. The case where the shape is not used is shown. Moreover, the arrow line in a figure shows the direction of solidification.

熱流は鋳型内部から鋳型外部に向かうので、凝固の方向は、その反対方向、且つ、凝固面(融点の等温線)の法線方向になる。即ち、(a)の本発明のシリコン鋳造用鋳型の場合、ある側面からの結晶粒と他の側面からの結晶粒は、係止部近傍において衝突することはないが、(b)の係止部における離型材の形状をR形状にしない場合は、ある側面からの結晶粒と他の側面からの結晶粒は、係止部近傍において衝突するので、係止部近傍における応力集中が発生する可能性が高くなる。即ち、本発明のシリコン鋳造用鋳型を用いれば、係止部近傍において、一様な熱応力分布を有し、歪が少ない健全なシリコンの鋳塊を得ることが可能となる。   Since the heat flow goes from the inside of the mold to the outside of the mold, the direction of solidification is the opposite direction and the normal direction of the solidification surface (melting point isotherm). That is, in the case of the silicon casting mold of the present invention of (a), the crystal grains from one side and the crystal grains from the other side do not collide in the vicinity of the locking part, but the locking of (b) When the shape of the release material in the part is not R-shaped, the crystal grains from one side face and the crystal grains from the other side collide in the vicinity of the engaging part, so that stress concentration in the vicinity of the engaging part may occur. Increases nature. That is, by using the silicon casting mold of the present invention, it is possible to obtain a sound silicon ingot having a uniform thermal stress distribution and less distortion in the vicinity of the engaging portion.

本発明のシリコン鋳造用鋳型によれば、1枚の矩形又は正方形底板と4枚の矩形又は正方形側板を互いに嵌合し箱型に組み立て、その内面に窒化珪素と酸化珪素のうち少なくとも1つ以上の粉体と有機バインダー水溶液で構成される離型材スラリーを塗布した上方開放型鋳型において、前記底板と側板で構成する4つの角隅部と8つの稜線部とからなる係止部における離型材の形状を略R形状に塗布するとともに、前記底板と側板の面部の離型材厚みをt1、前記係止部における離型材厚みをt2とした場合、√2×t1<t2を満足するようにしたことで、鋳型からシリコン鋳塊を取り出す作業が軽減され、また切断工程において、取り出したシリコン鋳塊の切断表面に発生する縦割れや横割れといった表面欠陥がなくなり、従って、多結晶シリコンの製造歩留りが向上し、製造コストの低減が可能となる。   According to the silicon casting mold of the present invention, one rectangular or square bottom plate and four rectangular or square side plates are fitted together and assembled into a box shape, and at least one of silicon nitride and silicon oxide is formed on the inner surface thereof. In an upper open mold in which a release material slurry composed of the above powder and an organic binder aqueous solution is applied, the release material in the locking portion composed of the four corners and the eight ridges formed by the bottom plate and the side plate The shape was applied in a substantially R shape, and when the release material thickness of the surface portion of the bottom plate and the side plate was t1, and the release material thickness of the locking portion was t2, √2 × t1 <t2 was satisfied. Therefore, the work of taking out the silicon ingot from the mold is reduced, and surface defects such as vertical cracks and transverse cracks generated on the cut surface of the taken silicon ingot are eliminated in the cutting process. Manufacturing yield of silicon is improved, it is possible to reduce the manufacturing cost.

以下に本発明の実施様態を図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係るシリコン鋳造用鋳型の一実施例を示す縦断面図、図2は本発明に係るシリコン鋳造用鋳型の内面の角隅部及び稜線部を示す1/4概略図、また図3は本発明に係るシリコン鋳造用鋳型の一実施例を示す横断面図である。   FIG. 1 is a longitudinal sectional view showing an embodiment of a silicon casting mold according to the present invention, FIG. 2 is a 1/4 schematic view showing corners and ridges of the inner surface of the silicon casting mold according to the present invention, FIG. 3 is a cross-sectional view showing an embodiment of a silicon casting mold according to the present invention.

図1、図2、図3において、1aは側板、1bは底板、1cはリング状部材、2は鋳型ホルダー、3は炭素繊維フェルトなどの鋳型断熱材、4aは鋳型内の面部、4bは鋳型内の角隅部、4cは鋳型内の稜線面部を示す。   1, 2, and 3, 1a is a side plate, 1b is a bottom plate, 1c is a ring-shaped member, 2 is a mold holder, 3 is a mold insulation material such as carbon fiber felt, 4a is a surface portion in the mold, and 4b is a mold. The inner corners 4c indicate ridge surface portions in the mold.

側板1aおよび底板1bは耐衝撃性、断熱特性、軽量性、取り扱い易さを鑑み、炭素繊維強化炭素材が最も好ましいが、例えば黒鉛や酸化珪素で形成することも可能である。   The side plate 1a and the bottom plate 1b are most preferably a carbon fiber reinforced carbon material in view of impact resistance, heat insulating properties, light weight, and ease of handling, but may be formed of, for example, graphite or silicon oxide.

また、前記側板1aと底板1bの厚みは、1mm〜5mmであることが好ましい。板厚みが1mmより薄くなると、繰り返し使用における耐久性が劣り好ましくなく、また、板厚みが5mmより厚くすると、コストが嵩むほか、単位面積あたりの熱吸収量も飽和領域に達してしまい、断熱性と熱伝導性の熱収支においても無駄が生じてしまうので好ましくない。   Moreover, it is preferable that the thickness of the said side plate 1a and the baseplate 1b is 1-5 mm. When the plate thickness is less than 1 mm, the durability in repeated use is inferior, which is not preferable. When the plate thickness is more than 5 mm, the cost increases and the heat absorption amount per unit area reaches the saturation region, and the heat insulating property. In addition, the heat balance of heat conductivity is not preferable because it causes waste.

側板1aおよび底板1bの内面部には窒化珪素と酸化珪素のうち、少なくとも1つ以上の粉体と有機バインダー水溶液で構成される離型材スラリーを、刷毛やスプレー塗布などの手段により塗布し、塗布後、加熱乾燥し離型材を側板1aおよび底板1bに固着させる。   A release material slurry composed of at least one powder of silicon nitride and silicon oxide and an organic binder aqueous solution is applied to the inner surfaces of the side plate 1a and the bottom plate 1b by means such as brush or spray coating. Then, it heat-drys and makes a mold release material adhere to the side plate 1a and the bottom plate 1b.

側板1aと底板1bから鋳型を組み立てるには、側板1aと底板1bをお互いにネジ止めなどして固定すればよい。 In order to assemble the mold from the side plate 1a and the bottom plate 1b, the side plate 1a and the bottom plate 1b may be fixed to each other by screwing or the like.

また、側板と底板から鋳型を組み立てる方法は、前記方法に何等限定されるものではなく、鋳塊の凝固膨張に伴う側壁への外力を側板にて拘束し得る方法であれば種々の変形が可能である。   The method for assembling the mold from the side plate and the bottom plate is not limited to the above method, and various modifications are possible as long as the external plate can be restrained by the side plate due to the solidification and expansion of the ingot. It is.

次いで、図2に示すように、該鋳型底板と側板の係止部となる角隅部4cと稜線部4bに面部4aに塗布する離型材と同仕様の離型材をディスペンサーにて注入し、筆や専用治具を用いて押圧し、略R形状に形成する。この場合、面部の肉厚t1および角隅部の肉厚t2は、図3の横断面図に示すように、面部の離型材厚みをt1、前記鋳型底板と側板の係止部の離型材厚みをt2とした場合、係止部の肉厚t2は、√2×t1<t2となるように塗布する。   Next, as shown in FIG. 2, a mold release material having the same specifications as the mold release material to be applied to the surface portion 4a is poured into the corner portion 4c and the ridge line portion 4b serving as the locking portions of the mold bottom plate and the side plate by a dispenser. Or using a dedicated jig to form a substantially R shape. In this case, as shown in the cross-sectional view of FIG. 3, the thickness t1 of the surface portion and the thickness t2 of the corner portion are the thickness t1 of the release material of the surface portion, and the release material thickness of the locking portion of the mold bottom plate and the side plate. When t2 is set, t2 is applied so that the thickness t2 of the engaging portion is √2 × t1 <t2.

係止部に注入した離型材は筆や専用治具を用いて押圧しながら略R形状に形成するが、塗布作業における人為的バラツキにより、例えば、図4に示すようにR形状と近似的な形状の範囲で塗布されていれば同様の効果が得られる。すなわち、前記底板と側板で構成する4つの角隅部と8つの稜線部とからなる係止部における離型材の形状が、前記底板と側板の面部の離型材厚みをt1、前記係止部における離型材厚みをt2とした場合、√2×t1<t2であるとともに、前記離型材の前記シリコン融液側には辺が9本以上あり、その辺を中心としたシリコン融液側の離型材の角度がすべて90°より大きくなっていれば同様の効果を得ることができる。   The mold release material injected into the locking portion is formed in a substantially R shape while being pressed using a brush or a dedicated jig. However, due to artificial variation in the coating operation, for example, as shown in FIG. The same effect can be obtained as long as it is applied within the shape range. That is, the shape of the release material in the locking portion composed of the four corners and the eight ridge lines formed by the bottom plate and the side plate is t1, the release material thickness of the surface portion of the bottom plate and the side plate is t1, When the release material thickness is t2, √2 × t1 <t2, and there are 9 or more sides on the silicon melt side of the release material, and the release material on the silicon melt side centered on that side If all the angles are larger than 90 °, the same effect can be obtained.

面部の離型材厚みt1及び内半径rは鋳塊のサイズ等に合わせて任意に設定可能であり、本発明の実施形態例では、面部の離型材厚みをt1は、1〜3mm、内半径rは、1〜7mmが好適に用いられる。面部の肉厚t1が1mmより小さいと、シリコン溶湯を鋳型内部に注湯する際、また冷却固化の際に、鋳型角隅部からシリコンが漏れる可能性が高くなるので、好ましくない。また、面部の肉厚t1が3mmより大きく設定すると、必要以上に鋳塊が小さくなりすぎたり、角隅部において規定の鋳造サイズが得られないので好ましくない。また、内半径rについても上述した面部肉厚t1の説明と同じ理由で、前記許容範囲であることが好ましい。   The release material thickness t1 and the inner radius r of the surface portion can be arbitrarily set according to the size of the ingot, etc. In the embodiment of the present invention, the release material thickness t1 of the surface portion is 1 to 3 mm, the inner radius r Is preferably 1 to 7 mm. When the thickness t1 of the surface portion is smaller than 1 mm, it is not preferable because silicon is likely to leak from the corner of the mold when the molten silicon is poured into the mold or cooled and solidified. Further, if the thickness t1 of the surface portion is set to be larger than 3 mm, the ingot is unnecessarily small or a prescribed casting size cannot be obtained at the corners, which is not preferable. Further, the inner radius r is preferably within the allowable range for the same reason as the description of the surface thickness t1 described above.

炭素繊維強化炭素材からなる、板厚2mmの矩形底板と、板厚5mmの矩形側板の片面に窒化珪素:酸化珪素=50:50(wt%)の粉体と有機バインダー水溶液で構成される離型材スラリーを箆で塗布し、加熱乾燥後の離型材厚みを1mm、2mm、3mmとなるように変化させた。次いで、矩形底板1aを鋳型ホルダー2上に載置し、矩形側板1bを互いに嵌合し矩形底板1bに垂直に設置し、該側板外周にリング状部材1cをほぼ等間隔に配置し、くさび(図示せず)にて側板同士しっかりと固定し、且つ該側板外周に炭素繊維フェルト断熱材3を配置した。   A rectangular bottom plate made of a carbon fiber reinforced carbon material and a rectangular bottom plate having a thickness of 2 mm and a rectangular side plate having a thickness of 5 mm on one side are formed of powder of silicon nitride: silicon oxide = 50: 50 (wt%) and an organic binder aqueous solution. The mold material slurry was applied with a scissors, and the release material thickness after heat drying was changed to 1 mm, 2 mm, and 3 mm. Next, the rectangular bottom plate 1a is placed on the mold holder 2, the rectangular side plates 1b are fitted to each other and installed perpendicularly to the rectangular bottom plate 1b, the ring-shaped members 1c are arranged on the outer periphery of the side plate at substantially equal intervals, and a wedge ( The side plates are firmly fixed to each other with a not-shown carbon fiber felt heat insulating material 3 disposed on the outer periphery of the side plates.

該鋳型底板と側板の係止部(角隅部)に面部と同仕様の離型材をディスペンサーにて注入して、R形状の専用治具を用いて押圧し、内半径Rが概ね1mm、3mm、5mm、7mmとなるように変化させた。また、比較例1として図5に示すように内半径が0mm、即ち角が直角となる鋳型と、比較例2として図6に示すように角隅部の厚みが面部の厚みより小さくなるように離型材を塗布した鋳型を準備した。   A mold release material having the same specifications as the surface portion is injected into the locking portion (corner corner portion) between the mold bottom plate and the side plate with a dispenser, and pressed using an R-shaped dedicated jig, and the inner radius R is approximately 1 mm, 3 mm. The thickness was changed to 5 mm and 7 mm. Further, as shown in FIG. 5 as Comparative Example 1, the mold has an inner radius of 0 mm, that is, a right angle, and as Comparative Example 2 as shown in FIG. 6, the thickness of the corner is smaller than the thickness of the surface part. A mold coated with a release material was prepared.

次いで、これらの鋳型をシリコン鋳造装置に設置して70kgのシリコン融液を注湯し、鋳型1の上方に設置した発熱体で鋳型1とシリコン融液を加熱し、鋳型1の底部1bを冷却してシリコン融液を一方向性凝固させて冷却した。冷却後、鋳型から取り出したシリコン鋳塊を指定の寸法にバンドソーにて切断し、切断表面に発生する割れ、クラック等の欠陥発生率を調べた。欠陥不良率は、インゴット全長に対する欠陥不良長の比率で表し、鋳造を30回繰り返しその平均不良率が0.0%以上0.1%未満の場合を○印で、不良率が0.1%以上5%未満の場合を△印で、不良率が5%以上の場合を×印で表しその結果を表1に示した。

Figure 0004365669
Next, these molds are placed in a silicon casting apparatus, 70 kg of silicon melt is poured, the mold 1 and the silicon melt are heated by a heating element placed above the mold 1, and the bottom 1b of the mold 1 is cooled. The silicon melt was then unidirectionally solidified and cooled. After cooling, the silicon ingot taken out from the mold was cut into a specified size with a band saw, and the occurrence rate of defects such as cracks and cracks generated on the cut surface was examined. The defect defect rate is represented by the ratio of defect defect length to the entire length of the ingot. The casting is repeated 30 times and the average defect rate is 0.0% or more and less than 0.1%, and the defect rate is 0.1%. The case of less than 5% is indicated by Δ and the case of the defect rate of 5% or more is indicated by x, and the results are shown in Table 1.
Figure 0004365669

表1から明らかなように、条件1、2、3、4、6、7、8、10、11、12の鋳塊は、切断時にクラックの発生がないものであった。それに対し、条件5や9、また比較例1のように、√2×t1>t2となる場合クラックの発生が認められ、また、比較例2のように角隅部の離型材が凹状になる場合は特に顕著にクラックの発生が認められた。   As is apparent from Table 1, the ingots under conditions 1, 2, 3, 4, 6, 7, 8, 10, 11, and 12 were free from cracks during cutting. On the other hand, cracks are observed when √2 × t1> t2 as in conditions 5 and 9 and Comparative Example 1, and the release material at the corners becomes concave as in Comparative Example 2. In the case, the occurrence of cracks was particularly noticeable.

本発明に係るシリコン鋳造用鋳型の一実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Example of the casting_mold | template for silicon casting which concerns on this invention. 本発明に係るシリコン鋳造用鋳型の内面の角隅部及び稜線部を示す1/4概略図である。It is the 1/4 schematic which shows the corner | angular corner part and ridgeline part of the inner surface of the casting_mold | template for silicon casting which concerns on this invention. 本発明に係るシリコン鋳造用鋳型の一実施例を示す横断面図である。It is a cross-sectional view showing an embodiment of a silicon casting mold according to the present invention. 本発明に係るシリコン鋳造用鋳型の他の実施例を示す横断面図である。It is a cross-sectional view showing another embodiment of the silicon casting mold according to the present invention. 従来のシリコン鋳造用鋳型の一例を示す横断面図である。It is a cross-sectional view showing an example of a conventional mold for silicon casting. 従来のシリコン鋳造用鋳型の他の例を示す横断面図である。It is a cross-sectional view showing another example of a conventional silicon casting mold. 鋳型角隅部における等温線および凝固進行方向を示す図である。It is a figure which shows the isotherm and solidification progress direction in a corner corner of a casting_mold | template.

符号の説明Explanation of symbols

1a・・・側壁部
1b・・・底部
1c・・・リング状部材
2・・・鋳型ホルダー
3・・・鋳型断熱材
4a・・・鋳型内の面部
4b・・・鋳型内の角隅部
4c・・・鋳型内の稜線面部
DESCRIPTION OF SYMBOLS 1a ... Side wall part 1b ... Bottom part 1c ... Ring-shaped member 2 ... Mold holder 3 ... Mold heat insulating material 4a ... Surface part 4b in a mold ... Corner part 4c in a mold ... Ridge surface in mold

Claims (1)

1枚の矩形又は正方形底板と4枚の矩形又は正方形側板を互いに嵌合し箱型に組み立て、その内面に窒化珪素と酸化珪素のうち少なくとも1つ以上の粉体と有機バインダー水溶液で構成される離型材スラリーを塗布した上方開放型鋳型において、前記底板と側板で構成する4つの角隅部と8つの稜線部とからなる係止部における離型材の形状を略R形状に塗布するとともに、前記底板と側板の面部の離型材厚みをt1、前記係止部における離型材厚みをt2とした場合、√2×t1<t2を満足することを特徴とするシリコン鋳造用鋳型。 One rectangular or square bottom plate and four rectangular or square side plates are fitted together and assembled into a box shape, and the inner surface is composed of at least one powder of silicon nitride and silicon oxide and an organic binder aqueous solution. In the upper open mold in which the release material slurry is applied, the shape of the release material in the engaging portion composed of the four corners and the eight ridges formed by the bottom plate and the side plate is applied in a substantially R shape, A silicon casting mold characterized in that √2 × t1 <t2 is satisfied, where t1 is the thickness of the release material at the surface portions of the bottom plate and the side plate, and t2 is the thickness of the release material at the locking portion.
JP2003398215A 2003-11-27 2003-11-27 Silicon casting mold Expired - Fee Related JP4365669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398215A JP4365669B2 (en) 2003-11-27 2003-11-27 Silicon casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398215A JP4365669B2 (en) 2003-11-27 2003-11-27 Silicon casting mold

Publications (2)

Publication Number Publication Date
JP2005152986A JP2005152986A (en) 2005-06-16
JP4365669B2 true JP4365669B2 (en) 2009-11-18

Family

ID=34723125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398215A Expired - Fee Related JP4365669B2 (en) 2003-11-27 2003-11-27 Silicon casting mold

Country Status (1)

Country Link
JP (1) JP4365669B2 (en)

Also Published As

Publication number Publication date
JP2005152986A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
CN1914119B (en) Mold, method for forming same, and method for producing polycrystalline silicon substrate using such mold
US10138572B2 (en) Crystalline silicon ingot and method of fabricating the same
CN103813983B (en) Directional solidification system and method
EP2773797B1 (en) Crucible and method for the production of a (near) monocrystalline semiconductor ingot
US20110180229A1 (en) Crucible For Use In A Directional Solidification Furnace
JP4863637B2 (en) Silicon casting apparatus and method for casting polycrystalline silicon ingot
JP2006282495A (en) Mold and method for manufacturing polycrystalline silicon ingot using same
JP3206540B2 (en) Laminated crucible for producing silicon ingot and method for producing the same
JP4365669B2 (en) Silicon casting mold
JP4497943B2 (en) Silicon casting mold and silicon casting apparatus using the same
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JP2006327912A (en) Casting mold for forming silicon ingot and method for manufacturing silicon ingot
JPH09263489A (en) Casting mold for casting silicon and casting method
JP4484501B2 (en) Silicon casting equipment
JP4340124B2 (en) Silicon casting equipment
JP2002308616A (en) Method for producing polycrystalline silicon
JP2005213088A (en) Casting mold and casting device using the same
JP4868757B2 (en) Manufacturing method of semiconductor ingot
CN211848207U (en) Guard plate felt structure for reducing defects of polycrystalline corner rods of cast ingots
JP6522963B2 (en) Casting apparatus and method of manufacturing ingot
CN207608659U (en) The polycrystalline ingot furnace of graphite cover board and application the graphite cover board
JP2006247698A (en) Casting apparatus and method for casting silicon using it
JP4412919B2 (en) Casting equipment
JP2006272400A (en) Casting device and semiconductor ingot
JP6457549B2 (en) Hybrid crucible for material crystallization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4365669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees