JP4412919B2 - Casting equipment - Google Patents

Casting equipment Download PDF

Info

Publication number
JP4412919B2
JP4412919B2 JP2003153325A JP2003153325A JP4412919B2 JP 4412919 B2 JP4412919 B2 JP 4412919B2 JP 2003153325 A JP2003153325 A JP 2003153325A JP 2003153325 A JP2003153325 A JP 2003153325A JP 4412919 B2 JP4412919 B2 JP 4412919B2
Authority
JP
Japan
Prior art keywords
mold
silicon
heat insulating
insulating material
silicon melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003153325A
Other languages
Japanese (ja)
Other versions
JP2004351489A (en
Inventor
征治 中住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003153325A priority Critical patent/JP4412919B2/en
Publication of JP2004351489A publication Critical patent/JP2004351489A/en
Application granted granted Critical
Publication of JP4412919B2 publication Critical patent/JP4412919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はシリコンの鋳造装置に関し、例えば太陽電池用半導体基板等の作製に用いられる多結晶シリコンの鋳造装置に関する。
【0002】
【従来の技術】
太陽電池は入射した光エネルギーを電気エネルギーに変換するものである。太陽電池のうち主要なものは使用材料の種類によって結晶系、アモルファス系、化合物系などに分類される。このうち、現在市場で流通しているのはほとんどが結晶系シリコン太陽電池である。この結晶系シリコン太陽電池はさらに単結晶型、多結晶型に分類される。単結晶型のシリコン太陽電池は基板の品質がよいために高効率化が容易であるという長所を有する反面、基板の製造コストが高いという短所を有する。これに対して多結晶型のシリコン太陽電池は基板の品質が劣るために高効率化が難しいという短所はあるものの、低コストで製造できるという長所がある。また、最近では多結晶シリコン基板の品質の向上やセル化技術の進歩により、研究レベルでは18%程度の変換効率が達成されている。
【0003】
一方、量産レベルの多結晶シリコン太陽電池は低コストであったため、従来から市場に流通してきたが、近年環境問題が取りざたされる中でさらに需要が増してきている。
【0004】
多結晶シリコン太陽電池に用いる多結晶シリコン基板は一般的にキャスティング法と呼ばれる方法で製造される。このキャスティング法とは、離型材を塗布した黒鉛などからなる鋳型内のシリコン融液を冷却固化することによってシリコン鋳塊を形成する方法である。このシリコン鋳塊の端部を除去したり所望の大きさに切断して切り出し、切り出した鋳塊を所望の厚みにスライスして太陽電池を形成するための多結晶シリコン基板を得る。
【0005】
このシリコン鋳塊を作製するための一般的なシリコン鋳造装置15を図2に示す。
【0006】
図2において、1は溶解るつぼ、2は原料シリコン、3は保持るつぼ、4は出湯口、5は上部加熱装置、6は側部加熱装置、7は鋳型加熱装置、8は鋳型、9は鋳型断熱材、10はシリコン融液、11は冷却板を示す。
【0007】
シリコン鋳造装置15の上部には原料シリコン2を溶融するための溶解るつぼ1が保持るつぼ3に保持されて配置され、溶解るつぼ1と保持3るつぼ7の底部にはシリコン融液を出湯するための出湯口4が設けられる。また、溶解るつぼ1、保持るつぼ3の側部と上部にはそれぞれ加熱装置5、6が配置され、溶解るつぼ1、保持るつぼ3の下部にはシリコン融液10が注ぎ込まれる鋳型8が配置され、その外側に断熱材9が設けられる。さらに、鋳型8の下部には冷却板11が設けられ、鋳型8の上部にはシリコン融液10の凝固を制御するための鋳型加熱装置7が配置される。
【0008】
溶解るつぼ1は耐熱性能とシリコン融液中に不純物が拡散しないこと等を考慮して例えば高純度の石英などが用いられる。保持るつぼ3は、石英等でできた溶解るつぼ1がシリコンの融点近傍の高温で軟化してその形状を保てなくなるため、これを保持するためのものであり、その材質はグラファイト等が用いられる。加熱装置5、6、7は、抵抗加熱式のヒーターや誘導加熱式のコイル等が用いられる。鋳型8はグラファイトや炭素繊維強化材料などからなり、その内側に窒化珪素などを主成分とする離型材を塗布して用いられる。鋳型断熱材9は抜熱を抑制するためのものであり耐熱性、断熱性等を考慮してカーボン系の材質が用いられる。また冷却板11は鋳型8内に注湯されたシリコン融液10を冷却、固化するためのものである。なお、これらはすべて真空容器(図示せず)内に配置される。
【0009】
鋳造装置15において、シリコン鋳塊を鋳造する場合、鋳型側面からの抜熱が大きいとシリコンが凝固した際の面内方向の温度差が大きくなり、熱応力に起因した結晶欠陥の発生を誘発するほか、最悪ブロックにクラックを発生させてしまうという問題を防ぐため、図2に示すように鋳型断熱材9は側面の鋳型8をよりも大きく、鋳型8を覆うように設けられている。
【0010】
【特許文献1】
特開平09−263489号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上述した従来の鋳造装置15においては、溶解るつぼ1内で溶解されたシリコン融液を鋳型8内に出湯する際、鋳型8内からのシリコン融液10の飛び跳ねが鋳型断熱材9に付着するという問題が発生していた。
【0012】
この付着したシリコン融液は鋳型断熱材9を劣化させ、その耐久性、機械的強度を低下させる。それに伴い、シリコン融液を含みもろくなった上記鋳型断熱材9が鋳型8内のシリコン融液10へと混入してしまうことがあった。鋳型断熱材9を構成するカーボンはシリコン中への固溶度が低く、固溶限度を超えたカーボンは六方型のα−SiCとしてシリコン融液10が冷却固化された際のシリコン鋳塊中に析出し、鋳塊をスライスする際の切削性に悪影響を及ぼす他、太陽電池素子化した際に、特性の低下の要因となってしまう。
【0013】
また、シリコンの熱伝導率は約31.3W/mKであり、カーボンのフェルト成形体の熱伝導率約0.40W/mKに比べて約80倍大きいため、シリコン融液を含んだ鋳型断熱材9は鋳型側面の断熱性を著しく低下させ、結果としてシリコン鋳塊の面内方向の温度勾配を大きくし、太陽電池特性を劣化させる様々な結晶欠陥の発生の原因となる熱応力を発生させてしまう。このように鋳型断熱材9の耐久性の低下はシリコン融液10中へのカーボンの混入を誘発するばかりか鋳型側面の断熱性を低下させ結果としてシリコン鋳塊の品質を低下させてしまう。
【0014】
この問題を回避するためには、シリコン鋳塊を鋳造する毎に鋳型断熱材9を劣化の無い新しいものに交換する必要があるが、工業的な生産を考慮した場合には、断熱材コストの上昇を招いてしまうとともに、それでもなおシリコン融液10の凝固中における断熱性の低下を避けることができない。
【0015】
本発明は、このような従来技術の問題点に鑑みてなされたものであり、その目的は構造が簡易で且つシリコン融液10への異物の混入がない、一方向結晶成長性のよいシリコン鋳塊を低コストで生産することができる鋳造装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明の鋳造装置は、溶融るつぼを有する溶融部と、該溶融部の下部に設けられた、鋳型を有する凝固部と、前記鋳型の側面を覆うカーボン系の断熱材と、前記断熱材の上部の全面を覆う保護カバーと、を備え、前記保護カバーは、黒鉛を圧延した層状構造を成すことを特徴とする。
【0018】
本発明のさらなる他の鋳造装置は、前記保護カバーの厚みは0.2〜10mmであることを特徴とする。
【0019】
【作用】
本発明の鋳造装置によれば、上記構成のように、上部に溶融るつぼ1と加熱装置5、6からなる溶融部を有し、下部に鋳型8からなる凝固部を有する鋳造装置において、前記鋳型8をカーボン系の断熱材9で覆うとともに、この鋳型8の上部を保護カバーで覆ったことで、溶解るつぼ1の出湯口4からシリコン融液10が注湯される際に、シリコン融液が周囲に飛び跳ねても鋳型断熱材9の上部が保護カバー12で覆われているため、飛び跳ねたシリコン融液が鋳型断熱材9に付着し劣化させるという問題が発生することはない。これにより、シリコン融液を含みもろくなった鋳型断熱材9が鋳型8内のシリコン融液10へと混入してしまうという問題を解消でき、また、鋳型断熱材9にシリコン融液が付着することがないので、鋳型断熱材9が充分に断熱性を確保することができ、品質の高いシリコン鋳塊を鋳造できる。
【0020】
【発明の実施の形態】
以下、本発明に係る鋳造装置を図面により詳述する。
【0021】
本発明に係る鋳造装置の全体構成は図2に示す鋳造装置と同じである。すなわち、上部には原料シリコン2を溶融するための溶解るつぼ1が保持るつぼ3に保持されて配置され、溶解るつぼ1と保持3るつぼ7の底部にはシリコン融液を出湯するための出湯口4が設けられる。また、溶解るつぼ1、保持るつぼ3の側部と上部にはそれぞれ加熱装置5、6が配置され、溶解るつぼ1、保持るつぼ3の下部にはシリコン融液10が注ぎ込まれる鋳型8が配置され、その外側に断熱材9が設けられる。さらに、鋳型8の下部には冷却板11が設けられ、鋳型8の上部にはシリコン融液10の凝固を制御するための鋳型加熱装置7が配置される。
【0022】
例えば高純度石英などからなる溶解るつぼ1内に入れられたシリコン原料は、抵抗加熱式のヒーターや誘導加熱式のコイル等からなる、上部および側部の加熱装置5、6によって加熱溶融され、シリコン融液となって底部の出湯口4から下部にある鋳型8内に注湯される。このシリコン融液10の入った鋳型8は、カーボンや炭素繊維強化炭素材料などからなり、その内表面は例えば窒化珪素を主成分とする離型材で被覆することによって、シリコン融液10と鋳型8の付着を防止するとともに、冷却固化された鋳塊が鋳型8から離型しやすくなる。また側面を鋳型断熱材9によって断熱するとともに、上部からは鋳型加熱装置7によって加熱し、下部には冷却板11を接触もしくは近づけることによって下部から抜熱し、一方向凝固を実現させる。
【0023】
図1は、本発明に係る鋳造装置を説明するための図であり、凝固部の構造を示した概略断面図である。
【0024】
図1において8は鋳型、9は鋳型断熱材、10はシリコン融液、11は冷却板、12は保護カバーを示す。このようにすることによって、溶解るつぼ1の出湯口4からシリコン融液10が注湯される際に、シリコン融液が周囲に飛び跳ねても鋳型断熱材9の上部が保護カバー12で覆われているため、飛び跳ねたシリコン融液が鋳型断熱材9に付着し劣化させるという問題が発生することはない。
【0025】
このとき保護カバー12は黒鉛を圧延した層状構造をもつ材料であることが望ましい。黒鉛は工業的に広く一般的に使用されているものであり、安価に製造することが出来るため、シリコン鋳塊を鋳造する毎に鋳型断熱材9を劣化の無い新しいものに交換するよりも、保護カバーを新しいものに交換するほうがコスト的に大きなメリットを持つ。また、圧延加工を施し、シート状にすることで表面からの粉塵の発生を防止でき鋳型内への異物混入を抑制する効果をもつ。また流体の透過率の低い層状構造になっているため、飛び跳ねたシリコン融液は保護カバー12の下の鋳型断熱材9に浸透していくことを更に効果的に抑止することができる。
【0026】
さらに保護カバー12の厚みは0.2〜10mmの範囲にあることが望ましい。本発明者らが繰り返し行なった実験結果によると、その厚みが0.2mm以下であれば、飛び跳ねたシリコン融液が鋳型断熱材に浸透していくことを防止できないという問題が発生し適当ではない。また10mm以上であれば、保護カバー12が鋳型加熱装置7によって加熱される鋳型8の上部と冷却板11によって冷却される鋳型8の下部との温度分布を変えてしまい、形成される多結晶シリコン基板の品質に悪い影響を与えるため不適である。
【0027】
その後、鋳型内へのシリコン融液の注湯が終了した時点で、上部および側部加熱装置5、6の出力を切って冷却板11を鋳型8の底部に押し当てるなどして冷却しながら鋳型加熱装置7の出力を調整してシリコン融液10を底部から上部に向かって一方向凝固させることによってシリコン鋳塊を得ることができる。
【0028】
【発明の効果】
以上のとおり、本発明による鋳造装置によれば、上部に溶融るつぼ1と加熱装置5、6からなる溶融部を有し、下部に鋳型8からなる凝固部を有する鋳造装置において、前記鋳型8をカーボン系の断熱材9で覆うとともに、前記鋳型8の上部を保護カバー12で覆うことで、溶解るつぼ1の出湯口4からシリコン融液10が注湯される際に、シリコン融液が周囲に飛び跳ねても鋳型断熱材9の上部が保護カバー12で覆われているため、飛び跳ねたシリコン融液が鋳型断熱材9に付着し劣化させるという問題が発生することはない。これにより、シリコン融液を含みもろくなった鋳型断熱材9が鋳型8内のシリコン融液10へと混入してしまうという問題を解消し、シリコン鋳塊中にカーボンが析出するための発生するスライス歩留まりの低下や太陽電池素子化した際の特性低下を引き起こす要因を未然に防ぐことができる。
【0029】
また、鋳型断熱材9にシリコン融液が付着することがないので、鋳型断熱材9が充分に断熱性を確保することができ、品質の高いシリコン鋳塊を鋳造できるようになる。
【0030】
このとき前記保護カバーに黒鉛を圧延した層状構造をもつ材料を使用することによって、安価な材料で粉塵の発生を防止でき鋳型内への異物混入を抑制することができる。また流体の透過率の低い層状構造になっているため、飛び跳ねたシリコン融液は保護カバー12の下の鋳型断熱材9に浸透していくことを更に効果的に抑止することができ、品質の高いシリコン鋳塊を鋳造できるようになる。
【0031】
また保護カバー12の厚みを0.2〜10mmにすることによって、鋳型断熱材9へのシリコン融液の付着を効果的に防止することができる。
【図面の簡単な説明】
【図1】本発明に係る鋳造装置を説明するための図であり、凝固部の構造を示した概略断面図である。
【図2】従来技術における鋳造装置の構造を説明するための概略断面図である。
【符号の説明】
1・・・溶解るつぼ
2・・・原料シリコン
3・・・保持るつぼ
4・・・出湯口
5・・・上部加熱装置
6・・・側部加熱装置
7・・・鋳型加熱装置
8・・・鋳型
9・・・鋳型断熱材
10・・・シリコン融液
11・・・冷却板
12・・・保護カバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon casting apparatus, for example, a polycrystalline silicon casting apparatus used for manufacturing a semiconductor substrate for a solar cell and the like.
[0002]
[Prior art]
A solar cell converts incident light energy into electrical energy. Major solar cells are classified into crystalline, amorphous, and compound types depending on the type of materials used. Of these, most of the crystalline silicon solar cells currently on the market are in the market. This crystalline silicon solar cell is further classified into a single crystal type and a polycrystalline type. A single-crystal silicon solar cell has the advantage that it is easy to increase the efficiency because the quality of the substrate is good, but has the disadvantage that the manufacturing cost of the substrate is high. On the other hand, the polycrystalline silicon solar cell has the advantage that it can be manufactured at a low cost although it has the disadvantage that it is difficult to increase the efficiency because the substrate quality is poor. In recent years, conversion efficiency of about 18% has been achieved at the research level due to the improvement of the quality of the polycrystalline silicon substrate and the advancement of cell technology.
[0003]
On the other hand, since mass-produced polycrystalline silicon solar cells are low in cost, they have been distributed in the market. However, in recent years, demands are increasing as environmental problems are addressed.
[0004]
A polycrystalline silicon substrate used for a polycrystalline silicon solar cell is generally manufactured by a method called a casting method. This casting method is a method of forming a silicon ingot by cooling and solidifying a silicon melt in a mold made of graphite or the like coated with a release material. An end portion of the silicon ingot is removed or cut to a desired size, and the cut ingot is sliced to a desired thickness to obtain a polycrystalline silicon substrate for forming a solar cell.
[0005]
A general silicon casting apparatus 15 for producing this silicon ingot is shown in FIG.
[0006]
In FIG. 2, 1 is a melting crucible, 2 is a raw material silicon, 3 is a holding crucible, 4 is a tap, 5 is an upper heating device, 6 is a side heating device, 7 is a mold heating device, 8 is a mold, and 9 is a mold. A heat insulating material, 10 is a silicon melt, and 11 is a cooling plate.
[0007]
A melting crucible 1 for melting the raw material silicon 2 is disposed at the upper part of the silicon casting apparatus 15 and held by a holding crucible 3, and the bottom of the melting crucible 1 and the holding 3 crucible 7 is used for discharging a silicon melt. A tap 4 is provided. Further, heating devices 5 and 6 are respectively disposed on the side and the upper portion of the melting crucible 1 and the holding crucible 3, and a mold 8 into which the silicon melt 10 is poured is disposed on the lower portion of the melting crucible 1 and the holding crucible 3, A heat insulating material 9 is provided outside thereof. Further, a cooling plate 11 is provided below the mold 8, and a mold heating device 7 for controlling the solidification of the silicon melt 10 is disposed above the mold 8.
[0008]
For example, high-purity quartz is used for the melting crucible 1 in consideration of heat resistance and the fact that impurities do not diffuse into the silicon melt. The holding crucible 3 is for holding the melting crucible 1 made of quartz or the like because the melting crucible 1 is softened at a high temperature in the vicinity of the melting point of silicon and cannot keep its shape, and the material is made of graphite or the like. . As the heating devices 5, 6, and 7, a resistance heating type heater, an induction heating type coil, or the like is used. The mold 8 is made of graphite, carbon fiber reinforced material, or the like, and is used by applying a release material mainly composed of silicon nitride or the like on the inside thereof. The mold heat insulating material 9 is for suppressing heat removal, and a carbon-based material is used in consideration of heat resistance, heat insulating properties, and the like. The cooling plate 11 is for cooling and solidifying the silicon melt 10 poured into the mold 8. These are all arranged in a vacuum vessel (not shown).
[0009]
When casting a silicon ingot in the casting apparatus 15, if the heat removal from the side of the mold is large, the temperature difference in the in-plane direction when the silicon solidifies increases, which induces the generation of crystal defects due to thermal stress. In addition, in order to prevent the problem of causing cracks in the worst block, the mold heat insulating material 9 is provided so as to cover the mold 8 larger than the mold 8 on the side as shown in FIG.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 09-263489
[Problems to be solved by the invention]
However, in the above-described conventional casting apparatus 15, when the silicon melt dissolved in the melting crucible 1 is poured into the mold 8, the silicon melt 10 jumps from the mold 8 to the mold heat insulating material 9. There was a problem to do.
[0012]
The adhered silicon melt deteriorates the mold heat insulating material 9 and lowers its durability and mechanical strength. Along with this, the mold heat insulating material 9, which contains the silicon melt and becomes brittle, may be mixed into the silicon melt 10 in the mold 8. Carbon constituting the mold heat insulating material 9 has a low solid solubility in silicon, and carbon exceeding the solid solution limit is formed into a silicon ingot when the silicon melt 10 is cooled and solidified as hexagonal α-SiC. In addition to adversely affecting the machinability when slicing the ingot, it becomes a factor of deterioration of characteristics when it is made into a solar cell element.
[0013]
In addition, the thermal conductivity of silicon is about 31.3 W / mK, which is about 80 times larger than the thermal conductivity of carbon felt moldings of about 0.40 W / mK. No. 9 significantly reduces the heat insulation of the mold side surface, resulting in a large temperature gradient in the in-plane direction of the silicon ingot, generating thermal stress that causes various crystal defects that degrade the solar cell characteristics. End up. As described above, the deterioration of the durability of the mold heat insulating material 9 not only induces the mixing of carbon into the silicon melt 10, but also reduces the heat insulating properties of the side surface of the mold and consequently deteriorates the quality of the silicon ingot.
[0014]
In order to avoid this problem, it is necessary to replace the mold heat insulating material 9 with a new one that does not deteriorate each time the silicon ingot is cast. In addition to causing an increase, it is still impossible to avoid a decrease in heat insulation during the solidification of the silicon melt 10.
[0015]
The present invention has been made in view of such problems of the prior art, and the object thereof is a silicon casting having a simple structure and having no foreign matter mixed into the silicon melt 10 and good unidirectional crystal growth. An object of the present invention is to provide a casting apparatus capable of producing a lump at a low cost.
[0016]
[Means for Solving the Problems]
The casting apparatus of the present invention includes a melting part having a melting crucible, a solidified part having a mold, a carbon-based heat insulating material covering a side surface of the mold, and an upper part of the heat insulating material. A protective cover covering the entire surface of the protective cover, wherein the protective cover has a layered structure obtained by rolling graphite.
[0018]
In still another casting apparatus of the present invention, the protective cover has a thickness of 0.2 to 10 mm.
[0019]
[Action]
According to the casting apparatus of the present invention, as described above, in the casting apparatus having the melting part composed of the melting crucible 1 and the heating devices 5 and 6 in the upper part and the solidifying part composed of the mold 8 in the lower part, the mold 8 is covered with a carbon-based heat insulating material 9 and the upper part of the mold 8 is covered with a protective cover, so that when the silicon melt 10 is poured from the hot water outlet 4 of the melting crucible 1, Even if it jumps around, the upper part of the mold heat insulating material 9 is covered with the protective cover 12, so that the problem that the jumped silicon melt adheres to the mold heat insulating material 9 and deteriorates does not occur. Thereby, the problem that the mold heat insulating material 9 including the silicon melt becomes mixed into the silicon melt 10 in the mold 8 can be solved, and the silicon melt adheres to the mold heat insulating material 9. Therefore, the mold heat insulating material 9 can sufficiently secure the heat insulating property, and a high-quality silicon ingot can be cast.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The casting apparatus according to the present invention will be described in detail below with reference to the drawings.
[0021]
The overall configuration of the casting apparatus according to the present invention is the same as that of the casting apparatus shown in FIG. That is, a melting crucible 1 for melting the raw material silicon 2 is disposed on the upper part and held by a holding crucible 3, and a bottom 4 of the melting crucible 1 and the holding 3 crucible 7 is used to discharge a silicon melt. Is provided. Further, heating devices 5 and 6 are respectively disposed on the side and the upper portion of the melting crucible 1 and the holding crucible 3, and a mold 8 into which the silicon melt 10 is poured is disposed on the lower portion of the melting crucible 1 and the holding crucible 3, A heat insulating material 9 is provided outside thereof. Further, a cooling plate 11 is provided below the mold 8, and a mold heating device 7 for controlling the solidification of the silicon melt 10 is disposed above the mold 8.
[0022]
For example, silicon raw material put in a melting crucible 1 made of high-purity quartz or the like is heated and melted by upper and side heating devices 5 and 6 made of a resistance heating type heater, induction heating type coil, etc. The melt is poured from the bottom outlet 4 into the lower mold 8. The mold 8 containing the silicon melt 10 is made of carbon, carbon fiber reinforced carbon material, or the like, and the inner surface thereof is covered with a release material mainly composed of silicon nitride, for example, so that the silicon melt 10 and the mold 8 are covered. Is prevented, and the cooled and solidified ingot is easily released from the mold 8. Further, the side surface is insulated by the mold heat insulating material 9 and heated from the upper part by the mold heating device 7, and the cooling plate 11 is brought into contact with or brought close to the lower part to remove heat from the lower part to realize unidirectional solidification.
[0023]
FIG. 1 is a view for explaining a casting apparatus according to the present invention, and is a schematic sectional view showing a structure of a solidified portion.
[0024]
In FIG. 1, 8 is a mold, 9 is a mold heat insulating material, 10 is a silicon melt, 11 is a cooling plate, and 12 is a protective cover. Thus, when the silicon melt 10 is poured from the outlet 4 of the melting crucible 1, the upper part of the mold heat insulating material 9 is covered with the protective cover 12 even if the silicon melt jumps around. Therefore, the problem that the jumped silicon melt adheres to the mold heat insulating material 9 and deteriorates does not occur.
[0025]
At this time, the protective cover 12 is preferably a material having a layered structure obtained by rolling graphite. Since graphite is widely used industrially and can be manufactured at low cost, rather than replacing the mold insulation 9 with a new one without deterioration each time a silicon ingot is cast, Replacing the protective cover with a new one has a significant cost advantage. In addition, by rolling and forming into a sheet, generation of dust from the surface can be prevented, and there is an effect of suppressing foreign matter contamination in the mold. Further, since the layered structure has a low fluid permeability, it is possible to more effectively prevent the splashed silicon melt from penetrating into the mold heat insulating material 9 under the protective cover 12.
[0026]
Furthermore, the thickness of the protective cover 12 is desirably in the range of 0.2 to 10 mm. According to the results of experiments conducted repeatedly by the present inventors, if the thickness is 0.2 mm or less, there is a problem that it is not possible to prevent the splashed silicon melt from penetrating into the mold heat insulating material. . If the thickness is 10 mm or more, the temperature distribution between the upper part of the mold 8 heated by the mold heating device 7 and the lower part of the mold 8 cooled by the cooling plate 11 changes, and the formed polycrystalline silicon. This is unsuitable because it adversely affects the quality of the substrate.
[0027]
Thereafter, when pouring of the silicon melt into the mold is completed, the mold is being cooled while the output of the upper and side heating devices 5 and 6 is turned off and the cooling plate 11 is pressed against the bottom of the mold 8. A silicon ingot can be obtained by adjusting the output of the heating device 7 to solidify the silicon melt 10 in one direction from the bottom to the top.
[0028]
【The invention's effect】
As described above, according to the casting apparatus of the present invention, in the casting apparatus having the melting part composed of the melting crucible 1 and the heating devices 5 and 6 in the upper part and the solidified part composed of the mold 8 in the lower part, the mold 8 is The silicon melt 10 is covered with the carbon-based heat insulating material 9 and the upper part of the mold 8 is covered with the protective cover 12 so that the silicon melt 10 is poured into the surrounding area when the silicon melt 10 is poured from the hot water outlet 4 of the melting crucible 1. Even if it jumps, since the upper part of the mold heat insulating material 9 is covered with the protective cover 12, there is no problem that the jumped silicon melt adheres to the mold heat insulating material 9 and deteriorates. As a result, the problem that the mold heat insulating material 9 including the silicon melt becomes mixed into the silicon melt 10 in the mold 8 is solved, and a slice generated due to carbon deposition in the silicon ingot. It is possible to prevent factors that cause a decrease in yield and a decrease in characteristics when a solar cell element is formed.
[0029]
Further, since the silicon melt does not adhere to the mold heat insulating material 9, the mold heat insulating material 9 can sufficiently secure the heat insulating property, and a high-quality silicon ingot can be cast.
[0030]
At this time, by using a material having a layered structure obtained by rolling graphite for the protective cover, generation of dust can be prevented with an inexpensive material, and foreign matter can be prevented from being mixed into the mold. Moreover, since it has a layered structure with low fluid permeability, it is possible to more effectively prevent the splashed silicon melt from penetrating into the mold heat insulating material 9 under the protective cover 12. High silicon ingot can be cast.
[0031]
Moreover, adhesion of the silicon melt to the mold heat insulating material 9 can be effectively prevented by setting the thickness of the protective cover 12 to 0.2 to 10 mm.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a casting apparatus according to the present invention, and is a schematic sectional view showing a structure of a solidified portion.
FIG. 2 is a schematic sectional view for explaining the structure of a casting apparatus in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Melting crucible 2 ... Raw material silicon 3 ... Holding crucible 4 ... Outlet 5 ... Upper heating apparatus 6 ... Side part heating apparatus 7 ... Mold heating apparatus 8 ... Mold 9 ... Mold heat insulating material 10 ... Silicon melt 11 ... Cooling plate 12 ... Protective cover

Claims (2)

溶融るつぼを有する溶融部と、
該溶融部の下部に設けられた、鋳型を有する凝固部と、
前記鋳型の側面を覆うカーボン系の断熱材と、
前記断熱材の上部の全面を覆う保護カバーと、を備え、
前記保護カバーは、黒鉛を圧延した層状構造を成すことを特徴とする鋳造装置。
A melting part having a melting crucible;
A solidified part having a mold provided at a lower part of the melting part;
A carbon-based insulation covering the side of the mold;
A protective cover covering the entire upper surface of the heat insulating material,
The said protective cover comprises the layered structure which rolled the graphite, The casting apparatus characterized by the above-mentioned.
前記保護カバーの厚みは0.2〜10mmであることを特徴とする請求項1に記載の鋳造装置。  The casting apparatus according to claim 1, wherein the protective cover has a thickness of 0.2 to 10 mm.
JP2003153325A 2003-05-29 2003-05-29 Casting equipment Expired - Fee Related JP4412919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153325A JP4412919B2 (en) 2003-05-29 2003-05-29 Casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153325A JP4412919B2 (en) 2003-05-29 2003-05-29 Casting equipment

Publications (2)

Publication Number Publication Date
JP2004351489A JP2004351489A (en) 2004-12-16
JP4412919B2 true JP4412919B2 (en) 2010-02-10

Family

ID=34048309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153325A Expired - Fee Related JP4412919B2 (en) 2003-05-29 2003-05-29 Casting equipment

Country Status (1)

Country Link
JP (1) JP4412919B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562740B2 (en) * 2010-11-17 2013-10-22 Silicor Materials Inc. Apparatus for directional solidification of silicon including a refractory material

Also Published As

Publication number Publication date
JP2004351489A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
TWI534307B (en) Method of manufacturing crystalline silicon ingot
JPH11310496A (en) Production of silicon ingot having unidirectionally solidified texture and apparatus therefor
TWI541394B (en) Method of fabricating crystalline silicon ingot
CN102383184A (en) Crystal, and method and device for casting same
US7601618B2 (en) Method for producing semi-conditioning material wafers by moulding and directional crystallization
JP4863637B2 (en) Silicon casting apparatus and method for casting polycrystalline silicon ingot
JP2007019209A (en) Polycrystalline silicone for solar cell and its manufacturing method
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
WO2014056157A1 (en) Polycrystalline silicon ingot, method for producing the same, and crucible
KR101074304B1 (en) Metallic silicon and process for producing the same
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
TWI451007B (en) Method for producing silicon ingots
JP4412919B2 (en) Casting equipment
JP2006273628A (en) Method for manufacturing polycrystalline silicon ingot
JP4497943B2 (en) Silicon casting mold and silicon casting apparatus using the same
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
TWI586457B (en) Containing device of ingot casting furnace for containing materials of ingot and method of casting ingot
JPS5913219Y2 (en) Mold for casting polycrystalline silicon ingots
JP2004322195A (en) Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
JP2007063048A (en) Semiconductor ingot and method for producing solar cell element
JP4741221B2 (en) Polycrystalline silicon casting method, polycrystalline silicon ingot, polycrystalline silicon substrate and solar cell element using the same
JP4340124B2 (en) Silicon casting equipment
JP4484501B2 (en) Silicon casting equipment
JPS5899115A (en) Casting method for polycrystalline silicon ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4412919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees