JP4693932B1 - Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method - Google Patents

Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method Download PDF

Info

Publication number
JP4693932B1
JP4693932B1 JP2010119173A JP2010119173A JP4693932B1 JP 4693932 B1 JP4693932 B1 JP 4693932B1 JP 2010119173 A JP2010119173 A JP 2010119173A JP 2010119173 A JP2010119173 A JP 2010119173A JP 4693932 B1 JP4693932 B1 JP 4693932B1
Authority
JP
Japan
Prior art keywords
silicon
core
storage container
silicon crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010119173A
Other languages
Japanese (ja)
Other versions
JP2011246296A (en
Inventor
史郎 櫻木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBA R&D CO., LTD
UNION MATERIALS INC.
Original Assignee
SHIBA R&D CO., LTD
UNION MATERIALS INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBA R&D CO., LTD, UNION MATERIALS INC. filed Critical SHIBA R&D CO., LTD
Priority to JP2010119173A priority Critical patent/JP4693932B1/en
Application granted granted Critical
Publication of JP4693932B1 publication Critical patent/JP4693932B1/en
Publication of JP2011246296A publication Critical patent/JP2011246296A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】切削加工を行なうことなくシリコン原料から筒状シリコン結晶体を製造することを可能とする、筒状シリコン結晶体製造方法とその製造方法で製造する筒状シリコン結晶体を提供する。
【解決手段】シリコンよりも熱膨張係数が小さく、融点が高い材質で形成された融液貯留容器と、シリコンよりも熱膨張係数が大きく、融点が高い材質で形成された中子を使用する。前記融液貯留容器の内面及び前記中子の外面に窒化珪素(Si)を塗布し、前記中子を前記融液貯留容器の内部に配置する。そして、前記融液貯留容器の内面と前記中子の外面とで形成された空隙にシリコン融液を充填し、前記シリコン融液の溌液性を維持しながら、前記融液貯留容器の底面側から上側へ温度勾配を設け、前記シリコン融液を固化させる。
【選択図】 図1
The present invention provides a cylindrical silicon crystal manufacturing method and a cylindrical silicon crystal manufactured by the manufacturing method, which can manufacture a cylindrical silicon crystal from a silicon raw material without cutting.
A melt storage container made of a material having a smaller thermal expansion coefficient and higher melting point than that of silicon and a core made of a material having a larger thermal expansion coefficient and higher melting point than that of silicon are used. Silicon nitride (Si 3 N 4 ) is applied to the inner surface of the melt storage container and the outer surface of the core, and the core is placed inside the melt storage container. Then, the gap formed by the inner surface of the melt storage container and the outer surface of the core is filled with the silicon melt, and the bottom side of the melt storage container is maintained while maintaining the liquid-liquidity of the silicon melt. A temperature gradient is provided from the top to the top to solidify the silicon melt.
[Selection] Figure 1

Description

本発明は、切削加工を行なうことなくシリコン原料から筒状シリコン結晶体を製造することを可能とする、筒状シリコン結晶体製造方法と、その製造方法で製造される筒状シリコン結晶体に関する。   The present invention relates to a cylindrical silicon crystal manufacturing method and a cylindrical silicon crystal manufactured by the manufacturing method, which makes it possible to manufacture a cylindrical silicon crystal from a silicon raw material without cutting.

太陽電池などの材料となるシリコン結晶は、シリコン原料の融液から所定の大きさの塊(インゴット)として製造される。そして、これらのインゴットに、切削や切断などの加工を施し、太陽電池や基板などの製品の製造に必要となる所望の形状とする。ところが、インゴットを加工して所望の形状を作る場合、その加工には時間やエネルギーを要し、また切削や切断により生じる原料のくずは原料として再利用することが難しく廃棄せざるを得ない実情において、時間やエネルギー、そして資源の多大な損失をもたらすという問題がある。そこで、これらの損失を低減するため方法が提案されている。   Silicon crystals used as materials for solar cells and the like are manufactured as a lump (ingot) of a predetermined size from a melt of silicon raw material. Then, these ingots are subjected to processing such as cutting and cutting so as to have a desired shape necessary for manufacturing products such as solar cells and substrates. However, when a desired shape is formed by processing an ingot, the processing takes time and energy, and the waste of the raw material generated by cutting or cutting is difficult to reuse as raw material and must be discarded. There is a problem of causing a great loss of time, energy and resources. Therefore, a method has been proposed to reduce these losses.

そのような方法として、例えば、特開平4−292494号公報には、所望の形状をなす高品質のシリコン結晶を量産できる整形結晶の製造方法が開示されている。また、特開2002−29882号公報には、自由表面(外部の融液保持容器などの束縛を受けない結晶体外表面)を有するシリコン結晶を量産できる結晶製造方法が開示されている。更に、特開2008−143754号公報には、シリコン原料を直接球状シリコン単結晶にするとともに、その歩留りを大幅に向上させる製造方法が開示されている。   As such a method, for example, Japanese Patent Laid-Open No. 4-292494 discloses a method for manufacturing a shaped crystal capable of mass-producing a high-quality silicon crystal having a desired shape. Japanese Patent Application Laid-Open No. 2002-29882 discloses a crystal manufacturing method capable of mass-producing silicon crystals having a free surface (an outer surface of a crystal body that is not bound by an external melt holding container or the like). Furthermore, JP 2008-143754 A discloses a manufacturing method in which the silicon raw material is directly made into a spherical silicon single crystal and the yield is greatly improved.

特開平4−292494号公報JP-A-4-292494 特開2002−29882号公報JP 2002-29882 A 特開2008−143754号公報JP 2008-143754 A

しかしながら、上記従来の製造方法でも、シリコン原料から直接製造できない形状があり、そのような形状として筒状体が挙げられる。   However, even the above-described conventional manufacturing methods have shapes that cannot be directly manufactured from silicon raw materials, and examples of such shapes include cylindrical bodies.

筒状体のシリコン結晶体は、例えば、シリコンウェーハをプラズマエッチングする際に用いられるフォーカスリングの製造に必要となり、また、シリコンのスパッタリング用ターゲットとしても好適であるが、現状では、まず、円柱状のインゴットを製造し、そのインゴットの内部を長さ方向にくり抜くことにより製造される。そして、このくり抜き切削加工において、時間、エネルギー、及び資源の多大な損失をもたらす問題があることは既述の通りである。また、インゴットの底面形状が円形ではなく多角形の場合は、その外周を切削して円形とする必要があり、更なる時間、エネルギー、及び資源の損失をもたらすこととなっているのが実情である。   Cylindrical silicon crystal is necessary for manufacturing a focus ring used when plasma etching a silicon wafer, for example, and is also suitable as a sputtering target for silicon. The ingot is manufactured, and the inside of the ingot is cut out in the length direction. As described above, this hollow cutting has a problem that causes a great loss of time, energy, and resources. In addition, when the bottom shape of the ingot is not a circle but a polygon, it is necessary to cut the outer periphery into a circle, resulting in further loss of time, energy, and resources. is there.

そこで、本発明は、切削加工を行なうことなくシリコン原料から筒状シリコン結晶体を製造することを可能とする、筒状シリコン結晶体製造方法とその製造方法で製造する筒状シリコン結晶体を提供することを目的とする。   Therefore, the present invention provides a cylindrical silicon crystal manufacturing method and a cylindrical silicon crystal manufactured by the manufacturing method, which can manufacture a cylindrical silicon crystal from a silicon raw material without cutting. The purpose is to do.

本発明に係る筒状シリコン結晶体製造方法では、シリコン結晶体よりも熱膨張係数が小さく、融点が高い材質で形成された融液貯留容器と、シリコン結晶体よりも熱膨張係数が大きく、融点が高い材質で形成された中子を使用する。前記融液貯留容器の内面及び前記中子の外面に窒化珪素(Si)を塗布し、前記中子を前記融液貯留容器の内部に配置する。そして、前記融液貯留容器の内面と前記中子の外面とで形成された空隙にシリコン融液を充填し、前記シリコン融液の溌液性を維持しながら、前記融液貯留容器の底面側から上側へ温度勾配を設け、前記シリコン融液を固化させる。 In the cylindrical silicon crystal production method according to the present invention, a melt storage container formed of a material having a smaller thermal expansion coefficient than that of the silicon crystal and a higher melting point, and a larger thermal expansion coefficient than that of the silicon crystal, Use a core made of high material. Silicon nitride (Si 3 N 4 ) is applied to the inner surface of the melt storage container and the outer surface of the core, and the core is placed inside the melt storage container. Then, the gap formed by the inner surface of the melt storage container and the outer surface of the core is filled with the silicon melt, and the bottom side of the melt storage container is maintained while maintaining the liquid-liquidity of the silicon melt. A temperature gradient is provided from the top to the top to solidify the silicon melt.

本発明において溌液性とは、上記特許文献1〜3における定義と同様であり、高温の素材融液が、それを支える基板や容器の表面で「濡れ性のない状態」にあることをいう。なお、「濡れ」とは、液体と固体表面との相互作用を表現し、固体表面に置かれた液体がその固体表面に一様に広がることをいい、濡れない場合の液体は、水平面上では、玉、球状となる。水などが濡れない状態は「撥水性」といわれるが、この言葉は常温近傍の液体に対するものであるのに対し、溌液性は、より幅広い温度領域での「濡れ性のない状態」を普遍的に表現するものである。   In the present invention, the liquid-repellent property is the same as defined in Patent Documents 1 to 3, and means that the high-temperature material melt is in a “non-wetting state” on the surface of the substrate or container that supports it. . “Wet” refers to the interaction between the liquid and the surface of the solid, and means that the liquid placed on the surface of the solid spreads uniformly on the surface of the solid. , Balls and spheres. The state in which water is not wet is said to be "water repellency", but this term is for liquids near room temperature, whereas liquidity is universal for "no wettability" in a wider temperature range. Expressive.

なお、前記シリコン融液の溌液性は、前記融液貯留容器の内面及び前記中子の外面に窒化珪素を塗布し、前記中子の材質を所定のセラミックスとすることに加え、シリコン融液の周囲環境の水分や酸素などの不純物を低減することで維持できる。   In addition, the liquid spillability of the silicon melt is that silicon nitride is applied to the inner surface of the melt storage container and the outer surface of the core, and the core is made of a predetermined ceramic material. It can be maintained by reducing impurities such as moisture and oxygen in the surrounding environment.

前記融液貯留容器及び前記中子の材質は、シリコン結晶体の熱膨張係数(5×10−6[/℃])を考慮して選定すればよいが、融液貯留容器の材質にはシリコン結晶体よりも熱膨張係数が小さい石英(熱膨張係数5.5×10−7[/℃])、又はカーボン、例えば、新日本テクノカーボン株式会社製 EG−20(熱膨張係数1.5×10−6[/℃])や東海カーボン株式会社製 G159(熱膨張係数0.7×10−6[/℃])などが好ましく、中子の材質には炭化珪素(SiC)、アルミナ(Al)又はマグネシア(MgO)のいずれかが好ましい。 The material of the melt storage container and the core may be selected in consideration of the thermal expansion coefficient (5 × 10 −6 [/ ° C.]) of the silicon crystal, but the material of the melt storage container is silicon. Quartz (thermal expansion coefficient 5.5 × 10 −7 [/ ° C.]) or carbon, for example, EG-20 (manufactured by Shin Nippon Techno Carbon Co., Ltd.) (thermal expansion coefficient 1.5 × 10 −6 [/ ° C.]) and G159 (thermal expansion coefficient 0.7 × 10 −6 [/ ° C.]) manufactured by Tokai Carbon Co., Ltd. are preferable, and the core material is silicon carbide (SiC), alumina (Al Either 2 O 3 ) or magnesia (MgO) is preferred.

本発明に係る筒状シリコン結晶体製造方法において、前記融液貯留容器の内面及び前記中子の外面に塗布される窒化珪素の純度を、前記中子の材質の純度よりも高いものとしてシリコン結晶体への不純物汚染を低減することが好ましい。なお、本発明において、純度とは主要成分の比率を意味し、従って、純度が高いほど窒化珪素以外の不純物の含有量が少ないことになる。   In the method for producing a cylindrical silicon crystal according to the present invention, the silicon crystal is made such that the purity of silicon nitride applied to the inner surface of the melt storage container and the outer surface of the core is higher than the purity of the material of the core. It is preferable to reduce impurity contamination of the body. In the present invention, purity means the ratio of main components. Therefore, the higher the purity, the smaller the content of impurities other than silicon nitride.

前記中子は、前記中子の底面が前記融液貯留容器の底面から離れる状態で保持されてもよい。   The core may be held in a state where the bottom surface of the core is separated from the bottom surface of the melt storage container.

本発明に係る筒状シリコン結晶体は、周壁と底壁が一体に形成され、底面の一方で開口し長手方向に軸線と平行に伸びる中空部を有した、柱状晶シリコンで構成される。   The cylindrical silicon crystal according to the present invention is composed of columnar crystal silicon having a peripheral wall and a bottom wall that are integrally formed and having a hollow portion that opens on one side of the bottom surface and extends parallel to the axis in the longitudinal direction.

本発明に係る筒状シリコン結晶体製造方法における製造目的である筒状シリコン結晶体は、融液を固化して結晶体とした後、その融点(1414℃)より室温へ降温することで得られる。ところが、この降温過程で融液貯留容器内部の筒状シリコン結晶体は、その熱膨張係数(5×10−6[/℃])に従って熱収縮する。例えば外径100mm、内径80mmの筒状シリコン結晶体が1414℃より室温の24℃へ降温する場合、以下の式(1)に示すように、外径でΔL=0.695[mm]の直径方向の熱収縮量がある。

Figure 0004693932
The cylindrical silicon crystal, which is the manufacturing object in the cylindrical silicon crystal manufacturing method according to the present invention, is obtained by solidifying the melt into a crystal and then lowering the temperature from the melting point (1414 ° C.) to room temperature. . However, the cylindrical silicon crystal inside the melt storage container undergoes thermal shrinkage in accordance with its thermal expansion coefficient (5 × 10 −6 [/ ° C.) during this temperature lowering process. For example, when a cylindrical silicon crystal having an outer diameter of 100 mm and an inner diameter of 80 mm falls from 1414 ° C. to 24 ° C., the outer diameter is ΔL = 0.695 [mm] as shown in the following formula (1). There is heat shrinkage in the direction.
Figure 0004693932

ここで融液貯留容器に熱膨張係数5.5×10−7[/℃]の石英ガラスを用いた場合、1414℃より室温の24℃へ降温する際における、シリコン結晶体と接触しているその内面の熱収縮量は以下の式(2)によりΔl=0.0765mmとなる。

Figure 0004693932
Here, when quartz glass having a thermal expansion coefficient of 5.5 × 10 −7 [/ ° C.] is used for the melt storage container, it is in contact with the silicon crystal when the temperature is lowered from 1414 ° C. to 24 ° C. The amount of heat shrinkage on the inner surface is Δl = 0.0765 mm according to the following equation (2).
Figure 0004693932

つまり、石英ガラス融液貯留容器内径の熱収縮量はシリコン結晶体の熱収縮量よりも1桁近く小さく、両者の差は、ΔL−Δl=0.695[mm]−0.0765[mm]=0.62[mm]となる。これは直径での値であり、石英ガラス融液貯留容器内径側とシリコン結晶体の外径側では半径当たり0.62[mm]÷2=0.31[mm]の差が生じる、つまり両者に間隙ができることになる。   That is, the amount of heat shrinkage of the inner diameter of the quartz glass melt storage container is almost an order of magnitude smaller than the amount of heat shrinkage of the silicon crystal, and the difference between them is ΔL−Δl = 0.695 [mm] −0.0765 [mm]. = 0.62 [mm]. This is a value in diameter, and there is a difference of 0.62 [mm] ÷ 2 = 0.31 [mm] per radius between the inner diameter side of the quartz glass melt storage container and the outer diameter side of the silicon crystal body. There will be a gap in the gap.

一方、内径80mmの筒状シリコン結晶体が1414℃より室温の24℃へ降温する場合、以下の式(3)によりΔR=0.556[mm]の熱収縮量がある。

Figure 0004693932
On the other hand, when the cylindrical silicon crystal body having an inner diameter of 80 mm falls from 1414 ° C. to 24 ° C., the thermal shrinkage amount is ΔR = 0.556 [mm] according to the following equation (3).
Figure 0004693932

ここで中子として熱膨張係数12×10−6[/℃]のマグネシアを用いた場合、1414℃より室温の24℃へ降温する際における、筒状シリコン結晶体内面と接触している中子外面の熱収縮量は以下の式(4)によりΔr=1.334[mm]となる。

Figure 0004693932
Here, when magnesia having a thermal expansion coefficient of 12 × 10 −6 [/ ° C.] is used as the core, the core is in contact with the inner surface of the cylindrical silicon crystal body when the temperature is lowered from 1414 ° C. to 24 ° C. The amount of heat shrinkage on the outer surface is Δr = 1.334 [mm] according to the following equation (4).
Figure 0004693932

以上の式(3)、(4)により筒状シリコン結晶体内径と中子外径との熱収縮量差はΔR−Δr=1.334[mm]−0.556[mm]=0.778[mm]となる。これは直径での値でありシリコン結晶体の内径側とマグネシア中子外径側では半径当たり0.778[mm]÷2=0.389[mm]の差が生じる、つまり両者に間隙ができることになる。   From the above formulas (3) and (4), the thermal shrinkage difference between the cylindrical silicon crystal inner diameter and the core outer diameter is ΔR−Δr = 1.334 [mm] −0.556 [mm] = 0.778. [Mm]. This is a value in diameter, and a difference of 0.778 [mm] ÷ 2 = 0.389 [mm] per radius occurs between the inner diameter side of the silicon crystal and the outer diameter side of the magnesia core, that is, there is a gap between the two. become.

この様に、筒状シリコン結晶体の製造時に、シリコン結晶体、融液貯留容器及び中子の熱膨張係数の値を相互に勘案して適宜選択することにより、結晶体が室温になった際にシリコン結晶体と液貯留容器及びシリコン結晶体と中子の間には間隙ができシリコン結晶体が分離されて得られることになる。   As described above, when the cylindrical silicon crystal is manufactured, the silicon crystal, the melt storage container, and the core are appropriately selected by taking into consideration the values of the thermal expansion coefficients of each other, so that the crystal becomes room temperature. In addition, there is a gap between the silicon crystal body and the liquid storage container and between the silicon crystal body and the core, and the silicon crystal body is separated and obtained.

しかも、シリコン融液の溌液性は維持されるため、固化したシリコン結晶体が融液貯留容器や中子に固着することは無く、熱膨張係数の差により破損することはない。このようにして製造されたシリコン結晶体には、中子により中空部が形成されることになる。従って、切削加工を行なうことなくシリコン原料から筒状シリコン結晶体を製造することが可能となる。   In addition, since the meltability of the silicon melt is maintained, the solidified silicon crystal does not adhere to the melt storage container or the core, and is not damaged due to the difference in thermal expansion coefficient. In the silicon crystal produced in this way, a hollow portion is formed by the core. Accordingly, it is possible to produce a cylindrical silicon crystal from a silicon raw material without performing a cutting process.

また、融液貯留容器の内面及び中子の外面に塗布される窒化珪素の純度を、中子の材質の純度よりも高いものとすることで、シリコン融液への不純物の混入を抑制し、製造される筒状シリコン結晶体の品質を向上させることができる。   In addition, by making the purity of silicon nitride applied to the inner surface of the melt storage container and the outer surface of the core higher than the purity of the core material, the contamination of the silicon melt with impurities is suppressed, The quality of the produced cylindrical silicon crystal can be improved.

更に、中子の保持状態を調整することにより、筒状シリコン結晶体の中空部の深さを変えることができる。すなわち、中子の底面を融液貯留容器の底面に密着させることで、製造される筒状シリコン結晶体の中空部は両底面で開口するものとなり、中子の底面が融液貯留容器の底面から離れる状態で保持することで、製造される筒状シリコン結晶体は有底筒状となる。そして、中子の底面と融液貯留容器の底面との距離を調整することで、製造される筒状シリコン結晶体の中空部の深さと底の厚みを変えることができる。   Furthermore, the depth of the hollow portion of the cylindrical silicon crystal can be changed by adjusting the holding state of the core. That is, when the bottom surface of the core is brought into close contact with the bottom surface of the melt storage container, the hollow part of the produced cylindrical silicon crystal is opened at both bottom surfaces, and the bottom surface of the core is the bottom surface of the melt storage container. The cylindrical silicon crystal to be manufactured becomes a bottomed cylindrical shape by being held in a state of being separated from the bottom. Then, by adjusting the distance between the bottom surface of the core and the bottom surface of the melt storage container, the depth and bottom thickness of the hollow portion of the produced cylindrical silicon crystal can be changed.

本発明に係る有底筒状結晶体は、本発明に係る筒状シリコン結晶体製造方法により製造されるもので、長手方向に直交して切断することでフォーカスリングに好適な材料を得ることができるとともに、底壁を有するものであることから、必要に応じて容器として使用することも可能となる。   The bottomed cylindrical crystal according to the present invention is manufactured by the cylindrical silicon crystal manufacturing method according to the present invention, and a material suitable for a focus ring can be obtained by cutting perpendicularly to the longitudinal direction. In addition, since it has a bottom wall, it can be used as a container as required.

本発明に係る筒状シリコン結晶体製造方法の実施例に使用する鋳型の概略を示す断面図である。It is sectional drawing which shows the outline of the casting_mold | template used for the Example of the cylindrical silicon crystal manufacturing method which concerns on this invention. 同実施例で製造される筒状シリコン結晶体を、その一部を切断して示す斜視図である。It is a perspective view which cut | disconnects and shows the cylindrical silicon crystal body manufactured in the Example. 中子の底面を有益貯留容器の底面から離して保持した状態の鋳型を示す断面図である。It is sectional drawing which shows the casting_mold | template with the state which kept the bottom face of the core away from the bottom face of the beneficial storage container. 中子の底面を有益貯留容器の底面から離して保持した場合に製造される筒状シリコン結晶体を、その一部を切断して示す斜視図である。It is a perspective view which cuts the one part and shows the cylindrical silicon crystal manufactured when the bottom face of a core is kept away from the bottom face of a beneficial storage container.

図1及び図2を参照しながら、本発明に係る筒状シリコン結晶体製造方法の実施例を説明する。
まず、実施例に係る製造方法で使用する鋳型1について説明する。図1に示すように、鋳型1は、カーボン容器2と、カーボン容器2の内側に設置された融液貯留容器3と、融液貯留容器3の内側に任意の状態で配置される中子4と、カーボン容器2及び融液貯留容器3の上方開口部を開閉する蓋体5とで構成されている。融液貯留容器3は、シリコン結晶体よりも熱膨張係数が小さい石英で形成され、中子4は、シリコン結晶体よりも熱膨張係数が大きく、融点が高い材質であるアルミナで形成されている。また、カーボン容器2には、公知の石英ルツボを支持するために使用される、公知のサセプタが採用されており、蓋体5は、このカーボン容器2と同じ材質(カーボン)で形成されている。なお、鋳型1は図示しない真空チャンバに収容されており、鋳型1の上方及び下方には、図示しないヒータが設置されている。
With reference to FIG. 1 and FIG. 2, an embodiment of a method for producing a cylindrical silicon crystal according to the present invention will be described.
First, the casting_mold | template 1 used with the manufacturing method which concerns on an Example is demonstrated. As shown in FIG. 1, a mold 1 includes a carbon container 2, a melt storage container 3 installed inside the carbon container 2, and a core 4 arranged in an arbitrary state inside the melt storage container 3. And a lid 5 that opens and closes the upper openings of the carbon container 2 and the melt storage container 3. The melt storage container 3 is made of quartz having a smaller thermal expansion coefficient than that of the silicon crystal, and the core 4 is made of alumina, which is a material having a higher thermal expansion coefficient and higher melting point than that of the silicon crystal. . The carbon container 2 employs a known susceptor used to support a known quartz crucible, and the lid 5 is formed of the same material (carbon) as the carbon container 2. . The mold 1 is housed in a vacuum chamber (not shown), and heaters (not shown) are installed above and below the mold 1.

次に、この鋳型1を使用して筒状シリコン結晶体を製造する方法について説明する。結晶体を製造するにあたり、まず、融液貯留容器3の内面及び中子4の外面に窒化珪素(Si)を塗布し、真空チャンバ内を、シリコン融液の溌液性を維持するために必要な環境とする。このような環境に整えるために、真空チャンバ内を加熱しながら真空粗引きから10−4トール以下の真空状態にしてシリコン融液の溌液性を阻害する水分や酸素などの不純物を除去する。この真空熱処理を十分にした後、真空チャンバ内にアルゴンガスを導入し流すことでシリコン融液の溌液性を維持することが可能となる。 Next, a method for producing a cylindrical silicon crystal using this mold 1 will be described. In manufacturing the crystal body, first, silicon nitride (Si 3 N 4 ) is applied to the inner surface of the melt storage container 3 and the outer surface of the core 4 to maintain the liquid-liquid property of the silicon melt in the vacuum chamber. Environment. In order to prepare such an environment, while heating the inside of the vacuum chamber, a vacuum state of 10 −4 Torr or less is obtained by roughing the vacuum to remove impurities such as moisture and oxygen that hinder the liquid-melting property of the silicon melt. After the vacuum heat treatment is sufficiently performed, it is possible to maintain the liquid-melting property of the silicon melt by introducing and flowing argon gas into the vacuum chamber.

真空チャンバ内の環境を整えたら、融液貯留容器3に予め投入された高純度シリコン原料を融解することでシリコン融液6を融液貯留容器3の内面と中子4の外面とで形成された空隙に充填する。   After preparing the environment in the vacuum chamber, the silicon melt 6 is formed by the inner surface of the melt storage container 3 and the outer surface of the core 4 by melting the high-purity silicon raw material previously charged in the melt storage container 3. Fill the void.

シリコン融液6の充填が終了したら、鋳型1の上方及び下方に配置されたヒータの出力を除々に弱め、融液貯留容器3の底面側から上側へ温度勾配を設け、シリコン融液6を融液貯留容器3の底側から固化させる。この際、真空チャンバ内へはアルゴンガスを常時流すことで、シリコン融液6の溌液性は維持されることになる。   When the filling of the silicon melt 6 is completed, the output of the heaters arranged above and below the mold 1 is gradually weakened, and a temperature gradient is provided from the bottom side of the melt storage container 3 to the upper side to melt the silicon melt 6. The liquid storage container 3 is solidified from the bottom side. At this time, the argon liquid is always allowed to flow into the vacuum chamber, so that the liquid-cooling property of the silicon melt 6 is maintained.

シリコン融液6が固化した後、融液貯留容器3の内部に形成されるシリコン結晶体は、熱膨張係数が小さい融液貯留容器3よりも収縮し、融液貯留容器3から分離することになる。また、シリコン融液6よりも熱膨張係数が大きい中子4は、シリコン結晶体よりも大きく収縮するため、その外側に形成されるシリコン結晶体から分離することになる。しかも、シリコン融液6の溌液性は維持されるため、固化したシリコン結晶体が融液貯留容器3や中子4に固着することは無く、熱膨張係数の差により破損することはない。   After the silicon melt 6 is solidified, the silicon crystal formed inside the melt storage container 3 contracts from the melt storage container 3 having a small thermal expansion coefficient and is separated from the melt storage container 3. Become. Further, the core 4 having a thermal expansion coefficient larger than that of the silicon melt 6 contracts more than the silicon crystal, so that it is separated from the silicon crystal formed on the outside thereof. In addition, since the liquid crystallinity of the silicon melt 6 is maintained, the solidified silicon crystal is not fixed to the melt storage container 3 and the core 4 and is not damaged due to the difference in thermal expansion coefficient.

結晶体が形成されたら、真空チャンバ内から鋳型1を取出し、鋳型1からシリコン結晶体を取り出す。図2に示すように、形成されたシリコン結晶体7には、中子4により中空部7aが形成されることになる。すなわち、切削加工を行なうことなくシリコン原料から筒状シリコン結晶体が製造されることになる。   When the crystal body is formed, the mold 1 is taken out from the vacuum chamber, and the silicon crystal body is taken out from the mold 1. As shown in FIG. 2, a hollow portion 7 a is formed by the core 4 in the formed silicon crystal body 7. That is, a cylindrical silicon crystal is manufactured from a silicon raw material without cutting.

図1に示す鋳型1を使用し、上記製造方法を実施したところ、直径60mmの中空部を有し、柱状晶シリコンで構成される、外径80mm、高さ50mmの筒状シリコン結晶体を得ることができた。なお、上記製造方法で製造される筒状シリコン結晶体の純度は、融液貯留容器3の内面に塗布される窒化珪素の純度の影響を受けるが、この窒化珪素の純度を、中子4の材質の純度よりも高いものとすることで、市販の柱状シリコン結晶体と同程度となることがこの実施例で確認された。   When the above manufacturing method was carried out using the mold 1 shown in FIG. 1, a cylindrical silicon crystal having an outer diameter of 80 mm and a height of 50 mm and having a hollow part with a diameter of 60 mm and made of columnar crystal silicon is obtained. I was able to. The purity of the cylindrical silicon crystal manufactured by the above manufacturing method is affected by the purity of silicon nitride applied to the inner surface of the melt storage container 3. It was confirmed in this example that the purity was higher than the purity of the material, which was comparable to a commercially available columnar silicon crystal.

中子4は、シリコンの熱膨張係数(5×10−6[/℃])よりも大きいものであれば、その材質を適宜選択でき、上記アルミナ(熱膨張係数8×10−6[/℃])の他、炭化珪素(熱膨張係数6×10−6[/℃])やマグネシア(熱膨張係数12×10−6[/℃])を使用してもよい。 As long as the core 4 has a coefficient of thermal expansion larger than that of silicon (5 × 10 −6 [/ ° C.]), the material can be selected as appropriate, and the alumina (thermal expansion coefficient 8 × 10 −6 [/ ° C.) can be selected. ]), Silicon carbide (thermal expansion coefficient 6 × 10 −6 [/ ° C.]) or magnesia (thermal expansion coefficient 12 × 10 −6 [/ ° C.]) may be used.

また、図1に示す鋳型1において、中子4の底面は融液貯留容器3の底面に密着されており、製造される筒状シリコン結晶体7の中空部7aは両底面で開口するものとなっているが、中子4の底面が融液貯留容器3の底面から離れる状態で中子4を保持してもよい。図3に、中子4の底面が融液貯留容器3の底面から離れる状態で中子4を保持した状態を示す。この場合、図4に示すように、製造される筒状シリコン結晶体8は底壁8aを有する有底筒状となる。なお、中子4の底面と融液貯留容器3の底面との距離を調整することで、製造される筒状シリコン結晶体の中空部の深さと底の厚みを変えてもよい。   Moreover, in the casting_mold | template 1 shown in FIG. 1, the bottom face of the core 4 is closely_contact | adhered to the bottom face of the melt storage container 3, and the hollow part 7a of the cylindrical silicon crystal body 7 manufactured is opened on both bottom faces. However, the core 4 may be held in a state where the bottom surface of the core 4 is separated from the bottom surface of the melt storage container 3. FIG. 3 shows a state where the core 4 is held in a state where the bottom surface of the core 4 is separated from the bottom surface of the melt storage container 3. In this case, as shown in FIG. 4, the cylindrical silicon crystal 8 to be manufactured has a bottomed cylindrical shape having a bottom wall 8a. In addition, you may change the depth of the hollow part of the cylindrical silicon crystal manufactured, and the thickness of the bottom by adjusting the distance of the bottom face of the core 4 and the bottom face of the melt storage container 3. FIG.

有底筒状シリコン結晶体8は、長手方向に直交して切断することでフォーカスリングに好適な材料を得ることができるとともに、底壁8aを有するものであることから、必要に応じて容器として使用することも可能となる。   The bottomed cylindrical silicon crystal body 8 can obtain a material suitable for a focus ring by cutting perpendicularly to the longitudinal direction, and has a bottom wall 8a. It can also be used.

1 鋳型
2 カーボン容器
3 融液貯留容器
4 中子
5 蓋体
6 シリコン融液
7 筒状シリコン結晶体
7a 中空部
8 有底筒状シリコン結晶体
8a 底壁
DESCRIPTION OF SYMBOLS 1 Mold 2 Carbon container 3 Melt storage container 4 Core 5 Lid body 6 Silicon melt 7 Cylindrical silicon crystal body 7a Hollow part 8 Bottomed cylindrical silicon crystal body 8a Bottom wall

Claims (4)

シリコン結晶体よりも熱膨張係数が小さく、融点が高い材質で形成された融液貯留容器と、シリコン結晶体よりも熱膨張係数が大きく、融点が高い材質で形成された中子を使用し、前記融液貯留容器の内面及び前記中子の外面に窒化珪素(Si)を塗布し、前記中子を前記融液貯留容器の内部に配置し、前記融液貯留容器の内面と前記中子の外面とで形成された空隙にシリコン融液を充填し、前記シリコン融液の溌液性を維持しながら、前記融液貯留容器の底面側から上側へ温度勾配を設け、前記シリコン融液を固化させることを特徴とする筒状シリコン結晶体製造方法。 Using a melt storage container formed of a material having a smaller thermal expansion coefficient than the silicon crystal and a high melting point, and a core formed of a material having a larger thermal expansion coefficient than the silicon crystal and a high melting point, Silicon nitride (Si 3 N 4 ) is applied to the inner surface of the melt storage container and the outer surface of the core, the core is placed inside the melt storage container, and the inner surface of the melt storage container and the A silicon melt is filled into a gap formed between the outer surface of the core and a temperature gradient is provided from the bottom side to the upper side of the melt storage container while maintaining the liquid-liquidity of the silicon melt. A method for producing a cylindrical silicon crystal, comprising solidifying a liquid. 前記融液貯留容器の材質を石英、又はシリコン結晶体よりも熱膨張係数が小さいカーボンとし、前記中子の材質を炭化珪素(SiC)、アルミナ(Al)又はマグネシア(MgO)のいずれかとする請求項1に記載の筒状シリコン結晶体製造方法。 The material of the melt storage container is quartz or carbon having a smaller thermal expansion coefficient than that of the silicon crystal, and the material of the core is any of silicon carbide (SiC), alumina (Al 2 O 3 ), or magnesia (MgO). The cylindrical silicon crystal manufacturing method according to claim 1. 前記融液貯留容器の内面及び前記中子の外面に塗布される窒化珪素の純度を、前記中子の材質の純度よりも高いものとする請求項1又は2に記載の筒状シリコン結晶体製造方法。   The cylindrical silicon crystal production according to claim 1 or 2, wherein the purity of silicon nitride applied to the inner surface of the melt storage container and the outer surface of the core is higher than the purity of the material of the core. Method. 前記中子を、前記中子の底面が前記融液貯留容器の底面から離れる状態で保持する請求項1、2又は3のいずれかに記載の筒状シリコン結晶体製造方法   The cylindrical silicon crystal manufacturing method according to claim 1, wherein the core is held in a state in which a bottom surface of the core is separated from a bottom surface of the melt storage container.
JP2010119173A 2010-05-25 2010-05-25 Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method Expired - Fee Related JP4693932B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119173A JP4693932B1 (en) 2010-05-25 2010-05-25 Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119173A JP4693932B1 (en) 2010-05-25 2010-05-25 Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method

Publications (2)

Publication Number Publication Date
JP4693932B1 true JP4693932B1 (en) 2011-06-01
JP2011246296A JP2011246296A (en) 2011-12-08

Family

ID=44237005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119173A Expired - Fee Related JP4693932B1 (en) 2010-05-25 2010-05-25 Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method

Country Status (1)

Country Link
JP (1) JP4693932B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079151B1 (en) * 2012-02-08 2012-11-21 ユニオンマテリアル株式会社 Method of absolute liquefaction of silicon melt and high-quality precision casting equipment for silicon crystal using the method

Also Published As

Publication number Publication date
JP2011246296A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
KR101440804B1 (en) Composite crucible and method of manufacturing the same
RU2344206C2 (en) Crucible for device producing block of crystal substance and method for producing this substance
US7601618B2 (en) Method for producing semi-conditioning material wafers by moulding and directional crystallization
JP2006273666A (en) Silicon melting crucible, silicon casting device using the same, and method for casting polycrystalline silicon ingot
KR20100123745A (en) Methods of making an unsupported article of pure or doped semiconducting material
JP4863637B2 (en) Silicon casting apparatus and method for casting polycrystalline silicon ingot
JP5299252B2 (en) Quartz crucible mold
JP2005343774A (en) Quartz glass crucible for pulling silicon single crystal and its manufacturing method
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
JP2014529571A (en) Equipment for producing crystalline materials from crucibles with non-uniform heat resistance
JP4693932B1 (en) Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
JP2002080215A (en) Method of making polycrystalline semiconductor ingot
WO2011120598A1 (en) Method for production of semiconductor grade silicon ingots, reusable crucibles and method for manufacturing them
JP5788892B2 (en) Silicon ingot manufacturing container
JP2007091532A (en) Silica glass crucible
JP2006213556A (en) Quartz glass crucible for pulling silicon single crystal and production method therefor, and method for taking out the crucible
JP4497943B2 (en) Silicon casting mold and silicon casting apparatus using the same
JP6390568B2 (en) Crucible for growing gallium oxide single crystal and method for producing gallium oxide single crystal
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JP7155968B2 (en) Single crystal growth crucible and single crystal manufacturing method
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
KR20130126643A (en) Methods of making an unsupported article of a semiconducting material using thermally active molds
JP5788891B2 (en) Silicon ingot manufacturing container
JP2004322195A (en) Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees