TW201201400A - Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element - Google Patents

Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element Download PDF

Info

Publication number
TW201201400A
TW201201400A TW100114097A TW100114097A TW201201400A TW 201201400 A TW201201400 A TW 201201400A TW 100114097 A TW100114097 A TW 100114097A TW 100114097 A TW100114097 A TW 100114097A TW 201201400 A TW201201400 A TW 201201400A
Authority
TW
Taiwan
Prior art keywords
diffusion layer
type diffusion
composition
forming
glass
Prior art date
Application number
TW100114097A
Other languages
Chinese (zh)
Other versions
TWI499070B (en
Inventor
Shuuichirou Adachi
Masato Yoshida
Takeshi Nojiri
Kaoru Okaniwa
Youichi Machii
Mitsunori Iwamuro
Tetsuya Sato
Keiko Kizawa
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201201400A publication Critical patent/TW201201400A/en
Application granted granted Critical
Publication of TWI499070B publication Critical patent/TWI499070B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A composition for forming an n-type diffusion layer contains donor element-containing glass powder and a dispersion medium. The donor element-containing glass powder contains a donor element-containing material and a glass component material. The content rate of the donor element-containing material is from 1% by mass to 80% by mass. An n-type diffusion layer and a photovoltaic cell element having an n-type diffusion layer are prepared by applying the composition for forming an n-type diffusion layer, followed by a thermal diffusion treatment.

Description

201201400 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽電池元件的形成η型擴散層 的組成物、η型擴散層的製造方法及太陽電池元件的製造 方法,更詳細而言,本發明是有關於一種可於作為半導體 基板的矽基板的特定部分形成η型擴散層的技術。 【先前技術】 對先前的矽太陽電池元件的製造步驟進行說明。 首先’為了促進光學揭限效應(confinement effect)來謀 求高效率化’準備形成有紋理(texture)構造的p型矽基 板’繼而於氧氣化磷(P0Cl3)、I氣、氧氣的混合氣體環 境下以800°C〜900。(:進行幾十分鐘的處理,從而同樣地形 成η型擴散層。於該先前的方法中,因使用混合氣體進行 ,的擴散,故不僅於表面形成η型擴散層,而且於側面、 背面亦形成η型擴散層^於這些原因,需要條刻 etchmg)來移除側面的n型擴散層。另外,需將背面的n 型擴散層轉換成ρ+型擴散層,因此於背面的η型擴散層上 =銘膏’以藉由細擴散而使㈣擴散層轉換成ρ+型擴 胜p/wvT 一 ;半導體的製造領域中,例如如日本專利 的溶液來軸 (NH4H2PQ4) __ 用溶液,故與的方法。但是,因於該方法中使 、 上述混合氣體的氣相反應法相同,磷的 3 201201400 -----x--- 擴散亦到達側面及背面’不僅於表面形成^擴散層,而 且於側面、背面亦形成n型擴散層。 产如上所述,當形成n型擴散層時,於使用氧氯化磷的 ,相反應中,不僅於原本需要n型擴散層的_面(通常為 受光,、表面)形成n型擴散層,而且於另一面(非受光 面、背面)或側面亦形成η型擴散層。另外,於塗佈含有 磷酸鹽的溶液並進行熱擴散的方法中,與氣相反應法相 同,在表面以外亦形成η型擴散層。因此,為了獲得具有 ρη接合構造以作為元件,故必需於侧面進行蝕刻且必需 於背面將η型擴散層轉換成卩型擴散層。一般而言,於背 面塗佈作為第13族元素的鋁的膏狀物,並進行煅燒(燒 結),從而將η型擴散層轉換成ρ型擴散層。 【發明内容】 本發明是鑒於以上的先前的問題點而完成的發明,其 課題在於提供一種於使用矽基板的太陽電池元件的製造步 驟中,可不形成不需要的η型擴散層而於特定的部分形成 η型擴散層,且提供一種可製作表面電阻值低的太陽電池 元件的形成η型擴散層的組成物、η型擴散層的製造方法 及太陽電池元件的製造方法。 解決上述課題的方法如下。 &lt;1&gt; 一種形成η型擴散層的組成物,其包括含有施 體元素的玻璃粉末以及分散介質,上述玻璃粉末包括含有 施體元素的物質以及玻璃成分物質,上述玻璃粉末中的上 述含有施體元素的物質的含有比率為i質量%以上至8〇質 4 201201400 量%以下。 &lt;2&gt;如上述&lt;1&gt;所述之形成η型擴散層的組成 物,其中上述施體元素是選自Ρ (磷)及Sb (銻)中的至 少一種。 &lt;3&gt;如上述&lt;1&gt;或&lt;2&gt;所述之形成η型擴散層的 組成物,其中含有上述施體元素的玻璃粉末包括:選自 Ρ2Ο3、卩2〇5及Sb2〇3中的至少一種含有施體元素的物質, 以及選自 Si02、K20、Na20、Li20、BaO、SrO、CaO、 MgO、BeO、ZnO、PbO、CdO、SnO、Zr〇2、及 Mo03 中 的至少一種玻璃成分物質。 &lt;4&gt;如上述&lt;1&gt;〜&lt;3&gt;中任一項所述之形成η型 擴散層的組成物,其更包括選自Ag (銀)、Si (矽)、Cu (銅)、Fe (鐵)、Zn (鋅)及Μη (錳)中的至少一種金 屬。 &lt;5&gt;如上述&lt;4&gt;所述之形成η型擴散層的組成 物,其中前述金屬為Ag (銀)。 &lt;6&gt; —種n型擴散層的製造方法,其包括: 塗佈如上述&lt;1&gt;〜&lt;5&gt;中任一項所述之形成n型擴 散層的組成物的步驟、以及實施熱擴散處理的步驟。只 &lt;7&gt; —種太陽電池元件的製造方法,其包括: 於半導體基板上塗佈如上述&lt;!〉〜&lt;5&gt;中任一 述之I成η型擴散層的組成物的轉、實施熱擴散 = 形成η型擴散層的步驟、以及於所形成的上述 上形成電極的步驟。 1搌政層 201201400 [發明的效果] 根據本發明,於使用石夕基板的太陽電池元件的製造步 驟中’可於特定的部分形成n贿散層,而不形成不需要 的η型擴散層。另外,藉由設^成本發 的物質的含有比率的範圍,可絲面電阻值下Hi 作為太陽電池元件的性能。 為讓本發明之上述和其他目的、特徵和優點能更明顯 ,下文特舉較佳實施例,並配合所關式,作詳細說 明如下。 【實施方式】 =先’對本發_形成n型賴層的組成物進行說 ,其次對使用形成η型擴散層的組成物的n型擴散層及 太陽電池元件的製造方法進行說明。 、 ’於本說明書中,「步驟(PIOeeSS)」這一用語不 ^獨立的步驟,亦包含在無法與其他步卿確地加以 =的情況下,若該步驟能達成所預期的作用,則亦包含 語巾。另外,於本朗書中,「〜」表示分別包括其 :後所記_數值作為最小值及最核的制。進而,於 巾,當論及組成物巾的各成麵量時,在組成物 2夕個相當於各成分的物質的情況下,只要事先無特 别說月’縣雜成物帽存在的衫個㈣的合計量。 =發明的形成η型擴散層的組成物包括至少含有施體 Ιϋί璃粉末(以下’有時僅稱為「_粉末」)、以及 刀政質’進而考慮㈣性等,'转簡要含有其他添加 6 201201400 劑。 此處,所謂形成η型擴散層的組成物,是指含有施體 兀素’且可藉由㈣㈣基板上後對觀體元素進行熱擴 散處理而形成η型擴散層的材料。藉由使用本發明的形成 η型擴散層的組成物,而僅於所期望的部位侃η塑擴散 層’而不於背面或側面形成不需要型擴散層。 ▲因此,若應用本發明的形成nf}擴散層的組成物’則 先前廣泛採用的氣相反應法中所必需的鑛步驟就變得不 必要’從錢步_單化。另外,將形成於t面的n型擴 散層+ 轉換成ρ+型擴散層的步驟也變料需要。因此,背面 的Ρ型擴散層的形成方法’或者背面電極的材質、形狀及 厚度不受限制,並且拓展了可應用的製造 狀的選擇項。另外,由於抑制了背面電極的厚度所引起的 矽基板内的内應力的產生,矽基板的翹曲亦得到抑制,詳 細情況將後述。 再者,藉由锻燒而使本發明的形成11型擴散層的組成 物中所含有的玻璃粉末熔融,從而型擴散層上形成玻 璃層。但疋,於先則的氣相反應法或塗佈含有罐酸鹽的溶 液的方法中,亦於!!型擴散層上形成玻璃層。因此,本發 明中所生成的玻璃層可與先前的方法同樣地藉由蝕刻來去 除。因此,即便與先前的方法相比,本發明的形成η型擴 散層的組成物亦不產生不需要的產物,亦不增加步驟。 另外,玻璃粉末中的施體成分於煅燒中亦難以揮發 (sublimation),因此抑制了 η型擴散層歸因於揮發氣體 201201400 其原因可料冑面或_的情況。 如此,本發明的形成11型 成 的部位形成所期望的濃度的n型:、、=於糧 摻雜物濃度高的選擇性的區域。面因匕可形成n型 層的一般方法的氣體反應 來形成南η型摻雜劑濃度的選擇性區域。 舜西文- 的i有施體元素的玻璃粉末進行詳細說明。 型:是指藉由摻雜抑基板中而可形成n 施體元素可使用第15族的元素,例如可 列舉Ρ(峨)、Sb (録)、Bi⑷及AS (石申)等。就安全 性、玻璃化的容祕等的觀點而言,較合適的是p或%。 作為用於將施體元素導入至玻璃粉末中的含有施體元 素的物質,可列舉 P2〇3、p2〇5、Sb2〇3、Bi2〇3、及 As2〇3, 較佳為使用選自I&gt;2〇3、Ρζ〇5及Sb2〇3中的至少一種。 另外,含有施體元素的玻璃粉末可視需要調整成分比 率,藉此控制熔融溫度、軟化溫度、玻璃轉移點、化學耐 久性等。較佳為進而包含以下所述的玻璃成分物質。 作為玻璃成分物質,可列舉:Si02、K20、Na20、Li20、 BaO、SrO、CaO、MgO、BeO、ZnO、PbO、CdO、V205、 SnO、Zr〇2、M0O3、La2〇3、Nb2〇5、T&amp;2〇5、Y2O3、Ti〇2、 Zr02、Ge02、Te02及Lu203等,較佳為使用選自Si02、 κ20、Na20、Li20、BaO、SrO、CaO、MgO、BeO、ZnO、 8 201201400201201400 6. Technical Field of the Invention The present invention relates to a composition for forming an n-type diffusion layer of a solar cell element, a method for producing an n-type diffusion layer, and a method for manufacturing a solar cell element, and more specifically In other words, the present invention relates to a technique of forming an n-type diffusion layer in a specific portion of a germanium substrate as a semiconductor substrate. [Prior Art] The manufacturing steps of the prior 矽 solar cell element will be described. First, in order to promote the optical confinement effect, it is required to improve the efficiency of 'preparation of a p-type germanium substrate with a texture structure' followed by a mixed gas atmosphere of oxygenated phosphorus (P0Cl3), I gas, and oxygen. Take 800 ° C ~ 900. (: tens of minutes of processing is performed to form an n-type diffusion layer in the same manner. In the prior method, diffusion is performed by using a mixed gas, so that not only an n-type diffusion layer is formed on the surface but also on the side and the back side. Forming an n-type diffusion layer For these reasons, it is necessary to strip etchmg) to remove the side n-type diffusion layer. In addition, the n-type diffusion layer on the back side needs to be converted into a ρ+ type diffusion layer, so that on the n-type diffusion layer on the back side, the "imprint paste" is used to convert (4) the diffusion layer into a ρ+ type expansion p/ by fine diffusion. wvT-1. In the field of semiconductor manufacturing, for example, a solution such as a solution from the Japanese patent (NH4H2PQ4) __ uses a solution. However, since the gas phase reaction method of the mixed gas is the same in the method, the phosphorus 3 201201400 -----x--- diffusion also reaches the side surface and the back surface 'not only the surface of the diffusion layer but also the side surface An n-type diffusion layer is also formed on the back surface. As described above, when an n-type diffusion layer is formed, in the phase reaction using phosphorus oxychloride, an n-type diffusion layer is formed not only in the _ plane (usually receiving light, surface) of the n-type diffusion layer. Further, an n-type diffusion layer is formed on the other surface (non-light-receiving surface, back surface) or side surface. Further, in the method of applying a solution containing a phosphate and performing thermal diffusion, an n-type diffusion layer is formed on the surface other than the gas phase reaction method. Therefore, in order to obtain a pn bonding structure as an element, it is necessary to perform etching on the side and it is necessary to convert the n-type diffusion layer into a 卩-type diffusion layer on the back side. In general, a paste of aluminum as a Group 13 element is coated on the back surface and calcined (sintered) to convert the n-type diffusion layer into a p-type diffusion layer. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the invention is to provide a specific step for manufacturing a solar cell element using a germanium substrate without forming an unnecessary n-type diffusion layer. The n-type diffusion layer is partially formed, and a composition for forming an n-type diffusion layer, a method for producing an n-type diffusion layer, and a method for producing a solar cell element, which can produce a solar cell element having a low surface resistance value, are provided. The method for solving the above problems is as follows. &lt;1&gt; A composition for forming an n-type diffusion layer, comprising a glass powder containing a donor element and a dispersion medium, wherein the glass powder includes a substance containing a donor element and a glass component, and the above-mentioned content in the glass powder The content ratio of the substance of the bulk element is from i% by mass or more to 8% by mass of 20124,001,01,400% by volume. &lt;2&gt; The composition for forming an n-type diffusion layer as described in the above &lt;1&gt;, wherein the donor element is at least one selected from the group consisting of ruthenium (phosphorus) and Sb (antimony). &lt;3&gt; The composition for forming an n-type diffusion layer according to the above &lt;1&gt; or &lt;2&gt;, wherein the glass powder containing the above-mentioned donor element comprises: selected from the group consisting of Ρ2Ο3, 卩2〇5, and Sb2〇3 At least one substance containing a donor element, and at least one selected from the group consisting of SiO 2 , K 20 , Na 20 , Li 20 , BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, SnO, Zr〇2, and Mo03 Glass component material. The composition for forming an n-type diffusion layer according to any one of the above-mentioned <1> to <3>, further comprising a member selected from the group consisting of Ag (silver), Si (germanium), and Cu (copper). At least one of Fe (iron), Zn (zinc), and Μ (manganese). &lt;5&gt; The composition for forming an n-type diffusion layer as described in the above &lt;4&gt;, wherein the metal is Ag (silver). &lt;6&gt; A method for producing an n-type diffusion layer, comprising: a step of applying a composition for forming an n-type diffusion layer according to any one of the above-mentioned items <1> to <5>, and The step of thermal diffusion treatment. <7> The method for producing a solar cell element, comprising: applying a composition of the composition of the I-n-type diffusion layer according to any one of the above &lt;!> to &lt;5&gt; And performing thermal diffusion = a step of forming an n-type diffusion layer, and a step of forming an electrode on the formed above. 1 搌 2012 201201400 [Effect of the Invention] According to the present invention, in the manufacturing step of the solar cell element using the Shishi substrate, the n brittle layer can be formed in a specific portion without forming an unnecessary n-type diffusion layer. Further, Hi can be used as the performance of the solar cell element by setting the range of the content ratio of the substance to be costed. The above and other objects, features, and advantages of the present invention will become more apparent from the <RTIgt; [Embodiment] The composition of the n-type layer is formed first, and the method of manufacturing the n-type diffusion layer and the solar cell element using the composition for forming the n-type diffusion layer will be described. , 'In this specification, the phrase "PIOeeSS" is not an independent step, and is also included in the case where it cannot be done with other steps. If the step can achieve the desired effect, then Includes a scarf. In addition, in this book, "~" means that it includes the following: the value of _ is the minimum value and the most nuclear system. Further, in the case of the towel, when the amount of the face of the composition towel is referred to, in the case of the composition 2, which corresponds to each component, the shirt of the prefecture is not mentioned in advance. (4) Total measurement. The composition for forming the n-type diffusion layer of the invention includes at least a donor glaze powder (hereinafter referred to as "_ powder" sometimes), and a knife-like quality, and then considers (four) properties, etc. 6 201201400 agent. Here, the composition for forming the n-type diffusion layer means a material which contains a donor dysinium and which can be thermally diffused by a (4) (4) substrate and then subjected to thermal diffusion treatment to form an n-type diffusion layer. By using the composition for forming an n-type diffusion layer of the present invention, the plastic diffusion layer is formed only at a desired portion, and the unnecessary diffusion layer is formed not on the back side or the side surface. ▲ Therefore, if the composition for forming an nf} diffusion layer of the present invention is applied, the ore step necessary in the gas phase reaction method which has been widely used previously becomes unnecessary. Further, the step of converting the n-type diffusion layer + formed on the t-plane into the ρ + -type diffusion layer is also required. Therefore, the method of forming the ruthenium-type diffusion layer on the back surface or the material, shape, and thickness of the back surface electrode is not limited, and the selection of the applicable manufacturing shape is expanded. Further, since the generation of the internal stress in the ruthenium substrate due to the thickness of the back surface electrode is suppressed, the warpage of the ruthenium substrate is also suppressed, and the details will be described later. Further, the glass powder contained in the composition for forming the 11-type diffusion layer of the present invention is melted by calcination to form a glass layer on the diffusion layer. However, in the case of the gas phase reaction method or the method of coating the solution containing the can acid salt, it is also! A glass layer is formed on the diffusion layer. Therefore, the glass layer produced in the present invention can be removed by etching as in the prior art. Therefore, the composition for forming the n-type diffusion layer of the present invention does not produce an undesired product, and does not add steps, even when compared with the prior method. Further, the donor component in the glass powder is also difficult to sublimate in the calcination, thereby suppressing the case where the n-type diffusion layer is attributed to the volatilized gas 201201400. Thus, the formation of the 11-formed portion of the present invention forms an n-type of a desired concentration:, = a selective region having a high concentration of the food dopant. The surface is formed by a gas reaction of a general method of forming an n-type layer to form a selective region of the concentration of the south n-type dopant.舜西文- I have detailed description of the glass powder of the donor element. Type: It means that an element of Group 15 can be formed by doping the substrate to form an n-body element, and examples thereof include ruthenium (峨), Sb (recorded), Bi(4), and AS (Shishen). From the standpoint of safety, the tolerance of vitrification, etc., p or % is more suitable. Examples of the substance containing the donor element for introducing the donor element into the glass powder include P2〇3, p2〇5, Sb2〇3, Bi2〇3, and As2〇3, preferably selected from I&gt. At least one of 2〇3, Ρζ〇5, and Sb2〇3. Further, the glass powder containing the donor element may adjust the composition ratio as needed, thereby controlling the melting temperature, the softening temperature, the glass transition point, the chemical durability, and the like. It is preferable to further contain the glass component substance described below. Examples of the glass component substance include SiO 2 , K 20 , Na 20 , Li 20 , BaO, SrO, CaO, MgO, BeO, ZnO, PbO, CdO, V205, SnO, Zr〇2, M0O3, La2〇3, and Nb2〇5. T&amp;2〇5, Y2O3, Ti〇2, Zr02, Ge02, Te02 and Lu203, etc., preferably selected from the group consisting of SiO2, κ20, Na20, Li20, BaO, SrO, CaO, MgO, BeO, ZnO, 8 201201400

PbO、CdO、SnO、Zr02、及 m0〇3 中的至少—種。 作為含有施體元素的坡螭粉末的具體例,可 上述含有施體元素的物質與上述玻璃成分物 系’可列舉㈣5_Si〇2 _ (以含有施體元素的=的= 璃成分物質的順序記載、以下相同)、Ρ2〇5·Κ2〇 P205-Na20 體系、P2〇5_Li2〇 體系、p2〇rBa〇 體系、ρ 〇 ^ 體系、⑽-㈤體系、P2(VMg〇體系、叫伽2二Γ〇 ΡΛ-ΖηΟ 體系、P2〇rCdO 體系、P2〇5_Pb〇 體系^ 體系、P2〇5_Ge〇2體系、P2〇5_Te〇2體系等包含p 〇2 I $ 有施體元素的物質的體系,包含sb2〇3來代替2 體系的P2〇5作為含有施體元素的物質的體系二 再者,亦可為如?2〇為〇3體系、切心处 般,包含兩種以上的含有施體元素的物質的玻璃粉末、 於上述中例示了包含兩種成分的複合破璃,^ ; 如P2〇5-Si〇2-Ca〇等般,包含三種成分以上的物質的$ 粉末。 另外,考慮到施體元素於石夕基板中的擦雜濃度 粉末的熔融溫度、軟化溫度、玻璃轉移點、化學耐 碉 玻璃粉末中的含有施體元素的物質的含有比率^ i '旦^ 以上至80質量%以下。 負里/〇 當玻璃粉末中的含有施體元素的物質的含有比 1質量%時’施體元素於縣板中的摻雜濃度過低,擔 散層未充分地賴。料’當PA等含麵紅素的物質 201201400 的含有比率大於80質量%時,於玻璃粉末中,含有施體元 素的物質吸濕,例如在含有施體元素的物質為P2〇5的情兄 下形成_ (H3P〇4)。其結果,H3PQ4等吸濕物質於熱擴 政處理中揮發’因此存在p (磷)施體元素的擴散亦到達 側面及背面’不僅於表面形成η型擴散層,而且有於所期 望的部位以外的側面、背面亦形成11型擴散層之虞。' 進而,玻璃粉末中的含有施體元素的物質的含有比率 較佳為2質量%以上至75 f量%以下,更佳為⑴質量% 以上至70質量%以下。 _尤其,若考慮如下兩個方面,則玻璃粉末中的含有施 〇體το素的物質的含有比率更佳為3G f量%以上至7〇質量 /〇以下’上述兩個方面是指即便—面斜酌充分地形成η型 ,散層的施體it素的量,—面於形成η型擴散層的組成物 中添加-定量以上的施體元素’具有所形成的讀擴散層 的表面的薄片電阻亦不會下降至超過—定值;以及必需抑 制含有施體元素的物質的揮發的影響。 另外,玻璃粉末中的玻璃成分物質的含有比率較理想 的疋考慮熔融溫度、軟化溫度、玻璃轉移點、化學耐久性 。而適且设疋,一般而言,較佳為2〇質量%以上至99質量 /〇以下,更佳為25質量。/。以上至98質量%以下,進而更佳 為30質量%以上至9〇質量%以下。 …具體而έ,當為P2〇5_Si〇2體系玻璃時,si〇2的含有 比率較佳為20質量%以上至99質量%以下,更佳為3〇質 量%以上至90質量%以下。 201201400 度時的擴散性、滴液 3〇〇t〜90〇。〇。 。,較佳為20〇C〜1000¾,更佳為 =’㈣粉末的軟化溫度可藉由公 皮:=;r 一,),‘熱 作為玻璃粉末的形狀,可列舉:大致球狀、扁平狀、 你!iAA板狀及鱗片狀等,就製成形成11型擴散層的組成 時的對於基板的塗佈性或均自擴散性的觀點而言,較理 想的是大致球狀、扁平狀、或紐。玻璃粉末的粒徑較理 4的疋ΙΟΟμηι以下。當使用具有1〇〇μιη以下的粒徑的玻 璃粉末時,容易獲得平滑的塗膜。進而’玻璃粉末的粒徑 更理想的是50 μηι以下。再者,下限並無特別限制,但較 佳為0.01 μηι以上。 此處,玻璃的粒徑表示平均粒徑,可藉由雷射散射繞 射法(laser scattering diffraction method )粒度分布(particle size distribution )測定裝置等來測定。 含有施體元素的玻璃粉末是藉由以下的程序來製作。 首先,稱量原料並將其填充至掛禍中。堆塌的材質可 列舉鉑、鉑-铑、銥、氧化鋁、石英、碳等,可考慮熔融溫 度、環境、與熔融物質的反應性等而適宜選擇。 其次,藉由電爐以對應於玻璃組成的溫度進行加熱而 製成熔液。此時,較理想的是以使熔液變得均勻的方式進 行攪拌。 201201400 繼而,使所獲得的熔液流出至石墨板、鉑板、鉑-铑合 金板、氧化鍅板等上而將熔液玻璃化。 最後’粉碎玻璃而形成粉末狀。粉碎可應用噴射磨機、 珠磨機、球磨機等公知的方法。 形成η型擴散層的組成物中的含有施體元素的玻璃粉 ,的含有比率是考慮㈣性、祕元素的概性等而決 定。一般而言,形成η型擴散層的組成物中的玻 含有比率較佳為0.1質量%以上至95質量%以下,更佳為 1質量%以上至90質量。/0以下,進而更佳為15質量%以上 至85質量%以下,特佳為2質量%以上至8〇質量%二下。 其次,對分散介質進行說明。 所謂分散介質’是指於組成物中使上述玻璃粉末分散 的介質。具體而言,採用黏合劑或溶劑等作為分散介質。 作為黏合劑’例如可適宜選擇聚乙烯醇、聚丙稀醯胺 類、聚乙烯醯胺類、聚乙烯吡咯啶酮、聚環氧乙烷類、聚 磺酸、丙烯醯胺烷基磺酸、纖維素醚類、纖維素衍生物、 羧曱基纖維素、羥乙基纖維素、乙基纖維素、明膠、殿粉 及澱粉衍生物、海藻酸納類(sodium alginate)、三仙膠 (xanthan)、瓜爾膠及瓜爾膠衍生物、硬葡聚糖及硬葡聚 糖衍生物、黃箸膠及黃蓍膠衍生物、糊精及糊精衍生物、(曱 基)丙稀酸樹脂、(曱基)丙稀酸S旨樹脂(例如(甲基)丙稀酸 烷基酯樹脂、(甲基)丙烯酸二曱基胺基乙酯樹脂等)、丁二 烯樹脂、苯乙烯樹脂、或該些的共聚物,除此以外,亦可 適宜選擇矽氧烷樹脂。該些可單獨使用一種、或者組合兩 12 201201400 種以上來使用。 黏合劑的分子量並無特別限制,較理想的是鑒於作為 組成物的所期望的黏度而適宜調整。 作為溶劑,例如可列舉:丙酮、曱基乙基酮、曱基_ 正丙基酮、甲基-異丙基酮、曱基-正丁基酮、曱基-異丁基 酮、曱基•正戊基酮、曱基-正己基酮、二乙基酮、二丙基 酮、二-異丁基酮、三曱基壬酮、環己酮、環戊酮、曱基環 己酮、2,4-戊二酮、丙酮基丙酮等酮系溶劑;二乙醚、曱 基乙基醚、甲基-正丙醚、二-異丙醚、四氫吱喃、曱基四 氫吱喃、二噪统(dioxane)、二曱基二。惡烧、乙二醇二曱 趟(ethylene glycoldimethylether)、乙二醇二乙醚、乙二醇 二-正丙醚、乙二醇二丁喊、二乙二醇二曱醚、二乙二醇二 乙醚、二乙二醇曱基乙基醚、二乙二醇曱基-正丙醚、二乙 二醇曱基-正丁醚、二乙二醇二-正丙醚、二乙二醇二-正丁 醚、二乙二醇曱基-正己醚、三乙二醇二曱醚、三乙二醇二 乙醚、三乙二醇曱基乙基醚、三乙二醇曱基-正丁醚、三乙 二醇二-正丁醚、三乙二醇曱基-正己醚、四乙二醇二曱醚、 四乙二醇二乙醚、四-二乙二醇甲基乙基醚、四乙二醇曱基 -正丁醚、二乙二醇二-正丁醚、四乙二醇曱基-正己醚、四 乙二醇二-正丁醚、丙二醇二曱醚、丙二醇二乙醚、丙二醇 二-正丙醚、丙二醇二丁醚、二丙二醇二曱醚、二丙二醇二 乙醚、二丙二醇曱基乙基醚、二丙二醇甲基-正丁醚、二丙 二醇二-正丙鍵、二丙二醇二-正丁鍵、二丙二醇曱基-正己 醚、三丙二醇二曱醚、三丙二醇二乙醚、三丙二醇曱基乙 13 201201400 基醚、三丙二醇曱基-正丁醚、三丙二醇二-正丁醚、三丙 二醇曱基-正己鍵、四丙二醇二曱醚、四丙二醇二乙醚、四 _二巧二醇曱基乙基醚、四丙二醇曱基-正丁醚、二丙二醇 二-正丁醚、四丙二醇曱基-正己醚、四丙二醇二-正丁醚等 醚系溶劑;乙酸曱酯、乙酸乙酯、乙酸正丙酯、乙酸異丙 酯、乙酸正丁酯、乙酸異丁酯、乙酸第二丁酯、乙酸正戊 酯、乙酸第二戊酯、乙酸3-曱氧基丁酯、乙酸曱基戊酯、 乙酸‘2-乙基丁酯、乙酸2-乙基己酯、乙酸2-(2-丁氧基乙氧 基)乙酯、乙酸苄酯、乙酸環己酯、乙酸曱基環己酯、乙酸 壬酯、乙醯乙酸曱酯、乙醯乙酸乙酯、乙酸二乙二醇曱醚、 乙酸二乙二醇單乙醚、乙酸二乙二醇-正丁醚、乙酸二丙二 醇曱醚、乙酸二丙二醇乙醚、乙二醇二乙酸酯、乙氧基三 甘醇乙酸酯、丙酸乙酯、丙酸正丁酯、丙酸異戊酯、草酸 二乙酯、草酸二-正丁酯、乳酸曱酯、乳酸乙酯、乳酸正丁 酯、乳酸正戊酯、乙二醇曱醚丙酸酯、乙二醇乙醚丙酸酯、 乙二醇曱醚乙酸酯、乙二醇乙醚乙酸酯、二乙二醇曱醚乙 酸酯、二乙二醇乙醚乙酸酯、二乙二醇-正丁醚乙酸酯、丙 二醇曱醚乙酸酯、丙二醇乙醚乙酸酯、丙二醇丙基醚乙酸 酯、二丙二醇曱醚乙酸酯、二丙二醇乙醚乙酸酯、γ-丁内 酯、γ-戊内酯等酯系溶劑;乙腈、Ν-曱基吡咯酮、Ν-乙基 吼11各酮、Ν-丙基吼11各酮、Ν-丁基吼11各_、Ν-己基π比洛酮、 Ν-環己基吡咯酮、Ν,Ν-二曱基曱醯胺、Ν,Ν-二曱基乙醯 胺、二曱基亞砜等非質子性極性溶劑;甲醇、乙醇、正丙 醇、異丙醇、正丁醇、異丁醇、第二丁醇、第三丁醇、正 201201400 第 戊醇、異戊醇、2~甲基 &amp; 癸醇、第 七醇 丙二醇、1,3-丁 氧基丁醇、正己醇、厶第二戊醇、第三戊醇、3-甲 第二庚醇、正辛醇、2 土戊醇、第二己醇、2-乙基丁醇、 欢結、第二-十一醇、_基己醇、第二辛醇、正壬醇、正 苯盼、環己醇壬醇、第二_十四醇、第二-十 丨-丁二醇、二基環己醇、苄醇、乙二醇、1,2-三丙二醇等醇系溶劑;醇、二丙二醇、三乙二醇、 單苯醚、二乙二醇單甲喊醇曱醚、乙一醇乙峻、乙二醇 正丁醚、二乙二醇單_正、、二乙二醇單乙醚、二乙二醇單--正丁趟、丙二醇單㈣己_、乙氧基三甘醇、四乙二醇單 醚、三丙二醇單甲醚等_〜丙二醇單曱醚、二丙二醇單乙 品醇、月桂油烯、別羅^翠驗系溶劑;α·祐品婦、4 戊烯、α·蒎烯、β-蒎^ ^ (aIlo_ocimene)、檸檬烯、雙 羅勒烯、水芽稀等^李^旨醇(terpine〇1)、香旱序酮、 或者組合兩種以上來使^劑;水。該些可單獨使用一種、 ㈣成域n型擴散層的組成物時,就對於基板的塗 佈性的觀點而言,較佳為Ml品醇、二乙二醇單·正^ 乙酸2-(2-丁氧基乙氧基)乙酯。 形成η型擴散層的組成物令的分散介質的含有比率是 考慮塗佈性、施體濃度而決定。 考慮到塗佈性’形成η型擴散層的組成物的黏度較佳 為lOmPa.S以上至loooooompa.s以下,更佳為5〇mPa.s 以上至500000mpa.s以下。 進而,形成η型擴散層的組成物亦可含有其他添加 15 201201400 劑。作為其他添加物,例如可列舉容易與上述玻璃於 行反應的金屬。 刀 將形成η型擴散層的組成物塗佈於半導體基板上,並 於高溫下進行熱處理,藉此形成η型擴散層,二此時於表 面形成玻璃。將該玻璃浸潰於氫氟酸等酸中而去除,但根 據玻璃的種類,存在難以去除的玻璃。於該情況下, 由添加容易與玻璃結晶化的Ag、Mn、Cu、Fe、Zn、Si ^ 金屬,而於酸清洗後容易地去除玻璃。該些之中, 使用選自人§、3卜〇1、?6、211及]^11中的至少一種,更 佳為使用選自Ag、Si AZn中的至少一種,特佳為使用 Ag。 上述金屬的含有比率較理想的是根據玻璃的種類或該 金屬的種類而適宜調整,—般相對於上述玻璃粉末,較佳 為0.01質量❶/〇以上至10質量%以下。 其次,參照圖1⑴圖1 (6)來對本發明的η型擴 散層及太陽電池元件的製造方法進行說明。圖i (丨)圖工 (6)是概念性地表示本發_太陽電池元件的製造步驟的 一例的模式剖面圖。於以下的圖式中,對相同的構成要素 標註同一符號。 圖1 (1)中,對作為P型半導體基板10的矽基板賦 予驗性溶液來去除損壞層,並藉由蝕刻而獲得紋理構造。 詳細而言’利用20質量%苛性鈉去除自鑄錠進行切片 時所產生的矽表面的損壞層。繼而,利用丨質量%苛性鈉 與10質量%異丙醇的混合液進行餘刻,形成紋理構造(圖 201201400 中省略紋理構造的記载)。切電池元件_在受光面(表 面)側形成紋理構造’而可促進光學侷限效應,謀求高效 率化。 囡1⑺中*上述形成n型擴散層的組成物塗佈於 Ρ型半導體基板1G的表面即成為受光面的面上,形成了形 成η型擴散層的組成物心。本發财,塗佈方法並益限 制,例如有印臟、法、毛刷塗佈、喷霧法、到刀法、 輥塗機法、喷墨法等。 上述形成η型擴散層的組成物的塗佈量並無特別限 制。例如,作為玻璃粉末量,可設定為〇〇1 —〜刚 g/m,較佳為 〇.1 g/m2〜1〇 g/m2。 再者’根據形成η型擴散層的組成物的組成,亦可設 置用以於塗佈後,使組成物巾所含有的溶娜發的乾燥步 驟。於該情況下,於峨〜如代左右的溫度下^使用 加^板時賴1分鐘〜1G分鐘,t使賊賴料乾燥1〇 分鐘〜30分鐘左右。該乾祕件依存於形成n型擴散層的 組成物的溶·成,於本發明中並不特·定於上述條件。 f外’當使用本發明的製造方法時,背面的ρ+型擴散 層(尚濃度電場層)14的製造方法並不限定於藉由铭來將 所f成的η型擴散層轉變成Ρ型擴散層的方法,亦可採用 先前公知的任何方法,可擴大製造方法的選擇項。因此, =予3有Β (爛)等第13族的元素的組成物13來 形成南濃度電場層14。 作為上述含有Β (蝴)等第13族的元素的組成物13, 201201400 ♦的舉使用含有受體7°素的玻璃粉末代替含有施體元 粉末,且以與形成n型擴散層的組成物相同的方 二沾-型擴散層的組成物。受體元素只要是第13 =的=即可,例如可列舉B⑷、A1⑷及仏(嫁) 寺^另外,含有受體元素的_粉末較佳為選自B2〇3、 A 2〇3及以2〇3中的至少一種。 ,而’將形成P型擴散層的組成物舒⑽基板的背 面的方法與已述的將形成n型擴散層的組成物塗佈於石夕基 板上的方法相同。 j後述的形成n型擴散層的組成物的熱擴散處理相 二/ ’對_予至背面的形成p型擴散層的組成物進 仃熱擴散處理,藉此可於背面形成高濃度電場層14。再 者’較佳為形成P型擴散層的組成物的_散處理與形成 η型擴散層的組成物的熱擴散處理同時進行。 繼而’於_t:〜!細。c下對形成有上述形成η型擴 ^的組成物層1!的半導體基板1G進行熱擴散處理。藉 由該熱擴散處理,如圖丨⑴所示,施體元素朝半導體基 板中擴散,而形成η型舰層12。熱擴散處理可應用公知 的連續爐、分批式爐等。另外,熱擴散處理時的爐内環境 亦可適宜調整成空氣、氧氣、氮氣等。 熱紐處理時間可對應於形成η型擴散層的組成物中 所含有的施體元素的含有率等而適宜選擇。例如,可設定 為1分鐘〜60分鐘,更佳為2分鐘〜30分鐘。 因於所形成的η型擴散層12的表面形成有鱗酸玻璃等 18 201201400 玻璃層(未圖示),故藉由蝕刻而去除該磷酸玻璃。蝕刻可 應用浸潰於氫氟酸等酸中的方法、浸潰於苛性鈉等鹼中的 方法等公知的方法。 於圖1 (2)及圖1 (3)所示的使用本發明的形成n 型擴散層的組成物11來形成η型擴散層12的本發明的η 型擴散層的形成方法中,僅於所期望的部位形成η型擴散 層12,而不於背面或側面形成不需要的η型擴散層。 因此,於先前廣泛採用的藉由氣相反應法來形成η型 擴散層的方法中,需要用於去除形成於側面的不需要的η 型擴散層的側蝕步驟,但根據本發明的製造方法,不需要 側蝕步驟,從而使步驟簡單化。 另外’於先前的製造方法中,必需將形成於背面的不 需要的η型擴散層轉換成ρ型擴散層,作為該轉換方法, 採用如下的方法:於背面的η型擴散層上塗佈作為第13 族元素的鋁的膏狀物’並進行烺燒,使鋁擴散至η型擴散 層而將η型擴散層轉換成ρ型擴散層。於該方法中,為了 充分地將η型擴散層轉換成ρ型擴散層,進而形成ρ+層的 高濃度電場層,而需要某種程度以上的鋁量,因此必需將 紹層形成得較厚。但是,鋁的熱膨脹係數與用作基板的石夕 的熱膨脹係數相差較大,因此於煅燒及冷卻的過程中,在 矽基板中產生較大的内應力,而成為矽基板的翹曲的原因。 存在該内應力對結晶的結晶粒界(crystal grain boundary)造成損傷、從而導致電力損失變大的問題。另 外,翹曲於模組製程中的太陽電池元件的搬送、或者與被 201201400 稱為分支線路(tab wire)的鋼線的連接過程申,容易使太 陽電池元件破損。近年來,由於切片加工技術的提高,因 此石夕基板的厚度正被薄聽,转在太陽電池元件更加容 易破裂的傾向。 但是,根縣發明的料方法,^於背面形成不需要 的η型擴散層’因此無需進行自n型擴散層朝p型擴散層 的轉換,科必使銘層變厚。其結果,可抑财基板内的 内應力的產生或㈣。結果可抑㈣力損失的增大或太 陽電池元件的破損。 j外,當使用本發明的製造方法時,背面的p+型擴散 層U濃度電場層)14的製造方法並不限定於藉由銘來將 所=成的η型擴散層轉換成p型擴散層的方法亦可採用 先刖公知的任何方法,拓展了製造方法的選擇項。 較佳為例如將使用含有受體元素的玻璃粉末代替含有 施體元素的玻璃粉末,且以與形成n型擴散層的組成物相 =的方式構成的形成p型擴散層的組成物塗佈於矽基板的 背面(與塗佈有形成n型擴散層的組成物的面為相反側的 面),並進行煅燒處理,藉此於背面形成ρ+型擴散層(高 濃度電場廣)14。 ° 另外,如後述般,用於背面的表面電極2〇的材料並不 限定於第13族的鋁,例如可應用Ag(銀)或以(銅)等, 背面的表面電極20的厚度亦可比先前的厚冑更薄地形成。 ^圖1 (4)中,於n型擴散層12上形成抗反射膜16。 抗反射膜16是應用公知的技術而形成。例如,當抗反射膜 20 201201400 16為氮化矽膜時,藉由將siH4與Nh3的混合氣體作為原 料的電漿化學氣相沈積(Chemical Vap〇r Deposition,) 法來形成。此時,氫於結晶中擴散,到不參與矽原子之鍵 結的執道中,即懸鍵(dangling b〇nd)與氫鍵結,而使缺 陷純化(氮純化)。 更具體而言,於上述混合氣體流量比NH3/SiH4為〇 〇5 〜\〇,反應室的壓力為0·1Τ〇ΓΓ〜2T〇订,成膜時的溫度為 300°C〜550°C,用於電漿的放電的頻率為1〇〇kHz以上的 條件下形成。 _圖1 中,於表面(受光面)的抗反射膜16上, 藉由網版印刷法印刷塗佈表面電極用金屬膏並使其乾燥, 而形成表面電極18。表面電極用金屬膏是將(丨)金屬粒 子與(2)玻璃粒子作為必需成分,且視需要包含樹 脂黏合劑、(4)其他添加劑等。 繼而,於上述背面的高濃度電場層14上亦形成背面電 極20。如上所述,本發明中背面電極2〇的材質或形成方 ,並無特職定。例如,可塗佈包含、銀或銅等金屬的 背面電極用膏’並使其乾燥而形成背面電極2()。此時,為 了模組製程中的太陽電池元件間的連接,亦可於 三 部分上設置銀電極形成用銀膏。 圖1⑷巾’對電極進行鱗,製成太陽電池元 若於_。(:〜9〇(TC的範圍内锻燒幾秒〜幾分鐘 侧’作為絕緣_抗反射膜16因電_金屬f 含 玻璃粒子融,進而㈣表面的一部分雜融,膏狀物 21 201201400 中的金屬粒子(例如銀粒子)財基板丨G形成接觸部並凝 固。藉此,所形成的表面電極18與矽基板1〇被導通。將 此稱為燒透(fire through )。 對表面電極18的形狀進行說明。表面電極18是由匯 流條電極30、以及與該匯流條電極3〇交叉的指狀電極” 構成。圖2 (A)是自表面觀察到的將表面電極18設定為 包含匯流條電極30、以及與該匯流條電極3〇交又的指狀 電極32的構成的太陽電池元件的俯視圖,圖2 (B)是將 圖2 (A)的一部分擴大表示的立體圖。 此種表面電極18可藉由例如上述金屬膏的網版印 刷、或者電極材料的鍍敷、高真空中的利用電子束加熱的 電極材料的蒸鍍等方法而形成。眾所周知,包含匯流條電 極30與指狀電極32的表面電極18 —般是用作受光面側的 電極,可應用受光面侧的匯流條電極及指狀電極的公知的 形成方法。 +於上述中,對在表面形成η型擴散層,在背面形成p 型擴散層,進而在各個層上設置有表面電極及背面電極 的太陽電池元件進行了說明,但若使用本發明的形成nS 擴散層的組成物,則亦可製作背接觸型(backc〇mact)的 太陽電池元件。 、背接觸型的太陽電池元件是將電極全部設置於背面而 增大受光面的面積的太陽電池元件。即,於背接觸型的太 陽電池元件中,必需於背面形成n型擴散部位及p+型擴散 部位兩者來形成pn接合的構造。本發明的形成11型擴散層 22 201201400 可僅於特定的部位形成n型擴散部位,因此可較 應用於背接觸型的太陽電池元件的製造。 再者’藉由參照而將日本申請案2〇1〇1〇〇224中所揭 示的全部内容引用於本說明書中。 招j說明書+所記載的所有讀、專射請案、及技術 ,格^以與具體地且個職記簡由參照而引用各個文 獻、專财請案、及技術規格時相同的程度,藉由參照而 引用於本說明書中。 [實例] 以下,更具體地說明本發明的實例,但本發明並不受 該些實例限制。再者,只要事先無制記述,則化學品全 部使用試劑。另外,只要事先無說明,則「%」表示 量%」。 [實例1] 使用自動乳缽(mortar)混練裴置(kneading machine) 將粒子形狀為大致球狀,平均粒徑為3 5 μηι,軟化溫度為 490C的P205-Si02體系玻璃(ρ2〇5含量:1〇%)粉末2〇g 與乙基纖維素0.3 g、乙酸2-(2-丁氧基乙氧基)乙酯7 §加 以混合並膏化,製成形成n型擴散層的組成物。 再者,玻璃粒子形狀是使用日立高科技(Hitachi High-Technologies)(股份)製造的TM_1〇〇〇型掃描型電 子顯被鏡進行觀察並判定。玻璃的平均粒徑是使用At least one of PbO, CdO, SnO, Zr02, and m0〇3. Specific examples of the swill powder containing the donor element may be described in the order of the material containing the donor element and the above-mentioned glass component system (4) 5_Si〇2 _ (in the order of the glass component containing the donor element = = glass component) , the same as below), Ρ2〇5·Κ2〇P205-Na20 system, P2〇5_Li2〇 system, p2〇rBa〇 system, ρ 〇^ system, (10)-(f) system, P2 (VMg〇 system, called gamma 2 Γ〇 ΡΛ-ΖηΟ system, P2〇rCdO system, P2〇5_Pb〇 system^ system, P2〇5_Ge〇2 system, P2〇5_Te〇2 system and other systems containing p 〇2 I $ substances with donor elements, including sb2〇 3, instead of the P 2 〇 5 system of the 2 system, as a system containing a substance of a donor element, it may be a substance containing two or more donor elements, such as a 〇3 system and a center of the heart. In the above-mentioned glass powder, a composite glass containing two components is exemplified, and a powder containing three or more components, such as P2〇5-Si〇2-Ca〇, is exemplified. The melting temperature, softening temperature, and glass of the impurity concentration of the element in the stone substrate The content ratio of the substance containing the donor element in the transfer point or the chemically resistant bismuth-resistant glass powder is from 0 to 80% by mass. The content ratio of the substance containing the donor element in the glass powder is negative. When the mass % is used, the doping concentration of the donor element in the county plate is too low, and the supporting layer is not sufficiently subordinated. When the content ratio of the 201201400 containing the erythropoietin such as PA is more than 80% by mass, the glass powder is used. In the case where the substance containing the donor element absorbs moisture, for example, when the substance containing the donor element is P2〇5, _(H3P〇4) is formed. As a result, the hygroscopic substance such as H3PQ4 is volatilized in the thermal expansion treatment. 'Therefore, the diffusion of the p (phosphorus) donor element also reaches the side surface and the back surface. ' Not only the n-type diffusion layer is formed on the surface, but also the 11-type diffusion layer is formed on the side surface and the back surface other than the desired portion.' The content ratio of the substance containing the donor element in the glass powder is preferably 2% by mass or more and 75 % by volume or less, more preferably (1)% by mass or more and 70% by mass or less. _ In particular, if the following two aspects are considered , in glass powder The content ratio of the substance containing the sputum taumu is preferably from 3 gram % to more than 7 〇 mass / 〇. The above two aspects mean that the η type is formed even if the surface is sufficiently inclined, and the application layer of the scatter layer is The amount of the element, which is added to the composition forming the n-type diffusion layer - the above-mentioned donor element 'the sheet resistance of the surface having the read diffusion layer formed does not fall below the set value; and the suppression must be suppressed The influence of the volatilization of the substance containing the donor element. Further, the content ratio of the glass component in the glass powder is preferably 熔融 considering the melting temperature, the softening temperature, the glass transition point, and the chemical durability. In general, it is preferably 2% by mass or more and 99% by mass or less, more preferably 25 mass%. /. The above is 98% by mass or less, and more preferably 30% by mass or more and 9% by mass or less. Specifically, when it is a P2〇5_Si〇2 system glass, the content ratio of si〇2 is preferably 20% by mass or more and 99% by mass or less, more preferably 3% by mass or more and 90% by mass or less. Diffusion at the time of 201201400 degrees, dripping 3〇〇t~90〇. Hey. . Preferably, it is 20 〇C~10003⁄4, more preferably = '(4) The softening temperature of the powder can be determined by the public skin: =; r,), and the shape of the glass powder is as follows: generally spherical or flat , you! The iAA plate shape, the scaly shape, and the like are generally spherical, flat, or neon from the viewpoint of coating properties or self-diffusion properties of the substrate when forming a composition of the 11-type diffusion layer. The particle size of the glass powder is less than the 疋ΙΟΟμηι of 4 . When a glass powder having a particle diameter of 1 μm or less is used, a smooth coating film is easily obtained. Further, the particle diameter of the glass powder is more preferably 50 μηι or less. Further, the lower limit is not particularly limited, but is preferably 0.01 μηι or more. Here, the particle diameter of the glass means an average particle diameter, which can be measured by a laser scattering diffraction method particle size distribution measuring device or the like. The glass powder containing the donor element was produced by the following procedure. First, weigh the ingredients and fill them into a disaster. Examples of the material to be collapsed include platinum, platinum-rhodium, ruthenium, aluminum oxide, quartz, carbon, and the like, and can be appropriately selected in consideration of the melting temperature, the environment, and the reactivity with the molten material. Next, a molten metal is prepared by heating in an electric furnace at a temperature corresponding to the composition of the glass. In this case, it is preferred to stir the melt so that it becomes uniform. 201201400 Then, the obtained melt is allowed to flow out onto a graphite plate, a platinum plate, a platinum-ruthenium alloy plate, a ruthenium oxide plate or the like to vitrify the melt. Finally, the glass is pulverized to form a powder. A known method such as a jet mill, a bead mill, or a ball mill can be applied to the pulverization. The content ratio of the glass frit containing the donor element in the composition for forming the n-type diffusion layer is determined in consideration of the (four) property, the generality of the secret element, and the like. In general, the glass content ratio in the composition forming the n-type diffusion layer is preferably from 0.1% by mass or more to 95% by mass or less, more preferably from 1% by mass or more to 90% by mass. It is more preferably 15% by mass or more and 85% by mass or less, and particularly preferably 2% by mass or more and 8% by mass or less. Next, the dispersion medium will be described. The "dispersion medium" means a medium in which the above glass powder is dispersed in the composition. Specifically, a binder, a solvent, or the like is used as a dispersion medium. As the binder, for example, polyvinyl alcohol, polypropylene amide, polyvinyl decylamine, polyvinylpyrrolidone, polyethylene oxide, polysulfonic acid, acrylamide sulfonic acid, fiber can be suitably selected. Ethers, cellulose derivatives, carboxymethyl cellulose, hydroxyethyl cellulose, ethyl cellulose, gelatin, temple powder and starch derivatives, sodium alginate, xanthan , guar gum and guar derivatives, scleroglucan and scleroglucan derivatives, tragacanth and xanthan gum derivatives, dextrin and dextrin derivatives, (mercapto) acrylic resin, (mercapto) acrylic acid S resin (for example, (meth)acrylic acid alkyl ester resin, (meth)acrylic acid dinonylaminoethyl ester resin, etc.), butadiene resin, styrene resin, or In addition to these copolymers, a rhodium oxide resin can also be suitably selected. These may be used alone or in combination of two 12 201201400 or more. The molecular weight of the binder is not particularly limited, and is preferably adjusted in view of the desired viscosity as a composition. Examples of the solvent include acetone, mercaptoethyl ketone, decyl-n-propyl ketone, methyl-isopropyl ketone, decyl-n-butyl ketone, decyl-isobutyl ketone, and mercapto. N-pentyl ketone, decyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, di-isobutyl ketone, trimethyl fluorenone, cyclohexanone, cyclopentanone, nonylcyclohexanone, 2 a ketone solvent such as 4-pentanedione or acetonylacetone; diethyl ether, mercaptoethyl ether, methyl-n-propyl ether, di-isopropyl ether, tetrahydrofuran, mercaptotetrahydrofuran, Noise system (dioxane), two base two. Ethylene burning, ethylene glycoldimethylether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl, diethylene glycol dioxime ether, diethylene glycol diethyl ether , diethylene glycol decyl ethyl ether, diethylene glycol decyl-n-propyl ether, diethylene glycol decyl-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-positive Butyl ether, diethylene glycol decyl-n-hexyl ether, triethylene glycol dioxime ether, triethylene glycol diethyl ether, triethylene glycol decyl ethyl ether, triethylene glycol decyl-n-butyl ether, three Ethylene glycol di-n-butyl ether, triethylene glycol decyl-n-hexyl ether, tetraethylene glycol dioxime ether, tetraethylene glycol diethyl ether, tetra-diethylene glycol methyl ethyl ether, tetraethylene glycol Mercapto-n-butyl ether, diethylene glycol di-n-butyl ether, tetraethylene glycol decyl-n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dioxime ether, propylene glycol diethyl ether, propylene glycol di-positive Propyl ether, propylene glycol dibutyl ether, dipropylene glycol dioxime ether, dipropylene glycol diethyl ether, dipropylene glycol decyl ethyl ether, dipropylene glycol methyl-n-butyl ether, dipropylene glycol di-n-propyl bond, dipropylene glycol di-n-butyl Key, two propylene Mercapto-n-hexyl ether, tripropylene glycol dioxime ether, tripropylene glycol diethyl ether, tripropylene glycol mercaptoethyl 13 201201400 ether, tripropylene glycol decyl-n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol sulfhydryl-positive Key, tetrapropylene glycol diterpene ether, tetrapropylene glycol diethyl ether, tetra-diethylene glycol decyl ethyl ether, tetrapropylene glycol decyl-n-butyl ether, dipropylene glycol di-n-butyl ether, tetrapropylene glycol decyl-n-hexyl ether, Ether solvent such as tetrapropylene glycol di-n-butyl ether; decyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, dibutyl acetate, n-amyl acetate , second amyl acetate, 3-methoxybutyl acetate, decyl amyl acetate, '2-ethylbutyl acetate, 2-ethylhexyl acetate, 2-(2-butoxyethoxy) acetate Ethyl ester, benzyl acetate, cyclohexyl acetate, decyl cyclohexyl acetate, decyl acetate, decyl acetate, ethyl acetate, diethylene glycol oxime ether, diethylene glycol acetate Monoethyl ether, diethylene glycol-n-butyl ether, dipropylene glycol oxime ether, dipropylene glycol ethyl acetate, ethylene glycol diethyl Acid ester, ethoxy triethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, decyl lactate, ethyl lactate, N-butyl lactate, n-amyl lactate, ethylene glycol oxime ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol oxime ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol oxime ether Acetate, diethylene glycol diethyl ether acetate, diethylene glycol-n-butyl ether acetate, propylene glycol oxime ether acetate, propylene glycol diethyl ether acetate, propylene glycol propyl ether acetate, dipropylene glycol oxime ether Ester ester solvents such as acetate, dipropylene glycol diethyl ether acetate, γ-butyrolactone, γ-valerolactone; acetonitrile, fluorenyl-hydrazinopyrrolidone, fluorenyl-ethyl hydrazine 11 ketone, hydrazine-propyl hydrazine 11 ketone, Ν-butyl hydrazine 11 each _, Ν-hexyl pipirone, Ν-cyclohexyl pyrrolidone, hydrazine, hydrazine-dimercaptoamine, hydrazine, hydrazine-dimercaptoacetamide, Aprotic polar solvent such as dimercaptosulfoxide; methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, second butanol, third butanol, positive 201201400 pentanol, isoprene Alcohol, 2~methyl &amp; 癸, seventh alcohol propylene glycol, 1,3-butoxybutanol, n-hexanol, hydrazine second pentanol, third pentanol, 3-methyl second heptanol, n-octanol, 2 soil pentanol, second Alcohol, 2-ethylbutanol, Huaijie, second-undecanol, _hexanol, second octanol, n-nonanol, n-benzal, cyclohexanol, second-tetradecanol, Alcoholic solvents such as second-deca-butane-butanediol, dicyclohexanol, benzyl alcohol, ethylene glycol, 1,2-tripropylene glycol; alcohol, dipropylene glycol, triethylene glycol, monophenyl ether, diethyl Glycol monomethyl alcohol ether, ethyl alcohol, ethylene glycol n-butyl ether, diethylene glycol mono-, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl, propylene glycol single (four) _, ethoxy triethylene glycol, tetraethylene glycol monoether, tripropylene glycol monomethyl ether, etc. _~ propylene glycol monoterpene ether, dipropylene glycol monoethyl alcohol, lauryl olefin, Bielu ^ Cui laboratory solvent; ·Youpin, 4 pentene, α·pinene, β-蒎^ ^ (aIlo_ocimene), limonene, double ocimene, water buds, etc., terpine〇1, sylvestre, or Combine two or more to make a solution; water. When the composition of the (iv) domain-type n-type diffusion layer can be used alone, from the viewpoint of coatability of the substrate, Ml-type alcohol, diethylene glycol mono-n-acetic acid 2-(() is preferred. 2-butoxyethoxy)ethyl ester. The content ratio of the dispersion medium in which the composition of the n-type diffusion layer is formed is determined in consideration of coatability and donor concentration. The viscosity of the composition which forms the n-type diffusion layer in view of applicability is preferably from 10 mPa·s or more to loooooompa.s or less, more preferably from 5 〇 mPa·s or more to 500,000 mPa·s or less. Further, the composition forming the n-type diffusion layer may also contain other additives 15 201201400. As another additive, the metal which reacts easily with the said glass is mentioned, for example. Knife The composition forming the n-type diffusion layer is applied onto a semiconductor substrate, and heat treatment is performed at a high temperature to form an n-type diffusion layer, and at this time, glass is formed on the surface. The glass is immersed in an acid such as hydrofluoric acid and removed, but depending on the type of the glass, there is a glass which is difficult to remove. In this case, by adding Ag, Mn, Cu, Fe, Zn, and Si^ metals which are easily crystallized with the glass, the glass is easily removed after the acid is washed. Among these, the use is selected from people §, 3 divination 1, At least one of 6,211 and [11], more preferably at least one selected from the group consisting of Ag and Si AZn, and particularly preferably Ag. The content ratio of the metal is preferably adjusted depending on the type of the glass or the type of the metal, and is preferably 0.01 mass ❶ / 〇 or more to 10 mass % or less with respect to the glass powder. Next, a method of manufacturing an n-type diffusion layer and a solar cell element of the present invention will be described with reference to Fig. 1 (1) and Fig. 1 (6). Fig. i (丨) (6) is a schematic cross-sectional view conceptually showing an example of a manufacturing procedure of the present invention. In the following drawings, the same components are denoted by the same reference numerals. In Fig. 1 (1), an inert solution is applied to a germanium substrate as a P-type semiconductor substrate 10 to remove a damaged layer, and a texture structure is obtained by etching. Specifically, the damaged layer of the crucible surface generated by slicing from the ingot was removed by using 20% by mass of caustic soda. Then, a mixture of 丨 mass% caustic soda and 10% by mass of isopropyl alcohol was used to form a texture structure (the description of the texture structure is omitted in Fig. 201201400). The cut battery element _ forms a texture structure on the light-receiving surface (surface) side to promote optical confinement effects and to achieve high efficiency. In the above-mentioned (1 (7), the composition in which the n-type diffusion layer is formed is applied onto the surface of the Ρ-type semiconductor substrate 1G, that is, the surface on which the light-receiving surface is formed, and a constituent core in which the n-type diffusion layer is formed is formed. This is a fortune, and the coating method is limited, such as printing, smear, brush coating, spray method, knife-to-blade method, roll coater method, inkjet method, and the like. The coating amount of the composition for forming the n-type diffusion layer is not particularly limited. For example, as the amount of the glass powder, it can be set to 〇〇1 - ~ just g / m, preferably 〇.1 g / m2 ~ 1 〇 g / m2. Further, depending on the composition of the composition forming the n-type diffusion layer, a drying step for allowing the hair to be contained in the composition towel after coating may be provided. In this case, in the temperature of the 峨~~ generations, the use of the slab is 1 minute~1G minutes, and the thief is allowed to dry for 1 〇 minutes~30 minutes. The dry secret member depends on the formation of the composition forming the n-type diffusion layer, and is not particularly limited to the above conditions in the present invention. When the manufacturing method of the present invention is used, the method of manufacturing the ρ+ type diffusion layer (the concentration field layer 14) on the back surface is not limited to the conversion of the n-type diffusion layer formed into a Ρ type by The method of diffusing the layer, or any method known in the art, can be used to expand the selection of the manufacturing method. Therefore, the composition 13 of the element of Group 13 such as 予 (bad) is formed to form the south concentration electric field layer 14. As the composition 13 containing the element of Group 13 such as ruthenium or the like, 201201400 ♦ a glass powder containing a receptor of 7° is used instead of the powder containing the donor element, and is the same as the composition forming the n-type diffusion layer. The composition of the square dip-type diffusion layer. The acceptor element may be, for example, 13 = =, for example, B (4), A1 (4), and 仏 (married) temples. Further, the _ powder containing the acceptor element is preferably selected from the group consisting of B2〇3, A2〇3, and At least one of 2〇3. Further, the method of forming the back surface of the composition of the P-type diffusion layer on the substrate of the (10) substrate is the same as the method of applying the composition for forming the n-type diffusion layer to the Shihki substrate. The composition of the n-type diffusion layer, which will be described later, is thermally diffused, and the composition of the p-type diffusion layer, which is formed on the back surface, is subjected to thermal diffusion treatment, whereby a high-concentration electric field layer 14 can be formed on the back surface. . Further, it is preferable that the dispersion treatment of the composition for forming the P-type diffusion layer and the thermal diffusion treatment of the composition for forming the n-type diffusion layer are simultaneously performed. Then ‘t:~! fine. The semiconductor substrate 1G on which the composition layer 1 having the n-type expansion described above is formed is thermally diffused. By this thermal diffusion treatment, as shown in Fig. 1 (1), the donor element is diffused toward the semiconductor substrate to form the n-type ship layer 12. As the heat diffusion treatment, a known continuous furnace, a batch furnace or the like can be applied. Further, the furnace atmosphere during the thermal diffusion treatment may be appropriately adjusted to air, oxygen, nitrogen, or the like. The heat treatment time can be appropriately selected in accordance with the content ratio of the donor element contained in the composition forming the n-type diffusion layer. For example, it can be set to 1 minute to 60 minutes, more preferably 2 minutes to 30 minutes. Since the surface of the n-type diffusion layer 12 to be formed is formed of squaric acid glass or the like 18 201201400 glass layer (not shown), the phosphoric acid glass is removed by etching. The etching can be carried out by a known method such as a method of immersing in an acid such as hydrofluoric acid or a method of immersing in an alkali such as caustic soda. In the method of forming the n-type diffusion layer of the present invention in which the n-type diffusion layer 12 is formed using the composition 11 for forming an n-type diffusion layer of the present invention shown in FIG. 1 (2) and FIG. 1 (3), only The desired portion forms the n-type diffusion layer 12 without forming an unnecessary n-type diffusion layer on the back side or the side surface. Therefore, in the previously widely used method of forming an n-type diffusion layer by a gas phase reaction method, a side etching step for removing an unnecessary n-type diffusion layer formed on a side surface is required, but the manufacturing method according to the present invention There is no need for a side etching step to simplify the steps. Further, in the prior manufacturing method, it is necessary to convert an unnecessary n-type diffusion layer formed on the back surface into a p-type diffusion layer. As the conversion method, the following method is employed: coating on the n-type diffusion layer on the back surface The paste of aluminum of the group 13 element is subjected to calcination, and aluminum is diffused to the n-type diffusion layer to convert the n-type diffusion layer into a p-type diffusion layer. In this method, in order to sufficiently convert the n-type diffusion layer into a p-type diffusion layer and further form a high-concentration electric field layer of the p+ layer, a certain amount of aluminum is required, so it is necessary to form the layer thicker. . However, since the coefficient of thermal expansion of aluminum differs greatly from the coefficient of thermal expansion of the substrate used as the substrate, a large internal stress is generated in the crucible substrate during the calcination and cooling, which causes the warpage of the crucible substrate. There is a problem that the internal stress causes damage to the crystal grain boundary of the crystal, resulting in an increase in power loss. In addition, the transfer of the solar cell elements in the module process or the connection with the steel wire which is called a tab wire by 201201400 makes it easy to damage the solar cell components. In recent years, due to the improvement of the slicing technology, the thickness of the Shishi substrate is being thinned, and the solar cell element tends to be more susceptible to cracking. However, the material method invented by the root county is to form an unnecessary n-type diffusion layer on the back surface. Therefore, it is not necessary to convert the n-type diffusion layer toward the p-type diffusion layer, and the layer must be thickened. As a result, the generation of internal stress in the substrate can be suppressed or (4). As a result, it is possible to suppress (4) an increase in the force loss or breakage of the solar cell element. In addition, when the manufacturing method of the present invention is used, the method of manufacturing the p + -type diffusion layer U-concentration electric field layer 14 on the back surface is not limited to the conversion of the n-type diffusion layer formed into a p-type diffusion layer by the inscription. The method can also be extended by any method known in the art. Preferably, for example, a glass powder containing an acceptor element is used instead of a glass powder containing a donor element, and a composition forming a p-type diffusion layer formed so as to form a phase of the n-type diffusion layer is applied to the composition. The back surface of the substrate (the surface on the opposite side to the surface on which the composition forming the n-type diffusion layer is applied) is subjected to a firing treatment to form a p + -type diffusion layer (a high-concentration electric field) 14 on the back surface. Further, as will be described later, the material of the surface electrode 2A for the back surface is not limited to the aluminum of the thirteenth group, and for example, Ag (silver) or (copper) may be applied, and the thickness of the surface electrode 20 on the back surface may be different. The previous thick enamel is formed thinner. In Fig. 1 (4), an anti-reflection film 16 is formed on the n-type diffusion layer 12. The anti-reflection film 16 is formed using a well-known technique. For example, when the antireflection film 20 201201400 16 is a tantalum nitride film, it is formed by a plasma chemical vapor deposition (Chemical Vapor Deposition) method in which a mixed gas of siH4 and Nh3 is used as a raw material. At this time, hydrogen diffuses in the crystal, and does not participate in the bonding of the ruthenium atom, that is, the dangling b〇nd is hydrogen-bonded, and the defect is purified (nitrogen purification). More specifically, the mixed gas flow rate ratio NH3/SiH4 is 〇〇5 〜 〇, the pressure in the reaction chamber is 0·1 Τ〇ΓΓ 2 2 T ,, and the temperature at the time of film formation is 300 ° C to 550 ° C It is formed under the condition that the frequency of discharge of the plasma is 1 〇〇 kHz or more. In Fig. 1, a surface electrode 18 is formed by printing and coating a metal paste for a surface electrode on a surface (light-receiving surface) of the anti-reflection film 16 by a screen printing method. The metal paste for the surface electrode contains (丨) metal particles and (2) glass particles as essential components, and if necessary, a resin binder, (4) other additives, and the like. Then, the back electrode 20 is also formed on the high-concentration electric field layer 14 on the back surface. As described above, in the present invention, the material or the formation of the back electrode 2A is not specifically defined. For example, a paste for a back electrode comprising a metal such as silver or copper may be applied and dried to form a back electrode 2 (). At this time, in order to connect the solar cell elements in the module process, silver paste for silver electrode formation may be provided in three parts. Fig. 1 (4) towel 'scales the electrode to make a solar cell element if _. (: ~9 〇 (the range of TC is calcined for a few seconds ~ a few minutes side as 'insulation _ anti-reflection film 16 due to electricity _ metal f containing glass particles melted, and then (d) part of the surface is amalgamated, paste 21 201201400 The metal particles (for example, silver particles) form a contact portion and solidify, and the formed surface electrode 18 and the germanium substrate 1 are electrically connected. This is called fire through. The surface electrode 18 is composed of a bus bar electrode 30 and a finger electrode that intersects the bus bar electrode 3A. Fig. 2(A) shows that the surface electrode 18 is set to include a confluence as viewed from the surface. A plan view of a solar cell element having a configuration of a strip electrode 30 and a finger electrode 32 intersecting the bus bar electrode 3, and Fig. 2(B) is a perspective view showing a part of Fig. 2(A) in an enlarged manner. The electrode 18 can be formed by, for example, screen printing of the above-described metal paste, plating of an electrode material, vapor deposition of an electrode material by electron beam heating in a high vacuum, etc. It is known to include the bus bar electrode 30 and the fingers. Electrode 32 The surface electrode 18 is generally used as an electrode on the light-receiving surface side, and a known method of forming the bus bar electrode and the finger electrode on the light-receiving surface side can be applied. In the above, an n-type diffusion layer is formed on the surface to form a back surface. The p-type diffusion layer is further described as a solar cell element in which a surface electrode and a back electrode are provided on each layer. However, when the composition for forming an nS diffusion layer of the present invention is used, a back contact type (backc〇mact) can be produced. The solar cell element of the back contact type is a solar cell element in which all the electrodes are provided on the back surface to increase the area of the light receiving surface. That is, in the back contact type solar cell element, it is necessary to form n on the back surface. Both the type diffusion portion and the p + type diffusion portion form a pn junction structure. The formation of the 11 type diffusion layer 22 201201400 of the present invention can form an n-type diffusion portion only at a specific portion, and thus can be applied to a back contact type solar cell. The manufacture of the components is also referred to in the specification by the Japanese Patent Application No. 2, the entire disclosure of which is hereby incorporated by reference. All the readings, special shots, and techniques recorded in the document are quoted in the same degree as the specific documents and the technical specifications. [Examples] Hereinafter, examples of the present invention will be specifically described, but the present invention is not limited by the examples. Further, as long as there is no description in advance, all chemicals are used as reagents. In the explanation, "%" means the amount %". [Example 1] The shape of the particles is substantially spherical using an automatic mortar kneading machine, the average particle diameter is 3 5 μηι, and the softening temperature is 490C. P205-SiO2 system glass (ρ2〇5 content: 1%) powder 2〇g mixed with ethyl cellulose 0.3 g, 2-(2-butoxyethoxy)ethyl acetate 7 § and pasteified, A composition for forming an n-type diffusion layer is formed. Further, the glass particle shape was observed and judged using a TM_1〇〇〇-type scanning electron microscope manufactured by Hitachi High-Technologies Co., Ltd. The average particle size of the glass is used

Beckman Coulter (股份)製造的LS 13 32〇型雷射散射繞 射法粒度分布測定裝置(測定波長:632 nm)來算出。玻 23 201201400 璃的軟化點是使用島津製作所(股份)製造的dtg_6〇h 型示差熱.熱重量同步測定裝置,根據示差熱(DTA)曲線 而求出。 其次,藉由網版印刷將所製備的膏狀物塗佈於p型矽 基板的表面,並於15G°C的加熱板上賴5分鐘。繼而, 利用設域1_。⑶進行1G分鐘_散處理,然後, 為了去除_層而將基板浸潰於氫氟酸巾5分鐘,然後進 拆I水清洗。表面存在若干_物,但可藉由·碎布進 行擦拭而容易地去除。其後,進行乾燥。 塗佈有形成η型擴散層的組成物侧的表面的薄片電 阻為8〇腕’ Ρ⑷擴散而形成η型擴散層。背面的薄 片電阻為1000000 Ω/□以上而無法測定, 形成η型擴散層。 ^ ^ ^ 再者,薄片電阻是使用三菱化學(股份)製造的 L^esta-EP MCP-T·魏電阻率計並藉由四探針法來測 疋0 [實例2] 除將熱擴散處理時間設定為20分鐘以外,以 形成n_散層° ^佈有形成11型擴散層的組 的表面的薄片電阻為62Ω/α,ρ⑽)擴散而形 成n t擴散層。 ^的薄片電阻為100_ Ω/□以上而無法測定,判 斷為貫質上未形成η型擴散層。 [實例3] 24 201201400 ^相_時^叫3G分酬,以與實例 植成物之側Us*11型擴散層。塗佈有形成n型擴散層的 、、成物之側的表面的薄片電 形成η型擴散層。 U/口 P CW)擴月欠而 丰1丨2 ’背面的薄片電阻為1000000 Ω/□以上而無 法測定,判斷為實質上夫 [實例4] 成η型擴散層。 3換成粒子形狀為大致球狀,平均粒徑為 人^ . 30=/) z皿,為543 C的P2〇5_Si〇2體系玻璃粉末(P2〇5 外’以與實例1相同的方式來製備形 μ $ 的組成物’並使用該形成η型擴散層的組成 =成ni擴散層。塗佈有形成以擴散層的組成物之 :的表面的薄片電阻為55 Ω/口,p (磷)擴散而形成η型 擴散層。 另一方面,背面的薄片電阻為1000000 Ω/口以上而盔 法測定’判斷為實質上未形成n型擴散層。 … [實例5] 將玻璃粉末替換成粒子形狀為大致球狀,平均粒徑為 3·5曰μιη’軟化溫度為邮⑽桃伽2體系玻璃粉末(ρ处 含量:50%),除此以外’以與實例】相同的方式來製備形 成η型擴散層的紕成物,並使用該形成11型擴散層的組成 物來形成η型擴散層。塗佈有形成η型擴散層的組成物之 側的表面的薄片電阻為43 W,P (磷)擴散而形成η 擴散層。 25 201201400 另一方面’背面的薄片電阻為1000000 Ω/□以上而無 法測疋,判斷為貫質上未形成]^型擴散層。 [實例6] 將玻璃粉末替換成粒子形狀為大致球狀,平均粒徑為 3.5 μπι’軟化溫度為“沈的p2〇5_Si〇2體系玻璃粉末(ha 含里.60/〇) ’除此以外,以與實例^相同的方式來製備形 成η型擴散層的組成物,並使用該形成11型擴散層的組成 物來形成η型擴散層。塗佈有形成η型擴散層的組成物之 侧的表面的薄片電阻為40 Ω/口,ρ (磷)擴散而形成η型 擴散層。 另一方面,背面的薄片電阻為1〇〇〇〇〇〇 Ω/口以上而無 法測疋,判斷為實質上未形成11型擴散層。 [實例7] 將玻璃粉末替換成粒子形狀為大致球狀,平均粒徑為 3.5 ,,軟化溫度為6抑的p2〇5_Si〇2體系玻璃粉末(ρ2〇5 含里.W。),除此财卜’以與實例丨相同的方式來製備形 成η型擴散層的組成物,並制該形細型擴散層的組成 物來形成η型擴散層。塗佈有形成η型擴散層的組成物之 侧的表面的薄片電阻為41 Ω/α,ρ⑽)擴散而形成η型 擴散層。 另方面’背面的薄片電阻為1000000 Ω/口以上而益 法測定,騎騎質上未型擴散層。 … [實例8] 將玻璃粉末替換成粒子形狀為大致球狀,平均粒徑為 26 201201400 3·5 μιη’軟化溫度為495°C的P2〇5_Zn〇體系玻璃粉末(p2〇5 含置· 1G%)’除此以外’以與實例i相同的方式來製備形 成η型擴散層的組成物’並使㈣形成n㈣散層的組成 物來形成η型擴散層。塗佈有形成n型擴散層的組成物之 侧的表面的薄片電阻為67 Ω/α,p (磷)擴散而形成η型 擴散層。 另一方面,背面的薄片電阻為1000000 Ω/□以上而無 法測疋,判辦為實質上未形成11型擴散層。 [實例9] ' 將玻璃粉末替換成粒子形狀為大致球狀,平均粒徑為 3.?m’軟化溫度為5阶的桃_⑽體系玻璃粉末(p2〇5 含ϊ . 4G%),除纽外’以與實例丨相_方式來製備形 成η型擴散層的喊物,並制郷細型紐層的組成 物來形成η型擴散層。塗佈有形成η型擴散層的組成物之 侧的表面的薄片電阻為22 —,ρ⑷擴散而形成 擴散層。 另一方面,背面的薄片電阻為1〇〇〇〇〇〇 Ω/□以上而益 法測定’判斷為實質上未形成11型擴散層。 …、 [實例10] 使用自動乳绰混練裝置將將粒子形狀為大纟球狀,平 均粒徑為3.5 μπι,軟化溫度為5271的p2(Vsi〇2體系麵 (P2〇5含量:10%)粉末19·7 §與AgG 3 g、乙基纖維素 〇.3g、乙酸2-(2-丁氧基乙氧基)乙醋㈠加以混合並膏化 製成形成η贿散層的組成物。其後,實施與實例i相同 27 20120140(^ 之操作。 其結果,於清洗後的基板上無破璃的附著物,該附著 物已被♦易地去除。另外,表面的薄片電阻為72 Q/口,p (磷)擴散而形成η型擴散層。 另-方面’背面的薄片電阻為1〇〇〇〇〇〇 Q/口以上而無 法測定,判斷為實質上未形成η型擴散層。 [比較例1] ' 9 將玻璃粉末替換成粒子形狀為大致球狀,平均粒徑為 3.5曰μιη,軟化溫度為46rc的P2〇5_Si〇2體系玻璃粉末⑺&amp; 含罝.0.5%) ’除此以外,以與實例丨相同的方式來製備 形成η型擴散層的組成物’並制該形成n型擴散層的組 成物以與實例1相同的方式進行熱擴散處理。 塗佈有形成η型擴散層的組成物之侧的表面的薄片電 阻為1 _00() Ω/□以上而無法測^,判斷為實質上未形成η 型擴散層。 [比較例2] 將玻璃粉末替換成粒子形狀為大致球狀,平均粒徑為 3.5日μιη’軟化溫度為711^Ρ2〇5·&amp;〇2體系玻璃粉末⑺&amp; 含篁· 85%)’除此以外,以與實例丨相_方式來製備形 成η型擴散層的組成物,並使用該形細型紐層的組 物以與實例1/目同的方式進行熱擴散處理。 、塗佈有形成η型擴散層的組成物之側的表面的薄片電 阻為36,/二Ρ (鱗)擴散而形成η型擴散層。 但是’背面的薄片電阻為255 Ω/□,於背面亦形成有η 28 201201400 型擴散層。 [比較例3] 將雜二氫铵⑽4H2P〇4)粉末2〇 g與乙基纖維素3 g、乙酸2-(2-丁氧基乙氧基)乙醋7 g加以混合並膏化 成形成η型擴散層的組成物。 其次,藉由網版印刷將所製備的膏塗佈於ρ型石夕基板 表面,並於15G°C的加熱板上乾燥5分鐘'_,_設 定成1000°C的電爐進行10分鐘熱擴散處理,然後,為°了 去除玻璃層而將基板浸潰於氫氟酸中5分鐘,麸 水清洗、乾燥。 …、 塗佈有形成η型擴散層的組成物之側的表面的薄片電 阻為14 Ω/口,Ρ (磷)擴散而形成η型擴散層。但是, 面的薄片電阻為50 Ω/□,於背面亦形成有η型擴散岸。 [比較例4] a 將磷酸二氫銨(NI^HJO4)粉末i g與純水7 g、聚 乙婦醇0.7 g、異丙醇i.5 g混合來製備溶液,製成撼 散層組成物。 顆 其次,利用旋轉塗佈機(20〇〇rpm,30sec)將所製 ,溶液塗佈於P型矽基板表面,並於150°C的加熱板上乾 燥5分鐘。繼而,利用設定成1〇〇(rc的電爐進行分在: 熱擴散處理,賴,為了去除玻璃層㈣基板浸潰於= 酸中5分鐘,然後進行流水清洗、乾燥。 、塗佈有形成η型擴散層的組成物之側的表面的薄片電 阻為10 Ω/口,ρ (磷)擴散而形成11型擴散層。但是,背 29 201201400 面的薄片電阻為100 Ω/□,於背面亦形成有η型擴散層。 雖然本發明已以較佳實施例揭露如上,然其並非用、 限定本發明,任何熟習此技藝者,在不脫離本發明之精二 =範圍内,當可作些許之更動與潤飾,因此本發明之保I 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1(1)至圖1(6)是概念性地表示本發明的太陽電 池元件的製造步驟的一例的剖面圖。 圖2( A)是自表面所觀察到的太陽電池元件的俯視圖。 圖2 (B)是將圖2 (A)的一部分擴大表示的立體圖。 【主要元件符號說明】 10 : p型半導體基板/半導體基板/矽/矽基板 11 :形成η型擴散層的組成物層/形成n型擴散層的組 成物 12 : η型擴散層 13 :組成物 14 :Ρ+型擴散層(高濃度電場層) 16 :抗反射膜 18 :表面電極 20 :背面電極/表面電極 3G :匯流條電極 32 :指狀電極Calculated by a LS 13 32〇 laser scattering diffraction particle size distribution measuring apparatus (measuring wavelength: 632 nm) manufactured by Beckman Coulter Co., Ltd. Glass 23 201201400 The softening point of the glass is obtained by using the dtg_6〇h type differential heat and thermal weight synchronization measuring device manufactured by Shimadzu Corporation (share), based on the differential heat (DTA) curve. Next, the prepared paste was applied to the surface of the p-type ruthenium substrate by screen printing, and allowed to stand on a hot plate at 15 °C for 5 minutes. Then, use the domain 1_. (3) The 1 G minute_dispersion treatment was carried out, and then, the substrate was immersed in a hydrofluoric acid towel for 5 minutes in order to remove the _ layer, and then washed with I water. There are a few objects on the surface, but they can be easily removed by wiping with a rag. Thereafter, drying is carried out. The sheet resistance coated on the surface on the side of the composition on which the n-type diffusion layer was formed was 8 Å and the Ρ(4) was diffused to form an n-type diffusion layer. The sheet resistance on the back side was 1,000,000 Ω/□ or more and could not be measured, and an n-type diffusion layer was formed. ^ ^ ^ Furthermore, the sheet resistance is measured using a L^esta-EP MCP-T·Wei resistivity meter manufactured by Mitsubishi Chemical Corporation and measured by the four-probe method [Example 2] except for thermal diffusion treatment The sheet resistance of the surface of the group in which the 11-type diffusion layer was formed was 62 Ω/α, ρ(10)) was diffused to form an nt diffusion layer, except that the time was set to 20 minutes. The sheet resistance of ^ was 100 Ω/□ or more and could not be measured, and it was judged that the n-type diffusion layer was not formed in the permeation. [Example 3] 24 201201400 ^ Phase _ time ^ called 3G pay, with the instance of the plant on the side Us*11 type diffusion layer. A sheet coated with a surface on the side of the object forming the n-type diffusion layer is electrically formed into an n-type diffusion layer. U/port P CW) The expansion of the moon is less than 1 丨 2 ′ The sheet resistance on the back side is 1,000,000 Ω/□ or more, and it is judged that it is substantially [Example 4] The n-type diffusion layer is formed. 3 changed to a particle shape of a substantially spherical shape, and the average particle diameter was human. 30=/) z dish, which was a 543 C P2〇5_Si〇2 system glass powder (P2〇5 outside 'in the same manner as in Example 1 The composition of the shape μ$ was prepared and the composition for forming the n-type diffusion layer was used to form a ni diffusion layer. The sheet resistance of the surface coated with the composition of the diffusion layer was 55 Ω/□, p (phosphorus) The n-type diffusion layer was formed by diffusion. On the other hand, the sheet resistance of the back surface was 1,000,000 Ω/□ or more and the helmet method was measured to determine that the n-type diffusion layer was not substantially formed. [Example 5] Glass powder was replaced with particles. The shape is substantially spherical, and the average particle diameter is 3·5 曰μιη' softening temperature is postal (10) peach gamma 2 system glass powder (content at ρ: 50%), except that 'in the same manner as in the example> is prepared to form The composition of the n-type diffusion layer is formed using the composition forming the diffusion layer of the type 11 to form an n-type diffusion layer. The sheet resistance of the surface coated with the side of the composition forming the n-type diffusion layer is 43 W, P (Phosphorus) diffuses to form an η diffusion layer. 25 201201400 On the other hand, 'the sheet resistance on the back side 1000000 Ω/□ or more and could not be measured, and it was judged that the diffusion layer was not formed on the quality. [Example 6] The glass powder was replaced with a particle shape of a substantially spherical shape, and the average particle diameter was 3.5 μm. Sinking p2〇5_Si〇2 system glass powder (ha containing .60/〇) In addition, a composition for forming an n-type diffusion layer was prepared in the same manner as in Example ^, and a diffusion layer of 11 type was formed using the same. The composition is formed to form an n-type diffusion layer. The sheet resistance of the surface coated with the side on which the composition of the n-type diffusion layer is formed is 40 Ω/□, and ρ (phosphorus) is diffused to form an n-type diffusion layer. The sheet resistance of the back surface was 1 〇〇〇〇〇〇Ω/□ or more, and it was judged that the 11-type diffusion layer was not formed. [Example 7] The glass powder was replaced with a particle shape of a substantially spherical shape, and an average particle size. A glass powder of p2〇5_Si〇2 system having a softening temperature of 3.5 and a softening temperature of 6 (ρ2〇5, containing .W.), except for the same way as in the example, to form an n-type diffusion layer. a composition, and a composition of the fine diffusion layer is formed to form an n-type diffusion The sheet resistance of the surface on the side on which the composition on which the n-type diffusion layer is formed is 41 Ω/α, ρ(10)) is diffused to form an n-type diffusion layer. On the other hand, the sheet resistance of the back surface is 1,000,000 Ω/□ or more. Measured by the method of riding, the rider has a non-type diffusion layer. [Example 8] The glass powder was replaced with a particle shape of a substantially spherical shape, and the average particle size was 26 201201400 3·5 μιη 'softening temperature of 495 ° C P2〇 5_Zn〇 system glass powder (p2〇5 containing · 1 G%) 'other than 'the composition of the n-type diffusion layer was prepared in the same manner as in the example i' and the composition of the n (four) layer was formed to form N-type diffusion layer. The sheet resistance of the surface coated with the side on which the composition of the n-type diffusion layer was formed was 67 Ω/α, and p (phosphorus) was diffused to form an n-type diffusion layer. On the other hand, the sheet resistance of the back surface was 1,000,000 Ω/□ or more, and it was found that the 11-type diffusion layer was not substantially formed. [Example 9] 'The glass powder was replaced by a peach-(10) system glass powder having a particle shape of a substantially spherical shape and an average particle diameter of 3.?m' softening temperature of 5 steps (p2〇5 containing ϊ. 4G%), except In the outside, the composition of the n-type diffusion layer is prepared by the method of forming an n-type diffusion layer, and the composition of the fine-type layer is formed to form an n-type diffusion layer. The sheet having the surface on the side on which the composition forming the n-type diffusion layer is applied has a sheet resistance of 22 -, and ρ (4) is diffused to form a diffusion layer. On the other hand, the sheet resistance of the back surface was 1 〇〇〇〇〇〇 Ω / □ or more, and the measurement was judged as "the 11-type diffusion layer was not substantially formed. ..., [Example 10] The p2 (Vsi〇2 system surface (P2〇5 content: 10%) having a particle shape of a large spheroidal shape, an average particle diameter of 3.5 μm, and a softening temperature of 5271 was used using an automatic mortar mixing device. The powder 19·7 was mixed with AgG 3 g, ethylcellulose 〇.3 g, 2-(2-butoxyethoxy)acetic acid acetate (I) and paste-formed to form a composition for forming a η brittle layer. Thereafter, the same operation as in Example i was carried out 27 20120140 (^. As a result, there was no adhesion of the glass on the cleaned substrate, and the attached matter was easily removed by ♦. In addition, the sheet resistance of the surface was 72 Q. / Port, p (phosphorus) is diffused to form an n-type diffusion layer. On the other hand, the sheet resistance of the back surface is 1 〇〇〇〇〇〇 Q / port or more and cannot be measured, and it is judged that the n - type diffusion layer is not substantially formed. [Comparative Example 1] ' 9 The glass powder was replaced with a P2〇5_Si〇2 system glass powder having a particle shape of a substantially spherical shape, an average particle diameter of 3.5 μm, and a softening temperature of 46 rc (7) &amp; 罝·0.5%) Except that the composition forming the n-type diffusion layer was prepared in the same manner as in Example 并 and the n-type diffusion layer was formed. The composition was subjected to a thermal diffusion treatment in the same manner as in Example 1. The sheet resistance of the surface coated with the side on which the composition of the n-type diffusion layer was formed was 1 _00 () Ω / □ or more, and it was judged to be substantially The n-type diffusion layer was not formed. [Comparative Example 2] The glass powder was replaced with a particle shape of a substantially spherical shape, and the average particle diameter was 3.5 days. The softening temperature was 711 Ρ 2 〇 5 · &amp; 〇 2 system glass powder (7) &amp;篁· 85%) 'In addition to this, the composition forming the n-type diffusion layer was prepared in the same manner as in the example, and the composition of the fine-shaped layer was used to carry out heat in the same manner as in Example 1 Diffusion treatment. The sheet resistance of the surface coated with the side on which the composition of the n-type diffusion layer was formed was 36, and dioxins (scales) were diffused to form an n-type diffusion layer. However, the sheet resistance on the back side was 255 Ω/□, and a diffusion layer of η 28 201201400 was formed on the back surface. [Comparative Example 3] 2 〇g of a heterodihydroammonium (10) 4H 2 P 〇 4) powder was mixed with 3 g of ethyl cellulose and 7 g of 2-(2-butoxyethoxy)acetic acid, and pasteified to form η. The composition of the type of diffusion layer. Next, the prepared paste was applied to the surface of the p-type stone substrate by screen printing, and dried on a hot plate at 15 G ° C for 5 minutes. The heat spread was set to 1000 ° C for 10 minutes. After the treatment, the glass layer was removed and the substrate was immersed in hydrofluoric acid for 5 minutes, and the bran water was washed and dried. The sheet resistance of the surface coated with the side on which the composition of the n-type diffusion layer was formed was 14 Ω/□, and Ρ (phosphorus) was diffused to form an n-type diffusion layer. However, the sheet resistance of the surface was 50 Ω/□, and an n-type diffusion bank was formed on the back surface. [Comparative Example 4] a A solution was prepared by mixing ammonium dihydrogen phosphate (NI^HJO4) powder ig with 7 g of pure water, 0.7 g of polyethyl alcohol, and i.5 g of isopropanol to prepare a bismuth layer composition. . Next, the prepared solution was applied onto the surface of a P-type ruthenium substrate by a spin coater (20 rpm, 30 sec), and dried on a hot plate at 150 ° C for 5 minutes. Then, it is divided into: 1 〇〇 (electric furnace of rc is divided into: thermal diffusion treatment, and the substrate is immersed in the acid for 5 minutes to remove the glass layer (4), and then washed and dried by running water. The sheet resistance of the surface on the side of the composition of the diffusion layer is 10 Ω/□, and ρ (phosphorus) diffuses to form an 11-type diffusion layer. However, the sheet resistance of the back surface of the 201201400 surface is 100 Ω/□, which is also formed on the back surface. There is an n-type diffusion layer. Although the invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and those skilled in the art can make some modifications without departing from the scope of the invention. The scope of the present invention is defined by the scope of the appended claims. [Simplified Schematic] FIG. 1(1) to FIG. 1(6) conceptually represent the present invention. Fig. 2(A) is a plan view of a solar cell element viewed from the surface. Fig. 2(B) is a perspective view showing a part of Fig. 2(A) in an enlarged manner. Main component symbol description] 10 : p-type semiconductor Plate/semiconductor substrate/矽/矽 substrate 11: Composition layer forming n-type diffusion layer/Composition 12 forming n-type diffusion layer: η-type diffusion layer 13: Composition 14: Ρ+-type diffusion layer (high-concentration electric field) Layer) 16: Anti-reflection film 18: Surface electrode 20: Back surface electrode / Surface electrode 3G: Bus bar electrode 32: Finger electrode

Claims (1)

201201400 七、申請專利範圍: 1. -種形成η型擴散層的組成物,包括. 含有施體元素的_粉末以及分散介質,上述坡 末包括含有施體7G素的物f以及玻璃成分物質,上述; 粉末中的上述含有施體元素的物f的含有比率為= 以上至80質量%以下。 里/〇 2. 如申請專利範圍第1項所述之形成η型擴散層的組 成物,其+上述施體元素是選自Ρ (碟)及 至少一種。 的 、3.如f請專利範圍第i項所述之形成η型擴散層的組 成物,其中含有上述施體元素的玻璃粉末包括: 選自P203、P2Q5及Sb203中的至少—種含有施體 的物質;以及 選自 Si02、K2〇、Na2〇、Li20、Ba0、Sr0、Ca〇、 MgO、BeO、Zn〇、Pb0、Cd〇、Sn〇、Zr〇2、及 M〇〇3 中 的至少一種玻璃成分物質。 、4.如申請專利範圍第!項所述之形成n型擴散層的組 成物,更包括選自Ag (銀)、Si(石夕)、Cu (銅)、Fe(鐵)、 Zn (鋅)及Μη (猛)中的至少一種金屬。 5. 如申凊專利範圍第4項所述之形成η型擴散層的組 成物’其中上述金屬為Ag (銀)。 ’ 6. —種η型擴散層的製造方法,包括: 塗佈如申請專利範圍第1項至第5項中任一項所述之 形成η型擴散層的組成物的步驟;以及 201201400. 實施熱擴散處理的步驟。 7. —種太陽電池元件的製造方法,包括: 於半導體基板上塗佈如申請專利範圍第1項至第5項 中任一項所述之形成η型擴散層的組成物的步驟; 實施熱擴散處理來形成η型擴散層的步驟;以及 於所形成的上述η型擴散層上形成電極的步驟。 32201201400 VII. Patent application scope: 1. A composition for forming an n-type diffusion layer, comprising: a powder containing a donor element and a dispersion medium, wherein the slope includes a substance f containing a donor body 7G and a glass component substance, The content ratio of the above-mentioned donor element-containing substance f in the powder is from above to 80% by mass. 2. The composition for forming an n-type diffusion layer according to claim 1, wherein the above-mentioned donor element is selected from the group consisting of Ρ (disc) and at least one. 3. The composition for forming an n-type diffusion layer according to item i of the patent scope, wherein the glass powder containing the above-mentioned donor element comprises: at least one selected from the group consisting of P203, P2Q5, and Sb203 And a substance selected from the group consisting of SiO 2 , K 2 〇, Na 2 〇, Li 20 , Ba 0 , Sr 0 , Ca 〇, MgO, BeO, Zn 〇, Pb 0 , Cd 〇, Sn 〇, Zr 〇 2, and M 〇〇 3 A glass component substance. 4. If you apply for a patent scope! The composition for forming an n-type diffusion layer, further comprising at least one selected from the group consisting of Ag (silver), Si (Shi Xi), Cu (copper), Fe (iron), Zn (zinc), and Μ 猛 (猛) a metal. 5. The composition for forming an n-type diffusion layer as described in claim 4, wherein the metal is Ag (silver). A method of producing an n-type diffusion layer, comprising: a step of coating a composition for forming an n-type diffusion layer according to any one of claims 1 to 5; and 201201400. The step of thermal diffusion treatment. 7. A method of manufacturing a solar cell element, comprising: a step of coating a semiconductor substrate with a composition for forming an n-type diffusion layer according to any one of claims 1 to 5; a step of diffusing to form an n-type diffusion layer; and a step of forming an electrode on the n-type diffusion layer formed. 32
TW100114097A 2010-04-23 2011-04-22 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element TWI499070B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100224 2010-04-23

Publications (2)

Publication Number Publication Date
TW201201400A true TW201201400A (en) 2012-01-01
TWI499070B TWI499070B (en) 2015-09-01

Family

ID=44834293

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100114097A TWI499070B (en) 2010-04-23 2011-04-22 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW103135127A TW201508821A (en) 2010-04-23 2011-04-22 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103135127A TW201508821A (en) 2010-04-23 2011-04-22 Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element

Country Status (5)

Country Link
JP (2) JP5626339B2 (en)
KR (2) KR101484833B1 (en)
CN (1) CN102844841B (en)
TW (2) TWI499070B (en)
WO (1) WO2011132779A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839787A (en) * 2011-07-05 2014-06-04 日立化成株式会社 Composition for forming n-type diffusion layer, method for producing n-type diffusion layer, and method for producing solar cell element
WO2013129002A1 (en) * 2012-02-29 2013-09-06 日立化成株式会社 COMPOSITION FOR FORMING n-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING n-TYPE DIFFUSION LAYER, AND METHOD FOR MANUFACTURING SOLAR CELL
KR20140092489A (en) * 2012-12-29 2014-07-24 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same
JP2014179360A (en) * 2013-03-13 2014-09-25 Hitachi Chemical Co Ltd Composition for n-type diffusion layer formation, method for manufacturing semiconductor substrate having n-type diffusion layer, and method for manufacturing solar battery device
JP6379461B2 (en) * 2013-09-02 2018-08-29 日立化成株式会社 Method for manufacturing silicon substrate having p-type diffusion layer, method for manufacturing solar cell element, and solar cell element
CN107146757A (en) * 2016-08-26 2017-09-08 扬州杰盈汽车芯片有限公司 A kind of attached phosphorus technique of atomizing wafer

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL207969A (en) * 1955-06-28
US4800175A (en) * 1987-05-29 1989-01-24 Owens-Illinois Television Products Inc. Phosphorous planar dopant source for low temperature applications
US4891331A (en) * 1988-01-21 1990-01-02 Oi-Neg Tv Products, Inc. Method for doping silicon wafers using Al2 O3 /P2 O5 composition
JPH06105696B2 (en) * 1988-12-15 1994-12-21 シャープ株式会社 Method for manufacturing semiconductor device
JPH02177569A (en) * 1988-12-28 1990-07-10 Sharp Corp Manufacture of solar cell
JPH04158514A (en) * 1990-10-22 1992-06-01 Sumitomo Chem Co Ltd Impurity diffusion to semiconductor substrate
JPH04174517A (en) * 1990-11-07 1992-06-22 Canon Inc Manufacture of diamond semiconductor
JP3380516B2 (en) * 1991-08-26 2003-02-24 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
DE19910816A1 (en) * 1999-03-11 2000-10-05 Merck Patent Gmbh Doping pastes for producing p, p + and n, n + regions in semiconductors
JP4726354B2 (en) * 2001-08-22 2011-07-20 東洋アルミニウム株式会社 Paste composition and solar cell using the same
JP4481869B2 (en) * 2005-04-26 2010-06-16 信越半導体株式会社 SOLAR CELL MANUFACTURING METHOD, SOLAR CELL, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
US8575474B2 (en) * 2006-03-20 2013-11-05 Heracus Precious Metals North America Conshohocken LLC Solar cell contacts containing aluminum and at least one of boron, titanium, nickel, tin, silver, gallium, zinc, indium and copper
WO2008085806A1 (en) * 2007-01-03 2008-07-17 Nanogram Corporation Nanoparticle inks based on silicon/germanium, doped particles, printing and processes for semiconductor applications
US20090092745A1 (en) * 2007-10-05 2009-04-09 Luca Pavani Dopant material for manufacturing solar cells
WO2009060761A1 (en) * 2007-11-09 2009-05-14 Nippon Electric Glass Co., Ltd. Dopant host and process for producing the dopant host
JP2009117729A (en) * 2007-11-09 2009-05-28 Nippon Electric Glass Co Ltd Dopant host and method for manufacturing the dopant host
JP5522900B2 (en) * 2008-02-22 2014-06-18 東京応化工業株式会社 Electrode forming conductive composition and method for forming solar cell

Also Published As

Publication number Publication date
KR101484833B1 (en) 2015-01-21
CN102844841A (en) 2012-12-26
JP5958485B2 (en) 2016-08-02
JP2014170939A (en) 2014-09-18
CN102844841B (en) 2016-06-15
KR20130066614A (en) 2013-06-20
TW201508821A (en) 2015-03-01
JPWO2011132779A1 (en) 2013-07-18
WO2011132779A1 (en) 2011-10-27
TWI499070B (en) 2015-09-01
JP5626339B2 (en) 2014-11-19
KR20140129375A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
TW201133564A (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI558676B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201110398A (en) Process of forming a grid electrode on the front-side of a silicon wafer
TW201201400A (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TW201140659A (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
TWI485875B (en) Composition for forming impurity diffusion layer, composition for forming n-type diffusion layer, method for forming n-type diffusion layer, composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for produci
TWI462157B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TWI452708B (en) Method for producing photovoltaic cell
TW201212107A (en) Composition for forming impurity diffusion layer, method for producing impurity diffusion layer, and method for producing photovoltaic cell element
TW201230380A (en) Method for producing photovoltaic cell
TWI482302B (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell element
TWI548102B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
TW201125154A (en) Fabricating method of solar cell
TW201308402A (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, and method for producing photovoltaic cell
TW201513178A (en) Composition for forming n-type diffusion layer, method of forming n-type diffusion layer, method of producing semiconductor substrate having n-type diffusion layer and method of producing photovoltaic cell element
TWI488222B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP6582747B2 (en) Composition for forming n-type diffusion layer, method for producing semiconductor substrate having n-type diffusion layer, and method for producing solar cell
TWI498945B (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell element
JP2017139419A (en) P-type diffusion layer forming composition, method for manufacturing semiconductor substrate with p-type diffusion layer, manufacturing method for solar cell element, and solar cell element
TW201251036A (en) Composition for forming n-type diffusion layer, method for producing n-type diffusion layer and method for producing photovoltaic cell
JP2017139420A (en) P-type diffusion layer forming composition, method for manufacturing semiconductor substrate with p-type diffusion layer, manufacturing method for solar cell element, and solar cell element
JP2017199883A (en) N-type diffusion layer forming composition, method of manufacturing semiconductor substrate with n-type diffusion layer, and method of manufacturing solar cell element
JP2017028122A (en) N-type diffusion layer forming composition, method for manufacturing semiconductor substrate with n-type diffusion layer, method for manufacturing solar cell element, and solar cell element
JP2017028123A (en) Method for manufacturing semiconductor substrate including diffusion layer, method for manufacturing solar cell element, and solar cell element
JPWO2016068315A1 (en) N-type diffusion layer forming composition, method for producing n-type diffusion layer, and method for producing solar cell element

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees