JP2009117729A - Dopant host and method for manufacturing the dopant host - Google Patents

Dopant host and method for manufacturing the dopant host Download PDF

Info

Publication number
JP2009117729A
JP2009117729A JP2007291423A JP2007291423A JP2009117729A JP 2009117729 A JP2009117729 A JP 2009117729A JP 2007291423 A JP2007291423 A JP 2007291423A JP 2007291423 A JP2007291423 A JP 2007291423A JP 2009117729 A JP2009117729 A JP 2009117729A
Authority
JP
Japan
Prior art keywords
mol
dopant host
crystal
mass
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007291423A
Other languages
Japanese (ja)
Inventor
Yoshio Mayahara
芳夫 馬屋原
Ryota Suzuki
良太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2007291423A priority Critical patent/JP2009117729A/en
Priority to PCT/JP2008/069552 priority patent/WO2009060761A1/en
Priority to CN200880008599.6A priority patent/CN101636819B/en
Priority to US12/450,934 priority patent/US20100136314A1/en
Priority to CN2011100065248A priority patent/CN102176412B/en
Priority to TW097142480A priority patent/TWI405739B/en
Priority to TW102110206A priority patent/TWI472500B/en
Publication of JP2009117729A publication Critical patent/JP2009117729A/en
Priority to US14/163,708 priority patent/US9040177B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dopant host having high heat resistance and causing a large volatilization volume of B<SB>2</SB>O<SB>3</SB>. <P>SOLUTION: The dopant host is characterized by containing 20 to 50% by mole of SiO<SB>2</SB>, 30 to 60% by mole (exclusive of 30% by mole) of Al<SB>2</SB>O<SB>3</SB>, 10 to 40% by mole of B<SB>2</SB>O<SB>3</SB>, and 2 to 10% by mole of RO, wherein R represents an alkaline earth metal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シリコン半導体中にホウ素を拡散させてP型半導体を得るために使用されるドーパントホストおよびその製造方法に関するものである。   The present invention relates to a dopant host used for diffusing boron in a silicon semiconductor to obtain a P-type semiconductor and a method for manufacturing the same.

シリコン半導体基板表面にP型領域を形成させる方法として、従来、ドーパントホスト法、対向BN法、熱分解法等が知られている。   Conventionally known methods for forming a P-type region on the surface of a silicon semiconductor substrate include a dopant host method, a counter BN method, a thermal decomposition method, and the like.

ドーパントホスト法は、B23を含むガラスセラミックスのウエハーを半導体ウエハーと一定の距離を保って並列させ、ガラスセラミックスより揮発したB23を半導体ウエハー上にデポジションし、次いで熱拡散させる方法である(例えば、特許文献1参照)。対向BN法は、ドーパントホスト法とほぼ同じプロセスであるが、ガラスセラミックスの代わりに窒化ホウ素ウエハーを活性化処理(BNをB23に変換する処理)して使用するという違いがある。熱分解法は液状のBCl3、BBr3などをバブリングして気化し、それを予め加熱された半導体ウエハー上に被着、分解させ、B23のデポジション被膜を得た後、熱拡散させる方法である。 In the dopant host method, a glass ceramic wafer containing B 2 O 3 is placed in parallel with a semiconductor wafer at a constant distance, and B 2 O 3 volatilized from the glass ceramic is deposited on the semiconductor wafer and then thermally diffused. It is a method (for example, refer patent document 1). The counter BN method is almost the same process as the dopant host method, but there is a difference that a boron nitride wafer is used after activation treatment (treatment for converting BN to B 2 O 3 ) instead of glass ceramics. In the thermal decomposition method, liquid BCl 3 , BBr 3, etc. are vaporized by bubbling, and deposited and decomposed on a preheated semiconductor wafer to obtain a B 2 O 3 deposition film, followed by thermal diffusion. It is a method to make it.

ドーパントホスト法は、特許文献1に記載の方法によれば、窒化ホウ素を使用する場合と比較して、ドーパントホスト使用時に活性化処理を施す必要がないためプロセスコストを低く抑えることができる。また、熱分解法では半導体ウエハー上にガスを被着させるので、大口径ウエハーにB23を拡散させる場合、被着量のばらつきが大きくなるという問題があるが、ドーパントホスト法では、シリコンウエハーと同じ面積のガラスセラミックスウエハーを対向させて熱処理するので、B23拡散のばらつきは小さく抑えられる。
特開昭52−55861号公報
According to the dopant host method, according to the method described in Patent Document 1, it is not necessary to perform an activation treatment when using the dopant host, as compared with the case where boron nitride is used. In addition, since gas is deposited on a semiconductor wafer in the pyrolysis method, there is a problem that when the B 2 O 3 is diffused in a large-diameter wafer, there is a problem that the amount of deposition increases. Since the glass ceramic wafer having the same area as the wafer is subjected to heat treatment, variation in B 2 O 3 diffusion can be kept small.
JP-A-52-55861

特許文献1に開示されているドーパントホスト材料は耐熱性があまり高くないため、熱処理を繰り返すとガラスセラミックスウエハーがたわみだし、B23の拡散ばらつきが生じたり、シリコンウエハーに接触して歩留まりが低下するという問題があった。また、B23揮発量が、活性化処理を施した窒化ホウ素ウエハーより少ないため、熱拡散の効率が悪いという問題があった。 Since the dopant host material disclosed in Patent Document 1 is not very high in heat resistance, if the heat treatment is repeated, the glass-ceramics wafer will bend, resulting in B 2 O 3 diffusion variation, or contact with the silicon wafer and yield. There was a problem of lowering. Further, since the B 2 O 3 volatilization amount is smaller than that of the boron nitride wafer subjected to the activation treatment, there is a problem that the efficiency of thermal diffusion is poor.

したがって、本発明は、耐熱性が高く、かつB23の揮発量が多いドーパントホストを提供することを目的とする。 Accordingly, an object of the present invention is to provide a dopant host having high heat resistance and a large volatilization amount of B 2 O 3 .

本発明者等は鋭意検討した結果、ドーパントホストが特定の組成を含有すること、または特定の結晶を含有することにより前記課題を解決できることを見いだし、本発明を提案するものである。   As a result of intensive studies, the present inventors have found that the above problem can be solved by containing a specific composition of a dopant host or a specific crystal, and propose the present invention.

すなわち、本発明のドーパントホストは、SiO2 20〜50モル%、Al23 30〜60モル%(ただし、30モル%を含まない)、B23 10〜40モル%、RO(Rはアルカリ土類金属) 2〜10モル%の組成を含有することを特徴とする。本発明のドーパントホストは、Al23を30〜60モル%と多く含む組成で構成される。その一部あるいは大半がAl429(ホウ酸アルミニウム:2Al23・B23)結晶として含有する構成となっている。その結果、後述するように、本発明のドーパントホストは、耐熱性が高く、かつB23の揮発量が多いという特徴を有する。 That is, the dopant host of the present invention is SiO 2 20-50 mol%, Al 2 O 3 30-60 mol% (however, 30 mol% is not included), B 2 O 3 10-40 mol%, RO (R Is an alkaline earth metal) and contains 2 to 10 mol% of the composition. Dopant host of the present invention is composed of a composition containing a large amount of Al 2 O 3 30 to 60 mol%. A part or most of them are contained as Al 4 B 2 O 9 (aluminum borate: 2Al 2 O 3 .B 2 O 3 ) crystals. As a result, as will be described later, the dopant host of the present invention is characterized by high heat resistance and a high volatilization amount of B 2 O 3 .

第二に、本発明のドーパントホストは、Al429結晶相を20〜50質量%、ガラス相を20〜80質量%およびAl23結晶相を0〜60質量%含有することを特徴とする。本発明のドーパントホストは、Al429結晶を含有することを特徴としている。Al429結晶は、比較的大きなサイズを有する角柱状の結晶である。この結晶は、ドーパントホスト中において、均質に立体的に絡み合った構造(三次元網目構造)をとるため、得られるドーパントホストの耐熱性が非常に高くなる。また、各結晶の周りには多くの空隙が存在するため、それに起因してB23の揮発量も非常に多くなる。このように、本発明のドーパントホストは、Al429結晶を20〜50質量%と多く析出するために、従来のドーパントホスト材料よりも耐熱性が高く、かつB23の揮発量が多い。 Secondly, the dopant host of the present invention contains 20 to 50% by mass of the Al 4 B 2 O 9 crystal phase, 20 to 80% by mass of the glass phase, and 0 to 60% by mass of the Al 2 O 3 crystal phase. It is characterized by. The dopant host of the present invention is characterized by containing Al 4 B 2 O 9 crystals. The Al 4 B 2 O 9 crystal is a prismatic crystal having a relatively large size. Since this crystal has a structure (three-dimensional network structure) in which the dopant host is uniformly and entangled three-dimensionally, the resulting dopant host has extremely high heat resistance. Moreover, since there are many voids around each crystal, the volatilization amount of B 2 O 3 is very large due to this. Thus, since the dopant host of the present invention precipitates 20 to 50% by mass of Al 4 B 2 O 9 crystals, it has higher heat resistance than the conventional dopant host material, and the volatilization of B 2 O 3 . Large amount.

第三に、本発明のドーパントホストは、長径3μm以上のAl429結晶を含有することを特徴とする。基本的に、Al429結晶の長径が大きいほど、各結晶が強固に絡み合やすく、かつ空隙の割合も大きくなるため、ドーパントホストの耐熱性およびB23の揮発量がともに向上しやすい。 Thirdly, the dopant host of the present invention is characterized by containing Al 4 B 2 O 9 crystals having a major axis of 3 μm or more. Basically, the larger the major axis of the Al 4 B 2 O 9 crystal, the stronger the entanglement of each crystal and the larger the proportion of voids, so both the heat resistance of the dopant host and the volatilization amount of B 2 O 3 are both. Easy to improve.

第四に、本発明は前記ドーパントホストの製造方法に関し、B23含有結晶性ガラス粉末40〜90質量%およびアルミナ粉末10〜60質量%を含有する混合粉末を焼結することを特徴とする。このように、B23含有結晶性ガラス粉末とアルミナ粉末を混合して焼結させることにより、B23含有結晶性ガラス粉末とアルミナ粉末が反応しやすく、Al429結晶の析出が促進される。その結果、耐熱性が高く、かつB23の揮発量が多いドーパントホストを得ることができる。 Fourth, the present invention relates to a method for producing the dopant host, characterized in that a mixed powder containing 40 to 90% by mass of B 2 O 3 -containing crystalline glass powder and 10 to 60% by mass of alumina powder is sintered. To do. Thus, by a mixture of the content of B 2 O 3 crystalline glass powder and alumina powder is sintered, the content of B 2 O 3 crystalline glass powder and the alumina powder is likely to react, Al 4 B 2 O 9 crystal Precipitation is promoted. As a result, a dopant host having high heat resistance and a high volatilization amount of B 2 O 3 can be obtained.

第五に、本発明のドーパントホストの製造方法は、B23含有結晶性ガラス粉末およびアルミナ粉末の50%粒子径D50が、0.1〜10μmであることを特徴とする。このように、B23含有結晶性ガラス粉末およびアルミナ粉末を0.1〜10μmの微粉にして混合し焼結させることにより、B23含有結晶性ガラス粉末とアルミナ粉末が接触する面積が増加してAl429結晶の析出がより一層促進される。したがって、得られるドーパントホストの耐熱性およびB23の揮発量がより良好となる。 Fifth, the method for producing a dopant host of the present invention is characterized in that the 50% particle diameter D 50 of the B 2 O 3 -containing crystalline glass powder and the alumina powder is 0.1 to 10 μm. Thus, the B 2 O 3 -containing crystalline glass powder and the alumina powder are mixed into a fine powder of 0.1 to 10 μm and sintered, so that the B 2 O 3 -containing crystalline glass powder and the alumina powder are in contact with each other. And the precipitation of Al 4 B 2 O 9 crystals is further promoted. Therefore, the heat resistance of the dopant host obtained and the volatilization amount of B 2 O 3 are improved.

第六に、本発明のドーパントホストは、前記方法により製造されてなることを特徴とする。   Sixth, the dopant host of the present invention is manufactured by the above method.

本発明のドーパントホストは、SiO2 20〜50モル%、Al23 30〜60モル%(ただし、30モル%を含まない)、B23 10〜40モル%、RO(Rはアルカリ土類金属) 2〜10モル%の組成を含有することを特徴とする。 Dopant host of the present invention, SiO 2 20 to 50 mol%, Al 2 O 3 30 to 60 mol% (but not including 30 mol%), B 2 O 3 10~40 mol%, RO (R is an alkali Earth metal) 2-10 mol% of composition is contained.

以下に、各成分の含有量を上記のように特定した理由を詳述する。   Below, the reason which specified content of each component as mentioned above is explained in full detail.

SiO2はガラスのネットワークを構成する基礎成分である。その含有量は20〜50モル%であり、20〜45モル%であることが好ましい。SiO2の含有量が20モル%未満であるとガラス化しにくくなり、50モル%を超えるとガラスの軟化点が高くなり、ガラス溶融時の溶融性が悪くなりガラスの成形が困難となる傾向がある。 SiO 2 is a basic component constituting a glass network. The content is 20-50 mol%, and it is preferable that it is 20-45 mol%. If the content of SiO 2 is less than 20 mol%, vitrification tends to be difficult, and if it exceeds 50 mol%, the softening point of the glass tends to be high, the meltability at the time of melting the glass tends to be poor, and glass molding tends to be difficult. is there.

Al23はAl429結晶の構成成分であり、かつSiO2とともにガラス相のネットワークを構成する成分である。その含有量は30〜60モル%(ただし、30モル%を含まない)であり、30〜50モル%であることが好ましい。Al23の含有量が30モル%以下であると、Al429結晶の含有量が少なくなり、ドーパントホストの耐熱性およびB23揮発量ともに不十分となる傾向がある。一方、Al23の含有量が60モル%を超えると、ドーパントホストの気孔率が大きくなり強度が低下してしまう。 Al 2 O 3 is a constituent component of Al 4 B 2 O 9 crystal and a component constituting a glass phase network together with SiO 2 . The content is 30 to 60 mol% (however, 30 mol% is not included), and preferably 30 to 50 mol%. When the content of Al 2 O 3 is 30 mol% or less, the content of Al 4 B 2 O 9 crystals decreases, and both the heat resistance of the dopant host and the B 2 O 3 volatilization amount tend to be insufficient. . On the other hand, when the content of Al 2 O 3 exceeds 60 mol%, the porosity of the dopant host increases and the strength decreases.

23はAl429結晶の構成成分である。その含有量は10〜40モル%であり、15〜30モル%であることが好ましい。B23の含有量が15モル%未満であると、Al429結晶の含有量が少なくなり、ドーパントホストの耐熱性およびB23揮発量ともに不十分となる傾向がある。一方、B23の含有量が40モル%を超えても、Al429結晶の含有量の向上を期待することはできず、むしろ結晶の析出を妨げる虞がある。 B 2 O 3 is a constituent component of the Al 4 B 2 O 9 crystal. The content is 10-40 mol%, and it is preferable that it is 15-30 mol%. When the content of B 2 O 3 is less than 15 mol%, the content of Al 4 B 2 O 9 crystals decreases, and both the heat resistance of the dopant host and the B 2 O 3 volatilization amount tend to be insufficient. . On the other hand, even if the content of B 2 O 3 exceeds 40 mol%, an improvement in the content of Al 4 B 2 O 9 crystals cannot be expected, but rather the precipitation of crystals may be hindered.

ROはガラス化を促進する成分である。ROとしては、MgO、CaO、SrO、BaOを選択することができる。これらは単独または2種以上を組み合わせて用いることができ、その含有量(合量)は2〜10モル%であり、2.5〜10モル%であることが好ましい。ROの含有量が2モル%未満であるとガラス化しにくくなり、10モル%を超えると所望の結晶が析出しにくくなる傾向がある。   RO is a component that promotes vitrification. As RO, MgO, CaO, SrO, BaO can be selected. These can be used individually or in combination of 2 or more types, The content (total amount) is 2-10 mol%, and it is preferable that it is 2.5-10 mol%. When the RO content is less than 2 mol%, vitrification is difficult, and when it exceeds 10 mol%, desired crystals tend to be difficult to precipitate.

本発明のドーパントホストは、Al429結晶相を20〜50質量%、ガラス相を20〜80質量%およびAl23結晶相を0〜60質量%含有することを特徴とする。 The dopant host of the present invention contains 20 to 50% by mass of an Al 4 B 2 O 9 crystal phase, 20 to 80% by mass of a glass phase, and 0 to 60% by mass of an Al 2 O 3 crystal phase. .

前述したように、本発明のドーパントホストは、特定量のAl429結晶を含有することを特徴としており、当該Al429結晶がドーパントホスト中において、立体的に絡み合った構造をとるため、耐熱性およびB23の揮発量が良好となる。Al429結晶の含有量は20〜50質量%であり、30〜50質量%であることが好ましい。Al429結晶相が20質量%未満であると、ドーパントホストの耐熱性およびB23揮発量ともに不十分となる傾向がある。一方、Al429結晶相が50質量%を超えると、ドーパントホストの気孔率が大きくなりすぎ強度が低下してしまう。 As described above, the dopant host of the present invention is characterized by containing a specific amount of Al 4 B 2 O 9 crystal, and the Al 4 B 2 O 9 crystal is sterically entangled in the dopant host. Due to the structure, the heat resistance and the volatilization amount of B 2 O 3 are improved. The content of the Al 4 B 2 O 9 crystal is 20 to 50% by mass, and preferably 30 to 50% by mass. If the Al 4 B 2 O 9 crystal phase is less than 20% by mass, both the heat resistance of the dopant host and the B 2 O 3 volatilization amount tend to be insufficient. On the other hand, when the Al 4 B 2 O 9 crystal phase exceeds 50% by mass, the porosity of the dopant host becomes too large and the strength is lowered.

Al429結晶としては、長径が3μm以上のものを含むことが好ましく、長径が5μ以上のものを含むことがより好ましい。Al429結晶の長径が3μm未満の結晶だけでは、結晶同士が互いに立体的に絡み合った構造とはなりにくい。そのため、結晶がガラス中で流動しやすく、結果として、耐熱性が低いものとなる。また結晶の周りに空隙ができにくいため、B23の揮発量も少なくなる傾向がある。なお、Al429結晶の短径は特に限定されないが、0.5μm以上であると結晶同士が三次元網目構造をとりやすくなるため好ましい。 The Al 4 B 2 O 9 crystals preferably include those having a major axis of 3 μm or more, and more preferably those having a major axis of 5 μm or more. If only the Al 4 B 2 O 9 crystal has a major axis of less than 3 μm, it is difficult to form a structure in which the crystals are intertwined with each other. Therefore, the crystal easily flows in the glass, and as a result, the heat resistance is low. Further, since voids are hardly formed around the crystal, the volatilization amount of B 2 O 3 tends to decrease. The minor axis of the Al 4 B 2 O 9 crystal is not particularly limited, but is preferably 0.5 μm or more because the crystals easily form a three-dimensional network structure.

Al429結晶以外の成分は、ガラス相とAl23結晶相(α−コランダム結晶相:ドーパントホスト製造の際に添加したアルミナ粉末の未反応成分)である。ガラス相は20〜80質量%、Al23相は0〜60質量%であり、好ましくは、ガラス相20〜70質量%、Al23相0〜50質量%である。 Components other than the Al 4 B 2 O 9 crystal are a glass phase and an Al 2 O 3 crystal phase (α-corundum crystal phase: an unreacted component of alumina powder added during the manufacture of the dopant host). The glass phase is 20 to 80% by mass and the Al 2 O 3 phase is 0 to 60% by mass, preferably 20 to 70% by mass of the glass phase and 0 to 50% by mass of the Al 2 O 3 phase.

本発明のドーパントホストは、B23とAl23を含むガラスのみを熱処理してAl429結晶が析出させることにより得ることも可能であるが、大きな結晶には成長しにくく、また析出量も少ない傾向がある。そこで、B23含有結晶性ガラス粉末とアルミナ粉末を含有する混合粉末を焼結することにより、B23含有結晶性ガラス粉末中のB23とアルミナ粉末が反応してAl429結晶を大量に析出させることが可能となる。 The dopant host of the present invention can be obtained by heat-treating only glass containing B 2 O 3 and Al 2 O 3 to precipitate Al 4 B 2 O 9 crystals. It tends to be difficult and the amount of precipitation tends to be small. Accordingly, B 2 O 3 by sintering mixed powder containing containing crystallizable glass powder and alumina powder, B 2 O 3 containing crystallizable glass powder B 2 O 3 and alumina powder are reacted Al 4 It becomes possible to precipitate a large amount of B 2 O 9 crystals.

23含有結晶性ガラス粉末としては、少なくともSiO2、B23、RO(Rはアルカリ土類金属)の3成分を含有するガラス粉末が挙げられる。ここで、アルミナ粉末と反応してAl429結晶を析出しやすくするために、ガラス成分にAl23を含むことが好ましい。具体的には、B23含有結晶性ガラス粉末は、SiO2 20〜60モル%、Al23 10〜40モル%、B23 10〜50モル%、RO(Rはアルカリ土類金属) 2〜15モル%の組成を含有することが好ましい。 Examples of the B 2 O 3 -containing crystalline glass powder include glass powder containing at least three components of SiO 2 , B 2 O 3 and RO (R is an alkaline earth metal). Here, in order to easily react with the alumina powder to precipitate Al 4 B 2 O 9 crystals, the glass component preferably contains Al 2 O 3 . Specifically, B 2 O 3 containing crystalline glass powder, SiO 2 20 to 60 mol%, Al 2 O 3 10~40 mol%, B 2 O 3 10~50 mol%, RO (R is an alkaline earth It is preferable that the composition contains 2 to 15 mol%.

以下に、各成分の含有量を上記のように特定した理由を詳述する。   Below, the reason which specified content of each component as mentioned above is explained in full detail.

SiO2はガラスのネットワークを構成する基礎成分である。その含有量は20〜60モル%であり、30〜50モル%であることが好ましい。SiO2の含有量が20モル%未満であるとガラス化しにくくなり、60モル%を超えるとガラスの軟化点が高くなり、ガラス溶融時の溶融性が悪くなりガラスの成形が困難となる傾向がある。 SiO 2 is a basic component constituting a glass network. Its content is 20 to 60 mol%, preferably 30 to 50 mol%. When the content of SiO 2 is less than 20 mol%, it is difficult to vitrify, and when it exceeds 60 mol%, the softening point of the glass tends to be high, the meltability at the time of glass melting tends to deteriorate, and the glass tends to be difficult to mold. is there.

Al23はAl429結晶を析出しやすくするとともに、Al429結晶を構成する成分である。また、SiO2とともにガラス相のネットワークを構成する成分でもある。その含有量は0〜40モル%であり、10〜40モル%であることが好ましく、10〜30モル%であることがより好ましい。Al23の含有量が10モル%未満であると、Al429結晶が析出しにくくなる傾向がある。一方、Al23の含有量が40モル%を超えると、ガラスが失透しやすくなるためガラスの成形が困難となる傾向がある。 Al 2 O 3 together with to facilitate precipitation of Al 4 B 2 O 9 crystal is a component constituting the Al 4 B 2 O 9 crystal. It is also a component constituting a glass phase network together with SiO 2 . The content is 0 to 40 mol%, preferably 10 to 40 mol%, and more preferably 10 to 30 mol%. When the content of Al 2 O 3 is less than 10 mol%, Al 4 B 2 O 9 crystals tend to be difficult to precipitate. On the other hand, when the content of Al 2 O 3 exceeds 40 mol%, the glass tends to be devitrified, so that it tends to be difficult to mold the glass.

23はAl429結晶を析出させるための必須成分である。その含有量は10〜50モル%であり、15〜40モル%であることが好ましい。B23の含有量が10モル%未満であると、Al429結晶が十分に析出しなくなる傾向がある。一方、B23の含有量が50モル%を超えても、Al429結晶の含有量の向上を期待することはできず、むしろ結晶の析出を妨げる虞がある。 B 2 O 3 is an essential component for precipitating Al 4 B 2 O 9 crystals. The content is 10-50 mol%, and it is preferable that it is 15-40 mol%. When the content of B 2 O 3 is less than 10 mol%, Al 4 B 2 O 9 crystals tend not to precipitate sufficiently. On the other hand, even if the content of B 2 O 3 exceeds 50 mol%, an improvement in the content of Al 4 B 2 O 9 crystals cannot be expected, but rather the precipitation of crystals may be hindered.

ROはガラス化を促進する成分である。ROとしては、MgO、CaO、SrO、BaOを選択することができる。これらを単独または2種以上を組み合わせて用いることができ、その含有量(合量)は2〜15モル%であり、3〜13モル%であることが好ましい。ROの含有量が2モル%未満であるとガラス化しにくくなり、15モル%を超えると所望の結晶が析出しにくくなる傾向がある。   RO is a component that promotes vitrification. As RO, MgO, CaO, SrO, BaO can be selected. These can be used individually or in combination of 2 or more types, The content (total amount) is 2-15 mol%, and it is preferable that it is 3-13 mol%. If the RO content is less than 2 mol%, vitrification tends to be difficult, and if it exceeds 15 mol%, desired crystals tend not to precipitate.

23含有結晶性ガラス粉末とアルミナ粉末の混合粉末中における含有量としては、B23含有結晶性ガラス粉末40〜90質量%およびアルミナ粉末10〜60質量%であることが好ましく、B23含有結晶性ガラス粉末50〜80質量%およびアルミナ粉末20〜50質量%であることがより好ましい。アルミナ粉末が10質量%未満である場合、Al429結晶の析出量が少なくなる傾向がある。一方、アルミナ粉末の含有量が60質量%より大きくなっても、Al429結晶の析出量のさらなる増加は期待できず、むしろAl429結晶析出の妨げとなる虞がある。 The content of the content of B 2 O 3 crystalline glass powder and the alumina mixed powder of the powder is preferably the content of B 2 O 3 crystalline glass powder 40 to 90 wt% and alumina powder 10-60 wt%, B is more preferably 2 O 3 50 to 80% by weight containing crystallizable glass powder and alumina powder 20-50% by weight. When the alumina powder is less than 10% by mass, the amount of precipitated Al 4 B 2 O 9 crystals tends to decrease. On the other hand, even if the content of alumina powder is greater than 60 mass%, further increase in the deposition amount of Al 4 B 2 O 9 crystal can not be expected, the risk that rather hinder Al 4 B 2 O 9 crystal precipitation is there.

23含有結晶性ガラス粉末とアルミナ粉末の50%粒子径D50は、0.1〜10μmであることが好ましく、0.5〜8μmであることがより好ましく、1〜5μmであることがさらに好ましい。各粉末の50%粒子径D50が0.1μm未満の場合、製造コストが増大するとともに成型が困難となる。一方、各粉末の50%粒子径D50が10μmよりも大きくなると、粉末同士の反応が不十分となりAl429結晶の析出量が少なくなる傾向がある。 The 50% particle diameter D 50 of the B 2 O 3 -containing crystalline glass powder and the alumina powder is preferably 0.1 to 10 μm, more preferably 0.5 to 8 μm, and 1 to 5 μm. Is more preferable. When the 50% particle diameter D 50 of each powder is less than 0.1 μm, the production cost increases and molding becomes difficult. On the other hand, if the 50% particle diameter D 50 of each powder is larger than 10 μm, the reaction between the powders becomes insufficient and the amount of precipitated Al 4 B 2 O 9 crystals tends to decrease.

23含有結晶性ガラス粉末とアルミナ粉末を含有する混合粉末の焼結温度としては、粉末同士が十分に焼結一体化し、かつAl429結晶が析出する温度であれば特に限定されず、例えば900〜1300℃であることが好ましい。 The sintering temperature of the mixed powder containing the B 2 O 3 -containing crystalline glass powder and alumina powder is particularly a temperature at which the powders are sufficiently sintered and integrated and Al 4 B 2 O 9 crystals are precipitated. It is not limited, For example, it is preferable that it is 900-1300 degreeC.

本発明のドーパントホストの製造方法としては、例えば、原料粉末をスラリー化してグリーンシート状に加工された成形体を複数枚積層させ、その後焼結一体化させることによりウエハー状とする方法が挙げられる。この方法によれば、従来の製法で必要であった切断、研削などの工程がなくなり、歩留まりを向上させることができる。   Examples of the method for producing the dopant host of the present invention include a method of forming a wafer by laminating a plurality of formed bodies processed into a green sheet by slurrying raw material powder, and then sintering and integrating them. . According to this method, processes such as cutting and grinding required in the conventional manufacturing method are eliminated, and the yield can be improved.

以下、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

表1は本発明の実施例1〜5および比較例を示している。   Table 1 shows Examples 1 to 5 of the present invention and comparative examples.

Figure 2009117729
Figure 2009117729

まず表1に示すガラス組成となるようにガラス原料を調合した後、白金坩堝に入れて1400℃〜1650℃で3時間溶融してから、水冷ローラーによって薄板状に成形した。次いで、この成形体をボールミルにより粗砕した後、アルコールを加えて湿式粉砕し、50%粒子径D50が表中のガラス粉末粒度となるように調整した。さらに、表中に示す粒度のアルミナ粉末を表中の割合で添加し混合した。 First, glass raw materials were prepared so as to have the glass composition shown in Table 1, and then put in a platinum crucible and melted at 1400 ° C. to 1650 ° C. for 3 hours, and then formed into a thin plate shape by a water-cooled roller. Then, the molded body was crushed by a ball mill, addition of alcohol to wet grinding, 50% particle size D 50 was adjusted to glass powder particle size in the table. Furthermore, alumina powder having the particle size shown in the table was added and mixed in the ratio shown in the table.

次に、得られた混合粉末に結合剤(アクリル樹脂)、可塑剤(ブチルベンジルフタレート)および溶剤(メチルエチルケトン)を添加してスラリーを調製した。得られたスラリーをドクターブレード法によってグリーンシートに成形し、乾燥後、所定寸法に切断した。続いて、グリーンシートを複数枚積層し、熱圧着によって一体化した後、900℃〜1300℃で焼結して焼結体を得た。このようにして得られた焼結体について、ガラス、Al429結晶、Al23結晶の各含有量、Al429結晶のサイズ(長径および短径)、耐熱温度、B23揮発量を求めた。 Next, a slurry was prepared by adding a binder (acrylic resin), a plasticizer (butylbenzyl phthalate) and a solvent (methyl ethyl ketone) to the obtained mixed powder. The obtained slurry was formed into a green sheet by the doctor blade method, dried, and then cut into predetermined dimensions. Subsequently, a plurality of green sheets were laminated and integrated by thermocompression bonding, and then sintered at 900 ° C. to 1300 ° C. to obtain a sintered body. About the sintered body thus obtained, each content of glass, Al 4 B 2 O 9 crystal, Al 2 O 3 crystal, size of Al 4 B 2 O 9 crystal (major axis and minor axis), heat resistant temperature , B 2 O 3 volatilization amount was determined.

Al429結晶量とAl23結晶量は、粉末X線回折により得られた回折ピークの強度を、それぞれの結晶の100%ピーク強度と比較して定量することにより求めた。ガラス量は、[100−(Al429結晶量+Al23結晶量)]より求めた。 The amount of Al 4 B 2 O 9 crystal and the amount of Al 2 O 3 crystal were determined by quantifying the intensity of diffraction peaks obtained by powder X-ray diffraction in comparison with the 100% peak intensity of each crystal. The glass amount was determined from [100− (Al 4 B 2 O 9 crystal amount + Al 2 O 3 crystal amount)].

Al429結晶の長径および短径は、焼結体の表面を1万倍の倍率でSEM観察し、観察視野中の最大長径および最大短径を測定した。 As for the major axis and minor axis of the Al 4 B 2 O 9 crystal, the surface of the sintered body was observed by SEM at a magnification of 10,000 times, and the maximum major axis and the maximum minor axis in the observation field were measured.

耐熱温度は次のようにして求めた。すなわち、焼結体を40×20×2mmの直方体に加工し、スパン30mmの支持台にのせて中央に15gの加重をかけ、試料全体を加熱して変形が開始する温度を耐熱温度とした。   The heat-resistant temperature was determined as follows. That is, the sintered body was processed into a 40 × 20 × 2 mm rectangular parallelepiped, placed on a support base with a span of 30 mm, a weight of 15 g was applied to the center, and the temperature at which the entire sample was heated to start deformation was defined as the heat resistant temperature.

23揮発量は、試料の表面積が10cm2になるように加工し、1150℃で72時間加熱後の重量減少より求めた。 The B 2 O 3 volatilization amount was determined from the weight loss after processing the sample to have a surface area of 10 cm 2 and heating at 1150 ° C. for 72 hours.

表1より明らかなように、実施例1〜5の各試料はAl429結晶量が30〜45質量%と多く、結晶の長径も5μm以上と長いため、ドーパントホストの耐熱温度が1300℃以上と高く、B23揮発量が5質量%以上と多かった。一方、比較例の試料は、Al429結晶量が15質量%と少なく、また結晶の長径が1μmと短いため、耐熱温度が1100℃と低く、B23揮発量も0.8質量%と低いものであった。 As is clear from Table 1, each sample of Examples 1 to 5 has a large amount of Al 4 B 2 O 9 crystals of 30 to 45% by mass and a long crystal diameter of 5 μm or more, so the heat resistance temperature of the dopant host is high. It was as high as 1300 ° C. or higher and the B 2 O 3 volatilization amount was as large as 5% by mass or more. On the other hand, the sample of the comparative example, Al 4 B 2 O 9 crystal amount is reduced to 15 wt%, and because the major axis of the crystal is 1μm and short, low heat temperature is 1100 ℃, B 2 O 3 volatilization amount 0. It was as low as 8% by mass.

Claims (6)

SiO2 20〜50モル%、Al23 30〜60モル%(ただし、30モル%を含まない)、B23 10〜40モル%、RO(Rはアルカリ土類金属) 2〜10モル%の組成を含有することを特徴とするドーパントホスト。 SiO 2 20 to 50 mol%, Al 2 O 3 30 to 60 mol% (but not including 30 mol%), B 2 O 3 10 to 40 mol%, RO (R is an alkaline earth metal) 2-10 A dopant host comprising a composition in mol%. Al429結晶相を20〜50質量%、ガラス相を20〜80質量%およびAl23結晶相を0〜60質量%含有することを特徴とするドーパントホスト。 A dopant host comprising 20 to 50% by mass of an Al 4 B 2 O 9 crystal phase, 20 to 80% by mass of a glass phase, and 0 to 60% by mass of an Al 2 O 3 crystal phase. 長径3μm以上のAl429結晶を含有することを特徴とする請求項2に記載のドーパントホスト。 3. The dopant host according to claim 2, comprising Al 4 B 2 O 9 crystals having a major axis of 3 μm or more. 23含有結晶性ガラス粉末40〜90質量%およびアルミナ粉末10〜60質量%を含有する混合粉末を焼結することを特徴とするドーパントホストの製造方法。 A method for producing a dopant host, comprising sintering a mixed powder containing 40 to 90% by mass of a B 2 O 3 -containing crystalline glass powder and 10 to 60% by mass of an alumina powder. 23含有結晶性ガラス粉末およびアルミナ粉末の50%粒子径D50が、0.1〜10μmであることを特徴とする請求項4に記載のドーパントホストの製造方法。 5. The method for producing a dopant host according to claim 4, wherein the B 2 O 3 -containing crystalline glass powder and the alumina powder have a 50% particle diameter D 50 of 0.1 to 10 μm. 請求項4または5に記載の方法により製造されてなるドーパントホスト。   A dopant host produced by the method according to claim 4.
JP2007291423A 2007-11-09 2007-11-09 Dopant host and method for manufacturing the dopant host Pending JP2009117729A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007291423A JP2009117729A (en) 2007-11-09 2007-11-09 Dopant host and method for manufacturing the dopant host
PCT/JP2008/069552 WO2009060761A1 (en) 2007-11-09 2008-10-28 Dopant host and process for producing the dopant host
CN200880008599.6A CN101636819B (en) 2007-11-09 2008-10-28 Dopant host and process for producing the dopant host
US12/450,934 US20100136314A1 (en) 2007-11-09 2008-10-28 Dopant host and process for producing the dopant host
CN2011100065248A CN102176412B (en) 2007-11-09 2008-10-28 Dopant host and process for producing dopant host
TW097142480A TWI405739B (en) 2007-11-09 2008-11-04 Dopant host and method for making the same
TW102110206A TWI472500B (en) 2007-11-09 2008-11-04 Dopant host
US14/163,708 US9040177B2 (en) 2007-11-09 2014-01-24 Dopant host

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291423A JP2009117729A (en) 2007-11-09 2007-11-09 Dopant host and method for manufacturing the dopant host

Publications (1)

Publication Number Publication Date
JP2009117729A true JP2009117729A (en) 2009-05-28

Family

ID=40784490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291423A Pending JP2009117729A (en) 2007-11-09 2007-11-09 Dopant host and method for manufacturing the dopant host

Country Status (2)

Country Link
JP (1) JP2009117729A (en)
CN (1) CN101636819B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134571A (en) * 2010-11-17 2012-07-12 Hitachi Chem Co Ltd Method for manufacturing solar cell
EP2562793A1 (en) * 2010-04-23 2013-02-27 Hitachi Chemical Company, Ltd. COMPOSITION THAT FORMS p-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
US8828550B2 (en) 2009-11-24 2014-09-09 Nippon Electric Glass Co., Ltd. Dopant host and process for production thereof
US9608143B2 (en) 2010-04-23 2017-03-28 Hitachi Chemical Co., Ltd. Composition for forming N-type diffusion layer, method of forming N-type diffusion layer, and method of producing photovoltaic cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447397B2 (en) * 2010-02-03 2014-03-19 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar battery cell
US20110212564A1 (en) 2010-02-05 2011-09-01 Hitachi Chemical Company, Ltd. Method for producing photovoltaic cell
KR101484833B1 (en) * 2010-04-23 2015-01-21 히타치가세이가부시끼가이샤 n-TYPE DIFFUSION LAYER-FORMING COMPOSITION, n-TYPE DIFFUSION LAYER PRODUCTION METHOD AND SOLAR CELL COMPONENT PRODUCTION METHOD
KR20130129918A (en) * 2010-11-17 2013-11-29 히타치가세이가부시끼가이샤 Method for producing solar cell
EP3627572B1 (en) * 2017-05-19 2023-10-04 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member and semiconductor sintered body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282282A (en) * 1977-10-03 1981-08-04 Owens-Illinois, Inc. Barium aluminosilicate glasses, glass-ceramics and dopant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828550B2 (en) 2009-11-24 2014-09-09 Nippon Electric Glass Co., Ltd. Dopant host and process for production thereof
EP2562793A1 (en) * 2010-04-23 2013-02-27 Hitachi Chemical Company, Ltd. COMPOSITION THAT FORMS p-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
KR20130098142A (en) * 2010-04-23 2013-09-04 히타치가세이가부시끼가이샤 Composition that forms p-type diffusion layer, method for producing p-type diffusion layer, and method for producing solar cell element
EP2562793A4 (en) * 2010-04-23 2013-09-11 Hitachi Chemical Co Ltd COMPOSITION THAT FORMS p-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
EP2930740A1 (en) * 2010-04-23 2015-10-14 Hitachi Chemical Co., Ltd. Composition for forming p-type diffusion layer, method of forming p-type diffusion layer, and method of producing photovoltaic cell
US9520529B2 (en) 2010-04-23 2016-12-13 Hitachi Chemical Co., Ltd. Composition for forming P-type diffusion layer, method of forming P-type diffusion layer, and method of producing photovoltaic cell
US9608143B2 (en) 2010-04-23 2017-03-28 Hitachi Chemical Co., Ltd. Composition for forming N-type diffusion layer, method of forming N-type diffusion layer, and method of producing photovoltaic cell
KR101868163B1 (en) * 2010-04-23 2018-06-15 히타치가세이가부시끼가이샤 COMPOSITION THAT FORMS p-TYPE DIFFUSION LAYER, METHOD FOR PRODUCING p-TYPE DIFFUSION LAYER, AND METHOD FOR PRODUCING SOLAR CELL ELEMENT
JP2012134571A (en) * 2010-11-17 2012-07-12 Hitachi Chem Co Ltd Method for manufacturing solar cell

Also Published As

Publication number Publication date
CN101636819A (en) 2010-01-27
CN101636819B (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP2009117729A (en) Dopant host and method for manufacturing the dopant host
US9040177B2 (en) Dopant host
JP5536996B2 (en) Method for producing lithium ion conductive glass ceramics
JP5616002B2 (en) Lithium ion conductive solid electrolyte and method for producing the same
CN102167514B (en) Glass ceramic material for substrate and preparation method thereof
CN1142813A (en) A low temperature sintering route for aluminum nitride ceramics
JPS5946900B2 (en) Non-porous glass-ceramic body
TW201209003A (en) Glass ceramic composition, substrate for light-emitting element, and light-emitting device
TWI405739B (en) Dopant host and method for making the same
CN114126859B (en) Laminated member
JP2011096475A (en) Lithium-ion conductive glass ceramics, and manufacturing method thereof
JP2006001828A (en) Crystallized glass
JP4999091B2 (en) Method for producing zirconium tungstate-silicon oxide composite sintered body
JP5382606B2 (en) Method for manufacturing boron-doped material for semiconductor
JP5476849B2 (en) Dopant host
TW201139325A (en) Making xenotime ceramics by reactive ceramming
JP5703753B2 (en) Dopant host and manufacturing method thereof
JP6048665B2 (en) Glass ceramic materials and glass ceramics
JP4220013B2 (en) Composite glass ceramics and method for producing the same
TW200948740A (en) Lead-free glass ceramics and composition for lead-free glass ceramics
JP2011230960A (en) Glass-ceramic, method for manufacturing the same, and dielectric glass-ceramic molded body
CN111094202A (en) Yaoshi karite glass-ceramics obtained from glass frit
CN106132908A (en) The manufacture method of silicon nitrate substrate
JP3925077B2 (en) GLASS CERAMIC, PROCESS FOR PRODUCING THE SAME, AND COMPOSITION FOR GLASS CERAMIC
JP2011213570A (en) Crystalline glass