TW201142566A - Hybrid six-degree-of-freedom nano-scale precision positioning platform system - Google Patents

Hybrid six-degree-of-freedom nano-scale precision positioning platform system Download PDF

Info

Publication number
TW201142566A
TW201142566A TW99116825A TW99116825A TW201142566A TW 201142566 A TW201142566 A TW 201142566A TW 99116825 A TW99116825 A TW 99116825A TW 99116825 A TW99116825 A TW 99116825A TW 201142566 A TW201142566 A TW 201142566A
Authority
TW
Taiwan
Prior art keywords
platform
disposed
freedom
degree
micro
Prior art date
Application number
TW99116825A
Other languages
Chinese (zh)
Other versions
TWI425334B (en
Inventor
Wen-Yu Jue
jin-zhong Shen
Jian-Hong Liu
jia-hong Wu
Qun-Zhong Lu
Ying-Dai Yu
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW99116825A priority Critical patent/TWI425334B/en
Publication of TW201142566A publication Critical patent/TW201142566A/en
Application granted granted Critical
Publication of TWI425334B publication Critical patent/TWI425334B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

The present invention relates to a hybrid six-degree-of-freedom nano-scale precision positioning platform system, which is installed with a platform set, a measurement feedback set and a control set. The platform set is installed with a base, a biaxial slide platform and a fine-adjustment piezoelectric platform. The biaxial slide platform can be movably installed in the base. The fine-adjustment piezoelectric platform is installed on the biaxial slide platform. The measurement feedback set is combined with the platform set, and is installed with two single-beam laser interferometers, a dual-beam laser interferometer and a reflection device. The control set is electrically connected with the platform set and the measurement feedback set, and is installed with a computer and a controller. The controller is electrically connected with the computer, the biaxial slide platform and the fine-adjustment piezoelectric platform. The present invention provides a precision positioning platform system which is easy-to-assemble and low cost, and is equipped with high-precision long-range positioning effect.

Description

201142566 六、發明說明: 【發明所屬之技術領域】 本發明是關於-種精密定位系統,尤指一種方便組裝 、成本低且具高精度長行程定位效果的混合式六自由度奈 米級精密定位平台系統者。 【先前技術】 按’隨著現今產業的導向,近年來隨著工具機 '各種 產業機械與量測儀器的高精度化…,不論是在精密機 械、半導體產業、微(奈)米科技皆朝微小化與精密化發展 ,再加上超精密的加工機、_導體製程裝置、電子資訊機 器與原子力顯微鏡等皆需要高精密的定位技術與儀器進行 辅助’使得半導體技術慑然已進人到奈米的領域和技術, 進而成為目前的主流之一; 目前國内外定位平台之研究可分長行程定位平台設計 與控制以及短行程定位平台之設計與控制,在長行程平台 方面又可刀早軸、雙軸及多軸之設計及控制,#中以單軸 、雙軸定位平台就有較多之研究,而多轴平台之相關研究 文獻則較少;太集彡-< 丁私定位平台其驅動器以伺服馬達搭配 =螺桿、線性馬達以及音圈馬達為主流;在短行程定位 平台方面大多為利用撓性結構來架構平台,其致動器以壓 電材料為最常使用; 現有奈米等級的定位平台與回授量測系統是目前許多 S] 3 201142566 產業使用的重要I*4. a ^ 具之一,其驅動源必須具備體積小、反 應時間良好與精度高的 P Μ 1卜吟必須不會產生 问里的熱能或摩擦問題以避免降低推動的效率,因此,目 刚現有奈水定位平台的相關設備大部分需仰賴國外廠商進 口的,不但設備相當昂貴且維修也相當不易; 。再則’目前現有奈^位平台皆屬於小範圍的位移行 程^丁程的限制約在厘米(mm)等級以内,且現有的回授量 測系統大都是使用光學尺與光學讀頭進行量測,然而,光 學尺的精度會隨著長度的增加而產生越大的誤差,其中當 光學尺超過1公尺(m)時會累積相當大的加工誤差,且會造 成量測結果有重複性佳但是不準確的現象,進而造成錯誤 的位置辨識’目此’若將光學尺運用在長行程的機台上則 會造成位置辨識的誤差,進而影響加卫精度或檢驗精度, 所以如何同時達到長行程作動與奈米級的精密定位的要求 ’是目前業界亟於解決的問題。 【發明内容】 因此,本發明人有鑑於現有奈米定位平台與回授量測 系,’先,無法同時達到長行程作動與奈米級的精密定位的要 求的不足與問題,特經過不斷的研究與試驗,終於發展出 —種能改進現有缺失之本發明。 本發明之目的在於提供一種混合式六自由度奈米級精 社疋位平台系統,其是透過雙軸滑軌平台搭配微動壓電平 201142566 台完成大範圍的奈米級定位,而在平台的回授量測系統部 • 分系統則是利用雷射干涉儀作為回授系統,提供該雙軸滑 執平台音圈馬達的驅動訊號,有別與傳統的檢測機台利用 光學尺提供回授訊號,可有效提高精度的準確性,改善檢 測機台重複性佳但卻不準確之現象,進而提供一方便組裝 、成本低且具高精度長行程定位效果之目的者。 為達到上述目的,本發明是提供一種混合式六自由度 • 奈米級精密定位平台系統,其是包含有一平台組、一量測 回授組及一控制組,其中: 6亥平〇組设有一底座、一雙軸滑軌平台及一微動壓電 平台’該雙軸滑軌平台可移動地設於該底座上且設有兩導 軌座、兩支撐平台及兩音圈馬達,該兩支撐平台分別設於 兩導轨座頂面,兩音圈馬達分別設於兩導轨座上且分別與 兩支撐平台相貼靠,該微動壓電平台設於該雙軸滑執平台 φ 頂面的支撐平台上; 該量測回授組與該平台組相結合且設有一第一單光束 雷射干涉儀、一第二光束雷射干涉儀、一雙光束雷射干涉 儀及一反射裝置’各雷射干涉固設於該底座上,該第一單 光束雷射干涉儀與該雙軸滑轨平台間設有一分光鏡、一聚焦 透鏡、一轉角鏡及一位置感測器,其中該轉角鏡可選自一五 角菱鏡或一90度轉角鏡’該位置感測器接收經由該分光鏡 的反射光束’該反射裝置設於該微動壓電平台上且設有一 5 201142566 第一平面反射鏡、一第二平面反射鏡及一圓形平面反射鏡 ’該第一平面反射鏡反射該第二單光束雷射干涉儀的雷射 光束,該第二平面反射鏡與該第一平面反射鏡呈—直角配 置且反射該雙光束雷射干涉儀的雷射光束,該圓形平面反 射鏡位於兩平面反射鏡間;以及 該控制組與該平台組及該量測回授組相電性連接且吸 有一電腦及一控制器,該電腦内建有一用以接收各干涉儀 • 與該位置感測器訊號的處理軟體,而該控制器是與該電腦 、雙軸滑執平台兩音圈馬達及微動壓電平台相電性連接。 進一步,該微動壓電平台設有一承載台及一連接平台 ,該承载台設於該雙軸滑軌平台頂面的支撐平台上今連 接平台是可微動地設於該承載台上且設有複數個撓性座與 兩壓電致動器,其中各撓性座設於該支撐平台上且於靠近 頂面的w則面設有一與該連接平台㈣接的弧形挽性體, 鲁❿各壓電致動器設於該支料台上且分別與該連接平台的 側邊相貼靠。 連接平台上的上平台,該上平上且机 _ 卞上·又有二個壓電致動器及 三個二自由度撓性體,其中 甲谷壓電致動器設於該上平台的 底面且與該連接平台相結合, 而各一自由度撓性體設於該 上平台上且分別與各壓電致動器相連接。 較佳地,該控制器盥兮外知 …“支動致動平台的各壓電致動器 ί S] 6 201142566 相電性連接,而該電腦設有一 ^ 觀測ϊ測結果的螢幕。 較佳地,該雙軸滑執平a 口的兩導軌座呈一十字形方式 排列,藉以分別提供兩軸向的移動。 較佳地’該底座由一花齒山 罔石材料所製成且設有複數個 平σ支柱,S玄底座另於頂面— ^ ^ ^ 疋位板,該雙軸滑執平 台可移動地設於該定位板,各 谷雷射干涉是固設於該底座的 疋位板上’該分光鏡、該平隹、承μ 1焦透鏡及該位置感測器是間隔 設於該底座的定位板上。 較佳地,各音圈馬達的作動行程可達到25公厘χ25公厘 車又佳地’ 5亥分光鏡是為—5〇%的分光鏡,而該聚焦透鏡 為一 20公厘焦距的聚焦透鏡。 較佳地,该第二光束雷射干涉儀朝該微動壓電平台射 出雷射光束,而该雙光束雷射干涉儀設在異於該第一光 束雷射干涉儀的底座上且朝該微動壓電平台射出兩雷射光 束。 較佳地’該位置感測器係為一四象限光電位置感測器 ’可量測二自由度光點位置變化。 較佳地,該轉角鏡係可為一五角菱鏡或一 90度轉角鏡 ’將光束轉折90度’使此光束與原本入射光束相互垂直。 藉由上述的技術手段,本發明混合式六自由度奈米級 精密定位平台系統是至少具有以下的優點及功效: 7 201142566 低污染及可承載重 &行耘作動.本發明六自由度奈米量測機,可透 〆又軸π軌平台的音圈馬達做為驅動的方式,提供一具 有摩擦阻力小、能大範圍高速移動、 負荷的效果。 丁、米微凋作動.本發明六自由度奈米量測機所提 2的微動壓電平台,可藉由各壓電致動器具有可控制性、 向頻響應特性、電能盘嬙H + ρ日k /、機械此之間的尚轉換率、微小化及 不易發熱的特點,因此,且有卓 /、男竿X N位移分辨率及高定位精 X複和纟進而提供一奈米等級的位移與角度調整。 广、回授效果佳:本發明六自由度奈米量測機的量測 口 組’其最大量測範圍為χ方向:25公厘(麵)]方向 :25公厘(mm) ’而量測解析度:直線線位移解析度為10奈 米(_),角位移(ex、ey)解析度為01秒,不僅可提供一 長距離量測範圍(數公尺等級)、高解析度(0 04〜10nm)、高 穩定性、反應快速(大於1MHZ)與排除環境因素干擾等的 特性’進而可同時量測X、丫、、,、心的變化並即 時控制補償使其精度達到奈米等級。 【實施方式】 為能詳細瞭解本發明的技術特徵及實用功效,並可依 照說明書的内容來實施,兹進一步以圖式(如圖m圖所示 )所示的較佳實施例,詳細說明如后: i S1 本發明提供-混合式六自由度奈来級精密定位平台系 8 201142566 統,其包含有一平台組10、一量測回授組2〇及一控制組3〇 ,其中: 該平台組1〇設有一底座12、一雙軸滑軌平台13及一微 動壓電平台16,其中該底座12設有複數個平台支柱扪較 佳地’該底座12由一花岗岩材料所製《,具有穩定性高且 熱膨脹係數低的特性’因此,研磨時的平面精準度可達 2pm/m’較佳地,該底座另於頂面設有—定位板 該雙軸滑軌平台13是可移動地設於該定位板14上且設 有兩V型導軌座17、兩支撐平台18及兩音圈馬達η,其中 兩V3L V軌座1 7呈+予形方式排列’藉以分別提供X軸與 Y轴方向的移動,該兩去措巫 〆闷又棕+台18分別設於兩v型導轨座17 的頂面; 兩音圈馬達15分別設於該雙轴滑軌平台13的兩V型導軌 座17上且分別與兩切平台18相貼靠(音圈馬達Μ屬於現 有技術’故不再進—步詳細描述),其中各音圈馬達15為一 直接傳動方式且馬達本身完 冑疋王無接觸,因此不會有機械摩 擦的現象’所以低速時能有平順移動,再 台13架射沒㈣置料螺桿 3軌千 疋直接由曰圈馬達1 5來驅 動,所以不會因滾珠螺桿本 ^ 本身的5吳差進而造成雙軸滑軌平 台1;的定位誤差,加上雙轴滑軌平台13作動時沒有㈣: 問碭’大幅提向定位的精度,使兩支稱平台八a立 圈馬達15的傳動而產生χ軸 D °刀別文音 S] 產生X轴向與γ軸向的移動,其中各音圈 9 201142566 馬達1 5的作動行程可達到25公厘(mm)x25公厘(⑺⑺), 該微動壓電平台16是設於該雙軸滑軌平台13頂面的支 撐平台18上且設有一承載台161、一連接平台162及一上平 台163,其中該承載台161設於該雙軸滑執平台”頂面的支 撐平台18上,該連接平台162是可微動地設於該承載台161 上且設有複數個撓性座,64與兩壓電致動器彳65,其中各撓 性座1 6 4設於該支樓平台,8上且於靠近頂面的内側面設有 一與該連接平台162相連接的弧形撓性體166,而各壓電致 動器165設於該支撐平台18上且分別與該連接平台162的側 邊相貼靠,該上平台163可微動地設於該連接平台162上且 設有三個壓電致動器167及三個二自由度撓性體168,其中 各壓電致動器167設於該上平台163的底面且與該連接平台 相”.D。,而各二自由度撓性體168設於該上平台I”上 且分別與各Μ電致動器167相連接,該微動壓電平台财 使用時,主要是利用兩種不同型式的撓性體166、⑽的組 合並透過各壓電致動器165、167間不同搭配的推動方式, 而達到四個自由度(2、^〜、叫的運動,其中兩種不同 型式的撓性體166、168具有材料變形的特性構成—體積小 的微動壓電平台16’並配合各壓電致動器165 167具有體 積小、反應速度快、解析度高及機電轉換效率高的特性, 進而達到奈米微動的能力; 該量測回授組20是與該平台组1〇相結合且設有—第一 201142566 單光束雷射干涉儀21A、—第二光束雷射干涉儀21B、一雙 光束雷射干涉儀22及一反射裝置23,其中各雷射干涉儀 21A 21B、22疋固設於該底座12的定位板μ上,該第一 單光束雷射干涉儀21A與該雙軸滑軌平台13之間設有一分光 鏡26、一聚焦透鏡27、—轉角鏡4〇及—位置感測器”,其 中該轉角鏡40可選自一五角菱鏡或一 9〇度轉角鏡,其中該 刀光1見2 6、5玄聚焦透鏡2 7及該位置感測器2 9是間隔設於該 • 底座12的定位板14上且位於—雷射光束射出的路徑上,較 佳地,該分光鏡26是為一50%的分光鏡,而該聚焦透鏡27 為2〇公厘(mm)焦距的聚焦透鏡,該轉角鏡4〇係設於該底座12 的定位板14上,且位於雙車由滑軌平台13頂面的支撐平台18中心處,藉以將 第-單光束雷射干涉儀21A的雷射光束由-水平光束轉變成_朝上射出的 垂直光束,其中該位置感測器29用以接收經由該分光鏡26以 及该聚焦透鏡27的反射光束反射且經過聚焦透鏡27聚焦的 • 反射光束,用以量測βχ、以之偏擺角,該位置感測器29係 為一四象限光電位置感測器,用以檢測到二自由度光點位 置變化; s玄第二光束雷射干涉儀21 Β設於該底座1 2的定位板1 4且 朝6玄Μ動壓電平台1 6射出一雷射光束,該雙光束雷射干涉 儀22設在異於該第一光束雷射干涉儀21Α的底座12的定位 板14上且朝έ玄从動壓電平台16射出兩雷射光束;該反射裝 置23設於該微動壓電平台彳6上且設有一第一平面反射鏡24 201142566 、一第二平面反射鏡25及一圓形平面反射鏡28,其中該第 一平面反射鏡24設於該上平台163上且用以反射該第二單 光束雷射干涉儀21B的雷射光束,而該第二平面反射鏡25 設於s亥上平台163上並與該第一平面反射鏡24呈一直角配 置的空間關係且用以反射該雙光束雷射干涉儀22的雷射光 束’而該圓形平面反射鏡28是設該上平台163上且位於兩 平面反射鏡24、25間且用以反射該轉角鏡4〇的垂直雷射光束,使該 • 垂直雷射光束經反射後經分光鏡26—部份入射至該第一單光束雷射干涉儀 21A内,而另一部份係經聚焦透鏡27入射至該位置感測器29; 該量測回授組20的兩單光束雷射干涉儀21 a、21 B可透 過接收其反射光束的方式量測出該微動壓電平台彳6的χ軸 與Ζ軸的位移’該雙光束雷射干涉儀22可透過接收其反射 光束的方式量測出該微動壓電平台彳6的γ軸之位移量、θζ 之角度偏擺量,而該位置感測器29可透過接收由該分光鏡 鲁2 6反射經聚焦透鏡2 7聚焦之光束而量測出微該動壓電平台 的θχ、0y之位移量;以及 忒控制組30與該平台組彳〇以及該量測回授組2〇相電性 連接且設有一電腦32及一控制器33,其中該電腦32内建有 一用以接收各干涉儀21A、21B、22與該位置感測器29訊 號的處理軟體(圖未示),該電腦3 2設有一觀測量測結果的 螢幕31,而該控制器33是與該電腦32、雙軸滑執平台以兩 音圈馬達15以及微動壓電平台16各壓電致動器165、167相 12 201142566 電性連接,透過該處理軟體處理訊號的方式,即可使各立 圈馬達15進行作動,進而讓各v型導軌座17達到快速移動 與定位控制的效果,且透過各壓電致動器1 65、η 67的作動 ,可使微動壓電平台16產生微量的ζ轴行程變化及θχ、 、θζ的角度變化,使該微動壓電平台16可進行微小位移的 補償’使定位精度可以達到奈米的等級。 藉由上述的技術手段,本發明的混合式六自由度奈米 籲級精密定位平台系統主要可分為結構設計、量測系統開發 與整合及控制技術的開發與整合等三方面,是以音圈馬達 15配合微動壓電平台16來完成奈米級定位,並且搭配量測 回授組20進行X、γ、ζ、θχ、0y、θζ的定位誤差量測與回 授訊號控制補償,再透過電腦32處理軟體對於各干涉儀 21A、21 Β、22與該位置感測器29訊號進行計算後,經由 該控制器33控制各音圈馬達彳5進行作動進而達到長行程移 ® 動與快速疋位控制的效果,並透過各壓電致動器165、167 的作動而達到對於微動壓電平台彳6產生微量的z方向位移 與微量的θχ、θγ、θζ角度變化’進而補正雙軸滑軌平台 13移動時所產生之Ζ方向位移誤差與θχ、⑼、θζ角度誤差 ’因此’藉由本發明混合式六自由度奈米級精密定位平台 系統’不僅可有效降低成本以提升競爭力,且可透過模組 化的組合方式,有效減少未來修護上和生產上的時間,進 而提供一方便組裝、成本低且具高精度長行程定位效果之 [S3 13 201142566 混合式六自由度奈米級精密定位平台系統者。 以上所述,僅是本發明的較 1主貫她例,並非對本發明 作任何形式上的限制,任何所屬 J所屬技術領域中具有通常知識 者,若在不脫離本發明所提技術方 乃系的乾圍内,利用本發 明所揭示技術内容所作出局部 、 勹1更動或修飾的等效實施例, 並且未脫離本發明的技術方案内 ^ ^ 均仍屬於本發明技術 方案的範圍内。201142566 VI. Description of the Invention: [Technical Field] The present invention relates to a precision positioning system, and more particularly to a hybrid six-degree-of-freedom nano-precision positioning that is easy to assemble, low in cost, and has high-precision long-stroke positioning effect. Platform system. [Prior Art] According to the trend of today's industry, in recent years, with the high precision of various machine tools and measuring instruments of machine tools, both in precision machinery, semiconductor industry, and micro (Nai) technology Miniaturization and precision development, coupled with ultra-precision processing machines, _conductor process devices, electronic information machines and atomic force microscopes, all require high-precision positioning technology and instruments to assist 'making semiconductor technology stunned. Rice's field and technology have become one of the current mainstream; At present, the research of positioning platform at home and abroad can be divided into long-distance positioning platform design and control, and the design and control of short-stroke positioning platform. , two-axis and multi-axis design and control, # single-axis, two-axis positioning platform has more research, and multi-axis platform related research literature is less; Taiji 彡-< Ding private positioning platform The drive is dominated by servo motor with = screw, linear motor and voice coil motor; most of the short-stroke positioning platforms are constructed with flexible structure. The platform, the actuator is the most commonly used piezoelectric material; the existing nano-level positioning platform and feedback measurement system is one of the important I*4. a ^ tools used in many industries in the current S] 3 201142566 industry. The driving source must have a small volume, good response time and high precision P Μ 1 Diwa must not generate thermal or friction problems in order to avoid reducing the efficiency of the push. Therefore, the equipment of the existing Nai water positioning platform is large. Part of the need to rely on foreign manufacturers to import, not only equipment is quite expensive and maintenance is not very easy; Furthermore, the current existing platform is a small range of displacement strokes. The limit of the range is less than the centimeter (mm) level, and the existing feedback measurement systems mostly use optical scales and optical read heads for measurement. However, the accuracy of the optical ruler will increase with the increase of the length, and when the optical ruler exceeds 1 meter (m), considerable machining error will be accumulated, and the measurement result will have good repeatability. However, the inaccurate phenomenon leads to the wrong position identification. If the optical scale is applied to the long-stroke machine, the position identification error will be caused, which will affect the accuracy or inspection accuracy. The requirements of the stroke actuation and the precision positioning of the nanometer are the problems that the industry is currently solving. SUMMARY OF THE INVENTION Therefore, the present inventors have in view of the existing nano positioning platform and the feedback measurement system, 'first, the insufficiency and problems of the requirements of the long-stroke actuation and the nano-level precision positioning cannot be achieved at the same time. Research and experimentation have finally led to the development of the invention which improves existing defects. The object of the present invention is to provide a hybrid six-degree-of-freedom nano-class fine-seat clamping platform system, which realizes a wide range of nano-level positioning through a dual-axis slide rail platform with a micro-motion level of 201142566, while on the platform The feedback measurement system department and sub-system use the laser interferometer as the feedback system to provide the driving signal of the voice coil motor of the two-axis sliding platform, which is different from the traditional inspection machine by using the optical ruler to provide the feedback signal. It can effectively improve the accuracy of accuracy, improve the reproducibility of the inspection machine but is inaccurate, and provide a convenient assembly, low cost and high-precision long-stroke positioning effect. In order to achieve the above object, the present invention provides a hybrid six-degree-of-freedom and nano-precision positioning platform system, which comprises a platform group, a measurement and feedback group and a control group, wherein: a base, a dual-axis slide platform and a micro-motion piezoelectric platform. The dual-axis slide platform is movably disposed on the base and is provided with two rail seats, two support platforms and two voice coil motors. The two support platforms They are respectively disposed on the top surfaces of the two rails, and the two voice coil motors are respectively disposed on the two rail seats and respectively abut the two supporting platforms, and the micro-motion piezoelectric platform is disposed on the top surface of the biaxial sliding platform φ On the platform; the measurement feedback group is combined with the platform group and is provided with a first single beam laser interferometer, a second beam laser interferometer, a double beam laser interferometer and a reflection device The radiation interference is fixed on the base, and the first single-beam laser interferometer and the biaxial slide platform are provided with a beam splitter, a focusing lens, a corner mirror and a position sensor, wherein the corner mirror can be Choose from a pentagonal mirror or a 90 degree corner 'The position sensor receives the reflected beam passing through the beam splitter'. The reflecting device is disposed on the micro-motion piezoelectric platform and is provided with a 5 201142566 first plane mirror, a second plane mirror and a circular plane mirror The first planar mirror reflects the laser beam of the second single-beam laser interferometer, and the second planar mirror is disposed at right angles to the first planar mirror and reflects the lightning of the dual-beam laser interferometer a light beam, the circular plane mirror is located between the two plane mirrors; and the control group is electrically connected to the platform group and the measurement feedback group and has a computer and a controller, and the computer has a built-in The processing software for receiving the interferometer and the position sensor signal is electrically connected to the computer, the two-axis sliding platform two voice coil motor and the micro-motion piezoelectric platform. Further, the micro-motion piezoelectric platform is provided with a loading platform and a connecting platform, and the loading platform is disposed on the supporting platform of the top surface of the dual-axis sliding rail platform. The connecting platform is vertically movable on the loading platform and is provided with a plurality of a flexible seat and a two-piezo actuator, wherein each flexible seat is disposed on the support platform and has an arc-shaped pull-up body connected to the connecting platform (four) on a surface close to the top surface, Piezoelectric actuators are disposed on the support table and respectively abut the sides of the connection platform. Connecting the upper platform on the platform, the upper plate is mounted on the upper plate and has two piezoelectric actuators and three two-degree-of-freedom flexible bodies, wherein the Weigu piezoelectric actuator is disposed on the upper platform The bottom surface is coupled to the connecting platform, and each of the degrees of freedom flexible body is disposed on the upper platform and is respectively connected to each piezoelectric actuator. Preferably, the controller is externally known as "the piezoelectric actuators of the actuating platform", and the computer is provided with a screen for observing the results of the measurement. The two rail seats of the two-axis sliding flat a are arranged in a cross shape to provide two axial movements respectively. Preferably, the base is made of a flower-toothed hawstone material and is provided a plurality of flat σ pillars, the S-base is another top surface — ^ ^ ^ 疋 position plate, the two-axis sliding platform is movably disposed on the positioning plate, and each valley laser interference is fixed at the base of the base The 'beam splitter, the flat, the 1 focus lens and the position sensor are spaced apart from the positioning plate of the base. Preferably, each voice coil motor can travel up to 25 mm χ 25 The hammock is also a good 5' splitter is a -5〇% beam splitter, and the focus lens is a 20mm focal length focusing lens. Preferably, the second beam laser interferometer is facing the fretting The piezoelectric platform emits a laser beam, and the dual beam laser interferometer is disposed different from the first beam laser interferometer Preferably, the position detector is a four-quadrant photoelectric position sensor measurable for two-degree-of-freedom spot position change. Preferably, the position sensor is a four-quadrant photoelectric position sensor. The corner mirror can be a pentagonal prism or a 90 degree corner mirror 'turning the beam 90 degrees' to make the beam perpendicular to the original incident beam. By the above technical means, the hybrid six-degree-of-freedom nanometer of the present invention The precision positioning platform system has at least the following advantages and effects: 7 201142566 Low pollution and loadable weight &operation; the six-degree-of-freedom nanometer measuring machine of the invention can pass through the voice coil of the axis π rail platform The motor is driven to provide a small frictional resistance, a wide range of high-speed movement, and a load. Ding, rice, and the micro-motion piezoelectric platform proposed by the six-degree-of-freedom nanometer of the present invention, Each of the piezoelectric actuators has characteristics of controllability, frequency response characteristics, electric energy hoop +H k , mechanical conversion rate, miniaturization, and non-heat generation. Zhuo /, male 竿 XN displacement The resolution and high positioning precision X complex and 纟 further provide a nanometer level of displacement and angle adjustment. Wide, feedback effect: the six-degree-of-freedom nanometer measuring mouth of the invention's maximum measurement range Direction of χ: 25 mm (face)] Direction: 25 mm (mm) 'Measurement resolution: linear line displacement resolution is 10 nm (_), angular displacement (ex, ey) resolution is 01 Second, not only can provide a long distance measurement range (a few meters level), high resolution (0 04~10nm), high stability, fast response (greater than 1MHZ) and the exclusion of environmental factors, etc. Measuring changes in X, 丫, ,, and heart and controlling the compensation in real time to achieve the accuracy of the nanometer level. [Embodiment] In order to understand the technical features and practical effects of the present invention in detail, and in accordance with the contents of the specification, Further, the preferred embodiment shown in the drawings (shown in FIG. m) is described in detail as follows: i S1 The present invention provides a hybrid six-degree-of-freedom Nylon precision positioning platform system 8 201142566, which includes There is a platform group 10, a measurement and feedback group 2〇 and a control Group 3〇, wherein: the platform group 1 is provided with a base 12, a dual-axis slide platform 13 and a micro-motion piezoelectric platform 16, wherein the base 12 is provided with a plurality of platform pillars, preferably the base 12 is Made of a granite material, it has high stability and low coefficient of thermal expansion. Therefore, the plane accuracy during grinding can reach 2 pm/m. Preferably, the base is provided on the top surface. The slide rail platform 13 is movably disposed on the positioning plate 14 and is provided with two V-shaped rail seats 17, two support platforms 18 and two voice coil motors η, wherein the two V3L V rail seats 17 are arranged in a +-preform manner. 'By providing the movement of the X-axis and the Y-axis, respectively, the two sorrows and the brown + table 18 are respectively disposed on the top surfaces of the two v-shaped rail seats 17; the two voice coil motors 15 are respectively disposed on the two axes The two V-shaped rail seats 17 of the rail platform 13 are respectively abutted against the two cutting platforms 18 (the voice coil motor Μ belongs to the prior art and therefore will not be described in detail), wherein each voice coil motor 15 is a direct The transmission mode and the motor itself are completely contactless, so there is no mechanical friction phenomenon. At the speed, there can be smooth movement, and then 13 shots are not produced. (4) The feed screw 3 rails are directly driven by the loop motor 15 5, so the double shaft slide platform will not be caused by the 5 screw difference of the ball screw itself. 1; the positioning error, plus the two-axis slide rail platform 13 does not act (4): Q 砀 'large precision orientation accuracy, so that the two platforms of the platform a a vertical ring motor 15 transmission to produce the χ axis D ° knife The voice S] produces X-axis and γ-axis movement, wherein each voice coil 9 201142566 motor 15 can be operated up to 25 mm (mm) x 25 mm ((7) (7)), and the micro-motion piezoelectric platform 16 is designed The support platform 18 on the top surface of the dual-axis slide rail platform 13 is provided with a loading platform 161, a connecting platform 162 and an upper platform 163, wherein the loading platform 161 is disposed on the top surface of the biaxial sliding platform. On the platform 18, the connecting platform 162 is microfluidically disposed on the carrying platform 161 and is provided with a plurality of flexible seats 64 and two piezoelectric actuators 65, wherein the flexible seats 164 are disposed on the platform An arc-shaped flexible connection to the connecting platform 162 is provided on the side of the platform platform 8 and adjacent to the top surface 166, and each of the piezoelectric actuators 165 is disposed on the support platform 18 and respectively abuts the side of the connecting platform 162. The upper platform 163 is micro-movably disposed on the connecting platform 162 and is provided with three pressures. An electric actuator 167 and three two-degree-of-freedom flexible bodies 168, wherein each piezoelectric actuator 167 is disposed on a bottom surface of the upper platform 163 and is ".D." And each two-degree-of-freedom flexible body 168 is disposed on the upper platform I" and is respectively connected to each of the electric actuators 167. When the micro-actuating piezoelectric platform is used, the two different types of flexibility are mainly utilized. The combination of the bodies 166 and (10) is transmitted through the different matching modes of the piezoelectric actuators 165 and 167 to achieve four degrees of freedom (2, ^~, called motion, wherein two different types of the flexible body 166 168 has the characteristics of material deformation - the small-sized micro-motion piezoelectric platform 16' and the piezoelectric actuator 165 167 have the characteristics of small volume, fast reaction speed, high resolution and high electromechanical conversion efficiency, thereby reaching The ability of the micro-motion; the measurement feedback group 20 is combined with the platform group 1 - and is provided with - the first 201142566 single-beam laser interferometer 21A, the second beam laser interferometer 21B, a double beam of lightning The interferometer 22 and a reflecting device 23, wherein each of the laser interferometers 21A 21B, 22 is fixed on the positioning plate μ of the base 12, the first single-beam laser interferometer 21A and the biaxial slide platform Between 13 is provided a beam splitter 26, a focusing lens 27, - turn The corner mirror 4〇 and the “position sensor”, wherein the corner mirror 40 can be selected from a pentagonal prism or a 9-degree angle mirror, wherein the knife light 1 sees 2 6 , 5 Xuan focusing lens 27 and the The position sensor 29 is spaced apart from the positioning plate 14 of the base 12 and located on a path in which the laser beam is emitted. Preferably, the beam splitter 26 is a 50% beam splitter, and the focus is The lens 27 is a focal length lens of 2 mm (mm) focal length. The corner mirror 4 is disposed on the positioning plate 14 of the base 12 and is located at the center of the support platform 18 of the top surface of the slide rail platform 13 of the double-car. The laser beam of the first-single-beam laser interferometer 21A is converted from a horizontal beam into a vertical beam that is emitted upwards, wherein the position sensor 29 is configured to receive via the beam splitter 26 and the focusing lens 27 The reflected beam reflected by the reflected beam and focused by the focusing lens 27 is used to measure βχ and the yaw angle. The position sensor 29 is a four-quadrant photoelectric position sensor for detecting two degrees of freedom. The spot position changes; the s-second beam laser interferometer 21 is disposed on the positioning plate 1 of the base 12 A laser beam is emitted toward the 6 Xuanqiu piezoelectric platform 16 , and the dual beam laser interferometer 22 is disposed on the positioning plate 14 of the base 12 different from the first beam laser interferometer 21Α and The piezoelectric platform 16 emits two laser beams; the reflecting device 23 is disposed on the micro-motion piezoelectric platform 且6 and is provided with a first planar mirror 24 201142566, a second planar mirror 25 and a circular planar mirror 28, wherein the first planar mirror 24 is disposed on the upper platform 163 and configured to reflect the laser beam of the second single-beam laser interferometer 21B, and the second planar mirror 25 is disposed on the platform 163 is disposed in a spatial relationship with the first planar mirror 24 at a right angle and is used to reflect the laser beam of the dual-beam laser interferometer 22, and the circular planar mirror 28 is disposed on the upper platform 163. And a vertical laser beam between the two plane mirrors 24 and 25 for reflecting the corner mirror 4〇, so that the vertical laser beam is reflected and then partially incident on the first single beam by the beam splitter 26 The other part is incident on the interferometer 21A, and the other part is incident on the position via the focus lens 27. The two single-beam laser interferometers 21a, 21B of the measurement feedback group 20 can measure the displacements of the χ-axis and the Ζ-axis of the micro-motion piezoelectric platform 彳6 by receiving the reflected beam. The dual-beam laser interferometer 22 can measure the displacement of the γ-axis of the micro-motion piezoelectric platform 彳6 and the angular yaw amount of θζ by receiving the reflected beam, and the position sensor 29 can transmit Receiving a beam of light focused by the beam splitter 26 reflected by the focusing lens 27 to measure a displacement amount of θ χ, 0 y of the dynamic piezoelectric platform; and the 忒 control group 30 and the platform group 彳〇 and the measurement The feedback group 2 is electrically connected and has a computer 32 and a controller 33. The computer 32 has a processing software for receiving signals of the interferometers 21A, 21B, 22 and the position sensor 29 ( The computer 32 is provided with a screen 31 for measuring the measurement result, and the controller 33 is piezoelectric with the computer 32, the dual-axis sliding platform, the two-voice motor 15 and the micro-motion piezoelectric platform 16. Actuator 165, 167 phase 12 201142566 is electrically connected, and the signal is processed by the processing software. The vertical coil motor 15 can be actuated, so that the v-shaped rail seats 17 can achieve the effects of rapid movement and positioning control, and the micro-motion piezoelectric can be obtained by the actuation of the piezoelectric actuators 1 65 and η 67. The platform 16 generates a slight change in the cymbal stroke and an angular change of θ χ , θ θ , so that the micro-motion piezoelectric platform 16 can compensate for the small displacement 'the positioning accuracy can reach the level of nanometer. By the above technical means, the hybrid six-degree-of-freedom nano-command precision positioning platform system of the invention can be mainly divided into three aspects: structural design, measurement system development and integration, and development and integration of control technology. The circle motor 15 cooperates with the micro-motion piezoelectric platform 16 to complete the nano-level positioning, and is matched with the measurement feedback group 20 for positioning error measurement and feedback signal control compensation of X, γ, ζ, θχ, 0y, θζ, and then through After the computer 32 processing software calculates the signals of the interferometers 21A, 21 Β, 22 and the position sensor 29, the voice coil motor 彳5 is controlled by the controller 33 to achieve long stroke movement and fast 疋. The effect of the bit control, and through the actuation of each piezoelectric actuator 165, 167, a slight z-direction displacement and a slight change in the angle θ χ, θ γ, θ ' of the micro-motion piezoelectric platform 彳 6 are generated, and the biaxial slide track is corrected. The displacement error of the Ζ direction generated by the movement of the platform 13 and the angular error of θχ, (9), θζ 'so that the hybrid six-degree-of-freedom nano-precision positioning platform system of the present invention can be effectively reduced The cost is to enhance competitiveness, and the modular combination method can effectively reduce the time for future repair and production, thereby providing a convenient assembly, low cost and high-precision long-stroke positioning effect [S3 13 201142566 Hybrid Six-degree-of-freedom nanometer precision positioning platform system. The above description is only the first embodiment of the present invention, and is not intended to limit the scope of the present invention. Any one of ordinary skill in the art to which the present invention pertains may be used without departing from the technical scope of the present invention. The equivalent embodiments of the present invention, which are made by the technical content of the present invention, and which do not depart from the technical solutions of the present invention, are still within the scope of the technical solutions of the present invention.

Figure

【圖式簡單說明】 圖1是本發明之立體外觀示意圖。 圖2是本發明平台組與量測回授組立體外觀示意圖。 圖3是本發明平台組與量測回授組之放大立體外觀示意 圖4是本發明平台組與量測回授組之俯視示意圖。 圖5疋本發明平台組之局部放大立體外觀示意圖。 圖6是本發明平台組之局部放大俯視示意圖。 1 1平台支柱 13雙軸滑軌平台 1 5音圈馬達 162連接平台 164撓性座 【主要元件符號說明】 1 〇平台組 12底座 14定位板 1 6微動壓電平台 1 61承載台 163上平台 201142566BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic perspective view of the present invention. 2 is a schematic perspective view of the platform group and the measurement feedback group of the present invention. 3 is an enlarged perspective view of the platform group and the measurement feedback group of the present invention. FIG. 4 is a top plan view of the platform group and the measurement feedback group of the present invention. Figure 5 is a partially enlarged perspective view of the platform group of the present invention. Figure 6 is a partially enlarged plan view showing the platform set of the present invention. 1 1 platform pillar 13 dual-axis slide platform 1 5 voice coil motor 162 connection platform 164 flexible seat [main component symbol description] 1 〇 platform group 12 base 14 positioning plate 1 6 micro-motion piezoelectric platform 1 61 platform 163 platform 201142566

165壓電致動器 167壓電致動器 17 V型導軌座 20量測回授組 21A第一單光束雷射干涉儀 21 B第二單光束雷射干涉儀 22雙光束雷射干涉儀 24第一平面反射鏡 26分光鏡 28圓形平面反射鏡 30控制組 32電腦 40轉角鏡 166弧形撓性體 168二自由度撓性體 18支撐平台 23反射裝置 25第二平面反射’鏡 27聚焦透鏡 29位置感測器 31螢幕 33控制器165 Piezoelectric Actuator 167 Piezoelectric Actuator 17 V-Type Rail Holder 20 Measurement Feedback Group 21A First Single Beam Laser Interferometer 21 B Second Single Beam Laser Interferometer 22 Dual Beam Laser Interferometer 24 First plane mirror 26 beam splitter 28 circular plane mirror 30 control group 32 computer 40 corner mirror 166 curved flexible body 168 two degrees of freedom flexible body 18 support platform 23 reflection device 25 second plane reflection 'mirror 27 focus Lens 29 position sensor 31 screen 33 controller

1515

Claims (1)

201142566 七、申請專利範圍: 1. 一種混合式六自由度奈米級精密定位平台系統,其包 含有一平台組、—量測回授組及一控制組,其中: °亥平σ組设有—底座、一雙袖滑軌平台及一微動壓電 平°,该雙軸滑執平台可移動地設於該底座上且設有兩導 軌座、兩支撐平台及兩音圈馬達,該兩支撐平台分別設於 兩導軌座頂面,兩音圈馬達分別設於兩導執座上且分別與 # 兩支撐平台相貼靠,該微動壓電平台設於該雙軸滑執平台 頂面的支撐平台上; 該量測回授組與該平台組相結合且設有一第一單光束 雷射干涉儀、一第二光束雷射干涉儀、一雙光束雷射干涉 儀及一反射裝置’各雷射干涉固設於該底座上,該第一單 光束雷射干涉儀與該雙軸滑轨平台間設有一分光鏡、一聚焦 透叙、一轉角鏡及一位置感測器,該位置感測器接收經由該 • 分光鏡的反射並經聚焦透鏡聚焦的光束,該反射裝置設於 該微動壓電平台上且設有一第一平面反射鏡、一第二平面 反射鏡及一圓形平面反射鏡,該第一平面反射鏡反射該第 二單光束雷射干涉儀的雷射光束,該第二平面反射鏡與該 第一平面反射鏡呈一直角配置且反射該雙光束雷射干涉儀 的雷射光束,該圓形平面反射鏡位於兩平面反射鏡間;以 及 該控制組與該平台組及該量測回授組相電性連接且設 ° ί S3 16 201142566 有-電腦及—控制器’該電腦内建有—用以接收各干涉儀 與該位置感測器訊號的處理軟體,而該控制器是與該電腦 、雙軸滑軌平台兩音圈馬達及微㈣電平台相電性連接。 2. 如申請專利範圍第j項所述之混合式六自由度奈米級 精密定位平台系統,其中該微動壓電平台設有一承載台及 一連接平台,該承載台設於該雙軸滑軌平台頂面的支撐平 台上,該連接平台是可微動地設於該承載台上且設有複數 • 個撓性座與兩壓電致動器,其中各撓性座設於該支撐平台 上且於靠近頂面的内側面設有一與該連接平台相連接的弧 形撓性體,而各壓電致動器設於該支撐平台上且分別與該 連接平台的側邊相貼靠。 3. 如申請專利範圍第2項所述之混合式六自由度奈米級 精密定位平台系統,其中該微動壓電平台另設有一可微動 地設於該連接平台上的上平台,該上平上且設有三個壓電 鲁致動器及二個二自由度撓性體,其中各壓電致動器設於該 上平台的底面且與該連接平台相結合,而各二自由度撓性 體設於該上平台上且分別與各壓電致動器相連接。 4·如申請專利範圍第2或3項所述之混合式六自由度奈求 級精密定位平台系統’其中該控制器與該微動致動平台的 各壓電致動器相電性連接,而該電腦設有一觀測量測結果 的螢幕。 5.如申請專利範圍第4項所述之混合式六自由度奈米級 …、” m 17 201142566 扣:疋位平台系統’其中該雙軸滑軌平台的兩導執座呈一 十字形方式排列,藉以分別提供兩軸向的移動。 6·如申請專利範圍第5項所述之混合式六自由度奈米級 精密定位平台系統’其中該底座由一花岗岩材料所製成且 設有複數個平台支柱,該底座另於頂面設有一定位板,該 雙軸滑軌平台可移動地設於該定位板,各雷射干涉是固設 於=座的定位板上’該分光鏡、該聚焦透鏡及該位置: 測器是間隔設於該底座的定位板上’㈣角鏡射於該底座 的定位板上,且位於雙軸滑軌平台頂面的支撐平台中心處 7·如申請專利範圍第6項所述之混合式六自由度奈米級 精密定位平台系統,其中各音圈馬達的作動行程可達到25 公厘x 2 5公厘。 8·如申請專利範圍第7項所述之混合式六自由度奈米級 • 精密定位平台系統,其中該分光鏡是為一 50%的分光鏡, 而該聚焦透鏡為一 2〇公厘焦距的聚焦透鏡。 9.如申請專利範圍第8項所述之混合式六自由度奈米級 精密定位平台系統,其中該第二光束雷射干涉儀朝該微動 壓電平台射出一雷射光束,而該雙光束雷射干涉儀設在異 於°玄第 光束雷射干涉儀的底座上且朝該微動壓電平台射 出兩雷射光束。 10.如申請專利範圍第9項所述之混合式六自由度奈米級 201142566 精密定位平台系統,其中該位置感測器係為一四象限光電 位置感測器,可量測二自由度光點位置變化。 八、圖式:(如次頁)201142566 VII. Patent application scope: 1. A hybrid six-degree-of-freedom nano-precision positioning platform system, which comprises a platform group, a measurement feedback group and a control group, wherein: ° Haiping σ group is provided - a base, a sleeve sliding platform and a micro-motion level, the two-axis sliding platform is movably disposed on the base and is provided with two rail seats, two supporting platforms and two voice coil motors, the two supporting platforms They are respectively disposed on the top surfaces of the two rails, and the two voice coil motors are respectively disposed on the two guide seats and respectively abut the two support platforms, and the micro-motion piezoelectric platform is arranged on the support platform of the top surface of the two-axis sliding platform. The measurement feedback group is combined with the platform group and is provided with a first single beam laser interferometer, a second beam laser interferometer, a double beam laser interferometer and a reflection device 'each laser The interference is fixed on the base, and the first single-beam laser interferometer and the biaxial slide platform are provided with a beam splitter, a focus transparent view, a corner mirror and a position sensor, and the position sensor Receiving reflections through the • beam splitter and collecting a light beam focused by the lens, the reflecting device is disposed on the micro-motion piezoelectric platform and is provided with a first planar mirror, a second planar mirror and a circular planar mirror, the first planar mirror reflecting the second single a laser beam of a beam laser interferometer, the second plane mirror being disposed at a right angle to the first plane mirror and reflecting the laser beam of the dual beam laser interferometer, the circular plane mirror being located at two planes Between the mirrors; and the control group is electrically connected to the platform group and the measurement feedback group and is set to ° S3 16 201142566 - Computer and controller - The computer has built-in - for receiving each interferometer And the processing software of the position sensor signal, and the controller is electrically connected to the computer, the two-axis slide platform two voice coil motor and the micro (four) electric platform. 2. The hybrid six-degree-of-freedom nano-precision positioning platform system according to claim j, wherein the micro-motion piezoelectric platform is provided with a carrying platform and a connecting platform, and the carrying platform is disposed on the biaxial sliding rail a supporting platform on a top surface of the platform, the connecting platform is micro-movably disposed on the carrying platform and is provided with a plurality of flexible seats and two piezoelectric actuators, wherein each flexible seat is disposed on the supporting platform An arc-shaped flexible body connected to the connecting platform is disposed on an inner side surface adjacent to the top surface, and each piezoelectric actuator is disposed on the supporting platform and respectively abuts a side of the connecting platform. 3. The hybrid six-degree-of-freedom nano-precision positioning platform system according to claim 2, wherein the micro-motion piezoelectric platform further comprises an upper platform that is micro-movably disposed on the connecting platform, the upper flat There are three piezoelectric Lu actuators and two two-degree-of-freedom flexible bodies, wherein each piezoelectric actuator is disposed on the bottom surface of the upper platform and combined with the connecting platform, and each two degrees of freedom flexibility The body is disposed on the upper platform and is respectively connected to each piezoelectric actuator. 4. The hybrid six-degree-of-freedom precision-precision positioning platform system as described in claim 2 or 3, wherein the controller is electrically connected to each piezoelectric actuator of the micro-actuation platform, and The computer has a screen for measuring results. 5. The hybrid six-degree-of-freedom nanometer class described in item 4 of the patent application scope, "m 17 201142566 buckle: 疋 position platform system", wherein the two guide seats of the two-axis slide rail platform are in a cross shape Arranged to provide two-axis movement respectively. 6. The hybrid six-degree-of-freedom nano-precision positioning platform system as described in claim 5, wherein the base is made of a granite material and has a plurality of a platform pillar, the base is further provided with a positioning plate on the top surface, the two-axis sliding rail platform is movably disposed on the positioning plate, and each laser interference is fixed on the positioning plate of the= seat, the beam splitter, the Focusing lens and the position: the measuring device is spaced apart from the positioning plate of the base. (4) The corner mirror is incident on the positioning plate of the base, and is located at the center of the supporting platform on the top surface of the double-axis sliding rail platform. The hybrid six-degree-of-freedom nano-precision positioning platform system of the sixth aspect, wherein the operation of each voice coil motor can reach 25 mm x 25 5 mm. 8. As described in claim 7 Hybrid six-degree-of-freedom nanometer A precision positioning platform system, wherein the beam splitter is a 50% beam splitter, and the focusing lens is a focusing lens of 2 〇 mm focal length. 9. The hybrid six degrees of freedom as described in claim 8 a nano-precision positioning platform system, wherein the second beam laser interferometer emits a laser beam toward the micro-motion piezoelectric platform, and the dual-beam laser interferometer is disposed at a different angle from the X-ray beam laser interferometer The two laser beams are emitted from the base and toward the micro-motion piezoelectric platform. 10. The hybrid six-degree-of-freedom nanometer 201142566 precision positioning platform system according to claim 9 wherein the position sensor is Four-quadrant photoelectric position sensor, which can measure the position change of two-degree-of-freedom light spot. 8. Pattern: (such as the next page) m 19m 19
TW99116825A 2010-05-26 2010-05-26 Hybrid six - degree - of - freedom nano - level precision positioning platform system TWI425334B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99116825A TWI425334B (en) 2010-05-26 2010-05-26 Hybrid six - degree - of - freedom nano - level precision positioning platform system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99116825A TWI425334B (en) 2010-05-26 2010-05-26 Hybrid six - degree - of - freedom nano - level precision positioning platform system

Publications (2)

Publication Number Publication Date
TW201142566A true TW201142566A (en) 2011-12-01
TWI425334B TWI425334B (en) 2014-02-01

Family

ID=46765071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99116825A TWI425334B (en) 2010-05-26 2010-05-26 Hybrid six - degree - of - freedom nano - level precision positioning platform system

Country Status (1)

Country Link
TW (1) TWI425334B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630975B (en) * 2017-03-31 2018-08-01 南臺學校財團法人南臺科技大學 Active error compensation platform
CN111026166A (en) * 2019-12-20 2020-04-17 华南理工大学 Planar two-degree-of-freedom macro-micro composite positioning system and control method
CN113532324A (en) * 2021-08-31 2021-10-22 中国科学院重庆绿色智能技术研究院 Nanometer precision multidimensional optical interference measuring system and measuring method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269987B1 (en) * 2012-02-16 2013-05-31 순환엔지니어링 주식회사 Apparatus and method of controlling stage apparatus comprising multi-axis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676649A (en) * 1985-11-27 1987-06-30 Compact Spindle Bearing Corp. Multi-axis gas bearing stage assembly
US6842248B1 (en) * 2000-11-28 2005-01-11 Nikon Corporation System and method for calibrating mirrors of a stage assembly
TWI263036B (en) * 2005-06-22 2006-10-01 Univ Nat Formosa Dual-axis and five degree-of-freedom measuring device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630975B (en) * 2017-03-31 2018-08-01 南臺學校財團法人南臺科技大學 Active error compensation platform
CN111026166A (en) * 2019-12-20 2020-04-17 华南理工大学 Planar two-degree-of-freedom macro-micro composite positioning system and control method
CN111026166B (en) * 2019-12-20 2021-09-21 华南理工大学 Planar two-degree-of-freedom macro-micro composite positioning system and control method
CN113532324A (en) * 2021-08-31 2021-10-22 中国科学院重庆绿色智能技术研究院 Nanometer precision multidimensional optical interference measuring system and measuring method thereof

Also Published As

Publication number Publication date
TWI425334B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
Lee et al. Multi-degree-of-freedom motion error measurement in an ultraprecision machine using laser encoder
TWI287347B (en) Stage device
CN109000571B (en) Thickness consistency detection device
Gao et al. Precision measurement of two-axis positions and tilt motions using a surface encoder
Clark et al. Laser-based sensing, measurement, and misalignment control of coupled linear and angular motion for ultrahigh precision movement
TW200936299A (en) Integrated large XY rotary positioning table with virtual center of rotation
CN206550653U (en) A kind of two-dimentional precision movement platform
CN100593687C (en) Non-contact micro displacement measuring device with six degrees of freedom
WO2005106385A1 (en) Detector and stage device
CN104034281A (en) Optical self-focusing probe used for free-form surface topography measurement
TW201142566A (en) Hybrid six-degree-of-freedom nano-scale precision positioning platform system
Deng et al. A macro–micro compensation method for straightness motion error and positioning error of an improved linear stage
JP2014166675A (en) Parallel mechanism
CN105277119A (en) Error detection device and error detection method for multi-axis machine tool
CN110246537A (en) Transmission mechanism for space three-freedom nanopositioning stage
CN101482395B (en) Position measurement method
TWI379732B (en)
CN108169895B (en) A kind of hard optical path light beam flexible transfer localization method and device
TWI263036B (en) Dual-axis and five degree-of-freedom measuring device and method
CN207163406U (en) A kind of two-dimension displacement measuring system based on primary standard of curved surface part
CN110243290B (en) Three-degree-of-freedom nanometer positioning platform capable of reading displacement rotation information in real time through optical interference method
TW200827719A (en) 3-DOF Z-tilts nano-platform and its measuring system
JP2013011779A (en) Manufacturing process device
Ye et al. Laser scanning confocal image alignment assists sub-micron accuracy micro-assembly
KR20220113358A (en) Substrate alignment method and apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees