TW201133757A - Semiconductor device having a conductive structure and method of forming the same - Google Patents

Semiconductor device having a conductive structure and method of forming the same Download PDF

Info

Publication number
TW201133757A
TW201133757A TW99139573A TW99139573A TW201133757A TW 201133757 A TW201133757 A TW 201133757A TW 99139573 A TW99139573 A TW 99139573A TW 99139573 A TW99139573 A TW 99139573A TW 201133757 A TW201133757 A TW 201133757A
Authority
TW
Taiwan
Prior art keywords
pattern
opening
metal
layer
metal oxide
Prior art date
Application number
TW99139573A
Other languages
Chinese (zh)
Other versions
TWI532138B (en
Inventor
Suk-Hun Choi
Ki-Ho Bae
Yi-Koan Hong
Kyung-Hyun Kim
Tae-Hyun Kim
Kyung-Tae Nam
Jun-Ho Jeong
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090110694A external-priority patent/KR101603161B1/en
Priority claimed from US12/787,056 external-priority patent/US8575753B2/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW201133757A publication Critical patent/TW201133757A/en
Application granted granted Critical
Publication of TWI532138B publication Critical patent/TWI532138B/en

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

A semiconductor device includes an interlayer insulating layer disposed on a substrate, the interlayer insulating layer comprising an opening exposing the substrate, a barrier layer pattern disposed within the opening, and a conductive pattern disposed on the barrier layer pattern, the conductive pattern having an oxidized portion extending out of the opening and a non-oxidized portion within the opening, wherein a width of the conductive pattern is determined by a thickness of the barrier layer pattern.

Description

.X 201133757 六、發明說明: 【相關申請案】 本申請案主張於2009年5月27號提出申請之韓國專 利申請案第2009-0046383號及2009年11月π號提出申 請之韓國專利申請案第2009-0110694號的優先權,所述申 請案之全文以引用的方式併入本文中。 【發明所屬之技術領域】 本發明之示例性實施例是有關於一種具有導電結構的 半導體元件,且特別是有關於一種具有與資料儲存元件接 觸之導電結構的半導體元件。 【先前技術】 可藉由施加熱量於電阻式記憶體元件(resistance memory device )之預定位置而將資料儲存至電阻式記憶體 元件或自電阻式記憶體元件讀取資料。為在電阻式記憶體 兀件之預定位置產生局部加熱,電阻式記憶體元件可包含 用作加熱電極之導電結構。因此,需要一種可為電阻式記 憶體元件提供高加熱效率之導電結構。 【發明内容】 根據本發明之一示例性實施例,一種半導體元件包 括♦層間絕緣層’配置於基板上,所述層間絕緣層包括開 口’所述開口暴露出所述基板;阻障層圖案,配置於所述 開口内;以及導電圖案,配置於所述阻障層圖案上,所述 導電圖案具有延伸出所述開口之氧化部以及位於所述開口 内之非氧化部’其中所述導電圖案之寬度取決於所述阻障 4 201133757 層圖案之厚度。 所述導電圖案之所述寬度可小於所述開口之寬度。 延伸出所述開口之所述氧化部可厚於配置於所述開口 内之氧化部。 所述氧化部之寬度可實質上相同於所述非氧化部之寬 度0 所述氧化部之寬度可大於所述非氧化部之寬度。 所述半導體元件可更包括配置於所述開口内之填充圖 案,以使所述導電圖案配置於所述阻障層圖案與所述填充 圖案之間。 所述導電圖案可具有圓柱管形狀。 所述導電圖案可包含鎢。 所述阻障層圖案可包含鈦或氮化鈦至少其中之一。 所述阻障層圖案可包含氮化物或氮氧化物至少其中之 ___ 〇 所述導電圖案之所述氧化部可接觸相變隨機存取記憶 體(PRAM)中之相變材料薄膜。 〜 所述阻障層圖案可接觸配置於所述阻障層圖案 P-N二極體。 、 所述導電圖案之所述氧化部可接觸磁性隨機存取 體(MRAM )中之自由層圖案。 所述阻障層圖案可電性接觸配置於所述阻障 下的MOS電晶體。 θ ^ 所述氧化部在平面圖中之橫截面積之大小可小於所述 201133757 開口在所述平面射之横截面積之大小。 化部在所述平面圖中之所述橫截面積之大小可 取決於所述轉層_之橫截_之大小。 ,據本發明之—示例性實施例,—種形成半導體元件 ^包括:形成層間絕緣層於基板上;形成開口於所述 三絕緣層巾’所相σ暴露出所述基板;形成阻障層圖 =所述開叫;形成導制案於所述開口内之所述阻障 案上,以及藉由氧化所述導電圖案而生長所述導電圖 -’以使所述導電圖案之一部分延伸出所述開口。 生長所述導電圖案可包括在約4〇〇<>c至約6〇〇。匸之溫 义下於氧氣氣氛中執行RTA製程達約-分鐘至約1〇分鐘。 生長所述導電圖案可包括藉由施加約2〇瓦至約議 率而於氧氣氣氛中執行電漿處理達約"分鐘至約 生長所述導電圖案可包括等向性地或非等向性地執行 生長。 提供法可更包括在所述導電圖案之所述氧化部周圍 所述所述方法可更包括在所述開口内形成填充圖案,以使 間二導電圖案配置於所述填充圖案與所述阻障層圖案之 括根據本發明之一示例性實施例,一種半導體元件包 土板’具有開口之絕緣層,配置於所述基板上;金屬 ° 、配置於所述基板上;以及金屬氧化物圖案,配置於 6 201133757 j. 所述金屬®案上及所述開口内,其巾所述金祕化物圖案 之橫截面積小於所述金屬圖案之橫截面積。 所述金屬圖案可包含鶴。 接觸所述金屬氧化物圖案的所述金屬圖案之部分可為 凹陷的’且所述凹陷部接納所述金屬氧化物圖案之突出部。 在所述金屬氧化物圖案與所述絕緣層之間可配置有間 隙壁。 所述金屬圖案可配置於p_N接面上。 所述金屬圖案可電性連接至撾03電晶體。 所述金屬氧化物圖案可接觸MRAM2自由層圖案。 所述金屬氧化物圖案可接觸pRAM之相變材料薄膜。 在所述相變材料薄膜與所述絕緣層之間可配置有間隙 之頂部部分所具有之寬度可寬於所 所述相變材料薄膜 述相變材料之底部部分 根據本發明之一示例性實施例,一種形成半導體元件 2法包括:形成金屬圖案於基板上;形成絕緣層於所述 二·圖案上’形成穿過所述絕緣層之開口,所述開口暴露 所述金屬圖案之-部分·’以及氧化所述金屬圖案之所述 暴露部分,以形成金屬氧化物圖案於所述開口中。 所述金屬氧化物圖案可接觸“尺八%之自由層。 所述金屬氧化物圖案可電性接觸MRAM之&〇s電晶 所述金屬氧化物圖案可接觸pRAM之相變薄膜。 7 201133757 _ 1 所述金屬圖案可接觸所述PRAM之P-N二極體。 所述金屬氧化物圖案之寬度可小於所述金屬圖案之寬 度。 【實施方式】 以下,將參照附圖更全面地闡述本發明之示例性實施 例。然而’本發明可實施為諸多不同之形式,而不應被視 為僅限於本文所述之示例性實施例。 應理解,當述及一構件或層位於另一構件或層「上 (〇n )」、「連接至(connected t〇 )」或「耦合至(抝)」 另一構件或層時,此構件或層可直接地位於另一構件或層 上、連接至或耦合至另一構件或層,或者亦可存在中間^ 件或層。 圖1疋繪不根據本發明之一示例性實施例的導電結構 之剖面圖。圖2是繪示根據本發明之一示例性實施例的導 電結構之立體圖。 ,見圖1及圖2,絕緣夾層(interlayer) 52配置於基 板50上。絕緣夾層52包括開口 54,開口 54暴露出基板 50之一部分。舉例而言,開口 54可暴露出基板%之導電 區域。在一示例性實施例申,可配置導電圖案於基板50 上,以使開口 54可暴露出基板5〇上之導電圖案。 在一不例性實施例中,開口 54可具有接觸孔之形狀。 然而,開口 54之結構可根據導電結構之組態而異。亦即, 開:54可具有各種形狀,故開口 54之結構可不限於圖1 所不者。舉例而言’開口 54可具有溝渠(treneh)結構。 8 201133757. 阻障金屬層圖案S6a形成於開口 54之底部及側壁上。 阻障金屬層圖案56a可具有眺形結構。阻障金屬層圖案 56a可包含金屬或氮化物至少其中之—。舉例而言,阻障 金屬層圖案56a可包含鈇(Ti)或氮化鈦(τίΝχ)至少其 中之一。阻障金屬層圖案56a可具有單層式結構或多層式 (mUltilayer)結構。舉例而言,阻障金屬層圖案56a可包 含鈦膜及氮化鈦膜。 阻障金屬層圖案56a可防止金屬圖案58b中之金屬原 子及/或金屬離子朝絕緣夾層52擴散。阻障金屬層圖案細 能增大導電結構之躺面積,以使導電結構具有降低之 觸電阻。 田片在示例性實施例中,阻障金屬層圖案56a可包括緩 十叉氧化或幾乎不氧化之材料。 金屬圖案58b配置於阻障金屬|圖案56a上。金屬圖 案58b可包含例如鎢(w )。金屬圖案5沾可不完全填滿開 口 54。阻障金屬層圖案56a及金屬圖案58b可用作電性連 接至基板50之導電區域之導電圖案。 金屬氧化物圖案60形成於金屬圖案58b上。金屬氧化 物圖案^可包含例如氧化鶴(WOx)。在-示例性實施例 中,可藉由對金屬圖案58b之表面進行氧化而獲得金屬氧 化物圖案60。金屬氧化物圖案60可自絕緣夾層52向上突 出。在一示例性實施例中,金屬氧化物圖案60之突出部所 具有之厚度(t)可實質上大於金屬氧化物圖案6〇的填充 開口 54之部分。此外,金屬氧化物圖案60所具有之寬度 201133757, (W)可實質上相同於金屬圖案58b。 在一示例性實施例中,金屬氧化物圖案60所具有之電 阻可實質上高於金屬圖案58b之電阻。藉由控制用於對金 屬圖案58b進行氧化而形成金屬氧化物圖案60之氧化過程 之條件,可調整金屬氧化物圖案60之厚度(t)。藉此,亦 可調整金屬氧化物圖案60之電阻。 金屬氧化物圖案60之寬度(w)可實質上小於微影製 程(photolithography process )之關鍵尺寸(critical dimension,CD)。在一示例性實施例中,金屬氧化物圖案 60之寬度(w)可隨著阻障金屬層圖案56b之厚度(t)之 增加而減小。舉例而言’金屬氧化物圖案6〇之寬度(w) 可小於約50奈米。 當金屬氧化物圖案60具有高的電阻時,金屬氧化物圖 案60可用作加熱電極,乃因藉由施加f流至金屬氧化物圖 案60,可在金屬氧化物圖案6〇中產生焦耳加熱效應(j〇ule heating effect) ° 在一示例性實施例中,金屬氧化物圖案60可用作接觸 插塞(plug) ’此接觸插塞具有高的電阻且寬度實質 上小於微影製程之關鍵尺寸。 ,一示例性實施财,當金屬氧化物_⑼具有線之 形狀時,金屬氧化物圖案6〇可用&&& 木υ』用作佈線,此佈線之寬度小 於微影製程之關鍵尺寸。 尺見反j 圖3至圖5是繪示根據太旅 爆本發明之—示例性實施例的一 種形成導電、、,σ構之方法的剖面圖。 201133757 參見圖3’絕緣失層52形成於基板5〇上。基板% 包括半導體基板、具有半導體層之基板、或金屬氧化物基 板至少其中之…絕緣夾層52可則氧化物(例如氧化石夕土) 形成。.X 201133757 VI. INSTRUCTIONS: [RELATED APPLICATIONS] This application claims Korean Patent Application No. 2009-0046383 filed on May 27, 2009, and Korean Patent Application No. The priority of the present application is incorporated herein by reference. BACKGROUND OF THE INVENTION 1. Field of the Invention An exemplary embodiment of the present invention relates to a semiconductor component having a conductive structure, and more particularly to a semiconductor component having a conductive structure in contact with a data storage component. [Prior Art] Data can be stored in a resistive memory device or read from a resistive memory device by applying heat to a predetermined position of a resistive memory device. To generate localized heating at predetermined locations on the resistive memory device, the resistive memory component can include a conductive structure that acts as a heating electrode. Therefore, there is a need for a conductive structure that provides high heating efficiency for resistive memory elements. SUMMARY OF THE INVENTION According to an exemplary embodiment of the present invention, a semiconductor device includes: an interlayer insulating layer 'disposed on a substrate, the interlayer insulating layer including an opening, the opening exposing the substrate; a barrier layer pattern, Arranging in the opening; and a conductive pattern disposed on the barrier layer pattern, the conductive pattern having an oxidized portion extending from the opening and a non-oxidizing portion located in the opening, wherein the conductive pattern The width depends on the thickness of the barrier pattern 4 201133757 layer. The width of the conductive pattern may be less than the width of the opening. The oxidized portion extending out of the opening may be thicker than the oxidized portion disposed in the opening. The width of the oxidized portion may be substantially the same as the width of the non-oxidized portion. The width of the oxidized portion may be greater than the width of the non-oxidized portion. The semiconductor device may further include a filling pattern disposed in the opening such that the conductive pattern is disposed between the barrier layer pattern and the filling pattern. The conductive pattern may have a cylindrical tube shape. The conductive pattern may comprise tungsten. The barrier layer pattern may include at least one of titanium or titanium nitride. The barrier layer pattern may include at least one of a nitride or an oxynitride. The oxidized portion of the conductive pattern may contact a phase change material film in a phase change random access memory (PRAM). The barrier layer pattern may be in contact with the barrier layer pattern P-N diode. The oxidized portion of the conductive pattern may contact a free layer pattern in a magnetic random access memory (MRAM). The barrier layer pattern can electrically contact the MOS transistor disposed under the barrier. θ ^ The size of the cross-sectional area of the oxidized portion in plan view may be smaller than the cross-sectional area of the opening of the 201133757 opening at the plane. The size of the cross-sectional area of the portion in the plan view may depend on the size of the cross-section of the layer. According to an exemplary embodiment of the present invention, forming a semiconductor device includes: forming an interlayer insulating layer on the substrate; forming an opening in the third insulating layer to expose the substrate; forming a barrier layer Figure = the opening; forming a guide on the barrier in the opening, and growing the conductive pattern by oxidizing the conductive pattern to partially extend one of the conductive patterns The opening. Growing the conductive pattern may include from about 4 Å <>> to about 6 Å. The RTA process is performed in an oxygen atmosphere for about -minute to about 1 minute in an oxygen atmosphere. Growing the conductive pattern can include performing a plasma treatment in an oxygen atmosphere by applying about 2 watts to a ratio of about 10,000 minutes to about growth. The conductive pattern can include isotropic or anisotropic Perform growth. The providing method may further include surrounding the oxidized portion of the conductive pattern, the method further comprising forming a fill pattern in the opening to dispose a second conductive pattern between the fill pattern and the barrier A layer pattern according to an exemplary embodiment of the present invention, a semiconductor element earth-filled board having an insulating layer disposed on the substrate, a metal layer disposed on the substrate, and a metal oxide pattern, Disposed on the metal® case and the opening, the cross-sectional area of the gold secret pattern of the towel is smaller than the cross-sectional area of the metal pattern. The metal pattern may comprise a crane. A portion of the metal pattern contacting the metal oxide pattern may be recessed' and the recess receives a protrusion of the metal oxide pattern. A gap wall may be disposed between the metal oxide pattern and the insulating layer. The metal pattern can be disposed on the p_N junction. The metal pattern can be electrically connected to the DOO 03 crystal. The metal oxide pattern can contact the MRAM2 free layer pattern. The metal oxide pattern can contact the phase change material film of the pRAM. A top portion of the phase change material film and the insulating layer may be disposed with a gap having a width wider than a bottom portion of the phase change material film phase change material according to an exemplary embodiment of the present invention For example, a method of forming a semiconductor device 2 includes: forming a metal pattern on a substrate; forming an insulating layer on the second pattern to form an opening through the insulating layer, the opening exposing a portion of the metal pattern And oxidizing the exposed portion of the metal pattern to form a metal oxide pattern in the opening. The metal oxide pattern may be in contact with the "sixth percent free layer. The metal oxide pattern may be electrically contacted with the MRAM & s s. The metal oxide pattern may contact the phase change film of the pRAM. 7 201133757 The metal pattern may contact the PN diode of the PRAM. The width of the metal oxide pattern may be smaller than the width of the metal pattern. [Embodiment] Hereinafter, the present invention will be more fully described with reference to the accompanying drawings. The present invention may be embodied in many different forms and should not be construed as being limited to the exemplary embodiments described herein. It is understood that when a component or layer is When a layer is "on (〇n)", "connected to" or "coupled to" another member or layer, the member or layer may be directly located on another member or layer, connected to Or coupled to another component or layer, or an intermediate component or layer. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a conductive structure not according to an exemplary embodiment of the present invention. 2 is a perspective view of a conductive structure in accordance with an exemplary embodiment of the present invention. Referring to Figures 1 and 2, an insulating interlayer 52 is disposed on the substrate 50. The insulating interlayer 52 includes an opening 54 that exposes a portion of the substrate 50. For example, opening 54 may expose a conductive area of the substrate. In an exemplary embodiment, a conductive pattern can be disposed on the substrate 50 such that the opening 54 can expose a conductive pattern on the substrate 5. In an exemplary embodiment, the opening 54 can have the shape of a contact hole. However, the structure of the opening 54 may vary depending on the configuration of the conductive structure. That is, the opening 54 can have various shapes, so the structure of the opening 54 is not limited to that shown in Fig. 1. For example, the opening 54 can have a treneh structure. 8 201133757. A barrier metal layer pattern S6a is formed on the bottom and sidewalls of the opening 54. The barrier metal layer pattern 56a may have a meandering structure. The barrier metal layer pattern 56a may include at least one of a metal or a nitride. For example, the barrier metal layer pattern 56a may include at least one of tantalum (Ti) or titanium nitride (τίΝχ). The barrier metal layer pattern 56a may have a single layer structure or a mUltilayer structure. For example, the barrier metal layer pattern 56a may include a titanium film and a titanium nitride film. The barrier metal layer pattern 56a prevents metal atoms and/or metal ions in the metal pattern 58b from diffusing toward the insulating interlayer 52. The barrier metal layer pattern finely increases the lying area of the conductive structure so that the conductive structure has a reduced contact resistance. Field Film In an exemplary embodiment, the barrier metal layer pattern 56a may include a material that is oxidized or hardly oxidized. The metal pattern 58b is disposed on the barrier metal|pattern 56a. Metal pattern 58b can comprise, for example, tungsten (w). The metal pattern 5 may not completely fill the opening 54. The barrier metal layer pattern 56a and the metal pattern 58b can be used as a conductive pattern electrically connected to the conductive region of the substrate 50. The metal oxide pattern 60 is formed on the metal pattern 58b. The metal oxide pattern can comprise, for example, an oxidized crane (WOx). In the exemplary embodiment, the metal oxide pattern 60 can be obtained by oxidizing the surface of the metal pattern 58b. The metal oxide pattern 60 may protrude upward from the insulating interlayer 52. In an exemplary embodiment, the protrusion (t) of the metal oxide pattern 60 may have a thickness (t) that is substantially greater than a portion of the fill opening 54 of the metal oxide pattern 6''. Further, the metal oxide pattern 60 has a width 201133757, (W) which may be substantially the same as the metal pattern 58b. In an exemplary embodiment, the metal oxide pattern 60 has a resistance that is substantially higher than the resistance of the metal pattern 58b. The thickness (t) of the metal oxide pattern 60 can be adjusted by controlling the conditions of the oxidation process for forming the metal oxide pattern 60 by oxidizing the metal pattern 58b. Thereby, the resistance of the metal oxide pattern 60 can also be adjusted. The width (w) of the metal oxide pattern 60 can be substantially less than the critical dimension (CD) of the photolithography process. In an exemplary embodiment, the width (w) of the metal oxide pattern 60 may decrease as the thickness (t) of the barrier metal layer pattern 56b increases. For example, the width (w) of the metal oxide pattern 6 可 can be less than about 50 nm. When the metal oxide pattern 60 has a high electrical resistance, the metal oxide pattern 60 can be used as a heating electrode because a Joule heating effect can be generated in the metal oxide pattern 6〇 by applying f to the metal oxide pattern 60. (j〇ule heating effect) ° In an exemplary embodiment, the metal oxide pattern 60 can be used as a contact plug. 'This contact plug has a high resistance and a width substantially smaller than the critical dimension of the lithography process. . An exemplary implementation, when the metal oxide _(9) has a line shape, the metal oxide pattern 6 〇 can be used as a wiring, and the width of the wiring is smaller than the critical dimension of the lithography process. . 3 to 5 are cross-sectional views showing a method of forming a conductive, σ-structure according to an exemplary embodiment of the present invention. 201133757 Referring to Fig. 3', the insulating loss layer 52 is formed on the substrate 5A. The substrate % includes a semiconductor substrate, a substrate having a semiconductor layer, or at least a metal oxide substrate. The insulating interlayer 52 may be formed of an oxide such as oxidized rock.

對絕緣爽層52進行局部餘刻,以形成開口 M 5過4= 基=〇Γ部分。開口54可藉由微影製程 ,、.、邑緣夹層52形成。基板5〇之暴露部分可包括導電區域。 在一示例性實施例中,開口 54可具有接觸孔之形狀。當開 口 54是糟由微影製程而形成時,開口 %所具有之寬度可 實質上相同於或實f上大於微影製程之關鍵尺寸(CD^。 Z金屬層56軸㈣σ 54之底料健上以及絕 緣夾層52上。阻障金屬層56可沿開口 54及絕緣夹層a = 屬1 56可防止金屬層58中所包含之 ^屬原子及/或域離子朝觀夾層5 石,阻Ρ早金屬層56可包含鈦、氡化鈦 單獨使用或以其混合2= 式結構或多層式結構。 可順=4二可不完全填滿開口 54。阻障金屬層56 56形當阻障金屬層 形成於開口 54之側壁上時,開口 度’減小量為轉金屬層56之厚 I有減小之見 控制阻障金屬層56之厚度而調整之:’可措由 金屬層58形成於轉金屬層56上,以完^填滿開口 201133757 54。金屬層58可包含例如鶴。在一示例性實施例中,因藉 由調整阻障金屬層56之厚度而改變開口 54之寬度,金屬 層58所具有之厚度或寬度可根據阻障金屬層56之厚度而 異。 又 參見圖4’局部地移除金屬層58及阻障金屬層56,直 至暴露出絕緣夾層52。舉例而言,可藉由例如化學機械研 磨(chemical mechanical polishing ’ CMP)製程而局部地 移除金屬層58及阻障金屬層56。因此,在開口 54中形成 阻障金屬層圖案56a及初始(preliminary)金屬圖案58a。 在根據一示例性實施例之CMP製程中,可對絕緣夹 層52進行研磨,以使初始金屬圖案58a及阻障金屬層圖案 56a可自絕緣夾層52向上突出。舉例而言,初始金屬圖案 58a及阻障金屬層圖案56a之各突出部可具有約奈书^ 咼度。在此種情形中,具有突出部的初始金屬圖案及 阻障金屬層圖案56a可藉由單一 CMP製程獲得,而無需 進行額外之蝕刻或平坦化(planarizing)製程。A partial residue is applied to the insulating layer 52 to form an opening M 5 over 4 = base = 〇Γ portion. The opening 54 can be formed by a lithography process, a rim edge interlayer 52. The exposed portion of the substrate 5 can include a conductive region. In an exemplary embodiment, the opening 54 may have the shape of a contact hole. When the opening 54 is formed by the lithography process, the opening % may have a width substantially the same as or greater than the critical dimension of the lithography process (CD^. Z metal layer 56 axis (four) σ 54 bottom material And the insulating interlayer 52. The barrier metal layer 56 can be along the opening 54 and the insulating interlayer a = genus 1 56 to prevent the atoms and/or domain ions contained in the metal layer 58 from facing the interlayer 5 The early metal layer 56 may comprise titanium or titanium telluride alone or in a mixed 2= structure or a multi-layer structure. The opening 54 may not be completely filled in. The barrier metal layer 56 is shaped as a barrier metal layer. When formed on the sidewall of the opening 54, the opening degree 'reduction amount is adjusted as the thickness I of the metal transition layer 56 is reduced. The thickness of the barrier metal layer 56 is controlled to be adjusted: 'The metal layer 58 can be formed on the turn The metal layer 56 is filled with openings 201133757 54. The metal layer 58 may comprise, for example, a crane. In an exemplary embodiment, the width of the opening 54 is varied by adjusting the thickness of the barrier metal layer 56, the metal layer The thickness or width of the 58 may vary depending on the thickness of the barrier metal layer 56. Referring to Figure 4', the metal layer 58 and the barrier metal layer 56 are partially removed until the insulating interlayer 52 is exposed. For example, the metal may be locally removed by, for example, a chemical mechanical polishing 'CMP process. The layer 58 and the barrier metal layer 56. Therefore, the barrier metal layer pattern 56a and the preliminary metal pattern 58a are formed in the opening 54. In the CMP process according to an exemplary embodiment, the insulating interlayer 52 can be performed. Grinding, so that the initial metal pattern 58a and the barrier metal layer pattern 56a may protrude upward from the insulating interlayer 52. For example, the protrusions of the initial metal pattern 58a and the barrier metal layer pattern 56a may have a twist In this case, the initial metal pattern having the protrusions and the barrier metal layer pattern 56a can be obtained by a single CMP process without additional etching or planarizing processes.

在-示例性實施例中,可藉由—個以上具有不同㈣ 條件之⑽製程而形成具有突出部的初始金屬圖案% 及阻障金屬層圖案56a。舉例而言,可在第—CM 在第-製絲件下屬層58及轉金屬層% 磨,並可接著在第二’製程中在第二製程條件下對今 緣夾層52進行研磨。如此一來,初始金屬圖案娜及師 金屬層圖案56a可具有自絕緣夾層52突出之部分。 參見圖5,在氧氣氣氛中對初始金屬圖案二進行^ 12 201133757, 處理’以使金屬圖案娜及金屬氡化物圖案6〇形成於 金屬圖案56a上。 虽在氧氣氣氛中對初始金屬圖案58a進行熱處理時, 初始金屬圖案58a之表面會與氧氣反應並進而使初始金屬 圖案58a之此表面沿開口 54之側壁熱膨脹。如此一來,便 在使初始金屬圖案58a變成金屬圖案58b之同時,在初始 金屬圖案58a上產生金屬氧化物圖案6〇。在一示例性實施 例中,金屬氧化物圖案60可具有根據初始金屬圖案58& 之結構而變化的形狀。 當初始金屬圖案58a所具有之頂面被形成為高於絕緣 夾層52之頂面時,金屬氧化物圖案6〇可自初始金屬圖案 58a之上表面非等向性地生長。因此,金屬氧化物圖案 所具有之寬度可實質上類似於初始金屬圖案58a之寬度。 然而,當初始金屬圖案58a之頂面實質上低於絕緣夾層& 之,面時’金屬氧化物圖案可自初始金屬圖案撕之頂 面等向性地生長。在-示例性實施例中,金屬氧化物圖案 60可寬於初始金屬圖案58a。 如圖4所示,初始金屬圖案娜所具有之頂面略高於 絕緣夾層52之頂面’以使金屬氧化物圖案6〇可自初始金 屬圖案撕之頂面非等向性地生長。亦即,金屬氧化物圖 案60可自初始金屬圖案58a垂直地形成,且金屬氧化物圖 案60所具有之寬度可實質上類似於初始金屬圖案撕之寬 度。因此,金屬氧化物圖案60之寬度可實質上小於 54之寬度。 13 201133757 同時,當金屬氧化物圖案60之寬度減小時,金屬氧化 物圖案60可具有減小之表面粗链度(surface r0Ughness )。 舉例而言,當金屬氧化物圖案60具有約50奈米之寬度時, 金屬氧化物圖案60可具有介於十分之幾埃(A)至約1埃 範圍内的減小之表面粗糙度。如此一來,便可防止因金屬 氧化物圖案60之表面粗糙度而造成電性故障。在一示例性 實施例中,當藉由微影製程形成開口 54時,藉由調整阻障 金屬層圖案56a之厚度,金屬氧化物圖案60可具有低於約 50奈米之寬度。 在一示例性實施例中,可在使氧氣與初始金屬圖案 58a之上表面反應之同時,使金屬氧化物圖案60形成於開 口 54之上部。因此,金屬氧化物圖案6〇可自開口 54突出。 在形成金屬氧化物圖案60之同時,初始金屬圖案58a變成 金屬圖案58b ’金屬圖案58b所具有之高度小於初始金屬 圖案58a之高度。隨著金屬氧化物圖案60之厚度(t)增 大’初始金屬圖案58a之高度(h)可減小至高度(h,)。 在一示例性實施例中,金屬氧化物圖案60所具有之電阻可 實質上大於金屬圖案58b之電阻。 在一示例性實施例中,可藉由熱處理初始金屬圖案 58a而獲得金屬圖案58b。可在初始金屬圖案58a附近執行 熱處理製程。此熱處理製程可包括電漿處理或快速熱退火 (rapid thermal annealing,RTA)製程至少其中之一。舉例 而言’可藉由執行電漿處理或RTA製程而形成金屬氧化物 圖案60。另一選擇為,可依次地執行電漿處理及RTA製 201133757 程來形成金屬圖案58b。 金^圖案58b及金屬氧化物圖案6〇其中之每一者可分 ^具有冋度(h )及厚度⑴,可藉由控制熱處理製程之 變高度⑺及厚度⑴。此外,可藉由控制阻 障金屬層56之厚度而調整金屬圖案58b及金屬氧化物圖案 60之寬度。藉此’可控制金屬圖案撕及金屬氧化物 60之電阻。 “ 在-示例性實施例中,可藉由RTA製程而形成金屬圖 案5扑及金屬氧化物圖帛6〇。此RTA製程可在約4〇叱至 約_c之溫度下於氧氣氣氛中執行約一分鐘至約1〇分 鐘。另-選擇為,可藉由電製處理而獲得金屬圖案58b^ 金屬氧化物圖案60。在-示例性實施例中,藉由施加約2〇 瓦至約100瓦之功率而魏氣氣氛中執行電漿處理約 鐘至約10分鐘。 在-示例性實施例中,可利用包含氧氣(02)氣體或 臭氧(〇3)氣體之製程氣體來氧化初始金屬圖案58a。舉 例而言,可藉由以約500sccm《流速提供氧氣氣體來氧二 ,始金屬圖案58a。然而,初始金屬圖案58a可藉由各種 氣體及製程條件進行氧化,而並非僅限於上魏體及/或製 程條件。 在一示例性實施例中,在氧化初始金屬圖案58a時, 阻障金屬層圖案56a可不被氧化。儘管阻障金屬層圖案5如 被輕微地氧化,然而阻障金屬層圖案56a之氧化部所具有 之厚度可實質上小於金屬氧化物圖案6〇之厚度。舉例而 15In the exemplary embodiment, the initial metal pattern % having the protrusions and the barrier metal layer pattern 56a may be formed by one or more (10) processes having different (four) conditions. For example, the first CM can be ground at the first and second metallurgical layers 58 and the metallization layer, and then the inner edge interlayer 52 can be ground under the second process conditions in the second process. As such, the initial metal pattern and the metal layer pattern 56a may have portions protruding from the insulating interlayer 52. Referring to Fig. 5, the initial metal pattern 2 is subjected to an operation in an oxygen atmosphere to form a metal pattern Na and a metal halide pattern 6? on the metal pattern 56a. Although the initial metal pattern 58a is heat-treated in an oxygen atmosphere, the surface of the initial metal pattern 58a reacts with oxygen and thereby thermally expands the surface of the initial metal pattern 58a along the sidewall of the opening 54. As a result, the metal oxide pattern 6 is formed on the initial metal pattern 58a while the initial metal pattern 58a is changed to the metal pattern 58b. In an exemplary embodiment, the metal oxide pattern 60 may have a shape that varies according to the structure of the initial metal pattern 58 & When the top surface of the initial metal pattern 58a is formed higher than the top surface of the insulating interlayer 52, the metal oxide pattern 6〇 may grow non-isotropically from the upper surface of the initial metal pattern 58a. Therefore, the width of the metal oxide pattern can be substantially similar to the width of the initial metal pattern 58a. However, when the top surface of the initial metal pattern 58a is substantially lower than the insulating interlayer & surface, the metal oxide pattern can be grown equitably from the top surface of the initial metal pattern tear. In an exemplary embodiment, the metal oxide pattern 60 may be wider than the initial metal pattern 58a. As shown in Fig. 4, the initial metal pattern has a top surface slightly higher than the top surface of the insulating interlayer 52 to allow the metal oxide pattern 6 to grow non-isotropically from the top surface of the initial metal pattern. That is, the metal oxide pattern 60 may be formed vertically from the initial metal pattern 58a, and the metal oxide pattern 60 may have a width substantially similar to the width of the initial metal pattern tear. Thus, the width of the metal oxide pattern 60 can be substantially less than the width of 54. Meanwhile, when the width of the metal oxide pattern 60 is reduced, the metal oxide pattern 60 may have a reduced surface roughness. For example, when the metal oxide pattern 60 has a width of about 50 nanometers, the metal oxide pattern 60 may have a reduced surface roughness ranging from a few tenths of an angstrom (A) to about 1 angstrom. As a result, electrical failure due to the surface roughness of the metal oxide pattern 60 can be prevented. In an exemplary embodiment, when the opening 54 is formed by the lithography process, the metal oxide pattern 60 may have a width of less than about 50 nm by adjusting the thickness of the barrier metal layer pattern 56a. In an exemplary embodiment, the metal oxide pattern 60 may be formed on the upper portion of the opening 54 while reacting oxygen with the upper surface of the initial metal pattern 58a. Therefore, the metal oxide pattern 6〇 can protrude from the opening 54. At the same time as the formation of the metal oxide pattern 60, the initial metal pattern 58a becomes the metal pattern 58b. The metal pattern 58b has a height lower than that of the initial metal pattern 58a. As the thickness (t) of the metal oxide pattern 60 increases, the height (h) of the initial metal pattern 58a can be reduced to the height (h,). In an exemplary embodiment, the metal oxide pattern 60 has a resistance that is substantially greater than the resistance of the metal pattern 58b. In an exemplary embodiment, the metal pattern 58b can be obtained by heat-treating the initial metal pattern 58a. The heat treatment process can be performed in the vicinity of the initial metal pattern 58a. The heat treatment process may include at least one of a plasma treatment or a rapid thermal annealing (RTA) process. For example, the metal oxide pattern 60 can be formed by performing a plasma treatment or an RTA process. Alternatively, the plasma processing and the RTA process may be sequentially performed to form the metal pattern 58b. Each of the gold pattern 58b and the metal oxide pattern 6 can be divided into a thickness (h) and a thickness (1) by controlling the height (7) and thickness (1) of the heat treatment process. Further, the widths of the metal pattern 58b and the metal oxide pattern 60 can be adjusted by controlling the thickness of the barrier metal layer 56. Thereby, the resistance of the metal pattern tearing and the metal oxide 60 can be controlled. "In an exemplary embodiment, the metal pattern 5 can be formed by the RTA process and the metal oxide pattern can be performed. The RTA process can be performed in an oxygen atmosphere at a temperature of about 4 Torr to about _c. From about one minute to about one minute. Alternatively, the metal pattern 58b^ metal oxide pattern 60 can be obtained by electrical processing. In the exemplary embodiment, by applying about 2 watts to about 100 The power of the watts is performed while the plasma treatment is performed in the Wei gas atmosphere for about 10 minutes. In the exemplary embodiment, the process gas containing oxygen (02) gas or ozone (〇3) gas may be used to oxidize the initial metal pattern. 58a. For example, the initial metal pattern 58a can be oxidized by supplying oxygen gas at a flow rate of about 500 sccm. However, the initial metal pattern 58a can be oxidized by various gases and process conditions, and is not limited to the upper Wei body. And/or process conditions. In an exemplary embodiment, the barrier metal layer pattern 56a may not be oxidized when the initial metal pattern 58a is oxidized. Although the barrier metal layer pattern 5 is slightly oxidized, the barrier metal layer Oxidation of pattern 56a The thickness of the portion may be substantially smaller than the thickness of the metal oxide pattern 6 。. For example 15

201133757 _ L 言’當阻障金屬層圖案56a包含鈦或氮化鈦至少其中之一 時’阻障金屬層圖案56a可不被實質上氧化。 在形成金屬氧化物圖案60後’可執行表面處理製程。 此表面處理製程可包括快速熱硝化(rapid thermal nitration,rTN)製程,在快速熱硝化製程中,使金屬氧化 物圖案60之表面經受氮氣氣氛。此外’可對金屬氧化物圖 案60之表面執行還原製程,以減少金屬氧化物圖案6〇中 金屬氧化物之量。金屬氧化物圖案60之電阻可藉由此表面 處理製程及/或此還原製程而發生變化’進而可控制導電結 構之電阻。 根據一示例性實施例,可在不沈積金屬氧化物或蚀刻 所沈積之金屬氧化物之情況下獲得金屬氧化物圖案6〇。金 屬氧化物圖案60可具有實質上小於微影製程之關鍵尺寸 之寬度。用作接觸插塞之金屬圖案58b及阻障金屬層圖案 56a可配置於金屬氧化物圖案60之下。因此,接觸插塞所 具有之電阻可實質上小於金屬氧化物圖案60之電阻,而接 觸插塞所具有之寬度可實質上大於金屬氧化物圖案60之 寬度。因可藉由控制金屬氧化物圖案60及金屬圖案58b 之厚度及寬度而調整金屬氧化物圖案60及金屬圖案58b 之電阻,故此導電結構可確定電阻。 圖6是繪示根據本發明之一示例性實施例的磁性記憶 體元件之剖面圖。圖6所示之磁性記憶體元件可包括根據 本發明之一示例性實施例之導電結構。舉例而言,此磁性 元件可包括與參照圖1所述之導電結構具有實質上相同組 201133757 態之導電結構。 參見圖6 ’在半導體基板400上提供金屬氧化物半導 體(MOS)電晶體。此MOS電晶體可選擇磁性記憶體元 件之至少一個單元胞(unit cell)。此MOS電晶體可包括閘 極絕緣層402、閘電極404及雜質區406。閘電極4〇4可; 作磁性C憶體元件之字元線。在一示例性實施例中,閘電 極404可沿第一方向延伸。 可相對於磁性記憶體元件同時沿兩個方向提供電流至 自旋轉移力矩(spin transfer torque)磁性記憶體元件中之 磁性穿隧接面(magnetic tunnel junction,MTJ)結構内。 因此,此MOS電晶體可在磁性記憶體元件中運作為開 構件。 在半導體基板400上形成第一絕緣爽層408,以覆蓋 MOS電晶體。第一絕緣夾層408可包含氧化物,例如氧化 矽。穿過第一絕緣夾層408形成接觸插塞410。接觸插塞 41〇電性接觸雜質區406。 在接觸插塞410上配置導電圖案412。導電圖案412 可沿第一方向延伸。導電圖案412可具有線之形狀。導電 線412可包含金屬,例如鎢。 在第一絕緣夾層408上形成第二絕緣夾層414,以覆 蓋導電圖案412。第二絕緣夾層414可包含氧化物,例如 氧化石夕。穿過第二絕緣夾層414形成開口 415。開口 415 局部地暴露出導電圖案412。開口 415可具有接觸孔之形 狀。在—示例性實施例中,可在磁性記憶體元件之胞區域 17 201133757 * l 中週期性地提供多個開口。在一示例性實施例中,一個開 口可對應於磁性記憶體元件之一個單元胞(unitcell)e 在開口 415之底部及侧壁上形成第一阻障金屬層圖案 416。在第一阻障金屬層圖案416上配置金屬圖案418。金 屬圖案418可包含鎢。金屬圖案418可局部地填充開口 415。 ' 在金屬圖案418上配置金屬氧化物圖案42〇。金屬氧 化物圖案420可自開口 415突出。金屬氧化物圖案42〇可 藉由對金屬圖案418進行氧化而獲得。當金屬圖案418包 含鶴時,金屬氧化物圖案420可包含氧化嫣。 在一示例性實施例中,金屬圖案418所具有之寬度可 實質上相同於金屬氧化物圖案42〇之寬度。舉例而言,第 一阻障金屬層圖案416、金屬圖案418及金屬氧化物圖案 420可對應於參照圖1所述之阻障金屬層圖案56a、金屬圖 案58b及金屬氧化物圖案60。 在導電結構中,金屬圖案418及第一阻障金屬層圖案 416用作磁性記憶體元件之下電極觸點。具有高電阻之金 屬氧化物圖案420可用作加熱電極,以在磁性記憶體元件 之磁性牙隨接面結構中加熱自由層(free layer )圖案。 在第二絕緣夾層414上形成第三絕緣夾層422。第三 絕緣夾層422可填滿相鄰金屬氧化物圖案42〇間之間隙。 第三絕緣夾層422可包含具有緻密(dense)結構且階梯覆 蓋性(step coverage)佳之材料。舉例而言,第三絕緣夹 層422可包含藉由例如HDP-CVD製程或ALD製程而獲得 201133757 _ A. 之氧化矽。藉此,第三絕緣夾層422可沿金屬氧化物圖案 420之輪廓而順應性地形成。 在一示例性實施例中,第三絕緣夾層422及金屬氡化 物圖案420之上表面可位於實質同一平面上。第一阻障金 屬層圖案416之上表面被覆蓋以第三絕緣夾層422,故第 一阻障金屬層圖案416可不被暴露出。 磁性穿隧接面結構配置於第三絕緣夾層422上。磁性 穿隧接面結構可具有二明治形狀(sandwich-shaped )之多 層式結構’此確保在施加訊號至磁性穿隧接面結構時,電 子會穿隧經過夾置於兩個鐵磁性層之間的極薄氧化物層。 磁性穿隧接面結構包括自由層(free layer)圖案426、穿 隧氧化物層圖案428及固定層(pinned layer)圖案430a、 430b、430c 及 432。固定層圖案 430a、430b、430c 及 432 可包含具有磁化方向之自旋,此磁化方向與固定於二鐵磁 性層中之磁性極化之磁化方向實質上相同。 在磁性穿隧接面結構中,自由層圖案426之底部之至 少一部分可接觸金屬氧化物圖案420之上表面。根據本發 明之一示例性實施例,磁性穿隧接面結構可包括自由層圖 案426、穿隧氧化物層圖案428及固定層圖案430a、430b、 430c 及 432。 在一示例性實施例中,自由層圖案426可包含金屬化 合物,例如鈷-鐵-硼(Co-Fe-B)。 在第三絕緣夾層422與自由層圖案426之間形成第二 阻障金屬層圖案424。第二阻障金屬層圖案424可防止自 201133757 由層圖案426中所含之金屬出現異常生長。第二阻障金屬 層圖案424可包含金屬或金屬化合物至少其中之一。第二 阻障金屬層圖案424可包含例如组、鈦、氮化组或氣化欽。 穿隧氧化物層圖案428可包含金屬氧化物,例如氧化 鎖(Mg〇x)。固定層圖案43〇a、430b、430c及432可具有 堆疊結構,此堆疊結構包含第一固定層圖案43〇a、43〇b 及430c以及第二固定層圖案432。第一固定層圖案43〇a、 430b及430c可直接接觸穿隧氧化物層圖案428。 在一示例性實施例中,第一固定層圖案43〇a、43〇b 及430c被劃分成下鐵磁性層圖案43〇a、反鐵磁性耦合間 隔層(anti-ferromagnetic coupling spacer) 430b 及上鐵磁性 層圖案430c。第一固定層圖案430a、430b及430c可具有 合成反鐵磁性層結構。下鐵磁性層圖案430a可包含鈷_鐵_ 硼(Co-Fe-B),上鐵磁性層圖案430c則可包含鈷-鐵 (Co-Fe )。反鐵磁性耦合間隔層430a可包含例如釕(RU)。 第二固定層圖案432可包含鉑-錳(Pt_Mn)。 在磁性穿随接面結構中,自由層圖案426之底部配置 於金屬氧化物圖案420上。金屬氧化物圖案420可更用作 加熱層圖案,以用於加熱自由層圖案426。金屬氧化物圖 案420所具有之寬度實質上小於穿過第一絕緣夾層408而 形成之開口 415之寬度’以使金屬氧化物圖案420可具有 高之電阻以更有效地加熱自由層圖案426。 當磁性穿隧接面結構配置於具有較差粗糖度之層(例 如具有粗糙表面之層)上時,尼爾耦合(Neel coupling) 20 201133757, 現象可導致磁性穿隧接面結構之特性劣化。然而,根據本 發明示例性實施例之磁性記憶體元件是配置於具有優異粗 趟度之金屬氧化物圖案420上,故磁性記憶體元件可確保 具有良好之運作特性。 當自由層圖案426具有高之溫度時,在將資料儲存於 磁性記憶體元件中時,自由層圖案426可具有減小之矯頑 力(coercive force)。當自由層圖案426具有高之溫度時, 藉由減小自旋轉移力矩磁性隨機存取記憶體(spin transfer torque magnetic random access memory,SIT-MRAM )之寫 入電流或臨界電流,可使自旋轉移力矩磁性隨機存取記憶 體具有降低之功耗。在一示例性實施例中,可在磁性穿隧 接面結構上配置硬罩幕圖案(har(j mask pattern )。 在第三絕緣夾層422上配置第四絕緣夾層434,以填 滿相鄰磁性穿隧接面結構間之間隙。在第四絕緣夾層434 上配置第五絕緣夾層436。第四絕緣夾層434與第五絕緣 夾層436可包含例如氧化物。 在第五絕緣炎層436中配置有上電極438。上電極438 可穿過第五絕緣夾層436,並可接觸磁性穿隧接面結構之 最上固定層圖案。上電極438可包含具有小電阻之材料, 例如鶴。 在第五絕緣夾層436上形成位元線440。位元線44〇 可電性連接至上電極438。位元線440可沿第二方向延伸, 此第二方向實質上垂直於字元線延伸之第一方向。 以下,將闡述根據一示例性實施例將資料儲存於磁性 21 201133757 記憶體元件中之過程。 參見圖6 ’施加字元線訊號至電晶體之閘電極4〇4,並 同時施加位元線寫入訊號至位元線440。字元線味號可對 應於電壓脈衝訊號,此電壓脈衝訊號在預定週期°中具有實 質上大於電晶體之臨限電壓之字元線電壓。因此,^施加 此字元線電壓至電晶體時,電性連接至字元線之電晶體會 導通。位元線訊號可為電流脈衝訊號,當施加字元線訊號 至電晶體時,此電流脈衝訊號施加電流至位元線44〇。結 果,寫入電流可流過磁性穿隧接面結構及串列地(比serial) 電性連接至磁性穿隧接面結構之電晶體β 寫入電流可包括第一寫入電流及第二寫入電流。第一 寫入電流可從自由層圖案426朝第二固定層圖案432流 動。第二寫入電流可從第二固定層圖案432朝自由層圖案 426流動。在一示例性實施例中,第一寫入電流可沿丫軸 之正向在磁性穿隧接面結構中流動,而第二寫入電流可沿 Υ軸之負向流動。亦即,在第一寫入電流在磁性穿隧接面 結構中流動之同時,電子可沿γ軸之負向移動。在第二寫 入電流在磁性穿隧接面結構中流動之同時,電子可沿γ軸 之正向流動。 當第一寫入電流流過磁性穿隧接面結構時,電子可被 注入至自由層圖案426中。電子可包含上旋電子及下旋電 子。當固定於第二固定層圖案432中之大多數磁性極化具 有上方疋狀態時’只有注入於自由層圖案426中之上旋電子 可流過穿隧氧化物層圖案428,並隨後可到達第二固定層 22 201133757^ 圖案432。注入於自由層圖案426中之下旋電子可積聚於 自由層圖案426中。 注入於自由層圖案426中之上旋電子與下旋電子之數 目可正比於第一寫入電流之密度。當第一寫入電流之密度 增大時,自由層圖案426可具有多個主磁性極化,此多個 主磁性極化反平行於由積聚於自由層圖案426中之下旋電 子引起之第一固疋層圖案426之磁性極化而不依據於自由 層圖案426之初始極化。因此,當第一寫入電流之密度大 於第一臨界電流密度時,磁性穿隧接面結構可被切換至具 有最大電阻。當提供第一寫入至磁性穿隧接面結構時,金 屬氡化物圖案420可加熱自由層圖案426,以減小在自由 層圖案426上形成之矯頑力以及減小第一臨界電流密度。 因此,磁性記憶體元件可具有最小化之功耗,同時減小第 一寫入電流。 當第二寫入電流流過磁性穿隧接面結構時,穿過第二 固定層圖案432之大多數電子所具有之自旋可表現出與第 二固定層圖案432之固定磁性極化之磁化方向實質上相同 之磁化方向。舉例而言’當第二固定層圖案432中之多個 主磁性極化具有上旋狀態時,穿過第二固定層圖案432之 =多數電子可具有上餘態。舉例而言,大多數電子所具 有之自旋可顯Μ與合成(synthetie)反鐵雜層結構中 之上鐵磁性層圖案43〇a之方向實質上相同之方向。 上方疋電子可穿過穿隨氧化物層圖案428並可到達自由 圖案426至ij達自由層圖案426之上旋電子之數目可與 23 2011337^ 第二寫入電流之密度成比例。當第二寫入電流之密度增大 時’自由層圖案426可具有多個磁性極化,此多個磁性極 化實質上平行於第二固定層圖案426之固定磁化極化之磁 性極化而不依據於自由層圖案426之初始極化。此起因於 注入於自由層圖案426中之上旋電子。因此,當第二寫入 電流之密度大於第二臨界電流密度時,磁性穿隧接面結構 可被切換至具有低之電阻。當提供第二寫入至磁性穿隧接 面結構時,金屬氧化物圖案420可加熱自由層圖案426, 以減小形成於自由層圖案426上之矯頑力以及減小第二臨 界電流密度。因此’磁性記憶體元件可具有最小化之功耗, 同時減小第二寫入電流。 圖7至圖1〇是繪示根據本發明之一示例性實施例的一 種製造磁性記憶體元件之方法的刮面圖。 參見圖7,在半導體基板400上形成MOS電晶體,此 MOS電晶體用於選擇磁性記憶體元件之所期望的單元胞。 在形成MOS電晶體過程中,在半導體基板4〇〇上形 成閘極絕緣層402及閘電極層。接著,钕刻閘電極層,以 在閘極絕緣層402上形成閘電極404。在與閘電極4〇1相 鄰的半導體基板400之一部分處形成雜質區4〇6。閘電極 404可用作磁性g己憶體元件之字元線。閘電極404可具有 沿第一方向延伸之線形狀。 在半導體基板400上形成第一絕緣夾層4〇8,以覆蓋 MOS電晶體。穿過第一絕緣夾層4〇8形成接觸插塞41〇。 接觸插塞410接觸雜質區406。在接觸插塞41〇以及第一 24201133757 _ L ‘ When the barrier metal layer pattern 56a contains at least one of titanium or titanium nitride, the barrier metal layer pattern 56a may not be substantially oxidized. After the metal oxide pattern 60 is formed, a surface treatment process can be performed. The surface treatment process can include a rapid thermal nitration (rTN) process in which the surface of the metal oxide pattern 60 is subjected to a nitrogen atmosphere. Further, a reduction process can be performed on the surface of the metal oxide pattern 60 to reduce the amount of metal oxide in the metal oxide pattern. The electrical resistance of the metal oxide pattern 60 can be varied by the surface treatment process and/or the reduction process to further control the electrical resistance of the conductive structure. According to an exemplary embodiment, the metal oxide pattern 6〇 can be obtained without depositing a metal oxide or etching the deposited metal oxide. The metal oxide pattern 60 can have a width that is substantially less than the critical dimension of the lithography process. The metal pattern 58b serving as a contact plug and the barrier metal layer pattern 56a may be disposed under the metal oxide pattern 60. Accordingly, the resistance of the contact plug can be substantially less than the resistance of the metal oxide pattern 60, and the contact plug can have a width substantially greater than the width of the metal oxide pattern 60. Since the resistances of the metal oxide pattern 60 and the metal pattern 58b can be adjusted by controlling the thickness and width of the metal oxide pattern 60 and the metal pattern 58b, the conductive structure can determine the resistance. Figure 6 is a cross-sectional view showing a magnetic memory device in accordance with an exemplary embodiment of the present invention. The magnetic memory component shown in Figure 6 can comprise a conductive structure in accordance with an exemplary embodiment of the present invention. For example, the magnetic component can include a conductive structure having substantially the same set of 201133757 states as the conductive structure described with reference to FIG. Referring to Fig. 6', a metal oxide semiconductor (MOS) transistor is provided on the semiconductor substrate 400. The MOS transistor can select at least one unit cell of the magnetic memory element. The MOS transistor may include a gate insulating layer 402, a gate electrode 404, and an impurity region 406. The gate electrode 4〇4 can be used as a word line of the magnetic C memory element. In an exemplary embodiment, gate electrode 404 can extend in a first direction. Current can be supplied to the magnetic tunnel junction (MTJ) structure in the spin transfer torque magnetic memory element simultaneously with respect to the magnetic memory element. Therefore, the MOS transistor can operate as an open member in the magnetic memory element. A first insulating layer 408 is formed on the semiconductor substrate 400 to cover the MOS transistor. The first insulating interlayer 408 can comprise an oxide, such as hafnium oxide. A contact plug 410 is formed through the first insulating interlayer 408. The contact plug 41 electrically contacts the impurity region 406. A conductive pattern 412 is disposed on the contact plug 410. The conductive pattern 412 may extend in the first direction. The conductive pattern 412 may have a shape of a line. Conductive line 412 can comprise a metal, such as tungsten. A second insulating interlayer 414 is formed over the first insulating interlayer 408 to cover the conductive pattern 412. The second insulating interlayer 414 can comprise an oxide, such as oxidized oxide. An opening 415 is formed through the second insulating interlayer 414. The opening 415 partially exposes the conductive pattern 412. The opening 415 may have a shape of a contact hole. In an exemplary embodiment, a plurality of openings may be periodically provided in the cell region 17 201133757 * l of the magnetic memory device. In an exemplary embodiment, an opening may form a first barrier metal layer pattern 416 on the bottom and sidewalls of the opening 415 corresponding to a unit cell e of the magnetic memory element. A metal pattern 418 is disposed on the first barrier metal layer pattern 416. The metal pattern 418 can comprise tungsten. The metal pattern 418 can partially fill the opening 415. The metal oxide pattern 42 is placed on the metal pattern 418. The metal oxide pattern 420 may protrude from the opening 415. The metal oxide pattern 42 can be obtained by oxidizing the metal pattern 418. When the metal pattern 418 contains a crane, the metal oxide pattern 420 may contain ruthenium oxide. In an exemplary embodiment, the metal pattern 418 has a width that is substantially the same as the width of the metal oxide pattern 42A. For example, the first barrier metal layer pattern 416, the metal pattern 418, and the metal oxide pattern 420 may correspond to the barrier metal layer pattern 56a, the metal pattern 58b, and the metal oxide pattern 60 described with reference to FIG. In the conductive structure, the metal pattern 418 and the first barrier metal layer pattern 416 serve as electrode contacts under the magnetic memory element. A metal oxide pattern 420 having a high electrical resistance can be used as a heating electrode to heat a free layer pattern in the magnetic tooth interface structure of the magnetic memory element. A third insulating interlayer 422 is formed over the second insulating interlayer 414. The third insulating interlayer 422 fills the gap between the adjacent metal oxide patterns 42. The third insulating interlayer 422 may comprise a material having a dense structure and good step coverage. For example, the third insulating interlayer 422 can include yttrium oxide of 201133757_A. obtained by, for example, a HDP-CVD process or an ALD process. Thereby, the third insulating interlayer 422 can be conformally formed along the outline of the metal oxide pattern 420. In an exemplary embodiment, the upper surfaces of the third insulating interlayer 422 and the metallization pattern 420 may be located on substantially the same plane. The upper surface of the first barrier metal layer pattern 416 is covered with a third insulating interlayer 422, so that the first barrier metal layer pattern 416 may not be exposed. The magnetic tunneling junction structure is disposed on the third insulating interlayer 422. The magnetic tunnel junction structure can have a sandwich-shaped multilayer structure. This ensures that electrons are tunneled between the two ferromagnetic layers when applying a signal to the magnetic tunnel junction structure. Very thin oxide layer. The magnetic tunnel junction structure includes a free layer pattern 426, a tunnel oxide layer pattern 428, and pinned layer patterns 430a, 430b, 430c, and 432. The pinned pattern 430a, 430b, 430c, and 432 may include a spin having a magnetization direction that is substantially the same as a magnetization direction of the magnetic polarization fixed in the ferromagnetic layer. In the magnetic tunnel junction structure, at least a portion of the bottom of the free layer pattern 426 may contact the upper surface of the metal oxide pattern 420. In accordance with an exemplary embodiment of the present invention, the magnetic tunnel junction structure may include a free layer pattern 426, a tunnel oxide layer pattern 428, and fixed layer patterns 430a, 430b, 430c, and 432. In an exemplary embodiment, the free layer pattern 426 can comprise a metal compound, such as cobalt-iron-boron (Co-Fe-B). A second barrier metal layer pattern 424 is formed between the third insulating interlayer 422 and the free layer pattern 426. The second barrier metal layer pattern 424 prevents abnormal growth of the metal contained in the layer pattern 426 from 201133757. The second barrier metal layer pattern 424 may include at least one of a metal or a metal compound. The second barrier metal layer pattern 424 may comprise, for example, a group, a titanium, a nitride group, or a gasification. The tunnel oxide layer pattern 428 may comprise a metal oxide such as an oxidized lock (Mg〇x). The pinned layer patterns 43A, 430b, 430c, and 432 may have a stacked structure including first pinned layer patterns 43a, 43b, and 430c and a second pinned layer pattern 432. The first pinned layer patterns 43A, 430b, and 430c may directly contact the tunnel oxide layer pattern 428. In an exemplary embodiment, the first pinned layer patterns 43A, 43B, and 430c are divided into a lower ferromagnetic layer pattern 43a, an anti-ferromagnetic coupling spacer 430b, and Ferromagnetic layer pattern 430c. The first pinned layer patterns 430a, 430b, and 430c may have a synthetic antiferromagnetic layer structure. The lower ferromagnetic layer pattern 430a may include cobalt-iron-boron (Co-Fe-B), and the upper ferromagnetic layer pattern 430c may include cobalt-iron (Co-Fe). The antiferromagnetic coupling spacer layer 430a may comprise, for example, germanium (RU). The second pinned layer pattern 432 may include platinum-manganese (Pt_Mn). In the magnetic wear-fed surface structure, the bottom of the free layer pattern 426 is disposed on the metal oxide pattern 420. The metal oxide pattern 420 can be further used as a heating layer pattern for heating the free layer pattern 426. The metal oxide pattern 420 has a width substantially less than the width ′ of the opening 415 formed through the first insulating interlayer 408 such that the metal oxide pattern 420 can have a high electrical resistance to more efficiently heat the free layer pattern 426. When the magnetic tunnel junction structure is disposed on a layer having a poor coarseness (e.g., a layer having a rough surface), Neel coupling 20 201133757, the phenomenon may cause deterioration of characteristics of the magnetic tunnel junction structure. However, the magnetic memory element according to an exemplary embodiment of the present invention is disposed on the metal oxide pattern 420 having excellent roughness, so that the magnetic memory element can ensure good operational characteristics. When the free layer pattern 426 has a high temperature, the free layer pattern 426 may have a reduced coercive force when storing data in the magnetic memory element. When the free layer pattern 426 has a high temperature, the spin can be made by reducing the write current or the critical current of the spin transfer torque magnetic random access memory (SIT-MRAM). Transfer torque magnetic random access memory has reduced power consumption. In an exemplary embodiment, a hard mask pattern (har (j mask pattern) may be disposed on the magnetic tunnel junction structure. A fourth insulating interlayer 434 is disposed on the third insulating interlayer 422 to fill adjacent magnetic properties. A gap between the tunnel junction structures is disposed. A fifth insulating interlayer 436 is disposed on the fourth insulating interlayer 434. The fourth insulating interlayer 434 and the fifth insulating interlayer 436 may include, for example, an oxide. Upper electrode 438. Upper electrode 438 can pass through fifth insulating interlayer 436 and can contact the uppermost fixed layer pattern of the magnetic tunneling junction structure. Upper electrode 438 can comprise a material having a small electrical resistance, such as a crane. A bit line 440 is formed over 436. The bit line 44A is electrically connectable to the upper electrode 438. The bit line 440 can extend in a second direction that is substantially perpendicular to the first direction in which the word line extends. The process of storing data in a magnetic 21 201133757 memory device in accordance with an exemplary embodiment will be explained. See Figure 6 'Applying a word line signal to the gate electrode 4〇4 of the transistor while applying bit line writes Signal Bit line 440. The word line scent may correspond to a voltage pulse signal having a word line voltage substantially greater than a threshold voltage of the transistor in a predetermined period °. Therefore, ^ is applied to the word line When the voltage is applied to the transistor, the transistor electrically connected to the word line is turned on. The bit line signal can be a current pulse signal, and when the word line signal is applied to the transistor, the current pulse signal applies current to the bit line. 44. As a result, the write current can flow through the magnetic tunnel junction structure and the serially-connected (serial) electrical connection to the transistor of the magnetic tunnel junction structure. The write current can include the first write current and a second write current. The first write current may flow from the free layer pattern 426 toward the second pinned layer pattern 432. The second write current may flow from the second pinned layer pattern 432 toward the free layer pattern 426. In an embodiment, the first write current may flow in the magnetic tunnel junction structure along the positive axis, and the second write current may flow in the negative direction along the x-axis. That is, at the first write current Flowing in the magnetic tunnel junction structure At the same time, electrons can move in the negative direction of the γ-axis. While the second write current flows in the magnetic tunnel junction structure, electrons can flow in the positive direction of the γ-axis. When the first write current flows through the magnetic wear In the tunnel junction structure, electrons may be injected into the free layer pattern 426. The electrons may include upper and lower electrons. When most of the magnetic polarizations fixed in the second fixed layer pattern 432 have an upper germanium state' Only the spin-on electrons injected into the free layer pattern 426 can flow through the tunnel oxide layer pattern 428, and then can reach the second pinned layer 22 201133757^ pattern 432. The spin-electron can be accumulated in the free layer pattern 426. In the free layer pattern 426, the number of spintronics and spindown electrons injected into the free layer pattern 426 can be proportional to the density of the first write current. When the density of the first write current increases, the free layer pattern 426 may have a plurality of main magnetic polarizations that are anti-parallel to the first cause caused by the accumulation of spintronics in the free layer pattern 426. The magnetic polarization of a solid layer pattern 426 is not dependent on the initial polarization of the free layer pattern 426. Therefore, when the density of the first write current is greater than the first critical current density, the magnetic tunnel junction structure can be switched to have the maximum resistance. When a first write to the magnetic tunnel junction structure is provided, the metal germanide pattern 420 can heat the free layer pattern 426 to reduce the coercivity formed on the free layer pattern 426 and reduce the first critical current density. Therefore, the magnetic memory element can have a minimized power consumption while reducing the first write current. When the second write current flows through the magnetic tunnel junction structure, the spin of most of the electrons passing through the second pinned pattern 432 may exhibit a magnetization of the fixed magnetic polarization with the second pinned pattern 432. The direction of magnetization is substantially the same. For example, when a plurality of main magnetic polarizations in the second pinned layer pattern 432 have an up-rotation state, most electrons passing through the second pinned layer pattern 432 may have an upper state. For example, most electrons have a spin that is substantially the same as the direction of the ferromagnetic layer pattern 43a in the synthetie antiferromagnetic structure. The number of spintronics above the germanium electrons that can pass through the oxide layer pattern 428 and reach the free pattern 426 to ij to the free layer pattern 426 can be proportional to the density of the second write current. The free layer pattern 426 may have a plurality of magnetic polarizations when the density of the second write current increases, the plurality of magnetic polarizations being substantially parallel to the magnetic polarization of the fixed magnetization polarization of the second pinned layer pattern 426 It does not depend on the initial polarization of the free layer pattern 426. This is caused by the spin-on electrons injected into the free layer pattern 426. Therefore, when the density of the second write current is greater than the second critical current density, the magnetic tunnel junction structure can be switched to have a low resistance. When a second write to the magnetic tunneling junction structure is provided, the metal oxide pattern 420 can heat the free layer pattern 426 to reduce the coercive force formed on the free layer pattern 426 and reduce the second critical current density. Thus, a magnetic memory element can have a minimized power consumption while reducing a second write current. 7 through 1B are plan views showing a method of fabricating a magnetic memory device in accordance with an exemplary embodiment of the present invention. Referring to Fig. 7, a MOS transistor is formed on a semiconductor substrate 400 for selecting a desired unit cell of a magnetic memory element. In the process of forming the MOS transistor, the gate insulating layer 402 and the gate electrode layer are formed on the semiconductor substrate 4A. Next, the gate electrode layer is etched to form a gate electrode 404 on the gate insulating layer 402. An impurity region 4?6 is formed at a portion of the semiconductor substrate 400 adjacent to the gate electrode 4?1. The gate electrode 404 can be used as a word line of a magnetic g-resonance element. The gate electrode 404 may have a line shape extending in the first direction. A first insulating interlayer 4?8 is formed on the semiconductor substrate 400 to cover the MOS transistor. A contact plug 41 is formed through the first insulating interlayer 4〇8. The contact plug 410 contacts the impurity region 406. At the contact plug 41〇 and the first 24

201133757 L 絕緣夾層408上形成導電圖案412。導電圖案412可經由 接觸插塞410而電性連接至雜質區406。接觸插塞410與 導電結構其中之每一者皆可包含具有低電阻之金屬。 在形成接觸插塞410及導電圖案412之過程中,可局 部地蝕刻第一絕緣夾層408,以穿過第一絕緣夾層408形 成接觸孔。接觸孔可例如藉由微影製程形成。可在第一絕 緣夾層408上形成導電層,以填滿接觸孔。可將此導電層 圖案化’以形成接觸插塞410及導電圖案412。在一示例 性實施例中’接觸插塞410可形成於接觸孔中。可藉由在 接觸插塞410及第一絕緣夾層408上形成額外導電層而於 接觸插塞410及第一絕緣夾層408上形成導電圖案412。 此額外導電層可隨後被圖案化。在一示例性實施例中,可 藉由鑲嵌製程(damascene process)而形成接觸插塞410 及導電圖案412。 參見圖8,在第一絕緣夾層408上形成第二絕緣夾層 414,以覆盍導電圖案412。局部地蝕刻第二絕緣夾層414, 以形成開口 415,開口 415至少局部地暴露出導電圖案 412。開口 415可藉由例如微影製程而獲得。開口 415可具 有接觸孔之形狀。 ~ 藉由與參照圖3至圖5所述之製程實質上相同之製 私幵/成導電結構,以填滿開口 415。此導電結構可自開 口 415突出。此導電結構包括第一阻障金屬層圖案、 金屬圖案418及金屬氧化物圖案420。第-阻障金屬層圖 案416形成於開口 415之底部及側壁上,且金屬圖案仙 25 201133757A conductive pattern 412 is formed on the insulating interlayer 408 of 201133757. The conductive pattern 412 can be electrically connected to the impurity region 406 via the contact plug 410. Each of the contact plug 410 and the conductive structure may comprise a metal having a low electrical resistance. During formation of the contact plug 410 and the conductive pattern 412, the first insulating interlayer 408 may be locally etched to form a contact hole through the first insulating interlayer 408. The contact holes can be formed, for example, by a lithography process. A conductive layer may be formed on the first insulating interlayer 408 to fill the contact holes. This conductive layer can be patterned' to form contact plugs 410 and conductive patterns 412. In an exemplary embodiment, the contact plug 410 may be formed in a contact hole. A conductive pattern 412 can be formed on the contact plug 410 and the first insulating interlayer 408 by forming an additional conductive layer on the contact plug 410 and the first insulating interlayer 408. This additional conductive layer can then be patterned. In an exemplary embodiment, the contact plug 410 and the conductive pattern 412 can be formed by a damascene process. Referring to Figure 8, a second insulating interlayer 414 is formed over the first insulating interlayer 408 to cover the conductive pattern 412. The second insulating interlayer 414 is partially etched to form an opening 415 that at least partially exposes the conductive pattern 412. Opening 415 can be obtained by, for example, a lithography process. The opening 415 can have the shape of a contact hole. The opening 415 is filled by a substantially private/conducting structure similar to that described with reference to Figs. 3 through 5. This conductive structure can protrude from the opening 415. The conductive structure includes a first barrier metal layer pattern, a metal pattern 418, and a metal oxide pattern 420. A first barrier metal layer pattern 416 is formed on the bottom and sidewalls of the opening 415, and the metal pattern is sin. 25 201133757

a L 形成於第一阻障金屬層圖案416上。金屬圖案418局部地 填充開口 415。金屬氧化物圖案420自開口 415突出。金 屬圖案418及金屬氧化物圖案420可分別包含鎢及氧化 鎢。在一示例性實施例中,第一阻障金屬層圖案416及金 屬圖案418可用作磁性記憶體元件之下電極,且金屬氧化 物圖案420可用作磁性記憶體元件之加熱電極。 參見圖9,在第二絕緣夹層414上形成覆蓋金屬氧化 物圖案420之第三絕緣夾層422。接著,局部地移除第三 絕緣夾層422,直至暴露出金屬氧化物圖案42〇。可藉由 CMP製程而局部地移除第三絕緣夾層422。 第三絕緣夾層422可使用具有緻密結構及階梯覆蓋性 優異之材料形成。舉例而言,第三絕緣夾層422可藉由例 如HDP-CVD製程或Ald製程而使用氧化矽形成。藉此, 第三絕緣夾層422可沿導電結構之輪廓而均勻地形成\當 第三絕緣夾層422具有緻密結構時,在執行CMp製程: 局部地移除第三絕緣夾層422之後,第三絕緣炎層似及 金屬氧化物圖案420可具有均勻之表面而無粗齡面。 參見圖10’在第三絕緣夾層422及金屬氧化物圖案42〇 士依序形成用衿磁性穿隧接面結構之多個層。在一示例性 實施例中,可依次形成磁性穿隧接面結構之第二阻障金屬 層二自,層、穿隧氧化物層、第一固定層及第二固定層。 第固疋層可包括下鐵磁性層、反鐵磁性耦合間隔層及上 鐵磁性層。第二阻障金屬層可防止自由層中所包含之金屬 出現異常生長。第二阻障層可使用非晶金屬形成。舉例而 26 201133757, ==阻障層可包含組、欽、氮化紐或氮化鈦。自由層 L = ia鐵穿隨氧化物層可包含氧化鎂。至於第 ’下鐵磁性層、上鐵磁性層及反鐵磁性輕合間隔 曰可为別包含鈷_鐵_硼、鈷_鐵及釕。第二固定層可包含鉑 -猛0 1磁性穿随接面結構之多個層依序圖案化,以形成第 二阻障金屬層圖案424、自由層圖案426 '穿隧氧化物層圖 案428、第一固定層圖案43〇a、43%及43〇c、及第二固定 層圖案432。亦即,磁性穿隧接面結構包括第二阻障金屬 層圖,424、自由層圖案426、穿隨氧化物層圖案428、第 固疋層圖案430a、430b及430c、及第二固定層圖案432。 磁性穿隧接面結構可接觸金屬氧化物圖案42〇。磁性穿隧 接面結構可具有島(island)形狀。在一示例性實施例中, 可在磁性穿隧接面結構上形成硬罩幕圖案。硬罩幕圖案可 用作用於形成磁性穿隧接面結構之蝕刻罩幕。 參見圖6,在第三絕緣夾層422上形成第四絕緣夾層 434 ’以覆蓋磁性穿随接面結構。第四絕緣夾層434可充分 地填滿相鄰磁性穿隧接面結構間之間隙。在第四絕緣夾層 434上形成第五絕緣夾層436。 藉由局部地#刻第五絕緣夾層436而穿過第五絕緣炎 層436形成第二接觸孔。第二開口局部地暴露出磁性穿隧 接面結構。亦即’穿過第二開口暴露出第二固定層圖案 432。 在第五絕緣夾層436上形成導電材料以填充第二開 27 201133757 1 口 ’然後局部地移除導電材料,直至暴露出第五絕緣央層 436。藉此,在第二開口中形成上電極极。導電材料可包 含鎢,且上電極438可藉由CMP製程而形成。 在第五絕緣夾層436及上電極438上形成導電層。將 導電層圖案化’以形成位元線物。位元線糊可藉由微 影製程而獲得。 —如上文所述,導電結構可藉由簡化之製程而具有包含 氧^鎢之金屬氧化物圖案42〇。金屬氧化物圖案42〇可具 電阻及小寬度,以使金屬氧化物圖案42〇可用作磁性 記憶體元件之加熱電極。當磁性記㈣元件包含由氧化鶴 形成之金屬氧化物圖案42〇時,磁性記憶體元件可確保具 有低之續頑力。 、 圖11疋繪示根據本發明之一示例性實施例的相變記 隐體元件之剖面圖1 u所示之相變記紐元件可包括導 電構’此導電結構之構造實質上相同於參照圖i所述之 導電結構之構造。 參見圖11,製備包含隔離區及主動區之基板49〇。在 基板490之主動區中形成雜質區49加。雜質區奶㈨可包 =雜質’例如填(P)或石中(As)。在基板_之隔離 區中提供用於隔離構件之溝渠,並在溝渠中形成隔離層圖 案 492。 在基板490上形成第一絕緣夾層494。穿過第一絕緣 夾層494形成第一開口 496,以暴露出雜質區49似。在第 開口 496中配置p_N接面型二極體5〇〇(}ρ·Ν二極體5〇〇 28 201133757 ^ 1 可實質上填充第—開口 4%。p_N二極體則可電性 雜質區490a。 在示例性實施例中,P-N二極體500包含第一多晶 石夕層圖案5GGa及第二多晶⑦層圖案5議。第-多晶石夕層 圖案5〇〇a可摻雜有1^型雜質,而在第二多晶石夕層圖案500b 中可摻雜P型雜質。可在P-N二極體500上配置金屬矽化 物圖案,以減小P_N二極體5〇〇與導電結構間之介面電阻。 在第一絕緣夾層494及P-N二極體500上形成第二絕 緣夾層504。第二絕緣夾層5〇4可具有第二開口 5〇5,第二 開口 505局部地暴露出P_N二極體5〇〇。第二開口 5〇5可 具有接觸孔之形狀。 導電結構位於第二開口 505中。導電結構所具有之級 態可實質上相同於參照圖1所述之接觸結構之構造。導電 結構包括阻障金屬層圖案506、金屬圖案5〇8及金屬氧化 物圖案510。金屬圖案508及金屬氧化物圖案51〇可分別 包含例如鎢及氧化鎢。在相變記憶體元件中,此導電結構 可用作記憶胞之下電極。導電結構之金屬氧化物圖案°51〇 可加熱相變材料層圖案514,乃因由氧化鎢形成之金屬氧 化物圖案510可具有高之電阻。舉例而言,金屬氧化物圖 案510具有南於金屬圖案508之電阻。舉例而言,金屬氧 化物圖案510所具有之電阻向於金屬圖案508與阻障金屬 層圖案506之組合之電阻。 在第二絕緣夾層504上形成第三絕緣夾層5丨2。導電 結構之金屬氧化物圖案510可自第二絕緣層504突出,並 29 201133757, 可埋於第三絕緣夾層512 t。因此,第三絕緣夾層512可 填滿相鄰金屬氧化物圖案51〇間之間隙。 在一示例性實施例中,第三絕緣夾層512可包含具有 緻密結構且階梯覆蓋性佳之材料,以使第三絕緣失層512 可沿金屬氧化物圖案510之輪廓而順應性地形成於第二絕 緣夾層504上、同時使相鄰金屬氧化物圖案51〇充分地絕 緣。舉例而言,第三絕緣夾層512可包含藉由高密度電漿 化學氣相沈積(high density plasma-chemical vapor deposition,HDP-CVD)製程而獲得之氧化矽、或者藉由 原子層沈積(atomic layer deposition,ALD)製程而形成 之氧化矽。第三絕緣夾層512所具有之高度可實質上相同 於金屬氧化物圖案510之向度。在一示例性實施例中,第 三絕緣夾層512及金屬氧化物圖案510之上表面可位於實 質同一平面上。 相變結構514配置於導電結構之金屬氧化物圖案51〇 上。當金屬氧化物圖案510具有之寬度實質上小於微影製 程之關鍵尺寸時,相變結構514與導電結構間之接觸面積 可減小。因此’可藉由焦耳加熱機制而在相變結構514中 輕易地發生相轉變(phase transition )反應。 在一示例性實施例中,相變結構514可包含其晶體結 構在非晶態與晶態之間可逆地變化的硫族化合物 (chalcogenide compound )。當此硫族化合物具有晶體結構 時,此硫族化合物可具有高光學反射率及低電阻。而當此 硫族化合物具有非晶結構時,此硫族化合物可具有低光學 30 201133757 反射率及高電阻。相變結構514可利用包含鍺(Ge>銻(Sb) -碲(Te)之合金之硫族化合物形成。 在相變材料層圖案514上配置上電極516。上電極516 可包含金屬氮化物,例如氮化鈦。 在第三絕緣夾層512上形成第四絕緣夾層518,以覆 蓋上電極516。亦即,上電極516及相變結構514可埋於 第四絕緣夾層518中。 在第四絕緣夾層518中提供接觸孔《接觸孔可局部地 暴露出上電極516。在接觸孔中形成上觸點522,以使上觸 點522可接觸上電極516。上觸點522可包含金屬,例如 鎢。 在根據一示例性實施例之相變記憶體元件中,導電結 構可包含與相變結構接觸之金屬氧化物圖案。因由氧化鎢 形成之金屬氧化物圖案可具有高電阻及小寬度,故相變結 構可具有改良之焦耳加熱效應,且相變記憶體元件可確保 重设電流(reset current)減小。在一示例性實施例中,相 變記憶體元件可具有觸不同之設定狀態與重設狀態,乃 因相變結構可具有設定狀態與重設狀態之減小的電阻分 佈。 圖Π是!會不根據本發明之一示例性實施例的一種製 造相變記憶體元件之方法的剖面圖。 參見圖12 ’藉由換雜雜質於基板490之預定部分中, 在基板490之預定部分中形成雜質區偷。雜質區條 可藉由離子植入製程而形成。 31 201133757 "局部地蝕刻基板49〇而在基板490上形成用於隔 财胺之屢渠。此溝渠可沿第一方向延伸。在基板490上 ^ ^離層以填滿溝渠,然後局部地移除隔離層,以在溝 ^形成隔離層圖案492。隔離層圖案奶2可包含例如氧 化物- 在具有隔離層圖案492之基板49,0上形成第-絕緣夾 曰494。第一絕緣夾層494可包含氧化物,例如氧化矽。 局。卩地蝕刻第一絕緣夾層494,以形成第一開口 496,第一 開口 496局部地暴露出雜質區49〇a。 在第一絕緣夾層494上形成用於填充第一開口 496之 矽層。局部地移除矽層,直至暴露出第一絕緣夾層494。 藉此,在第一開口 496中在雜質區490a上形成矽層圖案。 可在矽層圖案之上部中摻雜p型雜質,而在矽層圖案 之下部中植入N型雜質。藉此,在第一開口 496中之雜質 區490a上形成P-N二極體500。P-N二極體500包括第一 石夕層圖案500a及第二石夕層圖案5〇〇b。第一石夕層圖案500a 及第二石夕層圖案500b可分別包含]s[型雜質及p型雜質。 在一示例性實施例中,可在p_N二極體500上另外形 成金屬石夕化物圖案。 在P-N二極體500及第一絕緣夾層494上形成第二絕 緣夾層504。第二絕緣夾層504可包含氧化物,例如氧化 矽。局部地蝕刻第二絕緣夾層504,以藉此形成第二開口 505,第二開口 505暴露出P-N二極體500之一部分。 在P-N二極體500上形成導電結構。此導電結構可藉 32 1 1201133757 3至圖5所述者實質相同之製程而形成。導電 ί電=Γ5。5,並自第二開口505突出。 金屬上=障 屬層圖案5G5 案505上^屬二ϋ屬圖案508位於阻障金屬層圖 屬_ _屬案局部地填充第二開σ 5〇5。金 可包含氧化5G5。金屬氧化物圖案510 金屬氧化物圖宰5 第二開口505突出° w茶所具有之寬度實質上小於第二開口 „ 又,乃因金屬氧化物圖案512是藉由將阻障金屬 p弓^Λ\Γ5夹置於第二開口 505與金屬氧化物圖案512之 間而形成於第二開口 505中。 ★在第二絕緣夾層504上形成覆蓋金屬氧化物圖案510 之第-、,’邑緣夹層512。第三絕緣夹層512可包含具有緻密 結構且階梯覆蓋性優異之材料。舉例而言,第三絕緣爽層 512可包含藉由HDp_CVD製程或AL]D製程而獲得之氧化 石夕。局部地移除第三絕緣夾層512,直至暴露出金屬氧化 物圖案510。第三絕緣夾層512可藉由CMp製程及/或回 蝕(etch-back)製程而局部地移除。 參見圖11,在第三絕緣夾層512上形成相變材料層。 相變材料層可包含硫族化合物,例如鍺_銻_碲。 在相變材料層上形成上電極層。上電極層可包含金屬 氮化物,例如氮化鈦。將上電極層及相變材料層圖案化, 33 201133757 ^ W W Λ ^ ΛΛ 以形成上電極516及相變結構514。上電極516及相變結 構514可藉由微影製程而形成。 在第三絕緣夾層512上形成第四絕緣夾層518,以覆 蓋上電極516及相變結構514。局部地蝕刻第四絕緣夾層 518以形成接觸孔520’接觸孔520至少局部地暴露出上電 極 516。 沈積導電材料以填滿接觸孔520,進而在上電極516 上形成上電極觸點522。上電極觸點522可包含金屬,例 如鎢、鋁、鈦、鈕、銅或鉑。 根據示例性實施例,可藉由簡化之製程而獲得由氧化 物形成的電阻高且寬度小之金屬氧化物圖案51〇。此金屬 氧化物圖案510可充分地用作用於加熱相變結構514之電 極°當相變記憶體元件包含金屬氧化物圖案51〇時,相變 記憶體元件可具有減小之重設電流及縮小之電阻分佈,以 使資料可輕易地儲存於相變記憶體元件中並可輕易地自相 變記憶體元件讀出。 圖13是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。圖13所示相變記憶體元件包括導電結 構,此導電結構之構造實質上相同於參照圖i所述之導電 結構。除相變結構外,圖13之相變記憶體元件可具有實質 上相同於參照圖11所述之相變記憶體元件之組態。 參見圖13,在基板490上提供第一絕緣夾層494、p_n 一極體500及第二絕緣夾層504。穿過第二絕緣夾層504 形成第二開口 505,第二開口 505暴露出p_N二極體500。 34 201133757^ 導電結構配置於第二開口 5G5中。此導電結構包括實質上 相同於參照圖11所述者之阻障金屬層圖案5%、金屬圖案 508及金屬氧化物圖案51〇。 在第二絕緣炎層504上配置第三絕緣夹層512。第三 絕緣夾層512覆蓋導電結構。第三絕緣爽層犯可包含具 有緻密結構且階梯覆蓋性佳之材料。舉例而言,第三絕緣 夾層512可包含藉由HDp_CVD製程或ald製程而獲得之 氧化石夕。第三絕緣夾層512.所具有之上表面可實質上高於 金屬氧化物圖案510之上表面。 牙過第二絕緣夾層512形成第三開口 515,第三開口 515暴露出金屬氧化物圖案51〇。第三開口 515所具有之寬 度可實質上相同於金屬氧化物圖案51〇之寬度。 在金屬氧化物圖案510上形成相變結構51知,以填滿 第三開口 515。相變結構5Ma自第三開口 515突出。在一 示例性實施例中’相變結構514a可在第三開口 515中具有 下部寬度、而在第三開口 515之上具有上部寬度。相變绎 構514a之下部寬度可實質上小於其上部寬度1因相變結& 514a接觸金屬氧化物圖案51〇,被金屬氧化物圖案加 熱的相變結構514a之一部分可被限制於第三開口 515中。 在相變結構514a上配置有上電極516。在第三絕緣夾 層512上形成用於覆蓋上電極516及相變結構514a之第四 絕緣夾層518。穿過第四絕緣夾層518形成上電極觸點 522。上電極觸點522電性連接至上電極516。 圖14是繪示根據本發明之一示例性實施例的一種製 35 201133757 造相變記憶體元件之方法的剖面圖。 參見圖12,在基板490上形成隔離層圖案492、第一 絕緣夾層494及P-N二極體500。在第一絕緣夾層494及 P-N二極體500上形成第二絕緣夾層5〇4。藉由局部地蝕 刻第二絕緣夾層504 ’穿過第二絕緣夾層504形成第二開 口 505。第二開口 505至少局部地暴露出ρ·Ν二極體5〇〇。 藉由與參照圖3至圖5所述者實質上相同之製程,在 Ρ-Ν —極體500上形成初始導電結構。此初始導電結構可 填充第二開口 505,並可自第二開口 5〇5突出。此初始導 電結構包括阻障金屬層506、金屬圖案508及初始金屬氧 化物圖案。 金屬圖案508及初始金屬氧化物圖案可分別利用鎢及 氧化鎢^/成。阻ρ早金屬層圖案506形成於第二開口 505之 底部及侧壁上。金屬圖案5〇8形成於阻障金屬層圖案5〇6 上,以局部地填充第二開口 5〇5。初始金屬氧化物圖案可 突出於第二開口 505之上。初始金屬氧化物圖案所具有之 高度可實質上大於後續形成之金屬氧化物圖案51〇a之高 度。舉例而言,初始金屬圖案之高度可實質上與金屬氧化 物圖案51〇a之高度與相變結構514a之下部之高度之總和 相同。此處,相變結構514a之下部可具有相較相變二構 514a之上部為小之寬度。 在第二絕緣夾層504上形成第三絕緣夾層512,以覆 蓋初始導電結構。第三絕緣夾層512可利用具有緻密結構 且階梯覆蓋性佳之材料形成。局部地移除第三絕緣夹層 36 201133757, 512,直至暴露出初始金屬氧化物圖案。可藉由CMP製程 及/或回蝕製程而局部地移除第三絕緣夾層512。 參見圖14,局部地移除初始金屬氧化物圖案,以在金 屬圖案508上形成金屬氧化物圖案510a。此處,金屬氧化 物圖案510a可突出於第三絕緣夾層512之上,以在形成金 屬氧化物圖案510a之後不會暴露出阻障金屬層圖案506。 當在金屬圖案508上形成金屬氧化物圖案51〇a時,在 .金屬氧化物圖案510a上形成第三開口 515。亦即,初始金 屬圖案之被移除部分可對應於第三開口 515。因此,第三 開口 515位於第三絕緣夾層512中。第三.開口 515暴露出 金屬氧化物圖案510a。第三開口 515所具有之寬度可實質 上相同於金屬氧化物圖案510a之寬度。 參見圖13,在第三絕緣夾層512上形成相變材料層, 以完全填滿第三開口 515。相變材料層可包含硫族化曰合 物,例如鍺-銻-碲之合金。在相變材料層上形成上電極層二 可利用如氮化欽之金屬氮化物形成上電極層。 將上電極層及相變材料層圖案化,以在金屬氧化物圖 案510a上依序形成相變結構514a及上電極516。在一示 例性實施例巾’相變結構514a可具有在第三開口 si5中: =金屬氧化物圖案510a上之下部。相變結構51知可具有 突出於第三開口 515之上的上部。相變結構5Ma之下部所 具有之寬度可小於相變結構514a之上部之寬度。 在第三絕緣夾層512上形成覆蓋上電極516之第四絕 緣夾層518。穿過第四絕緣夾層518形成上電極觸點似。 37 201133757 上電極觸點522接觸上電極516。 圖15疋繪示根據本發明之一示例性實施例的相變記 隱體兀件之剖面圖。圖15所示之相變記憶體元件包括導電 、、’。構’此導電結構之構造實質上相同於參照圖1所述之導 電結構°除相變結構以外,圖15之相變記憶體元件可具有 實質上相同於參照圖13所述之相變記憶體元件之組態。 參見圖15 ’導電結構位於穿過第二絕緣夾層504形成 之第二開口 505中。導電結構包括阻障金屬層圖案506、 金屬圖案508及金屬氧化物圖案51〇a。 第三絕緣夾層512a位於第二絕緣夾層504上。穿過第 二絕緣夾層512a形成第三開口 513。第三開口 513至少局 部地暴露出金屬氧化物圖案510a。第三開口 513所具有之 寬度可實質上相同於金屬氧化物圖案510a之寬度。 相變結構514a配置於第三開口 513中之金屬氧化物圖 案510a上。相變結構514a位於第三開口 515中且不突出 於第三開口 513之上。亦即,相變結構514a所具有之寬度 可實質上相同於第三開口 513之深度。 上電極516配置於相變結構514a及第三絕緣爽層 512a上。在第三絕緣夾層512a上形成覆蓋上電極516及 冲目變結構514a之第四絕緣夾層518。穿過第四絕緣夾層$丄8 形成上電極觸點522。上電極觸點522可電性連接至上電 極 516。 圖15所示之相變記憶體元件可藉由以下製程來製造。 所得結構所具有之構造貫質上相同於藉由參照圖14 38a L is formed on the first barrier metal layer pattern 416. The metal pattern 418 partially fills the opening 415. The metal oxide pattern 420 protrudes from the opening 415. The metal pattern 418 and the metal oxide pattern 420 may include tungsten and tungsten oxide, respectively. In an exemplary embodiment, the first barrier metal layer pattern 416 and the metal pattern 418 can be used as the lower electrode of the magnetic memory element, and the metal oxide pattern 420 can be used as the heating electrode of the magnetic memory element. Referring to Figure 9, a third insulating interlayer 422 overlying the metal oxide pattern 420 is formed over the second insulating interlayer 414. Next, the third insulating interlayer 422 is partially removed until the metal oxide pattern 42 is exposed. The third insulating interlayer 422 can be partially removed by a CMP process. The third insulating interlayer 422 can be formed using a material having a dense structure and excellent step coverage. For example, the third insulating interlayer 422 can be formed using yttrium oxide by, for example, a HDP-CVD process or an Ald process. Thereby, the third insulating interlayer 422 can be uniformly formed along the contour of the conductive structure. When the third insulating interlayer 422 has a dense structure, after performing the CMp process: after partially removing the third insulating interlayer 422, the third insulating film The layer-like and metal oxide pattern 420 can have a uniform surface without a coarse face. Referring to Fig. 10', a plurality of layers of a magnetic tunneling junction structure are sequentially formed in the third insulating interlayer 422 and the metal oxide pattern 42. In an exemplary embodiment, the second barrier metal layer, the layer, the tunneling oxide layer, the first pinned layer, and the second pinned layer of the magnetic tunnel junction structure may be sequentially formed. The first solid layer may include a lower ferromagnetic layer, an antiferromagnetic coupling spacer layer, and an upper ferromagnetic layer. The second barrier metal layer prevents abnormal growth of the metal contained in the free layer. The second barrier layer may be formed using an amorphous metal. For example, 26 201133757, == barrier layer may comprise group, chin, nitride or titanium nitride. The free layer L = ia iron through oxide layer may comprise magnesium oxide. As for the first lower ferromagnetic layer, the upper ferromagnetic layer and the antiferromagnetic light-separating spacer, cobalt-iron-boron, cobalt-iron and antimony may be additionally contained. The second pinned layer may be sequentially patterned by a plurality of layers of a platinum-doped magnetic permeation surface structure to form a second barrier metal layer pattern 424, a free layer pattern 426' tunneling oxide layer pattern 428, The first pinned layer patterns 43A, 43% and 43〇c, and the second pinned layer pattern 432. That is, the magnetic tunnel junction structure includes a second barrier metal layer pattern, 424, a free layer pattern 426, a pass oxide layer pattern 428, a first solid layer pattern 430a, 430b, and 430c, and a second fixed layer pattern. 432. The magnetic tunneling junction structure can contact the metal oxide pattern 42A. The magnetic tunneling junction structure may have an island shape. In an exemplary embodiment, a hard mask pattern can be formed on the magnetic tunnel junction structure. The hard mask pattern can be used as an etch mask for forming a magnetic tunnel junction structure. Referring to Figure 6, a fourth insulating interlayer 434' is formed over the third insulating interlayer 422 to cover the magnetically compliant interface structure. The fourth insulating interlayer 434 can sufficiently fill the gap between adjacent magnetic tunnel junction structures. A fifth insulating interlayer 436 is formed over the fourth insulating interlayer 434. A second contact hole is formed through the fifth insulating layer 436 by locally etching the fifth insulating interlayer 436. The second opening partially exposes the magnetic tunneling plane structure. That is, the second pinned layer pattern 432 is exposed through the second opening. A conductive material is formed on the fifth insulating interlayer 436 to fill the second opening and then partially remove the conductive material until the fifth insulating central layer 436 is exposed. Thereby, the upper electrode electrode is formed in the second opening. The conductive material may comprise tungsten and the upper electrode 438 may be formed by a CMP process. A conductive layer is formed on the fifth insulating interlayer 436 and the upper electrode 438. The conductive layer is patterned ' to form a bit line. The bit line paste can be obtained by a lithography process. - As described above, the conductive structure can have a metal oxide pattern 42A containing oxygen and tungsten by a simplified process. The metal oxide pattern 42A may have a resistance and a small width so that the metal oxide pattern 42 can be used as a heating electrode of the magnetic memory element. When the magnetic (4) element contains the metal oxide pattern 42 形成 formed by the oxidized crane, the magnetic memory element can ensure a low coercive force. FIG. 11A is a cross-sectional view of a phase change counter element according to an exemplary embodiment of the present invention. The phase change element shown in FIG. 1 u may include a conductive structure. The structure of the conductive structure is substantially the same as the reference. The construction of the electrically conductive structure illustrated in Figure i. Referring to Figure 11, a substrate 49A comprising an isolation region and an active region is prepared. An impurity region 49 is formed in the active region of the substrate 490. Impurity zone milk (9) can be packaged = impurity 'for example (P) or stone (As). A trench for the isolation member is provided in the isolation region of the substrate, and an isolation layer pattern 492 is formed in the trench. A first insulating interlayer 494 is formed on the substrate 490. A first opening 496 is formed through the first insulating interlayer 494 to expose the impurity region 49. In the first opening 496, the p_N junction type diode 5〇〇(}ρ·Ν diode 5〇〇28 201133757 ^ 1 can be substantially filled with the opening 4%. The p_N diode can be electrically impurity. The region 490a. In an exemplary embodiment, the PN diode 500 includes a first polycrystalline layer pattern 5GGa and a second polycrystalline 7 layer pattern. The first-polycrystalline layer pattern 5〇〇a can be doped. There is a type 1 impurity, and a P-type impurity may be doped in the second polycrystalline layer pattern 500b. A metal halide pattern may be disposed on the PN diode 500 to reduce the P_N diode 5〇〇. a second insulating interlayer 504 is formed on the first insulating interlayer 494 and the PN diode 500. The second insulating interlayer 5〇4 may have a second opening 5〇5, and the second opening 505 is partially The P_N diode 5〇〇 is exposed. The second opening 5〇5 may have the shape of a contact hole. The conductive structure is located in the second opening 505. The conductive structure may have a level substantially the same as described with reference to FIG. The structure of the contact structure. The conductive structure includes a barrier metal layer pattern 506, a metal pattern 5〇8, and a metal oxide pattern 510. The pattern 508 and the metal oxide pattern 51 can respectively comprise, for example, tungsten and tungsten oxide. In the phase change memory device, the conductive structure can be used as a lower electrode of the memory cell. The metal oxide pattern of the conductive structure can be heated. The phase change material layer pattern 514 is because the metal oxide pattern 510 formed of tungsten oxide can have a high electrical resistance. For example, the metal oxide pattern 510 has a resistance souther than the metal pattern 508. For example, a metal oxide pattern 510 has a resistance to the combination of the metal pattern 508 and the barrier metal layer pattern 506. A third insulating interlayer 5 丨 2 is formed on the second insulating interlayer 504. The metal oxide pattern 510 of the conductive structure is available from the second The insulating layer 504 protrudes, and 29 201133757, can be buried in the third insulating interlayer 512 t. Therefore, the third insulating interlayer 512 can fill the gap between the adjacent metal oxide patterns 51. In an exemplary embodiment, The three insulating interlayer 512 may comprise a material having a dense structure and good step coverage so that the third insulating loss layer 512 can be conformally formed along the outline of the metal oxide pattern 510. The insulating metal layer 51 is sufficiently insulated on the second insulating interlayer 504. For example, the third insulating interlayer 512 may comprise a high density plasma-chemical vapor deposition (high-density plasma-chemical vapor deposition). The ruthenium oxide obtained by the HDP-CVD process or the ruthenium oxide formed by an atomic layer deposition (ALD) process. The third insulating interlayer 512 has a height substantially the same as the metal oxide pattern 510. The degree of direction. In an exemplary embodiment, the third insulating interlayer 512 and the upper surface of the metal oxide pattern 510 may be on substantially the same plane. The phase change structure 514 is disposed on the metal oxide pattern 51A of the conductive structure. When the metal oxide pattern 510 has a width substantially less than the critical dimension of the lithography process, the contact area between the phase change structure 514 and the conductive structure can be reduced. Thus, a phase transition reaction can easily occur in the phase change structure 514 by the Joule heating mechanism. In an exemplary embodiment, phase change structure 514 can comprise a chalcogenide compound whose crystal structure reversibly changes between an amorphous state and a crystalline state. When the chalcogen compound has a crystal structure, the chalcogenide compound can have high optical reflectance and low electrical resistance. When the chalcogenide has an amorphous structure, the chalcogenide can have low optical reflectivity and high electrical resistance. The phase change structure 514 can be formed using a chalcogenide compound containing an alloy of germanium (Ge>(Sb)-tellurium (Te). The upper electrode 516 is disposed on the phase change material layer pattern 514. The upper electrode 516 can include a metal nitride, For example, titanium nitride is formed on the third insulating interlayer 512 to cover the upper electrode 516. That is, the upper electrode 516 and the phase change structure 514 can be buried in the fourth insulating interlayer 518. A contact hole is provided in the interlayer 518. The contact hole may partially expose the upper electrode 516. The upper contact 522 is formed in the contact hole such that the upper contact 522 may contact the upper electrode 516. The upper contact 522 may comprise a metal such as tungsten In the phase change memory device according to an exemplary embodiment, the conductive structure may include a metal oxide pattern in contact with the phase change structure. Since the metal oxide pattern formed by the tungsten oxide may have high resistance and small width, the phase The variable structure can have an improved Joule heating effect, and the phase change memory element can ensure a reduction in reset current. In an exemplary embodiment, the phase change memory element can have a different setting And the reset state, because the phase change structure may have a reduced resistance distribution of the set state and the reset state. FIG. 4 is a method of manufacturing a phase change memory device according to an exemplary embodiment of the present invention. Referring to Fig. 12, an impurity region is formed in a predetermined portion of the substrate 490 by replacing impurities in a predetermined portion of the substrate 490. The impurity regions can be formed by an ion implantation process. 31 201133757 " The substrate 49 is partially etched to form an additional channel for the barrier amine on the substrate 490. The trench may extend in the first direction. The substrate 490 is separated from the layer to fill the trench, and then the isolation layer is partially removed. The spacer layer pattern 492 is formed in the trenches. The spacer layer pattern milk 2 may comprise, for example, an oxide - a first insulating interlayer 494 is formed on the substrate 49,0 having the spacer layer pattern 492. The first insulating interlayer 494 may comprise oxidation The first insulating interlayer 494 is etched to form a first opening 496, and the first opening 496 partially exposes the impurity region 49A. The first insulating interlayer 494 is formed for filling. An opening 49 The layer of ruthenium 6 is partially removed until the first insulating interlayer 494 is exposed. Thereby, a ruthenium layer pattern is formed on the impurity region 490a in the first opening 496. The upper layer of the ruthenium layer pattern may be doped a p-type impurity, and an N-type impurity is implanted in a lower portion of the germanium layer pattern. Thereby, a PN diode 500 is formed on the impurity region 490a in the first opening 496. The PN diode 500 includes the first layer The pattern 500a and the second layer pattern 5〇〇b. The first layer layer pattern 500a and the second layer layer pattern 500b may respectively include [s] type impurities and p type impurities. In an exemplary embodiment, a metallite pattern may be additionally formed on the p_N diode 500. A second insulating interlayer 504 is formed on the P-N diode 500 and the first insulating interlayer 494. The second insulating interlayer 504 can comprise an oxide, such as hafnium oxide. The second insulating interlayer 504 is partially etched to thereby form a second opening 505 that exposes a portion of the P-N diode 500. A conductive structure is formed on the P-N diode 500. The conductive structure can be formed by substantially the same process as described in FIG. Conductive ί = Γ 5. 5 and protrudes from the second opening 505. On the metal = barrier layer pattern 5G5, the pattern 508 on the 505 is located in the barrier metal layer pattern _ _ genre is partially filled with the second opening σ 5 〇 5. Gold may contain oxidized 5G5. Metal oxide pattern 510 metal oxide pattern 5 second opening 505 protrudes ° w tea has a width substantially smaller than the second opening „ again, because the metal oxide pattern 512 is by the barrier metal p bow Γ5 is sandwiched between the second opening 505 and the metal oxide pattern 512 to be formed in the second opening 505. ★ The first, and the 'edge edge clips covering the metal oxide pattern 510 are formed on the second insulating interlayer 504. Layer 512. The third insulating interlayer 512 may comprise a material having a dense structure and excellent step coverage. For example, the third insulating layer 512 may comprise an oxidized oxide obtained by an HDp_CVD process or an AL]D process. The third insulating interlayer 512 is partially removed until the metal oxide pattern 510 is exposed. The third insulating interlayer 512 can be partially removed by a CMp process and/or an etch-back process. A phase change material layer is formed on the third insulating interlayer 512. The phase change material layer may comprise a chalcogenide such as 锗_锑_碲. The upper electrode layer is formed on the phase change material layer. The upper electrode layer may comprise a metal nitride, Such as titanium nitride. Will be powered The layer and the phase change material layer are patterned, 33 201133757 ^ WW Λ ^ ΛΛ to form the upper electrode 516 and the phase change structure 514. The upper electrode 516 and the phase change structure 514 can be formed by a lithography process. A fourth insulating interlayer 518 is formed thereon to cover the upper electrode 516 and the phase change structure 514. The fourth insulating interlayer 518 is locally etched to form a contact hole 520'. The contact hole 520 at least partially exposes the upper electrode 516. Depositing a conductive material to fill The contact hole 520 is filled, and the upper electrode contact 522 is formed on the upper electrode 516. The upper electrode contact 522 may comprise a metal such as tungsten, aluminum, titanium, a button, copper or platinum. According to an exemplary embodiment, it may be simplified The metal oxide pattern 51A having a high resistance and a small width formed by an oxide is obtained by the process. The metal oxide pattern 510 can be sufficiently used as an electrode for heating the phase change structure 514. When the phase change memory element contains a metal When the oxide pattern is 51 ,, the phase change memory element can have a reduced reset current and a reduced resistance distribution, so that the data can be easily stored in the phase change memory element and can be easily self-phased. Memory element readout. Figure 13 is a cross-sectional view of a phase change memory device in accordance with an exemplary embodiment of the present invention. The phase change memory device of Figure 13 includes a conductive structure, the conductive structure being substantially The conductive structure is the same as described with reference to Figure i. In addition to the phase change structure, the phase change memory component of Figure 13 can have a configuration substantially identical to that of the phase change memory component described with reference to Figure 11. Referring to Figure 13, A first insulating interlayer 494, a p_n one body 500, and a second insulating interlayer 504 are provided on the substrate 490. A second opening 505 is formed through the second insulating interlayer 504, and the second opening 505 exposes the p_N diode 500. 34 201133757^ The conductive structure is disposed in the second opening 5G5. The conductive structure includes a barrier metal layer pattern 5% substantially the same as that described with reference to Fig. 11, a metal pattern 508, and a metal oxide pattern 51A. A third insulating interlayer 512 is disposed on the second insulating layer 504. A third insulating interlayer 512 covers the conductive structure. The third insulating layer may comprise a material having a dense structure and good step coverage. For example, the third insulating interlayer 512 may comprise an oxidized oxide obtained by a HDp_CVD process or an ald process. The third insulating interlayer 512. has an upper surface that is substantially higher than an upper surface of the metal oxide pattern 510. The teeth pass through the second insulating interlayer 512 to form a third opening 515, and the third opening 515 exposes the metal oxide pattern 51A. The third opening 515 has a width substantially the same as the width of the metal oxide pattern 51. A phase change structure 51 is formed on the metal oxide pattern 510 to fill the third opening 515. The phase change structure 5Ma protrudes from the third opening 515. In an exemplary embodiment, the phase change structure 514a may have a lower width in the third opening 515 and an upper width above the third opening 515. The width of the lower portion of the phase change structure 514a may be substantially smaller than the width of the upper portion 1 due to the phase change junction & 514a contacting the metal oxide pattern 51, and a portion of the phase change structure 514a heated by the metal oxide pattern may be limited to the third portion. In the opening 515. An upper electrode 516 is disposed on the phase change structure 514a. A fourth insulating interlayer 518 for covering the upper electrode 516 and the phase change structure 514a is formed on the third insulating interlayer 512. Upper electrode contact 522 is formed through fourth insulating interlayer 518. The upper electrode contact 522 is electrically connected to the upper electrode 516. 14 is a cross-sectional view showing a method of making a phase change memory device in accordance with an exemplary embodiment of the present invention. Referring to Fig. 12, an isolation layer pattern 492, a first insulating interlayer 494, and a P-N diode 500 are formed on the substrate 490. A second insulating interlayer 5〇4 is formed on the first insulating interlayer 494 and the P-N diode 500. The second opening 505 is formed by locally etching the second insulating interlayer 504' through the second insulating interlayer 504. The second opening 505 exposes at least a portion of the p·Ν diode 5〇〇. An initial conductive structure is formed on the Ρ-Ν-pole body 500 by a process substantially the same as that described with reference to Figs. This initial conductive structure can fill the second opening 505 and can protrude from the second opening 5?5. The initial conductive structure includes a barrier metal layer 506, a metal pattern 508, and an initial metal oxide pattern. The metal pattern 508 and the initial metal oxide pattern can be made of tungsten and tungsten oxide, respectively. A resistive early metal layer pattern 506 is formed on the bottom and sidewalls of the second opening 505. A metal pattern 5?8 is formed on the barrier metal layer pattern 5?6 to partially fill the second opening 5?5. The initial metal oxide pattern may protrude above the second opening 505. The initial metal oxide pattern may have a height substantially greater than the height of the subsequently formed metal oxide pattern 51a. For example, the height of the initial metal pattern may be substantially the same as the sum of the height of the metal oxide pattern 51a and the height of the lower portion of the phase change structure 514a. Here, the lower portion of the phase change structure 514a may have a smaller width than the upper portion of the phase change two structure 514a. A third insulating interlayer 512 is formed over the second insulating interlayer 504 to cover the initial conductive structure. The third insulating interlayer 512 can be formed using a material having a dense structure and excellent step coverage. The third insulating interlayer 36 201133757, 512 is partially removed until the initial metal oxide pattern is exposed. The third insulating interlayer 512 can be partially removed by a CMP process and/or an etch back process. Referring to Fig. 14, the initial metal oxide pattern is partially removed to form a metal oxide pattern 510a on the metal pattern 508. Here, the metal oxide pattern 510a may protrude above the third insulating interlayer 512 to not expose the barrier metal layer pattern 506 after forming the metal oxide pattern 510a. When the metal oxide pattern 51〇a is formed on the metal pattern 508, a third opening 515 is formed on the metal oxide pattern 510a. That is, the removed portion of the initial metal pattern may correspond to the third opening 515. Therefore, the third opening 515 is located in the third insulating interlayer 512. Third, the opening 515 exposes the metal oxide pattern 510a. The third opening 515 has a width substantially the same as the width of the metal oxide pattern 510a. Referring to Figure 13, a phase change material layer is formed over the third insulating interlayer 512 to completely fill the third opening 515. The phase change material layer may comprise a chalcogenide compound such as an alloy of ruthenium-iridium-ruthenium. The upper electrode layer is formed on the phase change material layer. The upper electrode layer can be formed using a metal nitride such as nitride. The upper electrode layer and the phase change material layer are patterned to sequentially form the phase change structure 514a and the upper electrode 516 on the metal oxide pattern 510a. In an exemplary embodiment, the phase change structure 514a can have a third opening si5: = a lower portion of the metal oxide pattern 510a. The phase change structure 51 is known to have an upper portion that protrudes above the third opening 515. The lower portion of the phase change structure 5Ma may have a width smaller than the width of the upper portion of the phase change structure 514a. A fourth insulating interlayer 518 covering the upper electrode 516 is formed on the third insulating interlayer 512. Forming an upper electrode contact through the fourth insulating interlayer 518. 37 201133757 The upper electrode contact 522 contacts the upper electrode 516. Figure 15 is a cross-sectional view of a phase change recession element in accordance with an exemplary embodiment of the present invention. The phase change memory element shown in Figure 15 includes a conductive, '. The structure of the conductive structure is substantially the same as that of the conductive structure described with reference to FIG. 1. In addition to the phase change structure, the phase change memory device of FIG. 15 may have substantially the same phase change memory as described with reference to FIG. Configuration of components. Referring to Figure 15, the conductive structure is located in a second opening 505 formed through the second insulating interlayer 504. The conductive structure includes a barrier metal layer pattern 506, a metal pattern 508, and a metal oxide pattern 51〇a. The third insulating interlayer 512a is located on the second insulating interlayer 504. A third opening 513 is formed through the second insulating interlayer 512a. The third opening 513 exposes at least the metal oxide pattern 510a at least partially. The third opening 513 has a width substantially the same as the width of the metal oxide pattern 510a. The phase change structure 514a is disposed on the metal oxide pattern 510a in the third opening 513. The phase change structure 514a is located in the third opening 515 and does not protrude above the third opening 513. That is, the phase change structure 514a has a width substantially the same as the depth of the third opening 513. The upper electrode 516 is disposed on the phase change structure 514a and the third insulating layer 512a. A fourth insulating interlayer 518 covering the upper electrode 516 and the glazing structure 514a is formed on the third insulating interlayer 512a. The upper electrode contact 522 is formed through the fourth insulating interlayer $丄8. The upper electrode contact 522 can be electrically connected to the upper electrode 516. The phase change memory element shown in Fig. 15 can be manufactured by the following process. The resulting structure has the same structure as that of Figure 14 by reference.

201133757 .A 所述之製程所獲得的圖14所示之構造。 參見圖15’在第三絕緣夾層512a上形成相變材料層, ^完全填滿第三開口 513。局部地移除相變材料,直至暴 ^第三絕緣炎層513a。藉此,在第三開口 513中形成相 1 π構514a相變結構514a可错由例如CMP製程形成。 在相變結構514a及第三絕緣夾層512a上形成上電極 層。然後,將上電極層圖案化以在相變結構514a上形成上 電極516。 ^在第二絕緣夾層512a上形成第四絕緣夾層518,以覆 蓋上電極516及相變材料結構514a。穿過第四絕緣夾層518 开;成上電極觸點522,以電性連接至上電極516。 圖16是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 參見圖16,在基板50上提供絕緣夾層52。絕緣夹層 52包括開口 54,開口 54暴露出基板5〇之一部分。9 在開口 54之側壁上配置間隙壁(spacer) 。間隙壁 62可包含諸如氮化敎氮化物或如氮氧化歡氣氧化 物。間隨62可防止金屬圖案伽中所包含之金屬原子及 /或金屬離子擴散人絕緣炎層52中。在—示例性實施例 中’可不在開口 54之側壁上提供阻障金屬層。在一示例性 實施例中,可在開口 54中之間隙壁62及基板5〇上配置阻 障金屬層。 在開口 54中配置金屬圖案59a。金屬圖案59a可局部 地填充開口 54。金屬開σ 59a可包含鶴。金屬氧化物圖案 39 201133757 具有之寬度可實質上 =物圖案撕進行氧化而形成金屬 氧化,圖案60。金屬氧化物圖案6()可突出於開口 %之上。 产可Ϊ =例性實施例中’金屬氧化物圖案6G所具有之寬 彡f狀關敎寸。可藉由雜位於開 ΓΛίΓ 之厚度而控制金屬氧化物圖案 成導請示根據本發明之—示例性實施例的一種形 成導電結構之方法的剖面圖。 二見,17’在基板5〇上形成具有開口 54之絕緣失層 。,口 54暴露出基板50之預定部分,例如導電區域。 翔π 54之底部、開口 54之侧壁及絕緣夾層Μ上形 ίΓί形成層。間隙壁形成層可包含例如氣化物或氮氧 =二舉例而言,間隙壁形成層可包含氮化石夕或氮氧化石夕。 ^ ,間隙壁形成層’以在開口 54之側壁上形成 、曰1隙j 62。虽形成間隙壁62時,開口 54之寬度可減小, 減小量為間隙壁62之厚度之二倍。 在間隙壁62、基板5G及絕緣爽層52上形成金屬層 59,以完全填滿開口 54。金屬層59可包含例如鎢。m 參見圖16及圖Π,局部地移除金屬層59,直至暴露 出絕緣失層52,以在開〇 54中形成初始金屬圖案。= 金屬圖案可藉由CMP製程形成。在一示例性實施例中,° 201133757The configuration shown in Fig. 14 obtained by the process described in 201133757.A. Referring to Fig. 15', a phase change material layer is formed on the third insulating interlayer 512a, and ^ is completely filled in the third opening 513. The phase change material is locally removed until the third insulating layer 513a is violent. Thereby, the formation of the phase π 514a phase change structure 514a in the third opening 513 can be formed by, for example, a CMP process. An upper electrode layer is formed on the phase change structure 514a and the third insulating interlayer 512a. The upper electrode layer is then patterned to form an upper electrode 516 on the phase change structure 514a. A fourth insulating interlayer 518 is formed over the second insulating interlayer 512a to cover the upper electrode 516 and the phase change material structure 514a. The fourth insulating interlayer 518 is opened; the upper electrode contact 522 is electrically connected to the upper electrode 516. Figure 16 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Referring to Figure 16, an insulating interlayer 52 is provided on the substrate 50. The insulating interlayer 52 includes an opening 54 that exposes a portion of the substrate 5〇. 9 Place a spacer on the side wall of the opening 54. The spacers 62 may comprise, for example, tantalum nitride nitride or a oxidized oxide such as nitrogen oxide. The presence of 62 prevents metal atoms and/or metal ions contained in the metal pattern from diffusing into the human insulating layer 52. The barrier metal layer may not be provided on the sidewalls of the opening 54 in the exemplary embodiment. In an exemplary embodiment, a barrier metal layer may be disposed on the spacers 62 and the substrate 5A in the opening 54. A metal pattern 59a is disposed in the opening 54. The metal pattern 59a can partially fill the opening 54. The metal opening σ 59a may include a crane. The metal oxide pattern 39 201133757 has a width which can be substantially = the pattern is torn and oxidized to form a metal oxide, pattern 60. The metal oxide pattern 6() can protrude above the opening %. Production Ϊ = In the exemplary embodiment, the metal oxide pattern 6G has a width of 彡f. The metal oxide pattern can be controlled by the thickness of the opening. A cross-sectional view of a method of forming a conductive structure in accordance with an exemplary embodiment of the present invention is provided. Second, 17' forms an insulating loss layer having an opening 54 on the substrate 5A. Port 54 exposes a predetermined portion of substrate 50, such as a conductive region. The bottom of the π 54 , the side wall of the opening 54 and the insulating interlayer are formed into a layer. The spacer formation layer may comprise, for example, a vapor or nitrogen oxide. 2 For example, the spacer formation layer may comprise nitride or arsenic. ^, the spacer forms a layer ' to form a gap j 62 on the sidewall of the opening 54. Although the spacer 62 is formed, the width of the opening 54 can be reduced by a factor of twice the thickness of the spacer 62. A metal layer 59 is formed on the spacer 62, the substrate 5G, and the insulating layer 52 to completely fill the opening 54. Metal layer 59 can comprise, for example, tungsten. m Referring to Figures 16 and Π, the metal layer 59 is partially removed until the insulating loss layer 52 is exposed to form an initial metal pattern in the opening 54. = Metal pattern can be formed by CMP process. In an exemplary embodiment, ° 201133757

初始金屬si案所具有之上表面可實質上高於絕緣夹層力 及間隙壁62之上表面。舉例而言,初始金屬圖案之上 可突出於絕緣夹層52之上達約10埃之厚度。即,初^金 屬圖案之上表面可自絕緣炎層52之上表面略微突出/ 在包含氧氣之氣氛中對初始金屬圖案進行熱處理,以 獲得金屬氧化物圖案6〇。此處,在對初始金屬圖案進 化之同時,金屬層59變成金屬圖案59a。可使初始金屬圖 案經受與參照圖5所述者實質上相同之製程。 M 藉由上述製程,可在基板50上形成圖16所示之導電 結構。在示例性實施例中,圖16所示之導電結構可用於圖 6之磁性記憶體元件、圖u之相變記憶體元件或圖上 相變記憶體元件中。 圖18是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。圖19請示根據本發明之—示例性實施例的 導電結構之立體圖,2G Μ示根據本發明之—示例 施例的導電結構之平面圖。 參見圖18至圖20 ’在基板64上配置絕緣夾層66。絕 ^夾層66包括開口 68,開σ 68暴露出基板料上之接觸 區域。另一選擇為’開口 68可直接暴露出基板从之 分。 在示例性實麵巾,開α 68可具有各種雜,例 觸孔形狀或溝渠形狀。 么阻障金屬層圖案7如位於開口 68之底部及側壁上。阻 障金屬層圖案7Ga可沿開口 68之輪廓而順應性地形成。阻 201133757 3=?^可包含例如鈦、氮化鈦、料氮化麵。 此專材枓可早獨使用或者以其混合物形式使用。 么嵐=障金屬層圖案施可防止金屬圖案72b中所包含之 道“子及/或金屬離子擴散。阻障金屬層圖案施可辦大 導電結構之接面積’進而可減小 j圖案72b配置於開口 68中之阻障金屬層圖案I 上。金屬圖案72b可具有圓柱形狀並屬、 7:之上部可具有環形形狀。在一示例性實施 具有圓柱形管形狀。金屬圖案似之上表面 72b ίΓΓ屬層酵1之上表面。因此,金屬圖荦 72b可位於開口砧之内部。 蜀圃粟 物圖^屬圖案72b上形成金屬氧化物圖案76。金屬氧化 物圖案76之下部外側可接觸阻障金 化物圖㈣自金屬圖案72b之上表面向上= 氧,物圖案76自絕緣夾層%突出 吏’ 可包含例如_。金魏化_ 76所^ 質上大於金屬圖案7此之電1 、有之電阻可貫 在-示例性實施例中,金屬氧化物圖案% %形形狀,此環轉狀實於 ^ 部之形狀。金屬氧化物圖案76所具有之寬度=2= 於金屬圖案72b之寬度。金屬負仆 -產生。當金屬氧化物圖屬案=47;可環=圖時案 金氧化物圖案76所具有之面積可實質上小於圓形或多 42 201133757 x i 邊形柱結構之面積。金屬氧化物圖案76所具有之寬度可小 於開口 68之寬度。 在金屬圖案72b上配置埋入層圖案74a,以完全填滿 開口 68。因此,埋入層圖案74a之上表面及絕緣夾層66 之上表面可位於實質同一平面上。金屬氧化物圖案76之下 部内側可接觸埋入層圖案74a。 一在不例性實施例中,埋入層圖案74a可包含實質緩慢 氧化或幾乎不氧化之材料。舉例而言,埋入層圖案74a可 包含鈦、氮化鈦、鈕、或氮化鈕至少其中之一。這些材料 可單獨使用或以其混合物形式使用。另一選擇為,埋入層 圖案74a可包含絕緣材料,例如氧化物、氮化物或氣氧化 物。 在一示例性實施例十,阻障金屬層圖案7〇a、金屬圖 案72b及i里入層圖案74a可一同用作電性連接至導電區域 之導電圖案。金屬氧化物圖案76可用作加熱電極,乃因金 屬氧化物圖案76可具有高之電阻及小之面積。 圖21及圖22 會示根據本發明之一示例性實施例的 一種形成導電結構之方法的剖面圖。 刀參見圖2卜在上面形成有導電區域之基板64上形成 絕緣夾層66。局部地姓刻絕緣夾層66,以形成開口砧, 開口 68局部地暴露出基板64上之導電區域。開口砧 由微影製程形成。 在絕緣夾層66上、開口 68之底部上以及開口的之側 壁上形成阻障金屬層70。阻障金屬層7〇可沿開口 68及絕 43 201133757t ^ x^/xl 緣炎層66之輪廓而均句地形成。當在開口 68上形成阻障 金屬層70時’開口 68可具有減小之寬度,減小量為阻障 金屬層70之厚度之二倍。因此,可藉由控制阻障金屬層 70之厚度而调整開口 68之寬度。如此一來’可藉由調整 開口 68之寬度而控制金屬圖案72a及金屬氧化物圖案% 之寬度。 在阻障金屬層70上形成金屬層72 。金屬層72可包含 例如鶴。金屬層72可沿阻障金屬層%之輪廓而順應性地 形成。金屬層72所具有之厚度可實質上對應於金屬圖案 72a之上部寬度。因此,可藉由控制金屬層72之厚度而調 整金屬圖案72a之上部寬度。 在金屬層72上形成埋入層74,以完全填滿開口 68。 層74可利用氧化非常緩慢或幾乎不氧化之材料形 '。在一示例性實施例中,埋入層74可包含與阻障金屬層 之材料實質上相同之材料。在一示例性實施 η λ _ 4 1 少王/ν i機材°^含絕緣材料,例如氧化物、氮化物、氮氧化物或 金屬參見圖22,局部地移除埋入層74、金屬層72及阻障 。層70,直至暴露出絕緣夾層66。可藉由CMp製程及 蝕製程而局部地移除埋入層74、金屬層72及阻障金 .e °藉此,在開口 68中形成阻障金屬層圖案7Qa、初 ^金屬圖案72a及埋入層圖案74a。阻障金屬層圖案7〇a 始金屬圖案72a中之每一者皆可具有圓柱形狀。初始 圖案72a上之埋入層圖案74可填滿開口 68。 201133757 Λ. * 猎 CMP製程而局部地移除埋入層74、金屬層72 二阻?金屬層70過程中,可以實質上大於金屬層72之研 1速率之研磨速率來局部地研磨絕緣夾層%。因此,初始 金^層圖案72a、阻障金屬層圖案7Ga及埋人層圖案74a ^大出於絕緣夾層66之上。舉例而言,初始金屬層圖案 =,金屬層圖,7Qa及埋人層圖案%之上表面可自 、,邑緣夾層66之上表面略微突出約10埃之厚度。 ^圖18所不’在包含氧氣之氣氛中對初始金屬層圖案 化物二乂在阻障金屬層圖案7〇a上形成金屬氧 所=案76及金屬_ 72a。可藉由與參關5所述者實 =相同之製程而獲得金屬氧化物圖案%及金屬圖案 不例性貫施例中 72a,以_古~㉟^。丨地巩化減金屬層圖案 金屬圖Hr 於初始金屬層圖案72a之高度的 。屬圖案72b。因此,金屬圖案灿可 ,層66之上表__狀。金屬氧化=圖~ 有延伸自金屬圖案72b之圓柱形狀。此 ’屬' 了^ =之上料具有獅做,並可突•絕緣ns 上在一示例性實施例十,可藉由 之 之氧化程度而控制金屬氧化物圖案屬層圖案瓜 根據示例性實施例,可在不勃^ 二 钱刻情況下獲得具有ϋ柱形狀之氧化鶴積及/或鶴層之 圖案之下提供諸如制案之插麵触。可在氧化鶴 有之電阻可實質上小於氧化鎢圖案之電阻插=:具 电丨且。因鎢圖案與氧 45 201133757. 化鶴圖案中之每一者皆可具有易於調整之厚度及寬度,故 包含鎢圖案及氧化鎢圖案之導電結構可確保具有各種半導 體記憶體元件所期望之電阻。 圖23是繪示根據本發明之一示例性實施例的磁性記 憶體元件之剖面圖。圖23所示之磁性記憶體元件包括導電 結構’此導電結構之構造實質上相同於參照圖18所述之導 電結構。在一示例性實施例中,除導電結構外,圖23之磁 性記憶體元件可具有實質上相同於參照圖6所述之導電結 構之組態。 參見圖23,在半導體基板400上提供m〇S電晶體, 並在半導體基板400上形成覆蓋MOS電晶體之第一絕緣 夾層408,以覆蓋MOS電晶體。穿過第一絕緣夾層4〇8形 成接觸插塞410。接觸插塞410電性接觸MOS電晶體之雜 質區406。在接觸插塞410上配置導電圖案412。 在第一絕緣夾層408上形成覆蓋導電圖案412之第二 絕緣夾層414»穿過第二絕緣夾層414形成開口 415,開口 415局部地暴露出導電圖案412。開口 415可具有接觸孔之 形狀。 導電結構配置於開口 415中。導電結構可具有與參照 圖18所述之導電結構實質上相同之構造。導電結構包括形 成於開口 415之底部及側壁上之第一阻障金屬層圖案 610、位於第一阻障金屬層圖案61〇上之金屬圖案612、配 置於金屬圖案612上之埋入層圖案614及自金屬圖案612 延伸之金屬氧化物圖案616。 46 1 1201133757 金屬圖案612及金屬氧化物圖案616可分別包人 鎢及氧化鎢。金屬圖案612可具有圓柱形狀,且=3例如 案614可填滿開口 415。金屬氧化物圖案616可突^層圖 口 415之上。金屬氧化物圖案616可藉由對金屬$於開 進行氧化而形成。因此,當金屬圖案612包含鎢時「612 氧化物圖案616包含氧化鎢。 '、、’金屬 主於等1;結構 个丨公丨早1屬層圖幸 610以及埋入層圖案614可一同用作磁性記憶體元件上系 下電極觸點。具有相對高電阻之金屬氧化物圖案616可 作加熱電極,以用於加熱磁性記憶體元件之磁性穿隧 結構中之自由層圖案。 第三絕緣夾層618配置於第二絕緣夾層414上。第= ,緣夾層618可填滿相鄰金屬氧化物圖案616間之間隙了 第^絕緣夾層618可包含具有緻密結構且階梯覆蓋性佳之 材料,例如藉由HDP-CVD製程或ALD製程獲得之氧化 矽。第三絕緣夾層618及金屬氧化物圖案616之上表面可 配置於實質同一平面上。第一阻障金屬層圖案010之上表 面覆蓋有第三絕緣夾層618,以使第一阻障金屬層圖案61〇 可不暴露在外。 磁性穿隧接面結構位於第三絕緣夹層618上。磁性穿 隧接面結構可具有與參照圖6所述之磁性穿隧接面結構實 質上相同之構造。磁性穿隧接面結構之自由層圖案426配 f於金屬氧化物圖案616上。當金屬氧化物圖案616具有 裱形結構時,自由層圖案426與金屬氧化物圖案616間之 201133757 接觸面積可減小。因 案426之加瓿效率L魏化物圖案616對自由層圖 可具有減小氧化物圖案㈣之上表面 輪廓之上表面。 '屬氧化物圖案㈣具有具光滑 穿』所述製程實質上相同之製程,在磁性 434、第五i缞^供第三絕緣夾層⑽、第四絕緣夾層 圖層436、上電極438以及位元線姻。 一種會示根據本發明之一示例性實施例的 外圖2===^方法的剖•除導電結構 々陪μ-—隐體件可具有與參照圖6所述之磁性 二二態7。因此,除用於形成導電結 之製程來製造圖a之磁性記憶體n所边者貫質上相同 其把It與參照圖7所述者實質上相同之製程,在半導體 :412成第—絕緣㉔408、接觸插塞_及導電 參見圖24’在第一絕緣失層408上形成覆蓋導電圖荦 412之第二絕緣夾層414。局部地姓刻第二絕緣夾層4… 以形成至少局部地暴露出導電圖案412之開口 415。 、藉由與參照圖21及圖22所述者實質上相同之 形成導電結構以填滿開α 415。導電結構可突出於開口 415 之上。導電結構包括具有圓柱形狀之阻障金屬層圖案 _、具有圓柱形狀之金屬圖案418、填充開〇化之敎 層圖案㈣、以及自金屬圖案⑽向上延伸之金屬氧化物 48 201133757 圖案016。金屬圖案612與金屬氧化物圖案616可分 含例如鶴及氧化鶴。 參見圖25,在第二絕緣夾層414上形成覆蓋金屬氧化 物圖案616之第三絕緣夾層618。第三絕緣夾層6丨8可包 含具有緻密結構且階梯覆,蓋性佳之材料。舉例而言,第二 絕緣夾層618可包含藉由HDP_CVD製程或ald ^ j 得之氧化矽。 、 局部地移除第三絕緣夾層618,直至暴露出金屬氧化 物圖案616。可藉由CMP製程而局部地移除第三絕緣失層 61=此處,轉金制圖案⑽不緣夾層61曰8 暴露出。因第三絕緣夾層6丨8具有緻密結構,故在執行c Μρ 製程而局部地移除第三絕緣夾層618之後,第三絕緣爽層 ⑽及金屬氧化物圖案616可具有均勻之表面而無粗链表 面。 如圖23所不,在第三絕緣夾層618及金屬氧化物圖案 616上形成磁性穿隧接面結構。在第三絕緣夾層618上形 成覆蓋磁性穿随接面結構之第四絕緣夾層434、第五絕緣 夾層436^上電極438及位元線44〇。用於形成第四絕緣夾 層434、第五絕緣夹層436、上電極438及位元線440之製 知可貫質上相同於參照圖10所述者。 圖26疋繪示根據本發明之一示例性實施例的相變記 隐體元件之剖面圖。圖%之相變記憶體元件可包括導電結 構、此^電結構之構造實質上相同於參照圖1或圖22所述 之導電結構。在一示例性實施例_,除導電結構外,圖3 49 201133757 之相變記憶體元件可具有實質上相同於參照圖U所述之 相變記憶體元件之組態。The upper metal si case has an upper surface that is substantially higher than the insulating interlayer force and the upper surface of the spacer 62. For example, the initial metal pattern may protrude above the insulating interlayer 52 by a thickness of about 10 angstroms. Namely, the upper surface of the primary metal pattern may slightly protrude from the upper surface of the insulating inflammatory layer 52 / heat-treat the initial metal pattern in an atmosphere containing oxygen to obtain a metal oxide pattern 6 〇. Here, the metal layer 59 becomes the metal pattern 59a while the initial metal pattern is being developed. The initial metal pattern can be subjected to a process substantially the same as that described with reference to Figure 5. M The conductive structure shown in Fig. 16 can be formed on the substrate 50 by the above process. In an exemplary embodiment, the conductive structure shown in Figure 16 can be used in the magnetic memory component of Figure 6, the phase change memory component of Figure u, or the phase change memory component of the figure. Figure 18 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Figure 19 is a perspective view of a conductive structure in accordance with an exemplary embodiment of the present invention, and 2G is a plan view showing a conductive structure in accordance with an exemplary embodiment of the present invention. An insulating interlayer 66 is disposed on the substrate 64 with reference to Figs. 18 to 20'. The interlayer 66 includes an opening 68 that exposes the contact area on the substrate. Another option is that the 'opening 68' directly exposes the substrate from it. In an exemplary solid towel, the opening alpha 68 can have a variety of miscellaneous shapes, such as contact hole shapes or trench shapes. The barrier metal layer pattern 7 is located on the bottom and sidewalls of the opening 68, for example. The barrier metal layer pattern 7Ga can be conformally formed along the outline of the opening 68. Resistance 201133757 3=?^ may include, for example, titanium, titanium nitride, and material nitrided surfaces. This special material can be used alone or in the form of a mixture.岚 障 = barrier metal layer pattern can prevent the track included in the metal pattern 72b "child and / or metal ion diffusion. The barrier metal layer pattern can be applied to the large conductive structure of the joint area" and thus can reduce the j pattern 72b configuration On the barrier metal layer pattern I in the opening 68. The metal pattern 72b may have a cylindrical shape and belong to the genus, 7: the upper portion may have a ring shape. In an exemplary embodiment, it has a cylindrical tube shape. The metal pattern resembles the upper surface 72b. The enamel layer is on the upper surface of the layer 1. Therefore, the metal pattern 72b can be located inside the open anvil. The metal oxide pattern 76 is formed on the smear pattern 72b. The metal oxide pattern 76 can be contacted on the outer side of the lower portion. The barrier metallurgy pattern (4) is upward from the upper surface of the metal pattern 72b = oxygen, and the material pattern 76 protrudes from the insulating interlayer % 可' may include, for example, _. Jin Weihua _ 76 is greater than the metal pattern 7 and has an electric 1 The resistance can be in the exemplary embodiment, the metal oxide pattern is %-shaped, and the ring shape is in the shape of the portion. The metal oxide pattern 76 has a width = 2 = the width of the metal pattern 72b. Metal servant - generated. When the metal oxide pattern = 47; the ringable ring pattern gold oxide pattern 76 has an area that can be substantially smaller than the circular or multi-layer 42 201133757 xi area of the prismatic column structure. 76 has a width smaller than the width of the opening 68. A buried layer pattern 74a is disposed on the metal pattern 72b to completely fill the opening 68. Therefore, the upper surface of the buried layer pattern 74a and the upper surface of the insulating interlayer 66 may be located. Substantially in the same plane, the inner side of the lower portion of the metal oxide pattern 76 may contact the buried layer pattern 74a. In an exemplary embodiment, the buried layer pattern 74a may comprise a material that is substantially slowly oxidized or hardly oxidized. The buried layer pattern 74a may include at least one of titanium, titanium nitride, a button, or a nitride button. These materials may be used alone or in a mixture thereof. Alternatively, the buried layer pattern 74a may include insulation. A material such as an oxide, a nitride or a gas oxide. In an exemplary embodiment 10, the barrier metal layer pattern 7a, the metal pattern 72b, and the i-in layer pattern 74a may be used together as an electrical connection to the conductive The conductive pattern of the region. The metal oxide pattern 76 can be used as a heating electrode because the metal oxide pattern 76 can have high electrical resistance and small area. Figures 21 and 22 illustrate an exemplary embodiment in accordance with the present invention. A cross-sectional view of a method of forming a conductive structure. Referring to Figure 2, an insulating interlayer 66 is formed on a substrate 64 having conductive regions formed thereon. An insulating interlayer 66 is partially engraved to form an open anvil, and the opening 68 partially exposes the substrate. Conductive area on 64. The opening anvil is formed by a lithography process. A barrier metal layer 70 is formed on the insulating interlayer 66, on the bottom of the opening 68, and on the sidewall of the opening. The barrier metal layer 7 can be along the opening 68 and 43 201133757t ^ x^/xl The edge of the edge layer 66 is formed uniformly. When the barrier metal layer 70 is formed on the opening 68, the opening 68 may have a reduced width which is twice the thickness of the barrier metal layer 70. Therefore, the width of the opening 68 can be adjusted by controlling the thickness of the barrier metal layer 70. Thus, the width of the metal pattern 72a and the metal oxide pattern % can be controlled by adjusting the width of the opening 68. A metal layer 72 is formed on the barrier metal layer 70. Metal layer 72 can comprise, for example, a crane. The metal layer 72 can be conformally formed along the contour of the barrier metal layer. The metal layer 72 has a thickness that substantially corresponds to the width of the upper portion of the metal pattern 72a. Therefore, the width of the upper portion of the metal pattern 72a can be adjusted by controlling the thickness of the metal layer 72. A buried layer 74 is formed on the metal layer 72 to completely fill the opening 68. Layer 74 can be formed from a material that oxidizes very slowly or hardly. In an exemplary embodiment, buried layer 74 may comprise a material that is substantially the same as the material of the barrier metal layer. In an exemplary implementation, η λ _ 4 1 少 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / And barriers. Layer 70 is exposed until an insulating interlayer 66 is exposed. The buried layer 74, the metal layer 72, and the barrier gold may be partially removed by the CMp process and the etching process. Thus, the barrier metal layer pattern 7Qa, the preliminary metal pattern 72a, and the buried portion are formed in the opening 68. The layer pattern 74a is incorporated. Each of the barrier metal layer patterns 7a and the initial metal patterns 72a may have a cylindrical shape. The buried layer pattern 74 on the initial pattern 72a fills the opening 68. 201133757 Λ. * Hunting CMP process and partially removing buried layer 74, metal layer 72 two resistance? During the metal layer 70, the insulating interlayer % can be locally ground by a polishing rate substantially greater than the rate of the metal layer 72. Therefore, the initial gold layer pattern 72a, the barrier metal layer pattern 7Ga, and the buried layer pattern 74a are largely above the insulating interlayer 66. For example, the initial metal layer pattern =, the metal layer pattern, the surface above the 7Qa and the buried layer pattern % can be self-exposed, and the upper surface of the edge interlayer 66 slightly protrudes by about 10 angstroms. In Fig. 18, metal oxide is formed on the barrier metal layer pattern 7a in the initial metal layer pattern in the atmosphere containing oxygen, and the case 76 and the metal_72a are formed. The metal oxide pattern % and the metal pattern can be obtained by the same process as that described in the reference 5, and the metal pattern is 72a, which is _古~35^. The metal pattern Hr is at the height of the initial metal layer pattern 72a. Is a pattern 72b. Therefore, the metal pattern is ok, and the layer 66 has a __ shape. Metal Oxidation = Figure ~ has a cylindrical shape extending from the metal pattern 72b. This 'genus' ^ = top material has a lion, and can be insulated / insulating ns on an exemplary embodiment 10, the metal oxide pattern layer pattern can be controlled by the degree of oxidation according to an exemplary implementation For example, it is possible to obtain a face-to-face contact such as a case under the pattern of an oxidized crane product and/or a crane layer having a column shape in the case of not being embossed. It can be used in the oxidation crane. The resistance can be substantially smaller than the resistance of the tungsten oxide pattern. Due to the tungsten pattern and oxygen 45 201133757. Each of the crane patterns can have an easily adjustable thickness and width, so that the conductive structure comprising the tungsten pattern and the tungsten oxide pattern ensures the desired electrical resistance of the various semiconductor memory elements. Figure 23 is a cross-sectional view showing a magnetic memory element in accordance with an exemplary embodiment of the present invention. The magnetic memory device shown in Fig. 23 includes a conductive structure. The structure of this conductive structure is substantially the same as that of the conductive structure described with reference to Fig. 18. In an exemplary embodiment, the magnetic memory component of Figure 23 can have substantially the same configuration as the conductive structure described with reference to Figure 6, except for the conductive structure. Referring to Fig. 23, an m〇S transistor is provided on a semiconductor substrate 400, and a first insulating interlayer 408 covering the MOS transistor is formed on the semiconductor substrate 400 to cover the MOS transistor. A contact plug 410 is formed through the first insulating interlayer 4〇8. The contact plug 410 electrically contacts the impurity region 406 of the MOS transistor. A conductive pattern 412 is disposed on the contact plug 410. A second insulating interlayer 414, overlying the conductive pattern 412, is formed over the first insulating interlayer 408. The opening 415 is formed through the second insulating interlayer 414, and the opening 415 partially exposes the conductive pattern 412. The opening 415 may have the shape of a contact hole. The conductive structure is disposed in the opening 415. The electrically conductive structure can have substantially the same configuration as the electrically conductive structure described with reference to FIG. The conductive structure includes a first barrier metal layer pattern 610 formed on the bottom and sidewalls of the opening 415, a metal pattern 612 on the first barrier metal layer pattern 61, and a buried layer pattern 614 disposed on the metal pattern 612. And a metal oxide pattern 616 extending from the metal pattern 612. 46 1 1201133757 Metal pattern 612 and metal oxide pattern 616 can be coated with tungsten and tungsten oxide, respectively. Metal pattern 612 can have a cylindrical shape, and =3, for example, 614 can fill opening 415. Metal oxide pattern 616 can be overlying layer 415. The metal oxide pattern 616 can be formed by oxidizing the metal. Therefore, when the metal pattern 612 includes tungsten, the "612 oxide pattern 616 includes tungsten oxide. ', 'the metal is mainly at 1; the structure 丨 丨 1 1 1 layer layer 610 and the buried layer pattern 614 can be used together The magnetic memory element is a lower electrode contact. The metal oxide pattern 616 having a relatively high resistance can be used as a heating electrode for heating the free layer pattern in the magnetic tunneling structure of the magnetic memory element. 618 is disposed on the second insulating interlayer 414. The =, the edge interlayer 618 can fill the gap between the adjacent metal oxide patterns 616. The insulating interlayer 618 can comprise a material having a dense structure and good step coverage, for example by The ruthenium oxide obtained by the HDP-CVD process or the ALD process. The upper surface of the third insulating interlayer 618 and the metal oxide pattern 616 may be disposed on substantially the same plane. The upper surface of the first barrier metal layer pattern 010 is covered with a third insulation. The interlayer 618 is such that the first barrier metal layer pattern 61 is not exposed. The magnetic tunnel junction structure is located on the third insulating interlayer 618. The magnetic tunnel junction structure may have the same as that described with reference to FIG. The magnetic tunneling junction structure has substantially the same structure. The free layer pattern 426 of the magnetic tunneling junction structure is disposed on the metal oxide pattern 616. When the metal oxide pattern 616 has a dome-shaped structure, the free layer pattern The contact area between 426 and metal oxide pattern 616 can be reduced. The entanglement efficiency L of the sample 426 can have a surface on the upper surface of the oxide pattern (4). The oxide pattern (4) has a process in which the process is substantially the same as the smooth process, and the magnetic 434, the fifth insulating interlayer (10), the fourth insulating interlayer layer 436, the upper electrode 438, and the bit line. A cross-sectional view of the external image 2 ===^ method according to an exemplary embodiment of the present invention. The conductive structure may be provided with a magnetic di-state 7 as described with reference to FIG. Therefore, except for the process for forming the conductive junction to fabricate the magnetic memory n of FIG. a, the process of which is substantially the same as that described with reference to FIG. 7 is performed in the semiconductor: 412 into the first insulation. 24408, contact plug _ and conductive Referring to Fig. 24', a second insulating interlayer 414 covering the conductive pattern 412 is formed over the first insulating loss layer 408. The second insulating interlayer 4 is partially engraved to form an opening 415 that at least partially exposes the conductive pattern 412. The conductive structure is formed to be substantially filled with the opening α 415 by substantially the same as those described with reference to FIGS. 21 and 22. The conductive structure may protrude above the opening 415. The conductive structure includes a barrier metal layer pattern having a cylindrical shape _, A metal pattern 418 having a cylindrical shape, a ruthenium layer pattern (4) filled with an opening, and a metal oxide 48 201133757 pattern 016 extending upward from the metal pattern (10). The metal pattern 612 and the metal oxide pattern 616 may be separated into, for example, a crane and an oxidized crane. Referring to Figure 25, a third insulating interlayer 618 overlying the metal oxide pattern 616 is formed over the second insulating interlayer 414. The third insulating interlayer 6丨8 may comprise a material having a dense structure and stepped over, and having good cover properties. For example, the second insulating interlayer 618 can comprise germanium oxide by HDP_CVD process or ald^j. The third insulating interlayer 618 is partially removed until the metal oxide pattern 616 is exposed. The third insulating loss layer can be locally removed by the CMP process. 61 = Here, the transfer gold pattern (10) is exposed by the interlayer 61 曰 8 . Since the third insulating interlayer 6丨8 has a dense structure, the third insulating layer (10) and the metal oxide pattern 616 may have a uniform surface without coarse after performing the c Μρ process to partially remove the third insulating interlayer 618. Chain surface. As shown in FIG. 23, a magnetic tunnel junction structure is formed on the third insulating interlayer 618 and the metal oxide pattern 616. A fourth insulating interlayer 434, a fifth insulating interlayer 436, an upper electrode 438, and a bit line 44A covering the magnetic-penetrating surface structure are formed on the third insulating interlayer 618. The description for forming the fourth insulating interlayer 434, the fifth insulating interlayer 436, the upper electrode 438, and the bit line 440 can be substantially the same as described with reference to FIG. Figure 26 is a cross-sectional view of a phase change memory element in accordance with an exemplary embodiment of the present invention. The phase change memory element of Figure 1 may comprise a conductive structure, the structure of which is substantially the same as the conductive structure described with reference to Figure 1 or Figure 22. In an exemplary embodiment, the phase change memory component of Figures 3 49 201133757 may have substantially the same configuration as the phase change memory component described with reference to Figure U, in addition to the conductive structure.

參見圖26 ’在基板490上配置第一絕緣夾層494、P-N 二極體500及第二絕緣夾層504。第一絕緣夾層494包括 第一閧口 ’ P-N二極體500位於第一開口中。 穿過第二絕緣夾層504形成第二開口 505 αρ_Ν二極 體500可穿過第二開口 505而局部地暴露出。 在第二開口 505中配置阻障金屬層圖案65〇、金屬圖 案652、埋入層圖案654及金屬氧化物圖案656。金屬圖案 652及金屬氧化物圖案656可分別包含例如鎢及氧化鎢。 阻障金屬層圖案650、金屬圖案652、埋入層圖案654及金 屬氧化物圖案656可具有與參照圖18所述之第一阻障金屬 層圖案70a、金屬圖案72b、埋入層圖案74a及金屬氧化物 圖案67實質上相同之結構。金屬氧化物圖案656可加埶相 變結構514。 > ^在第二絕緣夾層504上形成第三絕緣夾層66〇。第j 、、邑緣夾層660可填滿相鄰金屬氧化物圖案656間之間隙。 相變結構Μ4配置於金屬氧化物圖案656及第三絕舞 2 060上。相變結構514接觸金屬氧化物圖案656。^ 3氧化物圖案656具有環形形狀時,金屬氧化物圖案65 ^目變結構5Μ間之接觸面積可減小。因此,可藉由焦】 °機制而在相變結構5 i 4中輕易地發生相轉變。 在相變結構514上提供上電極516、第四絕緣失層Μ 及上電極觸點522。 50 201133757 根據示例性實施例,相變記憶體元件可確保具有提高 之焦耳加熱效率及減小之重設電流。相變記憶體元件之設 定狀態及重設狀態之電阻分佈可減小,以使在操作相變記 憶體元件時設定狀態與重設狀態可明顯不同。 在製造圖26所示相變記憶體元件之過程中,藉由與參 照圖12所述者實質上相同之製程,在基板490上獲得第一 絕緣夾層494、P-N二極體500、第二絕緣夾層504及第二 開口 505。然後,可藉由與參照圖21及圖22所述者實質 上相同之製程,形成用於填充第二開口 505並突出於第二 開口 505之上的導電結構。 在第二絕緣夹層504上形成覆蓋導電結構之金屬氧化 物圖案656的第三絕緣夾層660,然後藉由CMP製程而局 部地移除第三絕緣夾層660’藉此暴露出金屬氧化物圖案 656。 藉由與參照圖11所述者實質上相同之製程,在金屬氧 化物圖案656及第三絕緣夾層660上形成相變結構514、 上電極516、第四絕緣夾層518及上電極觸點522。 圖27是繪示根據本發明之一示例性實施例的導電矣士 構之剖面圖。 參見圖27 ’在基板64上提供絕緣夾層66。絕緣失層 66包括開口 68 ’開口 68暴露出基板64上之導電區域。 包含絕緣材料之間隙壁80位於開口 68之側壁上。舉 例而言’間隙壁80可包含氮化矽或氮氧化矽。在一示例二 實施例中,可不在開口 68之側壁上形成阻障金屬層。在一 51 2011337¾ 實施例中’可在開口 68中之間隙壁8〇及基板64上配置阻 障金屬層。 在開口 68中配置包含鶴且具有圓柱形狀之金屬圖案 82。金屬圖案82可沿開口 68及基板64之輪廓形成。在金 屬圖案82上配置埋入層圖案84。埋入層圖案84填滿開口 68。在金屬圖案82上配置包含氧化鎢之金屬氧化物圖案 86。金屬氧化物圖案86自金屬圖案82延伸出。金屬圖案 82、埋入層圖案84及金屬氧化物圖案86可具有與參照圖 18所述之金屬圖案72a、埋入層圖案74a及金屬氧化物圖 案7 6實質上相同之結構。 · 在一種形成圖27之導電結構之方法中,在基板64上 形成絕緣夾層66。局部地蝕刻絕緣夾層66以形成開口 68, 開口 68暴露出基板64之一部分。開口 68可藉由微影製程 而形成。在開口 68之側壁上配置間隙壁80。 在間隙壁80、基板64及絕緣夾層66上形成包含鶴之 金屬層。此金屬層可沿開口 68之輪廓順應性地形成。 藉由CPM製程局部地移除金屬層及間隙壁80,直至 暴露出絕緣夾層66。藉此,在開口 68中形成初始金屬圖 案。在包含氧氣之氣氛中對初始金屬圖案進行熱處理,藉 此在開口 68中形成金屬圖案82及包含氧化鎢之金屬氧化 物圖案86。結果,形成與參照圖27所述之導電結構具有 實質上相同之構造之導電結構。 在示例性實施例中,圖27所示之導電結構可用於圖6 之磁性記憶體元件、圖11之相變記憶體元件或圖13之相 52 201133757 變記憶體元件中。 圖28是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 參見圖28,在基板490上配置第一絕緣炎層494及 P-N 一極體5〇〇。第一絕緣夾層494及p_N二極體5〇〇可 實質上相同於參照圖11所述者。 在第一絕緣夾層494中配置包含鎢之金屬圖案53〇a。 金屬圖案530a電性接觸p_N二極體5〇〇。在第一絕緣夾層 494上形成覆蓋金屬圖案53〇a之第二絕緣夾層。 在金屬圖案530a上配置包含氧化嫣之金屬氧化物圖 案536。金屬氧化物圖案536可自金屬圖案53〇a延伸並可 具有圓柱形狀。 在金屬圖案530a之内侧壁上形成絕緣層圖案534。絕 緣層圖案534可包含氧化物,例如氧化碎。另一選擇為, S3 Ϊ/534可具有多層式結構’此多層式結構包括說 化矽膜及氧化砍膜。 嫌圖雄案534及第二絕緣夾層5〇5上配置相變結 =it =14接觸金屬氧化物圖案淡。在相變結 構514上配置上電極516及上電極觸點522。 圖29是繪不根據本發明 _ 吵相#印愔舻不例性實施例的一種製 造相文3己憶體兀件之方法的剖面圖。 參見圖29’藉由與參昭圄 在某板490 At触、、圖12所述者實質上相同之製 私,在暴板4卯上形成隔離層圖 及P-N二極體500。曰㈡案492、第一絕緣夾層494 53 201133757. 在—極體500上形成包含鶴的初始金屬圖案 530’並在第_縣錢仍4上形成覆蓋初始金屬圖案53〇 之第二絕緣夾>f 504。局部地钮刻第二絕緣夾層5〇4以形 成第一開口 505 ’第二開σ 505暴露出初始金屬圖案53〇 之一部分。 在開口 505之底部及側壁上形成第一絕緣層。第一絕 緣層可包含例如氧化物、氮化物或氮氧化物。舉例而言, 第-絕緣層可包含氧切、氮切或氮氧切^藉由非等 向性蚀刻製程而局部祕刻第—絕緣層,以在第二開口 505之侧壁上形成内間隙壁。 -絕隙壁之開口 505中形成第二絕緣層。第 氧化物、氮化物或氮氧化物。在-示 料且有蝕二_第一絕緣層可包含相對於第-絕緣層之材 化、有钱刻選擇性之材料。舉例而言, 氮化石夕時,第二絕緣層可包含氡化石夕。 豪 絕緣除第二絕緣層’直至暴露出内間隙壁及第二 移除=二可藉由CMP製程及/或回物而肩部地 中形==3=:7在第二,: 靖程==藉製程或非等1 時,絕緣層圖_可包含氧 氧在切形成第二絕蟓/ 第三開口 532之寬产可根櫨不例性實施例中, 見度了根據絕緣層圖案534之厚度而異。 54 201133757 參見圖28,藉由對第三開口 532所暴露出的初始 圖案530進行負化,& + @ 一 „ , 隹·屬 之今屬中形成包含氧化鎢 屬氧化物圖案536。金屬氧化物圖案536可填充第.三 ΐ I f2 °同時’根據金屬氧化物圖* 536之形成而從: :金屬圖案530形成金屬圖案53〇a。亦即,藉由氧化而局 部地消耗初始金屬圖案53〇,以使初始金屬圖案53成 金屬圖案53〇a。 =部地移除金屬圖案530a及金屬氧化物圖案536,直 至暴露出第二絕緣炎層5〇4。金屬圖案53〇a及金屬氧化物 圖案536可藉由例如CMP製程而局部地移除。 ▲在金屬氧化物圖案536及第二絕緣夾層5〇4上形成相 變結構514。在相變結構514上依序形成上電極516及上 電極觸點522。 圖30是繪示根據本發明之一示例性實施例的一種製 造導電結構之方法的剖面圖。 參見圖30,藉由與參照圖12所述者實質上相同之製 程,在基板490上形成隔離層圖案492、第一絕緣夾層494 及P-N二極體500。 藉由與參照圖29所述者實質上相同之製程,形成初始 金屬圖案530、第二絕緣夾層504及第二開口 5〇5,其中初 始金屬圖案530包含鎢。初始金屬圖案53〇接觸p_N二極 體500’且第二絕緣夹層504覆蓋初始金屬圖案53〇。第二 開口 505局部地暴露出初始金屬圖案53〇之上表面。 在開口 505之底部及側壁上形成第一絕緣層。在第一 201133757 絕緣層上形成第二絕緣層,以完全填滿第二開口 505。在 -示例性實施例中,第二絕緣層可包含相對於第一絕緣廣 =材料具有侧選擇性之材料。局部地移除第—絕緣層及 第二絕緣層,直至暴露出第二絕緣爽層504。 —局部地侧帛-絕緣層及第二絕緣層,則彡成具有第 二開口 532之絕緣層圖案534。絕緣層圖案说可藉由非 專向性蝕刻製程而形成。絕緣層圖案534可具有圓柱形 狀。因第一絕緣層局部地留存於第二開口 5〇5中故絕緣 =案534包含氧化矽及氮化矽。亦即,絕緣層圖案刃4包 含第一絕緣層及第二絕緣層之留存部分。 •藉由與參照圖28所述者實質上相同之製程,在絕緣層 圖案534上依序形成金屬圖案53〇a、包含氧化鎢之金屬氧 化物圖案536、相變結構514、上電極5!6及上電極觸點 522。 圖31疋綠示根據本發明之一示例性實施例的相變記 憶體兀件之剖面圖。除相變結構外,圖31之相變記憶體元 件可具有與參照圖28所述之相變記憶體元件實質上相同 之組態。 參見圖31,相變記憶體元件之相變結構514a所具有 之下部從包含氧化鎢之金屬氧化物圖案536a之上部延伸 出。因此’相變結構514a可具有圓柱形狀。相變結構514a 突出至第二絕緣夾層504中。 一種製造圖31所示相變記憶體元件之方法可實質上 相同於參照圖29所述者。 56 201133757r 在一種製造圖31所示相變記憶體元件之方法中,對第 三開口 532所暴露出且含鎢的初始金屬圖案進行氧化,’以 形成含氧化鶴之金屬氧化物圖案536a及金屬圖案530 此處,金屬氧化物圖案536a局部地填充第二開口'Μ]金 屬氧化物圖案536a及金屬圖案530a不被局部地移除。一 在金屬氧化物圖案536a及第二絕緣夾層5〇4上形成相 變詰構514a’以完全填滿第三開口 532,乃因第三開口 532 局部地填充有金屬氧化物圖案536a。 在示例性實施例中,圖28所示用作加熱電極之導電结 耩玎用於圖6之磁性記憶體元件中。亦即,圖6中與磁^ 穿隧接面結構相接觸之導電結構可被取代為圖28所示之 導電結構。 / 圖32是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 參見圖32及圖33,在基板90上配置包含鎢之金屬圖 案92a。金屬圖案92a具有上部,此上部包含形成於其上 之凹槽。亦即’藉由控制後續熱處理製程之處理條件,初 始金屬圖案92之上部之中心可較初始金屬圖案92之上部 之邊緣更快地氧化。金屬圖案92a之凹槽可具有圓形形 狀,例如圓弧形狀。藉此,金屬圖案92&之上部之邊緣可 實質上高於金屬圖案之上部之中心。 在基板90上形成覆蓋金屬圖案92a之絕緣夾層94。 穿過絕緣夾層94提供開口 96。開口 96暴露出具有凹槽的 金屬圖案92a之上部。 57 201133757 在^屬圖案92a上配置包含氧化鶴之金屬氧化物圖案 兆。金屬氧化物圖案98可填滿開口 %。金屬氧化物圖案 98可由金屬圖案92a產生。舉例而言,可藉由對金屬圖案 92a進行氧化而獲得金屬氧化物圖案。 圖33讀不根據本發明之—示例性實補的一種製 造導電結構之方法的剖面圖。 >見圖33,在基板90上形成包含鎢之金屬層,接著 將金屬層圖案化’以在基板9G上形成初始金屬圖案%。 在基板90上形成絕緣夾層94,以覆蓋初始金屬圖案%。 局部地蝕刻絕緣夾層94,以形成開口 96,開口 %至 少局部地«出減金案%。開σ %可藉由微 程而形成。 #參見圖32及圖33,在包含氧氣之氣氛中對開口 96所 暴露出的初始金屬圖案92進行熱處理,以在基板9〇上形 成金屬氧化物圖案98及金屬圖案92a。舉例而言,金屬^ 化物圖案98及金屬圖案92a分別包含氧化鎢及鎢。 在用於形成金屬氧化物圖案98及金屬圖案92a之熱處 理製私中,可使初始金屬圖案92與氧氣反應,以在開口 96中向上擴展。藉此,可在金屬圖案92a上形成填充開口 96之金屬氧化物圖案98。同時,可對初始金屬圖案%之 上部進行氧化,以使初始金屬圖案92可變成金屬圖案 92a藉由控制熱處理製程之製程條件’可使初始金屬圖宰 92之上部之中心較初始金屬圖案92之上部之邊緣更快地 氧化。因此,金屬圖案92a可具有包含圓形凹槽之上部, 58 201133757 而金屬氧化物圖案98可具有對應於金屬圖案92a之凹槽的 突起。 在一示例性實施例中,可藉由平坦化製程將金屬氧化 物圖案98及絕緣夾層94平坦化。舉例而言,可使金屬氧 化物圖案98及絕緣夾層94經受CMP製程。 圖34是繪示根據本發明之一示例性實施例的磁性記 憶體元件之剖面圖。圖34之磁性記憶體元件包括導電圖案 及下電極觸點’導電圖案及下電極觸點與參照圖29所述的 磁性記憶體元件之導電圖案及下電極觸點具有實質上相同 之構造。除導電圖案及下電極觸點外,圖34之磁性記憶體 元件可具有與參照圖6所述之磁性記憶體元件實質上相同 之組態。 參見圖34 ’在第一絕緣夾層408及接觸插塞410上配 置導電結構。導電結構可具有與參照圖30所述之導電結構 實質上相同之構造。 導電結構具有包含鎢之金屬圖案450及包含氧化鎢之 金屬氧化物圖案454。金屬圖案450接觸接觸插塞410。金 屬圖案450具有包含圓形凹槽之上部。金屬圖案450之上 部之邊緣可實質上高於金屬圖案450之上部之中心。 在第一絕緣夾層408上配置覆蓋金屬圖案450之第二 絕緣夾層452。穿過第二絕緣夾層452提供開口 453。開口 453至少局部地暴露出具有圓形凹槽的金屬圖案45〇之上 部。 在金屬圖案450上配置包含氧化鶴之金屬氧化物圖案 59 201133757 填滿開口 453。可藉由對金屬圖 圖案450產生金屬氧化物圖案 #4。金屬氧化物圖案454 案450進行氧化而自金屬 454。 金屬氧化物圖案454玎田仏 , 性記憶體it叙雜加減極,㈣於加熱磁 π田隨接面結構。金屬氧化物圖案454 可用作雜記紐元件蚊下電極觸點。 離圖34所7^之磁A讀'體元件除導電圖案及下電極 ▲具有與參關6所述之雜記紐元件實質上相 5之組,4 ’故除用於形成導電圖案及下電_點之製程 圖34所不之磁性记憶體元件可藉由與參照圖7至圖 W所述者實質上相同之製程來製造。導電圖案倒及下電 極觸點可藉由與參關32所述者實質上侧之製程而形 成0 圖35是繪示根據本發明之一示例性實施例的磁性記 憶體元件之剖面圖。除導電圖案及下電極觸點外,圖35 之磁性Z憶體元件可具有與參照圖6所述之磁性記憶體元 件實質上相同之組態。除金屬氧化物圖案之侧壁上之間隙 壁外’圖35之磁性記憶體元件包含與參照圖28所述之導 電結構之導電圖案及下電極觸點具有實質上相同構造之導 電圖案及下電極觸點。 參見圖35,在穿過第二絕緣夾層452所形成之開口 453 之側壁上提供間隙壁455。間隙壁455可減小開口 453之 寬度,因此包含氧化鎢之金屬氧化物圖案456可較參照圖 34所述之導電結構具有減小量更大之上部寬度。 201133757 製造圖35之磁性記憶體元件之製程可實質上相同於 參照圖3 4所述之磁性記憶體元件之製造製程。在—示例性 貫施例中,在穿過第二絕緣夾層452形成開口 453之後, 在開口 453之側壁上形成間隙壁455。間隙壁455可例如 包含氧化物、氮化物、氮氧化物。舉例而言,間隙壁份 可包含氧化矽、氮化矽或氮氧化矽。 圖36是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 參見圖36,在基板490上提供第-絕緣夾層494及 P N 一極體5G0。包含鶴之金屬圖案搬&位於第一絕緣爽 層494上。金屬圖案5〇2a接觸p_N二極體$⑻。金屬圖案 502a可具有包含圓形凹槽之上部。在一示例性實施例中^ 圓形凹槽可在後續氧化製程期間形成。 在第一絕緣夾層494上配置覆蓋金屬圖案5〇2a之第二 、、邑、,彖炎層550。穿過第二絕緣夾層55〇形成開口 。開口 553至少局部地暴露出金屬圖案502a。在開口 553之側壁 552。間隙壁552可包含絕緣材料。當間隙 壁55=於開口 553中時,開口 553可具有減小之寬度。 上配署隙壁552之開口 553中,在金屬圖案502a 氧化鶴之金屬氧化物圖案554。可藉由對金屬 進行局部氧化而由金屬圖請a產生金屬氧屬 i:tr:;5r.r 之上知即,金屬氧化物圖案5Μ可局部 汗553。金屬氧化物圖案554可在相變記憶體元 61 201133757 件中用作下電極觸點。 在金屬氧化物圖案S54 “ π m ^ 構说填滿開口 553並突=配置相變結構556。相變結 可具有位於開口 553中之^開口 553内。相變結構556 上部。相變結請之下於開口 553之上的 上部之寬度。 卩所具有之寬度可實質上小於其 及上提供上電極-、第二絕緣爽層一 禮之,丨li疋會V ^本發明之—神限實施例的導電結 埴q。除包含氧化鶴之金屬氧化物圖帛9如局部地 之導電結構實質上相同之H構可具有與參關28所述 29所H37之導電結構之製程可實質上相同於參照圖 宰相實施例中,藉由控制與初始金屬圖 it氧口,^ 憶體根據本發明之-示例性實施例的相變記 圖,在基板8上提供第—絶緣爽層1Q及Ρ_Ν =道二極體U及第一絕緣失層上配置包 1屬之導電圖案12a。導電圖案12a可 之金屬。舉例而言,導電圖案12a可包人鎢八_ 缘夾覆蓋導^圖案仏之第二絕 緣丸層圖案Μ。穿過第二絕緣夾層圖衆14形成第一開口 62 201133757 16。開口 16至少局部地暴露出導電圖案12&。第二絕緣夾 層圖案14可包含氧化物或氮化物。舉例而言,第二絕緣夾 層圖案14可包含氧化矽或氮化矽。 立在一示例性實施例中,導電圖案12a具有上部,此上 部包^形成於其上之凹槽。導電圖案12a之上部之邊緣實 ^上^於^電圖案12a之上部之中心。在一示例性實施例 :,藉由控制熱處理製程之製程條件,初始金屬圖案之上 邛之中心可較初始金屬圖案之上部之邊緣更快地氧化。 在第一開口 16中配置下電極觸點18。下電 可包含由導電圖案12a產生之金屬氧化物。下電極觸點18 可填充第一開口 16。 在一不例性實施例中,可藉由對導電圖案12a進行氧 化而獲得下電極觸點18。舉例而言,由導電圖案12a產生 之金屬氧化物可在第—開口 16中向上生長,藉此在第—開 口 16中形成下電極觸點18。導電圖案12a上可具有圓形 凹槽’且下電極觸.點18彳具有圓形突起,此圓形突起對^ 於導電圖案12a之圓形凹槽。當下電極觸點18包含圓形突 起且導電圖案12a具有圓形凹槽時,下電極觸點18之上表 面可與導賴案12a之上表面相隔開更遠。因此,可藉^ 減少熱量之散失而進一步約束在相變結構咖與下電極觸 點18之間所產生之熱量。亦即,相變結構22&可具 之焦耳加熱效率。 在一示例性實施例中,導電圖案12a可包含鶴,因此 下電極觸點18可包含氧化鎢。 63 201133757 在第一開口 16之侧壁上配置間隙壁20。間隙壁2〇接 觸下電極觸點18。第一開口 16之寬度可因形成間隙壁2〇 而減小。因此,下電極觸點18與相變結構22a間之接觸面 積亦可減小。間隙壁20可包含諸如氮化矽之氮化物或如氮 氧化梦之氮氧化物。 相變結構22a配置於下電極觸點18上,以完全填滿第 一開口 16。在一示例性實施例中,下電極觸點18與相變 結構22a間之接觸面積之減小量相對應配置於下電極觸點 18上之間隙壁20之接觸面積。相變結構22a可包含其結 構在晶態與非晶態之間變化的硫族化合物。當此硫族化合 物處於晶態時,此硫族化合物具有相對高之反射率及相對 低之電阻。而當此硫族化合物為非晶態時,此硫族化合物 具有低反射率及高電阻。在-示例性實施射,硫族化合 物可包含鍺-銻-碲之合金。填充第一開口16之相變結構22a 可突出於第二絕緣夾層圖案14之上。在—示例性實施例 中,相變結構22a之上部所具有之寬度可大於其下部之寬 f相變結構22a上配置上電極24。上電極24可包含 例滅化鈦。±電極24可具有與相變結構 22a之上σρ貫質上相同之寬度。 26 H絕緣夾層圖案14上配置第三絕緣夾層圖 …H緣料® ^ %駿上電極24及滅結構22; 邑緣夾層圖案26形成第二開口 28。第二開口 至少局邛地暴露出上電極24。 64 201133757! -----r-l 在第二開口 28中配置上電極觸點30。上電極觸點30 可包含金屬,例如鎢。 根據示例性實施例,相變記憶體元件可具有包含金屬 氧化物之下電極觸點,此金屬氧化物是由包含金屬之導電 圖案產生。在一示例性實施例中,下電極觸點可具有大的 電阻。因相變記憶體元件包括由金屬氧化物形成之下電極 觸點,故相變記憶體元件可確保藉由提高焦耳加熱效率而 減小重設電流。因相變結構在設定狀態與重設狀態之間具 有微小之電阻分佈,故相變記憶體元件可具有明顯不同之 設定狀態與重設狀態。在一示例性實施例中,由於下電極 觸點在開π中配置於相變結構之下,故配置有相變結構之 開口可具有減小之縱橫比。因此,在相變結構中可不會產 生空隙或縫,以防止相變記憶體元件發生運作故障。 圖39至圖44是繪示根據本發明之 -種製造相敎憶體元件之方法㈣關。 參見圖39,在基板8上形成 在基板8上形成第-絕緣爽層1 及雜’8a 質區8a。第-絕緣夾層10可利覆蓋隔離層圖案及雜 成。 堵如氣化石夕之氧化物形 穿過第一絕緣夾層1〇形成_ 體11可電性接觸雜質區8a。在K J'極體11。p-N二極 夾層10上形成初始導電圖案i 、〜極體11及第一絕緣 P-N二極體11。初始導電圖案12 刀始導電圖案12接觸 在-示例性實施例中,初始導ft金屬。 I電圖案12可包含具有低 65 201133757 lpif 電阻之材料,此材料之氧化物具有導電性且在對此材料進 行氧化時此材料之氧化物向上擴展。舉例而言,初始導電 圖案12可包含諸如鎢之金屬。 在第一絕緣夾層10上形成第二絕緣夾層,以覆蓋初始 導電圖案12。第二絕緣夾層可包含諸如氧化矽之氧化物^ 如氮化石夕之氮化物。 局部地蝕刻第二絕緣夾層,以形成第一開口 16,第一 開口 16局部地暴露出初始導電圖案12。第一開口 12可具 有接觸孔之形狀。為形成第一開口 16,在第一絕緣夾層 上提供具有第一開口 16之第二絕緣夾層圖案14。 參見圖40,在氧氣氣氛中對初始導電圖案12的經由 第一開口 16暴露之部分進行熱處理,以在初始導電圖案 12上形成下電極觸點18。舉例而言,可使氧氣與初始導電 圖案12反應,且初始導電圖案12之反應部分可朝第一開 口 16熱膨脹,藉此形成下電極觸點18。下電極觸點以可 局部地彳占據第一開口 16。 在一示例性實施例中,下電極觸點丨8可包含由初始導 電圖案12中所含之金屬所產生之金屬氧化物。包含金屬氧 化物之下電極觸點18所具有之電阻可實質上大於初始導 電圖案12。 ' σ 在氧氣氣氛中對初始導電圖案12進行熱處理之同 時’另外使初始導電圖案12之暴露部分與氧氣反應,以使 下電極觸點18可沿初始導電圖案12之上部横向延伸。藉 此,使初始導電圖案12變成上面形成有凹槽之導電圖案 66 201133757 12a。在一示例性實施例中,凹槽可具有傾斜之側壁。下電 極觸點18可具有橫向擴大之下部,此橫向擴大之下部位於 導電圖案12a之凹槽中。舉例而言,下電極18可具有被戴 切(truncated)之箭頭形狀。 如上文所述,根據熱處理製程,導電圖案12a具有凹 槽且下電極觸點18具有擴大之下部。因此,導電圖案 與下電極18間之接觸面積可增大。 在示例性實施例中,熱處理製程可包括電漿處理或 RTA製程。舉例而言,導電圖案12a及下電極18可藉由 電衆處理或RTA製程而形成。另一選擇為,導電圖案12& 及下電極18可藉纟依次執行電製處理與RTA製程而獲得。 根據一示例性實施例,可藉由控制熱處理製程之條件 而改變下電極觸點18之厚度。舉例而言,自導電圖案Ua 之上表面量測,下電極18可具有約埃至約細埃之厚 度。 在一示例性實施例中,導電圖案12a可包含鎢。在一 j性實施例中’下電極觸點18可包含氧化嫣。可在氧氣 鶴進行氧化,且氧化嫣可快速擴展。氧化鶴可呈 上大於.電阻,且亦可在濕式制製程中相對於 _ 有耐朗性。為確保導電圖案i2a及/或下電極 H 當之電阻祕酬久性,導電圖案12a及下 電極觸點18可分別包含!|及氧化鶴。 氛中2Γ。實施射,。熱處理餘可包含在含氧氣之氣 、、、〇C至約6〇〇C之溫度下執行RTA製程約一分 67 201133757 Γ分鐘。另—選擇為,熱處理製程可包括在含氧氣 之虱巩中藉由施加約20瓦至約瓦之功率 卢 理約-分鐘至約1G分鐘。 ㈣執灯電孩 實施T第—.16中之下電極觸點 餘,而不進行任何層沈積及独刻。藉此, 可猎由簡化之製程而獲得下電極18。 f鋪點18上形成間隙壁形成層 因=r麵顺 —開口 16之寬錢壁形成層之厚度,可使第 局部祕朗_軸層,叫第1 σ丨 所藉由非料⑽贿程而獲得。 寬度。 寬度可實質上相同於間1½形成層之 材料it圖下電極觸點18及間隙壁20上形成相變 二:一開口16。相變材料層22可利用硫族 化合物形成,例如利用鍺_銻_碲之合金形成。 由於存在間隙壁20,下電極觸點18與相變材料層22 間之接觸面積減小。因此,其中因焦耳加熱效應而出現相 轉變的相變材料層22之部分可具有減小之面積,藉此減小 相變記憶體元件中之重設電流。由於在第一開口 16中提供 有下電極觸點18,故其中配置有相變材料層22之第一開 口 16可具有減小之縱橫比。因此,可在第一開口 16中輕 68 201133757, 易地形成相變材料層22而不會在相變材料層22中產生空 隙或縫。 參見圖43 ’在相變材料層22上形成上電極層。上電 極層可包含金屬氮化物。舉例而言,上電極層可包含氮化 欽。 將上電極層及相變材料層22圖案化,以形成相變結構 22a及上電極24。相變結構22a形成於下電極觸點18及第 絕緣夾層14上’且上電極配置於相變結構22a上。此處, 相變、、、。構22a之下部位於第一開口 16中,且相變結構 之上部自第二絕緣夾層圖案14突出。 在第二絕緣夾層14上形成第三絕緣夾層, >,及相變結構22&。局部地蝕刻第三絕緣夾 ;第:炎=露出上電極24之第二開口28。藉此, 案26。第二門9文為具有第二開口 28之第三絕緣夾層圖 在第IS D 28可具有例如接觸孔之形狀。 形成上電忑:Γ配置導電材料,以在第二開口 28中 言,上電極觸戥,°上電極觸點3〇可包含金屬。舉例而 屬氧化物之下^可包含鶴。如此—來,即得到具有含金 圖45 H觸點18之相變記憶體元件。 憶體元件之^喊據本發明之—補性實施觸相變記 外,圖45之^ e圖。除在第一開口之側壁上不提供間隙壁 變記憶體元件H記憶體元件可具有與參關38所述之相 參見圖45 5相同之組態。 在基板8上穿過第二絕緣夾層圖案14形 69 201133757 成之第一開口 16中提供下電極觸點18。下電極觸點18局 部地填充第一開口 16並包含金屬氧化物。 在下電極觸點18上配置相變結構Ua。相變結構22a 3 = t ^第_開口 16 °相變結構22a所具有之上表面可 咼於第二絕緣夾層圖案14之上表面。上電極24位 於相變結構22a上。 26,^第—絕緣央層_案14上配置第三絕緣夾層圖案 26覆蓋使上電極24與相變結構22a被第三絕緣夾層圖案 口 28穿^第三絕緣夹層圖案26形成第二開口 28。第二開 門e ^部地暴露出上電極24。上電極觸點30配置於第二 所J σ 28中。 自人^中之相變5己憶體元件在相變結構22a之側壁上不 觸隙壁,故相變結構瓜與下電極觸點18間之接 之柏r“°質上相同於第一開口 16之寬度。因此,圖45 支°己隐體元件可藉由簡化之製程而製成,同時確保具 頁所期望之特性。 八 &圖46是繪示根據本發明之一示例性實施例的一 &相變記憶體元件之方法的剖面圖。 昭圖t製造圖45之相變記,隨元件之方法巾’可藉由與參 4=斤^圖4G所述者料上相同之製程來提供與參照圖 厅4者具有實質上相同組態之所得結構。 參見圖46,在第二絕緣夾層赌M上形成相 22,以填充形成有下電極觸點18之第一開口 16。此广 20Π33757 在第一開口 16之侧壁上未形成間隙壁。 接著,可藉由與參照圖43及圖44所述者實質上相同 之製程,獲得圓45之相變記憶體元件。 圖47是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。圖47之相變記憶體元件可具有其中單 元胞被配置成陣列結構之組態。 參見圖47’在界定有隔離區10如及主動區之基板1〇〇 上配置第一絕緣夾層圖案102。穿過第一絕緣夾層圖案1〇2 形成第一開口 1〇4。第一開口 104可配置於基板10〇的形 成有相變δ己憶體元件之單元胞的部分處。第一開口 1〇4可 重複地排列於基板1〇〇上。各第一開口 104可具有接觸孔 之形狀。第一開口 104暴露出基板1〇〇之預定部分。 在第一開口 104中分別配置Ρ-Ν二極體1〇6。在一示 例性實施例中,在第一開口 104中配置垂直式Ρ_Ν二極體 106。各垂直式1>_>;[二極體1〇6可包含例如多晶矽。1>_:^二 極體10ό可局部地填充第一開口 1〇4。舉例而言,ρ_Ν二 極體106可填充第一開口 1〇4之下部。 在Ρ-Ν二極體1〇6上配置金屬矽化物圖案1〇8。金屬 矽化物圖案108會減小Ρ-Ν二極體106與導電圖案11〇a 間之接觸電阻。各金屬矽化物圖案108可包含例如石夕化 鈷、矽化鈦、矽化鎳或矽化鎢。 導電圖案110a配置於金屬矽化物圖案1〇8上。各導電 圖案110a可包含具有小電阻之金屬。此處,導電圖案 所具有之上表面可實質上低於第一開口 106之上端。導電 71 201133757 mf V/A JKAJ^ 圖案ll〇a可且古a 110a之上呷之、*有包含圓形凹槽之上部。亦即,導電圖案 在一示例❹^部可高於導電圖案ll〇a之上部之中心。 在第包例中,各導電圖案ll〇a可包含鎢。 絕緣失層圖案脱及導電圖案UGa上提供第二 例如氧化欲#、。第一絕緣夾層圖案I12可包含氧化物, 114。第二開口過第二絕緣夾層圖案112形成第二開口 第-汗口 114分別局部地暴露出導電圖案UOa。各 ^ —网口 ΐΐ4·όΓ 曰 士 中,第二Η /、有接觸孔之形狀。在一示例性實施例 Μ所具有之寬度可實質上小於導電圖案 116 D 114中之導電圖案施上配置下電極觸點 ® ^ .電極觸點U6可包含由導電圖案110a產生之金 °下電極觸點116可局部地填充第二開口叫。 牛,口,,下電極觸點116可填充第二開口 114之下部。 116 H由^導電圖案騰進行氧化而形成下電極觸點 楚-„ ,而言,由導電圖案U()a產生之金屬氧化物可在 今^ 〇 114中向上生長’以在第二開D 114中形成包含 圓物之下電極觸點116。導電圖案應上可形成有 凹槽,且下電極觸點116可具有圓形突起,這些圓形 =起對應於導電圖案110a之圓形凹槽。在一示例性實施例 各導電圖案ll〇a可包含鎢,因此各下電極觸點u 包含氧化鎢。 在第二開口 114之側壁上配置間隙壁118。間隙壁118 接觸下電極觸點116。第二開口 114之寬度可因間隙壁118 72 201133757 WWW Λ. ^ Λ ί 之形成而減小。各間隙壁118可包含氮化物或氮氧化物。 舉例而言,各間隙壁118可包含氮化矽或氮氧化矽。 在下電極觸點116上配置相變結構12〇,以完全填滿 第二開口 114。相變結構120可包含硫族化合物。填充第 二開口 114之相變結構120之上表面與第二絕緣夾層圖案 112之上表面可配置於實質同一平面上。因此,相變結構 120可不突出於第二絕緣夾層圖案112之上。 在各相變結構120上分別配置上電極122。各上電極 122可包含金屬氮化物,例如氮化鈦。上電極122所具有 之寬度可實質上大於相變結構12〇之寬度。 在第二絕緣炎層圖案112上配置第三絕緣夾層圖案 124。第二絕緣夾層圖案124覆蓋上電極122及相變結構 120。穿過第二絕緣夾層圖案124形成第三開口以。第三 開口 126局部地暴露出上電極122。在各第三開口 126中 分別配置上電極觸點128。各上電極觸點3〇可包含金屬, 例如鶴。 圖48至圖51是繪示根據本發明之一示例性實施例的 -種製造相變此憶體元件之方法的剖面圖。圖47所示相變 記憶體元件可具有如下組態:在此組態中,在基板的形成 有相變記憶體元件之單元胞的部分中提供有第—開口及第 二開口。 參見圖48 ’圍繞基板i00執行淺溝渠隔離製程(— trench isoMion process),以定義基板之隔離區臟 及主動區。在具有隔離區職及主動區之基板酬上形成 73 201133757f 氧化層。局部地钮刻此氧化層,以形成第一開口 1〇4,同 時使氧化層變成第一絕緣夾層圖案1〇2。第一開口 1〇4可 形成於基板100的形成有單元胞之部分處。 在第一絕緣夾層圖案102之第一開口 104中形成ρ·Ν 二極體106。各Ρ-Ν二極體1〇6可包含多晶矽,並可具有 垂直類型。 ~ 在形成Ρ-Ν二極體106過程中,可在第一開口 1〇4上 形成多晶矽層’並接著局部地蝕刻多晶矽層。可在原位 (in-situ)或在原位之外(out_situ)對多晶矽層摻雜雜質。 藉此,在第一開口 104中形成P-N二極體1〇6。在一示例 性實施例中,當在第一開口 104之多晶矽層之上部中可植 入P型雜質時,在第一開口 1〇4之多晶矽層之下部中可摻 雜N型雜質。 * 在—極體106上形成金屬石夕化物圖案。可藉 由在P-N 一極體106上形成金屬層並對金屬層及p_N二極 體106進行熱處理,而形成金屬矽化物圖案1〇8。藉此, 可根據金屬層中之金屬與P_N二極體1〇6中之矽之間的反 應而獲得金屬矽化物圖案108。各金屬矽化物圖案1〇8可 包含石夕化始、;5夕化鈦、;5夕化鶴、石夕化錄等。Referring to Fig. 26', a first insulating interlayer 494, a P-N diode 500, and a second insulating interlayer 504 are disposed on the substrate 490. The first insulating interlayer 494 includes a first opening 'P-N diode 500 in the first opening. Forming a second opening through the second insulating interlayer 504 505 The αρ_Ν diode 500 may be partially exposed through the second opening 505. A barrier metal layer pattern 65A, a metal pattern 652, a buried layer pattern 654, and a metal oxide pattern 656 are disposed in the second opening 505. Metal pattern 652 and metal oxide pattern 656 may comprise, for example, tungsten and tungsten oxide, respectively. The barrier metal layer pattern 650, the metal pattern 652, the buried layer pattern 654, and the metal oxide pattern 656 may have the first barrier metal layer pattern 70a, the metal pattern 72b, and the buried layer pattern 74a as described with reference to FIG. The metal oxide pattern 67 has substantially the same structure. Metal oxide pattern 656 can be added to phase change structure 514. > ^ A third insulating interlayer 66 is formed on the second insulating interlayer 504. The jth and the edge interlayer 660 may fill the gap between the adjacent metal oxide patterns 656. The phase change structure Μ4 is disposed on the metal oxide pattern 656 and the third annihilation 2 060. Phase change structure 514 contacts metal oxide pattern 656. When the oxide pattern 656 has a ring shape, the contact area between the metal oxide pattern 65 and the target structure 5 can be reduced. Therefore, the phase transition can easily occur in the phase change structure 5 i 4 by the focal mechanism. An upper electrode 516, a fourth insulating delamination Μ, and an upper electrode contact 522 are provided on the phase change structure 514. 50 201133757 According to an exemplary embodiment, the phase change memory element can ensure improved Joule heating efficiency and reduced reset current. The resistance distribution of the set state and the reset state of the phase change memory element can be reduced so that the set state and the reset state can be significantly different when the phase change memory element is operated. In the process of manufacturing the phase change memory device shown in FIG. 26, the first insulating interlayer 494, the PN diode 500, and the second insulating are obtained on the substrate 490 by a process substantially the same as that described with reference to FIG. The interlayer 504 and the second opening 505. Then, a conductive structure for filling the second opening 505 and protruding over the second opening 505 can be formed by a process substantially the same as that described with reference to Figs. 21 and 22. A third insulating interlayer 660 covering the metal oxide pattern 656 of the conductive structure is formed on the second insulating interlayer 504, and then the third insulating interlayer 660' is partially removed by a CMP process to thereby expose the metal oxide pattern 656. . A phase change structure 514, an upper electrode 516, a fourth insulating interlayer 518, and an upper electrode contact 522 are formed on the metal oxide pattern 656 and the third insulating interlayer 660 by a process substantially the same as that described with reference to FIG. Figure 27 is a cross-sectional view showing a conductive crusted structure in accordance with an exemplary embodiment of the present invention. An insulating interlayer 66 is provided on the substrate 64 as seen in FIG. The insulating loss layer 66 includes an opening 68' opening 68 that exposes the conductive regions on the substrate 64. A spacer 80 comprising an insulating material is located on the sidewall of the opening 68. For example, the spacer 80 may comprise tantalum nitride or hafnium oxynitride. In an example two embodiment, the barrier metal layer may not be formed on the sidewalls of the opening 68. In a 51 20113373⁄4 embodiment, a barrier metal layer may be disposed on the spacers 8 and the substrate 64 in the opening 68. A metal pattern 82 including a crane and having a cylindrical shape is disposed in the opening 68. Metal pattern 82 can be formed along the contours of opening 68 and substrate 64. A buried layer pattern 84 is disposed on the metal pattern 82. The buried layer pattern 84 fills the opening 68. A metal oxide pattern 86 containing tungsten oxide is disposed on the metal pattern 82. The metal oxide pattern 86 extends from the metal pattern 82. The metal pattern 82, the buried layer pattern 84, and the metal oxide pattern 86 may have substantially the same structure as the metal pattern 72a, the buried layer pattern 74a, and the metal oxide pattern 7.6 described with reference to Fig. 18. In a method of forming the conductive structure of FIG. 27, an insulating interlayer 66 is formed on the substrate 64. The insulating interlayer 66 is partially etched to form an opening 68 that exposes a portion of the substrate 64. The opening 68 can be formed by a lithography process. A spacer 80 is disposed on the side wall of the opening 68. A metal layer containing a crane is formed on the spacer 80, the substrate 64, and the insulating interlayer 66. This metal layer can be conformally formed along the contour of the opening 68. The metal layer and spacers 80 are partially removed by the CPM process until the insulating interlayer 66 is exposed. Thereby, an initial metal pattern is formed in the opening 68. The initial metal pattern is heat treated in an atmosphere containing oxygen, whereby a metal pattern 82 and a metal oxide pattern 86 containing tungsten oxide are formed in the opening 68. As a result, a conductive structure having substantially the same configuration as that of the conductive structure described with reference to Fig. 27 was formed. In an exemplary embodiment, the conductive structure shown in FIG. 27 can be used in the magnetic memory component of FIG. 6, the phase change memory component of FIG. 11, or the phase 52 201133757 variable memory component of FIG. Figure 28 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Referring to Fig. 28, a first insulating layer 494 and a P-N one body 5 are disposed on the substrate 490. The first insulating interlayer 494 and the p_N diode 5' can be substantially identical to those described with reference to FIG. A metal pattern 53〇a containing tungsten is disposed in the first insulating interlayer 494. The metal pattern 530a is in electrical contact with the p_N diode 5〇〇. A second insulating interlayer covering the metal pattern 53A is formed on the first insulating interlayer 494. A metal oxide pattern 536 containing yttrium oxide is disposed on the metal pattern 530a. The metal oxide pattern 536 may extend from the metal pattern 53A and may have a cylindrical shape. An insulating layer pattern 534 is formed on the inner sidewall of the metal pattern 530a. The insulating layer pattern 534 may comprise an oxide such as oxidized ground. Alternatively, S3 Ϊ/534 may have a multilayer structure. The multilayer structure includes a ruthenium film and an oxidized dicing film. The phase change junction is arranged on the 241 and the second insulating interlayer 5〇5. =it =14 The contact metal oxide pattern is light. Upper electrode 516 and upper electrode contact 522 are disposed on phase change structure 514. Figure 29 is a cross-sectional view showing a method of manufacturing a phase 3 memory element according to an exemplary embodiment of the invention. Referring to Fig. 29', a spacer layer pattern and a P-N diode 500 are formed on the slab 4 by substantially the same manufacturing method as that described in Fig. 12 with a plate 490 At.曰 (2) Case 492, the first insulation interlayer 494 53 201133757.  An initial metal pattern 530' containing a crane is formed on the body 500, and a second insulating clip > f 504 covering the initial metal pattern 53A is formed on the fourth battery. The second insulating interlayer 5〇4 is partially engraved to form a first opening 505'. The second opening σ 505 exposes a portion of the initial metal pattern 53〇. A first insulating layer is formed on the bottom and sidewalls of the opening 505. The first insulating layer may comprise, for example, an oxide, a nitride or an oxynitride. For example, the first insulating layer may include oxygen cutting, nitrogen cutting or oxynitridation, and the first insulating layer is partially etched by an anisotropic etching process to form an internal gap on the sidewall of the second opening 505. wall. A second insulating layer is formed in the opening 505 of the gap wall. The first oxide, nitride or oxynitride. The in-situ and etched-first insulating layer may comprise a material that is materially and selectively selective with respect to the first insulating layer. For example, in the case of nitriding, the second insulating layer may comprise bismuth fossils. Hao insulation in addition to the second insulation layer 'until the inner gap wall is exposed and the second removal = two can be formed by the CMP process and / or the return of the shoulder shape == 3 =: 7 in the second,: Jing Cheng = If the process or non-equal 1 is used, the insulating layer pattern _ may include oxygen oxide in the broad formation of the second insulating/third opening 532. In the exemplary embodiment, the insulating layer pattern 534 is seen. The thickness varies. 54 201133757 Referring to FIG. 28, by inverting the initial pattern 530 exposed by the third opening 532, & + @一„, the genus of the genus genus includes a tungsten oxide oxide pattern 536. Metal oxidation The object pattern 536 can be filled with the first. Three ΐ I f2 ° simultaneously from the formation of the metal oxide pattern * 536 from: : The metal pattern 530 forms a metal pattern 53 〇 a. That is, the initial metal pattern 53 is partially consumed by oxidation so that the initial metal pattern 53 becomes the metal pattern 53A. The metal pattern 530a and the metal oxide pattern 536 are partially removed until the second insulating layer 5 〇 4 is exposed. The metal pattern 53A and the metal oxide pattern 536 can be partially removed by, for example, a CMP process. ▲ A phase change structure 514 is formed on the metal oxide pattern 536 and the second insulating interlayer 5?4. The upper electrode 516 and the upper electrode contact 522 are sequentially formed on the phase change structure 514. Figure 30 is a cross-sectional view showing a method of fabricating a conductive structure in accordance with an exemplary embodiment of the present invention. Referring to Fig. 30, an isolation layer pattern 492, a first insulating interlayer 494, and a P-N diode 500 are formed on the substrate 490 by substantially the same process as described with reference to FIG. The initial metal pattern 530, the second insulating interlayer 504, and the second opening 5〇5 are formed by a process substantially the same as that described with reference to Fig. 29, wherein the initial metal pattern 530 contains tungsten. The initial metal pattern 53A contacts the p_N diode 500' and the second insulating interlayer 504 covers the initial metal pattern 53A. The second opening 505 partially exposes the upper surface of the initial metal pattern 53. A first insulating layer is formed on the bottom and sidewalls of the opening 505. A second insulating layer is formed on the first 201133757 insulating layer to completely fill the second opening 505. In an exemplary embodiment, the second insulating layer may comprise a material having side selectivity with respect to the first insulating material. The first insulating layer and the second insulating layer are partially removed until the second insulating layer 504 is exposed. The partial lateral side-insulating layer and the second insulating layer are then patterned into an insulating layer pattern 534 having a second opening 532. The insulating layer pattern can be formed by a non-specific etching process. The insulating layer pattern 534 may have a cylindrical shape. Since the first insulating layer is partially retained in the second opening 5〇5, the insulation 544 includes yttrium oxide and tantalum nitride. That is, the insulating layer pattern edge 4 includes a remaining portion of the first insulating layer and the second insulating layer. The metal pattern 53A, the metal oxide pattern 536 containing tungsten oxide, the phase change structure 514, and the upper electrode 5 are sequentially formed on the insulating layer pattern 534 by a process substantially the same as that described with reference to FIG. 6 and upper electrode contact 522. Figure 31 is a cross-sectional view showing a phase change memory element according to an exemplary embodiment of the present invention. In addition to the phase change structure, the phase change memory device of Figure 31 can have substantially the same configuration as the phase change memory device described with reference to Figure 28. Referring to Fig. 31, the phase change structure 514a of the phase change memory element has a lower portion extending from the upper portion of the metal oxide pattern 536a containing tungsten oxide. Therefore, the phase change structure 514a may have a cylindrical shape. Phase change structure 514a protrudes into second insulating interlayer 504. A method of fabricating the phase change memory component of Figure 31 can be substantially identical to that described with reference to Figure 29. 56 201133757r In a method of fabricating the phase change memory device of FIG. 31, the initial metal pattern exposed by the third opening 532 and containing tungsten is oxidized to form a metal oxide pattern 536a and metal containing the oxide crane Pattern 530 Here, the metal oxide pattern 536a partially fills the second opening 'Μ' metal oxide pattern 536a and the metal pattern 530a is not partially removed. A phase change structure 514a' is formed on the metal oxide pattern 536a and the second insulating interlayer 5?4 to completely fill the third opening 532 because the third opening 532 is partially filled with the metal oxide pattern 536a. In the exemplary embodiment, the conductive node used as the heating electrode shown in Fig. 28 is used in the magnetic memory element of Fig. 6. That is, the conductive structure in contact with the magnetic tunneling interface structure in Fig. 6 can be replaced with the conductive structure shown in Fig. 28. / Figure 32 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Referring to Figures 32 and 33, a metal pattern 92a containing tungsten is disposed on the substrate 90. The metal pattern 92a has an upper portion including a groove formed thereon. That is, by controlling the processing conditions of the subsequent heat treatment process, the center of the upper portion of the initial metal pattern 92 can be oxidized faster than the edge of the upper portion of the initial metal pattern 92. The groove of the metal pattern 92a may have a circular shape such as a circular arc shape. Thereby, the edge of the upper portion of the metal pattern 92 & can be substantially higher than the center of the upper portion of the metal pattern. An insulating interlayer 94 covering the metal pattern 92a is formed on the substrate 90. An opening 96 is provided through the insulating interlayer 94. The opening 96 exposes an upper portion of the metal pattern 92a having a groove. 57 201133757 A metal oxide pattern containing oxidized crane is placed on the genus pattern 92a. The metal oxide pattern 98 can fill the opening %. The metal oxide pattern 98 can be produced by the metal pattern 92a. For example, a metal oxide pattern can be obtained by oxidizing the metal pattern 92a. Figure 33 is a cross-sectional view of a method of fabricating a conductive structure that is not an exemplary implementation of the present invention. > Referring to Fig. 33, a metal layer containing tungsten is formed on the substrate 90, and then the metal layer is patterned' to form an initial metal pattern % on the substrate 9G. An insulating interlayer 94 is formed on the substrate 90 to cover the initial metal pattern %. The insulating interlayer 94 is partially etched to form the opening 96, and the opening % is at least partially reduced. The opening σ % can be formed by a micro-pass. Referring to Figures 32 and 33, the initial metal pattern 92 exposed by the opening 96 is heat-treated in an atmosphere containing oxygen to form a metal oxide pattern 98 and a metal pattern 92a on the substrate 9A. For example, the metal pattern 98 and the metal pattern 92a include tungsten oxide and tungsten, respectively. In the heat treatment for forming the metal oxide pattern 98 and the metal pattern 92a, the initial metal pattern 92 may be reacted with oxygen to expand upward in the opening 96. Thereby, the metal oxide pattern 98 filling the opening 96 can be formed on the metal pattern 92a. At the same time, the upper portion of the initial metal pattern % may be oxidized so that the initial metal pattern 92 can become the metal pattern 92a. The process of the heat treatment process can be used to make the center of the upper portion of the initial metal pattern 92 more than the initial metal pattern 92. The upper edge oxidizes faster. Therefore, the metal pattern 92a may have an upper portion including a circular groove, 58 201133757 and the metal oxide pattern 98 may have a protrusion corresponding to the groove of the metal pattern 92a. In an exemplary embodiment, the metal oxide pattern 98 and the insulating interlayer 94 may be planarized by a planarization process. For example, the metal oxide pattern 98 and the insulating interlayer 94 can be subjected to a CMP process. Figure 34 is a cross-sectional view showing a magnetic memory element in accordance with an exemplary embodiment of the present invention. The magnetic memory device of Fig. 34 includes a conductive pattern and a lower electrode contact. The conductive pattern and the lower electrode contact have substantially the same configuration as the conductive pattern and the lower electrode contact of the magnetic memory element described with reference to Fig. 29. The magnetic memory device of Figure 34 can have substantially the same configuration as the magnetic memory device described with reference to Figure 6, except for the conductive pattern and the lower electrode contacts. Referring to Fig. 34', a conductive structure is disposed on the first insulating interlayer 408 and the contact plug 410. The conductive structure may have a configuration substantially the same as that of the conductive structure described with reference to FIG. The conductive structure has a metal pattern 450 comprising tungsten and a metal oxide pattern 454 comprising tungsten oxide. The metal pattern 450 contacts the contact plug 410. The metal pattern 450 has an upper portion including a circular groove. The edge of the upper portion of the metal pattern 450 may be substantially higher than the center of the upper portion of the metal pattern 450. A second insulating interlayer 452 covering the metal pattern 450 is disposed on the first insulating interlayer 408. An opening 453 is provided through the second insulating interlayer 452. The opening 453 exposes at least a portion of the upper portion of the metal pattern 45 having a circular groove. A metal oxide pattern containing an oxidized crane is disposed on the metal pattern 450. 59 201133757 Fills the opening 453. The metal oxide pattern #4 can be produced by patterning the metal pattern 450. Metal oxide pattern 454 450 is oxidized from metal 454. The metal oxide pattern 454 玎田仏, the sexual memory is a hybrid addition and subtraction pole, and (4) the heating magnetic π field interface structure. The metal oxide pattern 454 can be used as a mosquito element electrode contact. The magnetic A read 'body element of Fig. 34' except the conductive pattern and the lower electrode ▲ has a group substantially 5 with the miscellaneous element described in the reference 6, 4', except for forming a conductive pattern and powering off The magnetic memory element of the process diagram 34 can be manufactured by a process substantially the same as that described with reference to FIGS. 7 to W. The conductive pattern and the lower electrode contacts can be formed by a process substantially parallel to the side of the reference 32. Figure 35 is a cross-sectional view of a magnetic memory element in accordance with an exemplary embodiment of the present invention. The magnetic Z memory element of Fig. 35 may have substantially the same configuration as the magnetic memory element described with reference to Fig. 6, except for the conductive pattern and the lower electrode contact. The magnetic memory device of FIG. 35 includes a conductive pattern and a lower electrode having substantially the same configuration as the conductive pattern and the lower electrode contact of the conductive structure described with reference to FIG. 28 except for the spacer on the sidewall of the metal oxide pattern. Contact. Referring to Figure 35, a spacer 455 is provided on the sidewall of the opening 453 formed through the second insulating interlayer 452. The spacer 455 can reduce the width of the opening 453, and thus the metal oxide pattern 456 comprising tungsten oxide can have a reduced amount of upper portion width than the conductive structure described with reference to FIG. The process of manufacturing the magnetic memory device of FIG. 35 can be substantially the same as the manufacturing process of the magnetic memory device described with reference to FIG. In the exemplary embodiment, after the opening 453 is formed through the second insulating interlayer 452, a spacer 455 is formed on the sidewall of the opening 453. The spacer 455 may, for example, comprise an oxide, a nitride, an oxynitride. For example, the spacer portion may comprise hafnium oxide, tantalum nitride or hafnium oxynitride. Figure 36 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. Referring to Fig. 36, a first insulating interlayer 494 and a P N one body 5G0 are provided on the substrate 490. The metal pattern containing the crane is placed on the first insulating layer 494. The metal pattern 5〇2a contacts the p_N diode $(8). The metal pattern 502a may have an upper portion including a circular groove. In an exemplary embodiment, a circular groove can be formed during a subsequent oxidation process. A second, 邑, 彖 层 layer 550 covering the metal pattern 5〇2a is disposed on the first insulating interlayer 494. An opening is formed through the second insulating interlayer 55. The opening 553 exposes the metal pattern 502a at least partially. At the side wall 552 of the opening 553. The spacer 552 can comprise an insulating material. When the gap wall 55 = is in the opening 553, the opening 553 may have a reduced width. In the opening 553 of the upper gap 552, the metal oxide pattern 554 of the crane is oxidized in the metal pattern 502a. Metal oxides can be generated from the metal map by local oxidation of the metal i:tr:;5r. On top of the r, the metal oxide pattern 5 Μ can be partially sweat 553. Metal oxide pattern 554 can be used as a lower electrode contact in phase change memory element 61 201133757. In the metal oxide pattern S54 "π m ^ structure fills the opening 553 and protrudes = configures the phase change structure 556. The phase change junction may have an opening 553 located in the opening 553. The phase change structure 556 is upper. The phase change junction The width of the upper portion above the opening 553. The width of the crucible can be substantially smaller than the upper electrode provided thereon, and the second insulating layer is provided, the Vli疋 will V ^ the invention The conductive junction 实施q of the embodiment. In addition to the metal oxide containing the oxidized crane, the H structure of the partially identical conductive structure may have the process of the conductive structure of the H37 of 29, which may be substantially In the same embodiment as the prime phase of the reference figure, the first insulating layer 1Q is provided on the substrate 8 by controlling the initial metal diagram and the phase change pattern according to the exemplary embodiment of the present invention. Ρ_Ν = the diode body U and the first insulating layer are disposed on the conductive pattern 12a of the group 1. The conductive pattern 12a may be a metal. For example, the conductive pattern 12a may be covered with a tungsten _ edge clip to cover the pattern The second insulating layer pattern Μ. Through the second insulating interlayer, the figure 14 Forming a first opening 62 201133757 16. The opening 16 at least partially exposes the conductive pattern 12 & the second insulating interlayer pattern 14 may comprise an oxide or a nitride. For example, the second insulating interlayer pattern 14 may comprise hafnium oxide or nitrogen In an exemplary embodiment, the conductive pattern 12a has an upper portion, and the upper portion is formed with a groove formed thereon. The edge of the upper portion of the conductive pattern 12a is applied to the center of the upper portion of the electric pattern 12a. In an exemplary embodiment, by controlling the process conditions of the heat treatment process, the center of the crucible above the initial metal pattern can be oxidized faster than the edge of the upper portion of the initial metal pattern. The lower electrode contact is disposed in the first opening 16. Point 18. The power-off may include a metal oxide generated by the conductive pattern 12a. The lower electrode contact 18 may fill the first opening 16. In an exemplary embodiment, the conductive pattern 12a may be oxidized to obtain the lower portion. The electrode contact 18. For example, the metal oxide generated by the conductive pattern 12a may grow upward in the first opening 16, thereby forming the lower electrode contact 18 in the first opening 16. The conductive pattern 12a It may have a circular recess' and the lower electrode contact. The dot 18 has a circular protrusion which is opposed to the circular groove of the conductive pattern 12a. When the lower electrode contact 18 includes a circular projection and the conductive pattern 12a has a circular recess, the upper surface of the lower electrode contact 18 may be spaced further apart from the upper surface of the guide 12a. Therefore, the heat generated between the phase change structure coffee and the lower electrode contact 18 can be further restrained by reducing the loss of heat. That is, the phase change structure 22 & can have Joule heating efficiency. In an exemplary embodiment, the conductive pattern 12a may comprise a crane, and thus the lower electrode contact 18 may comprise tungsten oxide. 63 201133757 A spacer 20 is disposed on a side wall of the first opening 16. The spacer 2 is connected to the electrode contact 18. The width of the first opening 16 may be reduced by the formation of the spacer 2〇. Therefore, the contact area between the lower electrode contact 18 and the phase change structure 22a can also be reduced. The spacer 20 may comprise a nitride such as tantalum nitride or a nitrogen oxide such as nitrogen oxide. The phase change structure 22a is disposed on the lower electrode contact 18 to completely fill the first opening 16. In an exemplary embodiment, the amount of contact between the lower electrode contact 18 and the phase change structure 22a is reduced by the contact area of the spacer 20 disposed on the lower electrode contact 18. The phase change structure 22a may comprise a chalcogenide whose structure varies between a crystalline state and an amorphous state. When the chalcogenide is in a crystalline state, the chalcogenide has a relatively high reflectance and a relatively low electrical resistance. When the chalcogenide is amorphous, the chalcogenide has low reflectance and high electrical resistance. In an exemplary embodiment, the chalcogenide compound may comprise an alloy of bismuth-tellurium-tellurium. The phase change structure 22a filling the first opening 16 may protrude above the second insulating interlayer pattern 14. In the exemplary embodiment, the upper portion of the phase change structure 22a may have a width greater than the width of the lower portion thereof. The upper electrode 24 is disposed on the f-phase change structure 22a. The upper electrode 24 may comprise an example of titanium. The ± electrode 24 may have the same width as the σ ρ above the phase change structure 22a. A third insulating interlayer pattern is disposed on the 26H insulating interlayer pattern 14 ... H edge material ^ ^ upper electrode 24 and extinguishing structure 22; the edge sandwich pattern 26 forms a second opening 28. The second opening exposes the upper electrode 24 at least marginally. 64 201133757! -----r-l The upper electrode contact 30 is disposed in the second opening 28. The upper electrode contact 30 may comprise a metal such as tungsten. According to an exemplary embodiment, the phase change memory element may have an electrode contact comprising a metal oxide, the metal oxide being produced from a conductive pattern comprising a metal. In an exemplary embodiment, the lower electrode contact may have a large electrical resistance. Since the phase change memory element includes the lower electrode contact formed by the metal oxide, the phase change memory element ensures that the reset current is reduced by increasing the Joule heating efficiency. Since the phase change structure has a small resistance distribution between the set state and the reset state, the phase change memory element can have significantly different set states and reset states. In an exemplary embodiment, since the lower electrode contact is disposed under the phase change structure in the opening π, the opening configured with the phase change structure may have a reduced aspect ratio. Therefore, voids or slits may not be generated in the phase change structure to prevent operation failure of the phase change memory element. 39 to 44 are diagrams showing a method (4) of manufacturing a phase memory element according to the present invention. Referring to Fig. 39, a first insulating layer 1 and a dummy '8a region 8a are formed on the substrate 8 on the substrate 8. The first insulating interlayer 10 can cover the isolation layer pattern and the impurities. The formation of the oxide such as gasification fossils through the first insulating interlayer 1 _ body 11 can electrically contact the impurity region 8a. In K J' pole body 11. An initial conductive pattern i, a torsion body 11, and a first insulating P-N diode 11 are formed on the p-N bipolar interlayer 10. Initial Conductive Pattern 12 Knife Start Conductive Pattern 12 Contact In an exemplary embodiment, the initial ft metal is introduced. The I electrical pattern 12 can comprise a material having a low 65 201133757 lpif resistance, the oxide of the material being electrically conductive and the oxide of the material expanding upward as the material is oxidized. For example, the initial conductive pattern 12 can comprise a metal such as tungsten. A second insulating interlayer is formed on the first insulating interlayer 10 to cover the initial conductive pattern 12. The second insulating interlayer may comprise an oxide such as yttria, such as a nitride of nitride. The second insulating interlayer is partially etched to form a first opening 16, and the first opening 16 partially exposes the initial conductive pattern 12. The first opening 12 may have the shape of a contact hole. To form the first opening 16, a second insulating interlayer pattern 14 having a first opening 16 is provided on the first insulating interlayer. Referring to Fig. 40, a portion of the initial conductive pattern 12 exposed through the first opening 16 is heat-treated in an oxygen atmosphere to form a lower electrode contact 18 on the initial conductive pattern 12. For example, oxygen can be reacted with the initial conductive pattern 12, and the reactive portion of the initial conductive pattern 12 can be thermally expanded toward the first opening 16, thereby forming the lower electrode contact 18. The lower electrode contact occupies the first opening 16 in a partial manner. In an exemplary embodiment, the lower electrode contact 8 may include a metal oxide produced by the metal contained in the initial conductive pattern 12. The electrical resistance of the electrode contact 18 underlying the metal oxide can be substantially greater than the initial conductive pattern 12. 'σ while heat-treating the initial conductive pattern 12 in an oxygen atmosphere' additionally reacts the exposed portion of the initial conductive pattern 12 with oxygen so that the lower electrode contact 18 can extend laterally along the upper portion of the initial conductive pattern 12. Thereby, the initial conductive pattern 12 is changed to the conductive pattern 66 201133757 12a on which the groove is formed. In an exemplary embodiment, the groove may have a sloped side wall. The lower electrode contact 18 may have a laterally enlarged lower portion which is located in the recess of the conductive pattern 12a. For example, the lower electrode 18 may have an arrow shape that is truncated. As described above, according to the heat treatment process, the conductive pattern 12a has a groove and the lower electrode contact 18 has an enlarged lower portion. Therefore, the contact area between the conductive pattern and the lower electrode 18 can be increased. In an exemplary embodiment, the heat treatment process may include a plasma treatment or an RTA process. For example, the conductive pattern 12a and the lower electrode 18 can be formed by a power treatment or an RTA process. Alternatively, the conductive patterns 12& and the lower electrode 18 can be obtained by sequentially performing an electroforming process and an RTA process. According to an exemplary embodiment, the thickness of the lower electrode contact 18 can be varied by controlling the conditions of the heat treatment process. For example, the lower electrode 18 may have a thickness of from about angstrom to about fine, as measured from the upper surface of the conductive pattern Ua. In an exemplary embodiment, the conductive pattern 12a may include tungsten. In a first embodiment, the lower electrode contact 18 can comprise ruthenium oxide. It can be oxidized in oxygen cranes, and cerium oxide can be rapidly expanded. Oxidized cranes can be larger than. Resistance, and can also be resistant to _ in the wet process. In order to ensure that the conductive pattern i2a and/or the lower electrode H have a long-lasting resistance, the conductive pattern 12a and the lower electrode contact 18 may respectively contain !| and an oxidized crane. 2 in the atmosphere. Implement the shooting. The heat treatment residue may be subjected to an RTA process at a temperature of about 〇〇C to about 6 〇〇C to about one minute 67 201133757 Γ minutes. Alternatively, the heat treatment process can be carried out by applying a power of from about 20 watts to about watts in the oxygen-containing gas to about 1 minute to about 1 minute. (4) Light-bearing children implement T--- The electrode contacts are below the middle of 16 without any layer deposition and singularity. Thereby, the lower electrode 18 can be obtained by a simplified process. f The formation of the spacer layer on the puncture 18 is due to the thickness of the wide wall forming layer of the =r surface-opening 16 so that the first partial _axis layer, called the first σ丨, is not (10) bribe And get. width. The width can be substantially the same as the material formed between the layers 11a2. The electrode contacts 18 and the spacers 20 form a phase change 2: an opening 16. The phase change material layer 22 can be formed using a chalcogenide compound, for example, using an alloy of 锗_锑_碲. Due to the presence of the spacers 20, the contact area between the lower electrode contacts 18 and the phase change material layer 22 is reduced. Thus, portions of the phase change material layer 22 in which the phase transition occurs due to the Joule heating effect can have a reduced area, thereby reducing the reset current in the phase change memory element. Since the lower electrode contact 18 is provided in the first opening 16, the first opening 16 in which the phase change material layer 22 is disposed may have a reduced aspect ratio. Therefore, the phase change material layer 22 can be easily formed in the first opening 16 by light 68 201133757 without creating voids or slits in the phase change material layer 22. Referring to Fig. 43', an upper electrode layer is formed on the phase change material layer 22. The upper electrode layer may comprise a metal nitride. For example, the upper electrode layer may comprise nitride. The upper electrode layer and the phase change material layer 22 are patterned to form a phase change structure 22a and an upper electrode 24. The phase change structure 22a is formed on the lower electrode contact 18 and the first insulating interlayer 14 and the upper electrode is disposed on the phase change structure 22a. Here, phase change, ,,. The lower portion of the structure 22a is located in the first opening 16, and the upper portion of the phase change structure protrudes from the second insulating interlayer pattern 14. A third insulating interlayer is formed on the second insulating interlayer 14, >, and the phase change structure 22 & The third insulating clip is locally etched; the first: the second opening 28 of the upper electrode 24 is exposed. By this, case 26. The second door 9 is a third insulating interlayer pattern having the second opening 28. The IS D 28 may have a shape such as a contact hole. Forming a power-on 忑: Γ is configured with a conductive material such that, in the second opening 28, the upper electrode contacts, and the upper electrode contact 3 〇 may comprise metal. For example, under the oxide ^ can contain cranes. In this way, a phase change memory element having a gold-containing picture 45 H-contact 18 is obtained. The recall of the body element according to the present invention - the implementation of the phase change of the phase change, Figure 45 of the figure. Except that no spacer is provided on the sidewall of the first opening. The memory element H memory element can have the same configuration as described in reference 38 with reference to Figure 45. A lower electrode contact 18 is provided in the first opening 16 through the second insulating interlayer pattern 14 on the substrate 8. The lower electrode contact 18 partially fills the first opening 16 and contains a metal oxide. A phase change structure Ua is disposed on the lower electrode contact 18. The phase change structure 22a 3 = t ^ the first opening 16 ° The phase change structure 22a has an upper surface which is opposite to the upper surface of the second insulating interlayer pattern 14. The upper electrode 24 is located on the phase change structure 22a. 26, the first insulating interlayer _ 14 is disposed on the fourth insulating interlayer pattern 26 to cover the upper opening 24 and the phase change structure 22a by the third insulating interlayer pattern opening 28 through the third insulating interlayer pattern 26 to form a second opening 28. The second opening e ^ partially exposes the upper electrode 24. The upper electrode contact 30 is disposed in the second J σ 28 . The phase change 5 self-remembering element has no gap wall on the side wall of the phase change structure 22a, so the connection between the phase change structure melon and the lower electrode contact 18 is the same as the first The width of the opening 16. Thus, Figure 45 can be made by a simplified process while ensuring the desired characteristics of the page. Eight & Figure 46 is an exemplary implementation in accordance with the present invention. A cross-sectional view of a method of phase-change memory elements of the example. The phase change of the phase change memory of Figure 45 is made, and the method of the component can be the same as that described in Figure 4G. The process provides a resulting structure having substantially the same configuration as that of the reference frame 4. Referring to Figure 46, a phase 22 is formed on the second insulating interlayer bet M to fill the first opening 16 in which the lower electrode contact 18 is formed. The Width 20 Π 33757 does not form a spacer on the sidewall of the first opening 16. Next, the phase change memory element of the circle 45 can be obtained by a process substantially the same as that described with reference to FIGS. 43 and 44. 47 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. The phase change memory element may have a configuration in which the unit cells are configured in an array structure. Referring to Figure 47', a first insulating interlayer pattern 102 is disposed on a substrate 1A defining an isolation region 10, such as an active region. An insulating interlayer pattern 1〇2 forms a first opening 1〇4. The first opening 104 may be disposed at a portion of the substrate 10 that is formed with a unit cell of a phase change δ-resonance element. The first opening 1〇4 may be repeated. Each of the first openings 104 may have a shape of a contact hole. The first opening 104 exposes a predetermined portion of the substrate 1〇〇. The first opening 104 is respectively disposed with a Ρ-Ν diode 1 〇 6. In an exemplary embodiment, a vertical Ρ_Ν diode 106 is disposed in the first opening 104. Each vertical type 1>_>; [dipoles 1 〇 6 may include, for example, polysilicon. 1 > _: The diode 10 ό can partially fill the first opening 1 〇 4. For example, the ρ_ Ν diode 106 can fill the lower portion of the first opening 1 〇 4. The metal 矽 is disposed on the Ρ-Ν diode 1 〇 6 The pattern 1〇8. The metal halide pattern 108 reduces the Ρ-Ν diode 106 and the conductive pattern 11 Contact resistance between a. Each metal halide pattern 108 may comprise, for example, sillimanite, titanium hydride, nickel hydride or tungsten ruthenium. The conductive pattern 110a is disposed on the metal hydride pattern 1 〇 8. Each conductive pattern 110a may include The metal of the small resistance. Here, the upper surface of the conductive pattern may be substantially lower than the upper end of the first opening 106. Conductive 71 201133757 mf V/A JKAJ^ The pattern ll〇a may be above the ancient a 110a, * There is a portion including a circular groove. That is, the conductive pattern may be higher than the center of the upper portion of the conductive pattern 11a in an example. In the package example, each of the conductive patterns 11a may include tungsten. The insulating loss-loss pattern is removed from the conductive pattern UGa to provide a second, for example, oxidized. The first insulating interlayer pattern I12 may include an oxide, 114. The second opening forms a second opening through the second insulating interlayer pattern 112. The first sweating port 114 partially exposes the conductive pattern UOa. Each of the ^ - network ports ΐΐ 4 · όΓ 曰 中, the second Η /, has the shape of the contact hole. The width of an exemplary embodiment can be substantially smaller than the conductive pattern in the conductive pattern 116 D 114 to apply the lower electrode contact ® ^ . The electrode contact U6 may comprise a gold generated by the conductive pattern 110a. The lower electrode contact 116 may partially fill the second opening. The cow, mouth, and lower electrode contacts 116 may fill the lower portion of the second opening 114. 116 H is oxidized by the conductive pattern to form a lower electrode contact Chu - „, in other words, the metal oxide generated by the conductive pattern U()a can grow upward in the current 〇 114 to be in the second opening D An electrode contact 116 including a round object is formed in 114. The conductive pattern should be formed with a groove, and the lower electrode contact 116 may have a circular protrusion which is a circular groove corresponding to the conductive pattern 110a. In an exemplary embodiment, each of the conductive patterns 11a may include tungsten, and thus each of the lower electrode contacts u includes tungsten oxide. A spacer 118 is disposed on a sidewall of the second opening 114. The spacer 118 contacts the lower electrode contact 116. The width of the second opening 114 may be due to the spacer wall 118 72 201133757 WWW Λ.  ^ Λ ί is reduced by the formation. Each spacer 118 can comprise a nitride or an oxynitride. For example, each of the spacers 118 may comprise tantalum nitride or hafnium oxynitride. A phase change structure 12A is disposed on the lower electrode contact 116 to completely fill the second opening 114. Phase change structure 120 can comprise a chalcogenide. The upper surface of the phase change structure 120 filling the second opening 114 and the upper surface of the second insulating interlayer pattern 112 may be disposed on substantially the same plane. Therefore, the phase change structure 120 may not protrude above the second insulating interlayer pattern 112. Upper electrodes 122 are disposed on the respective phase change structures 120. Each of the upper electrodes 122 may comprise a metal nitride such as titanium nitride. The upper electrode 122 has a width that is substantially greater than the width of the phase change structure 12A. A third insulating interlayer pattern 124 is disposed on the second insulating layer pattern 112. The second insulating interlayer pattern 124 covers the upper electrode 122 and the phase change structure 120. A third opening is formed through the second insulating interlayer pattern 124. The third opening 126 partially exposes the upper electrode 122. Upper electrode contacts 128 are disposed in each of the third openings 126. Each of the upper electrode contacts 3A may comprise a metal, such as a crane. 48 through 51 are cross-sectional views showing a method of fabricating a phase change element in accordance with an exemplary embodiment of the present invention. The phase change memory element shown in Fig. 47 can have a configuration in which a first opening and a second opening are provided in a portion of the substrate on which the cell of the phase change memory element is formed. Referring to Fig. 48', a trench isolation process is performed around the substrate i00 to define the dirty and active regions of the isolation region of the substrate. Forming a 73 201133757f oxide layer on the substrate with the quarantine area and the active area. The oxide layer is partially engraved to form a first opening 1〇4 while the oxide layer is changed to the first insulating interlayer pattern 1〇2. The first opening 1〇4 may be formed at a portion of the substrate 100 where the unit cell is formed. A p·Ν diode 106 is formed in the first opening 104 of the first insulating interlayer pattern 102. Each of the Ρ-Ν diodes 1 〇 6 may comprise polycrystalline germanium and may have a vertical type. ~ During the formation of the erbium-tellurium diode 106, a polysilicon layer can be formed on the first opening 1 〇 4 and then the polysilicon layer can be locally etched. The polysilicon layer may be doped with impurities in-situ or out_situ. Thereby, the P-N diode 1〇6 is formed in the first opening 104. In an exemplary embodiment, when a P-type impurity can be implanted in the upper portion of the polysilicon layer of the first opening 104, an N-type impurity can be doped in the lower portion of the polysilicon layer of the first opening 1〇4. * A metal lithium pattern is formed on the body 106. The metal halide pattern 1〇8 can be formed by forming a metal layer on the P-N one body 106 and heat-treating the metal layer and the p_N diode 106. Thereby, the metal halide pattern 108 can be obtained according to the reaction between the metal in the metal layer and the germanium in the P_N diode 1?6. Each of the metal telluride patterns 1〇8 may include Shi Xihua, 5; Xixihua; 5 Xihua, Shi Xihua and the like.

在金屬石夕化物圖案108上形成初始導電圖案丨1〇。初 始導電圖案110可填滿第一開口 1〇4。各初始導電圖案HQ 可利用金屬开> 成。舉例而言,各初始導電圖案11〇可利用 鶴形成。 在形成初始導電圖案110之過程中,可在金屬矽化物 74 201133757 1 i 圖案108及第一絕緣夾層圖案102上形成金屬層,以填滿 第一開口 104,然後藉由CMP製程而局部地移除此金屬 層,直至暴露出第一絕緣夾層圖案1〇2。藉此,可在金屬 石夕化物圖案1〇8上形成初始導電圖案丨1〇。 參見圖49,在第一絕緣夾層圖案1〇2上形成包含氧化 物之第二絕緣夾層,以覆蓋初始導電圖案110。第二絕緣 爽層可利用氧化矽形成。 局部地蝕刻第二絕緣夾層,以形成局部地暴露出初始 導電圖案110之第二開口 114、同時使第二絕緣夾層變成 第二絕緣夹層圖案112。第二開口 114可藉由微影製程而 形成。在一示例性實施例中,第二開口 114所具有之寬度 可實質上小於初始導電圖案11G之寬度。藉此,第二開口 114可局部地暴露出初始導電圖案u〇。 露“見在包含減之氣氛中對第二開σ 114所暴 ,出^始導電圖案11G進行熱處理,以在初始導電圖宰 no一上形成下電極觸點116。下電極她ιΐ6可局部地填充 第—開口 114。 電極觸點116過程中,可使初始導電圖案ιι〇 $梢氧氣反應,藉此可在第二開口 ιΐ4中向上生長金 屬乳化物。因此,可由初始導電_ u 氧 極觸點,此處,物始導電圖案m = 電圖案110a。下電極觸點116所具有 =圖案,之電㈣初始時大; 電極觸點116包含氧化鎢。 75 201133757 JUWJ ipif 在對初始導電圖案lio進行熱處理之後,導電圖案 110a可具有包含圓形凹槽之上部,而下電極觸點ι16可具 有包含突起之下部’這些突起對應於導電圖案ll〇a之圓形 凹槽。導電圖案110a及下電極觸點116可藉由與參照圖 36所述者實質上相同或實質上相似之製程而獲得。 參見圖51’在第二開口 114之侧壁上形成間隙壁118。 在下電極觸點116上形成相變材料層,以完全填滿第二開 口 114。相變材料層可利用硫族化合物(例如鍺_錄_蹄之合 金)形成。 ° 局部地移除相變材料層,直至暴露出第二絕緣夾層圖 案112’以在第二開口 114中形成相變結構12〇。相變結構 120之上表面及第二絕緣夾層圖案112之上表面可位於實 質同一平面上。 如圖47所示,在相變結構12〇及第二絕緣夾層圖案 112上形成上電極層。將上電極層圖案化,以在相變結構 120上形成上電極122。 在第二絕緣夾層圖案112上形成第三絕緣夾層,以覆 蓋上電極122。局部地蝕刻第三絕緣夾層,以形成第三開 口 126’第三開口 126局部地暴露出上電極122。藉此將 第三絕緣夾層變成具有第三開口 126之第三絕緣夹層圖案 124。各第二開口 126可具有例如接觸孔之形狀。 在第三開口 126中沈積導電材料,以在第三開口 中之上電極122上形成上電極觸點128。各上電極觸點 可利用金屬形成。舉例而言,各上電極觸點128可利用鶴 76 201133757 形成。 圖52是繪示根據本發明之第二—實施例的相變記 憶體元件之剖面圖。除包括下電極觸點及相變結構的虛線 形狀之垂直堆疊結構以及第一絕緣夾層圖案外,圖52之相 變記憶體元件可具有與參照圖47所述之相變記憶體元件 實質上相同或實質上相似之組態。 參見圖52 ’包括下電極觸點U6及相變結構12〇之垂 直堆疊結構可具有矩形上表面,並可在基板1〇〇上重複地 排列成虛線(dashed)形狀。因此,可使用基板1〇〇之相 當小的面積提供大量垂直堆疊結構。 第一絕緣夹層圖案162可包圍下電極觸點ι16及相變 結構120。第一絕緣夾層圖案162可包含氮化物,例如氮 化石夕。 你不例性貫施例中,如圖52所示,在下電極觸點 116j及第二開口 16〇之側壁上可不提供任何間隙壁,乃 =中一上⑹可具有足夠小之寬度。在另-示例性實施 例中,則可在下電極繼116上 另外配置間隙壁。 ίου乙側坌上 圖53至圖58是繪不~種製造& - 4· & 件之方法的剖面圖。種製』52所不相變記憶體元 參見圖53,可藉由與來昭圖 製程,在基板100上择得复女、;f 斤速者實質上相同之 同或實質上相似之構造之鱗結構。彳核貝質上相 在初始導電圖案11()及 及第絕緣夾層圖案102上形成 77 201133757 xyil 第一 第一絕緣層可利用諸如氮化石夕之氮化物形成。 、局部地餘刻第-絕緣層,以形成第-溝渠15〇,第-,渠150暴露出初始導電圖案11〇。各第—溝渠15〇可沿 士咕方向H藉此’在第—絕緣絲®案1G2上形成具 有第一溝渠150之第一絕緣層圖案152。 在第一溝渠150中的初始導電圖案u〇上形成第二絕 ,層。第二絕緣層可利用相對於第一絕緣層圖案152具有 相對高之勤j選擇性之材料形成。舉例而言,第二絕緣層 可利用諸如氧化矽之氧化物形成。 局部地移除第二絕緣層,直至暴露出第一絕緣層圖案 52第一絕緣層可藉由製程及/或回姓製程而局部地 ^除。因此,在第-絕緣層随152之間形成第二絕緣層 案154。各第二絕緣層圖案154可沿實質上垂直於第一 方向之第二方向延伸。 在第一絕緣層圖案152及第二絕緣層圖案154上形成 罩幕圖案。罩幕圖案可沿實質上垂直於第—方向之第二方 向延伸。各罩幕圖案可具有狀雜。此彳,罩幕圖案可 在第一絕緣層圖案152及第二絕緣層圖案I%上規則地重 複。 藉由使用罩幕圖案作為蝕刻罩幕,局部地蝕刻第一絕 緣層圖案152及第二絕緣層圖案ι54,直至暴露出第一絕 緣爽層圖案102 °藉由局部地蝕刻第一絕緣層圖案ι52及 第二絕緣層圖案154,在第一絕緣夾層圖案102上形成第 〜溝渠156。此處’未暴露出初始導電圖案11〇。各第一絕 78 201133757 緣層圖案152及第二絕緣層圖案154可具有圓形或多邊形 柱形狀。 參見圖55 ’在第一絕緣層圖案152及第二絕緣層圖案 154上形成第三絕緣層。第三絕緣層可利用諸如氮化石夕之 氮化物形成。局部地移除第三絕緣層,直至暴露出第一絕 緣層圖案152及第二緝緣層圖案154,以在第三溝渠156 中形成第三絕緣層圖案158。 在形成弟二絕緣層圖案158之後’包含實質相同材料 之第一絕緣層圖案152與第三絕緣層圖案158可圍繞第二 絕緣層圖案154’第二絕緣層圖案154包含不同於第一絕 緣層圖案152與第三絕緣層圖案158之材料。 參見圖56,自第一絕緣夾層圖案1〇2選擇性地移除第 二絕緣層圖案154,以在第一絕緣層圖案152與第三、纟邑緣 層圖案158之間形成第二開口 160。第二開口 ι6〇局部地 暴露出初始導電圖案110。結果,在第一絕緣夾層圖案°1〇2 上提供第二絕緣夾層圖案162。第二絕緣夾層圖案/62包 括第一絕緣層圖案152、第三絕緣層圖案158及第二開= 160。各第二開口 160可具有接觸孔之形狀。此外, 口 160可同時沿第—方向與第二方向延伸。 一开1 製二圖;刻 中電漿對相鄰54為防止在乾柄刻製程 158編刻損壞 :茶:一邑緣層圖案 絕緣層圖案15 4。 1^由献侧1絲餘刻第二 79 201133757 X『例性實施例,第二開口⑽所具有之寬度可 貫上小於藉由微影製程所形成的傳統接觸孔之寬度。第 -&口 160可在平面上排列成虛線結構形式。 ’見圖57藉由氧化製程而局部地氧化初始導電圖案 110,以使由初始導電圖案11G所產生之金屬氧化物在第二 開口 160中向上生長。藉此,在第二開口 时形成下電 極觸點116。在氧化製程中,初始導電圖案11〇變成導電 圖案110a f·電圖案11〇a具有包含圓形凹槽之上部且 :電極繼116可具有包含突起之下部,這錢起對應於 導電圖案ll〇a之凹槽。導電圖案11〇及下電極觸點ιΐ6可 藉由與參照圖4〇所述者實質上相同或實質上相似 而獲得。 ,見圖58,在下電極觸點116上形成相變材料層,以 填滿第二開口 160,接著局部地移除相變材料層,直至 露出第二絕緣夹層圖案162。藉此,在下電極觸點116上 形成填充第二開口 160之相變結構12〇。 在一示例性實施例中,第二開口 16〇可具有相對小之 寬度,故在第二開口 160之側壁上可不形成任何間隙壁。 然而,可在第二開口 160之側壁上另外提供間隙壁, 整第二開口 16〇之寬度。 # 參見圖53,在相變結構120上形成上電極122。在 二絕緣夾層圖案162上形成具有第三開口之第三絕緣爽屛 圖案124,以覆蓋上電極122。接著,在第三開口中在上^ 極122上形成上電極觸點丨28。藉此,可製成具有高積體 201133757 -----Γ~ 度之相變記憶體元件。 示例性實施例的相變記 圖59是繪示根據本發明之— 憶體元件之剖面圖。 參見圖59,在基板190上提供第一絕緣炎層192及 :極體194。在第一絕緣失層192上形成第二絕緣夾 層圖案202。第二絕緣炎層圖案地包括第―開口綱第 H 204暴露出P_N二極體194。第二絕緣夹層圖案搬 可包含諸如氮切之氮化物或如氧切之氧化物。 在P-N 一極體194上配置第一下電極觸點2〇6&,以局 部地填充第-開口綱。第-下電極觸點脈可包含金 屬。第二下電極觸點208a位於第一下電極觸點2〇6a上, 以完全填滿第mG4。第二下電極觸點綱a可包含由 第-下電極觸點206a中之金屬產生之金屬氧化物。在一示 例性實施财,第-下電極觸點施a及第二下電極觸點 208a可分別包含鎢及氧化鎢。 在第一下電極觸點208a及第二絕緣夾層圖案2〇2上形 成相變結構210。在相變結構2〇2上配置上電極212。上電 極212可包含例如金屬氮化物。 在第-絕緣夾層圖案202上配置第三絕緣炎層圖案 214 ’第二絕緣夾層圖案214覆蓋上電極212。穿過第三絕 緣夾層圖案214提供第二開σ。第二開口至少局部地暴露 出上電極212。在第二開口中之上電極212上配置上電極 觸點216。 根據示例性實施例,相變記憶體元件可具有改良之運 201133757 Γ性’乃因接觸相變結構之第二下電極難具有大的電 阻。 插ί 6二7 62是繪示根據本發明之-示例性實施例的 -種製造相變記㈣元件之方法的剖面圖。 PN H60 ’在基板190上形成第一絕緣夾層192及 Γρ-; 192^190^ 类声二在第—絕緣夹層192上形成第二絕緣 Ϊ!屉移除第二絕緣夾層。藉此,在第-絕 2〇ΐ。第Η ^包含第—開°2。4之第二絕緣炎層圖案 2〇2。第一開一口 204暴露出ρ_Ν二極體μ。 -公ί ΓΝ二極體194及第二絕緣夾層圖案2G2上形成第 用鎢來成’二::地填充第一開口 204。第一金屬層可利 用由移除第—金屬層而在第一開 06。初始下電極觸點206所具有之上ί 下電極第—開口204之上端。另一選擇為,初始 3 表面與第-開口 204之上端可位於實 -iiH 氧氣之氣氛中對初始下電極觸點 -下雷^« 以在第一下電極觸點2〇6a上形成初始第 -電極觸點2G8、同時使初始下電極娜2()6變成 = :ΓΓ初始第二下電極觸點包含由初始下 電觸中之金屬所產生之金屬氧化物。 儿二i不例性實施例中,由於將初始下電極觸點施氧 ’成初始第二下電極觸點通,第-下電極觸點2〇6a 82 201133757 V V W Λ 所具有之上表面可實質上低於第一開口 2〇4之上端。由於 圍繞初始下電極觸點206執行氧化製程,初始第二下電極 觸點208可突出於第一開口 2〇8之上。亦即,初始下電極 觸點206所具有之上表面實質上相同於或實質上低於第〆 開口 204之上端,故可藉由自初始下電極觸點2〇6等向性 地生長金屬氧化物而使初始第二下電極觸點2〇8自第一開 口 204突出。 參見圖62,局部地移除初始第二下電極觸點2〇8,直 至暴4出第一絕緣夾層圖案202 ’以在第一下電極觸點 206a上形成填充第一開口 204之第二下電極觸點2〇8a。 參見圖59,在第二絕緣夾層圖案2〇2上形成相變材料 層及上電極層,以覆蓋第二下電極觸點208a。將相變材料 層及上電極層圖案化,以在第二下電極觸點2〇8&及第二絕 緣夾層圖案202上形成相變結構21〇及上電極212。 在第二絕緣夾層圖案202上形成具有第二開口之第三 絕緣夾層圖案214’以覆蓋上電極212。第二開口局部地暴 路出上電極212。在上電極212上形成上電極觸點216,以 填滿第二開口。 圖63是繚示根據本發明之示例性實施例的寬頻通訊 系統之示意圖,此寬頻通訊系統包括能夠進行寬頻通訊之 行動電信電話網路。 參見圖63,寬頻通訊系統250包括感測器模組252、 王球定位系統(global positioning system,GPS ) 254 及行 動電信電話256。寬頻通訊系統250可與資料伺服器258 83 201133757 juuoiinf 及網路基地台(networkbase) 260進行通訊。由於行動電 信電話250可自/向資料伺服器258及網路基地台26〇接收 /傳送大量資料,故行動電信電話256可能需要快的通訊速 度及高的資料可靠性。 根據示例性實施例,行動電信電話256可包括電阻式 記憶體兀件至少其中之一。電阻式記憶體元件可包括上述 磁性記憶體元件及/或相變記憶體元件。因根據示例性實施 例之電阻式记憶體元件可確保具有低之驅動電流、快速之 響應速度及高的資料可靠性,故在行動電信電話 256中可 採用這些電阻式記憶體元件。 根據示例性實施例之電阻式記憶體元件可用於各種電 性裝置及電子|置巾,例如祕通財賴流排㈤職ai serial bus,USB)記憶體、Mp3播放器、數位照相機或記 憶卡中。 對接觸結構之電阻的評估 構之電阻 由於下電極觸點具有高的電阻,故根據本發明示例个 實施例之電喊記㈣元件可雜具有高的焦耳加熱交 率°製造了町樣本及對照樣本,以比較其下電極觸點與 樣本1至樣本8 圖64是緣示根據樣本!至樣本8之接觸結構的剖面 參見圖64 ’在基板300上形成具有開口之絕緣夾層圖 案302。在開口中形成接觸插塞雇。接觸插塞则具有鶴 84 201133757 圖案304及形成於鎢圖案3〇4上之氧化鎢圖案3〇8。氧化 鎢圖案308是藉由以RTA製程處理鎢圖案3〇4而獲得。 樣本1至樣本8之接觸插塞308具有不同之直徑❹下 表1顯不根據樣本1至樣本8之接觸插塞3〇8之直徑。樣 本1至樣本8之接觸插塞3〇8具有與電阻式記憶體元件之 上述導電結構實質上相同之構造。 對照樣本11至對照樣本18 圖65是繪示根據對照樣本11至對照樣本18之接觸結 構的剖面圖。 參見圖65,在基板300上形成具有開口之絕緣夾層圖 案302。在開口中形成接觸插塞犯。接觸插塞308具有鎮 圖案304及形成於鶴圖# 3〇4上之氮化嫣圖案31〇。 ,照樣本11至對照樣本18之接觸插塞312具有不同 之直徑。下表1顯示根據對照樣本u至對照樣本18之 觸插塞312之直徑。 β 對照樣本21至對照樣本28 圖66是繪示根據對照樣本21至對照樣本28 構的剖面圖。 如圖66所示,在基板3〇〇上形成具有開口之絕緣爽芦 2圖中形成包含鶴之接觸插塞314。對照實^ 2i至對照貫例28之接觸織314具有不同之直徑。下表ι 顯不根據對照樣本2丨至對照樣本28之接觸插塞31 徑。 星 表1 85 201133757 JVIUJ ipif 直徑 130奈米 樣本1 對照樣本11 140奈米 樣本2 對照樣本12 對照樣本2? 150奈米 樣本3 對照樣本13 對照 160奈米 170奈米 樣本4 對照樣本14 對照樣本24 樣本5 對照樣本15 對照 180奈米 — ... J90奈米 _樣本6 對照樣本16 對照樣 樣本7 對照樣本17 對照樣 200奈米 樣本8 對照樣本18 對照樣 — 圖67是顯示根據樣本及對照樣本之接觸結構之電阻 的曲線圖。在圖67中’線320表示根據樣本丨至樣本8 之接觸結構之電阻’線322表示根據對照樣本U至對照樣 本Μ之接觸結構之電阻,線324表示根據對照樣本21、至 對照樣本28之接觸結構之電阻。 如圖67所示,在量測根據樣本及對照樣本的具有相 =徑的接觸結構之電喊,根據樣本丨至樣本8触觸 有之電阻大於根據對照樣本11至對照樣本19及 ί伽Γ至對照樣本28的接觸結構之電阻。舉例而言An initial conductive pattern 丨1〇 is formed on the metal lithium pattern 108. The initial conductive pattern 110 may fill the first opening 1〇4. Each of the initial conductive patterns HQ can be formed by metal opening. For example, each of the initial conductive patterns 11 can be formed using a crane. In the process of forming the initial conductive pattern 110, a metal layer may be formed on the metal germanide 74 201133757 1 i pattern 108 and the first insulating interlayer pattern 102 to fill the first opening 104 and then locally moved by the CMP process. Except this metal layer until the first insulating interlayer pattern 1〇2 is exposed. Thereby, the initial conductive pattern 丨1〇 can be formed on the metal lithium pattern 1〇8. Referring to Fig. 49, a second insulating interlayer containing an oxide is formed on the first insulating interlayer pattern 1〇2 to cover the initial conductive pattern 110. The second insulating layer can be formed using yttrium oxide. The second insulating interlayer is locally etched to form a second opening 114 that partially exposes the initial conductive pattern 110 while the second insulating interlayer is changed to the second insulating interlayer pattern 112. The second opening 114 can be formed by a lithography process. In an exemplary embodiment, the second opening 114 has a width that is substantially smaller than the width of the initial conductive pattern 11G. Thereby, the second opening 114 can partially expose the initial conductive pattern u〇. Dew "see the heat treatment of the second opening σ 114 in the atmosphere containing the reduction, and the heat conduction pattern 11G is heat-treated to form the lower electrode contact 116 on the initial conductive pattern no. The lower electrode ιΐ6 can be locally Filling the first opening 114. During the electrode contact 116, the initial conductive pattern can be reacted with oxygen, whereby the metal emulsion can be grown upward in the second opening ι4. Therefore, the initial conductive _ u oxygen can be touched Point, here, the material initial conductive pattern m = electrical pattern 110a. The lower electrode contact 116 has a pattern, the electric (four) is initially large; the electrode contact 116 contains tungsten oxide. 75 201133757 JUWJ ipif in the initial conductive pattern lio After the heat treatment, the conductive pattern 110a may have an upper portion including a circular groove, and the lower electrode contact ι 16 may have a circular groove including a lower portion of the protrusion corresponding to the conductive pattern 11a. The conductive pattern 110a and the lower portion The electrode contact 116 can be obtained by a process substantially the same as or substantially similar to that described with reference to Figure 36. Referring to Figure 51', a spacer 118 is formed on the sidewall of the second opening 114. A phase change material layer is formed over 116 to completely fill the second opening 114. The phase change material layer can be formed using a chalcogenide compound (e.g., an alloy of 蹄_录_蹄). Partially remove the phase change material layer until exposed The second insulating interlayer pattern 112' is formed to form a phase change structure 12 in the second opening 114. The upper surface of the phase change structure 120 and the upper surface of the second insulating interlayer pattern 112 may be located on substantially the same plane. An upper electrode layer is formed on the phase change structure 12A and the second insulating interlayer pattern 112. The upper electrode layer is patterned to form the upper electrode 122 on the phase change structure 120. The second insulating interlayer pattern 112 is formed on the second insulating interlayer pattern 112. Three insulating interlayers are provided to cover the upper electrode 122. The third insulating interlayer is locally etched to form a third opening 126'. The third opening 126 partially exposes the upper electrode 122. Thereby the third insulating interlayer is changed to have a third opening 126. a third insulating interlayer pattern 124. Each of the second openings 126 may have a shape such as a contact hole. A conductive material is deposited in the third opening 126 to form an upper electrode contact on the upper electrode 122 in the third opening 128. Each of the upper electrode contacts may be formed of a metal. For example, each of the upper electrode contacts 128 may be formed using a crane 76 201133757. Figure 52 is a diagram showing a phase change memory element according to a second embodiment of the present invention. The phase change memory element of FIG. 52 may have a phase change memory element as described with reference to FIG. 47, except for the vertical stack structure including the lower electrode contact and the dotted structure of the phase change structure and the first insulating interlayer pattern. A configuration that is substantially the same or substantially similar. Referring to Figure 52, a vertical stack structure including a lower electrode contact U6 and a phase change structure 12A may have a rectangular upper surface and may be repeatedly arranged in a dashed line on the substrate 1〇〇 (dashed) shape. Therefore, a relatively large area of the substrate 1 提供 can be used to provide a large number of vertical stacked structures. The first insulating interlayer pattern 162 may surround the lower electrode contact ι16 and the phase change structure 120. The first insulating interlayer pattern 162 may comprise a nitride such as nitrogen hydride. In an exemplary embodiment, as shown in Fig. 52, no spacers may be provided on the sidewalls of the lower electrode contact 116j and the second opening 16, and the upper (6) may have a sufficiently small width. In a further exemplary embodiment, a spacer may be additionally disposed on the lower electrode 116. ί υ υ 图 图 图 图 图 图 图 图 图 图 图 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The "non-phase-change memory element" of the "52" system is shown in Fig. 53, and the same or substantially similar structure can be selected on the substrate 100 by the process of the plan. Scale structure. The top layer of the nucleus is formed on the initial conductive pattern 11 () and the insulating interlayer pattern 102. 201133757 xyil The first first insulating layer may be formed using a nitride such as nitride. The first insulating layer is partially engraved to form a first trench 15 , and the first drain 150 exposes the initial conductive pattern 11 . Each of the first trenches 15 can form a first insulating layer pattern 152 having the first trench 150 on the first insulating wire® 1G2 in the girth direction H. A second insulating layer is formed on the initial conductive pattern u〇 in the first trench 150. The second insulating layer may be formed using a material having a relatively high selectivity with respect to the first insulating layer pattern 152. For example, the second insulating layer can be formed using an oxide such as yttrium oxide. The second insulating layer is partially removed until the first insulating layer pattern is exposed. 52 The first insulating layer can be partially removed by a process and/or a last-pass process. Therefore, a second insulating layer 154 is formed between the first insulating layer and 152. Each of the second insulating layer patterns 154 may extend in a second direction substantially perpendicular to the first direction. A mask pattern is formed on the first insulating layer pattern 152 and the second insulating layer pattern 154. The mask pattern may extend in a second direction that is substantially perpendicular to the first direction. Each mask pattern may have a shape. Thereafter, the mask pattern can be regularly repeated on the first insulating layer pattern 152 and the second insulating layer pattern I%. The first insulating layer pattern 152 and the second insulating layer pattern ι54 are partially etched by using the mask pattern as an etch mask until the first insulating layer pattern 102 is exposed by locally etching the first insulating layer pattern ι52 And the second insulating layer pattern 154 forms a first trench 156 on the first insulating interlayer pattern 102. Here, the initial conductive pattern 11〇 is not exposed. Each of the first and second solar layers 152 and the second insulating layer pattern 154 may have a circular or polygonal column shape. Referring to Fig. 55', a third insulating layer is formed on the first insulating layer pattern 152 and the second insulating layer pattern 154. The third insulating layer may be formed using a nitride such as nitride nitride. The third insulating layer is partially removed until the first insulating layer pattern 152 and the second insulating layer pattern 154 are exposed to form a third insulating layer pattern 158 in the third trench 156. After forming the second insulating layer pattern 158, the first insulating layer pattern 152 and the third insulating layer pattern 158 including substantially the same material may surround the second insulating layer pattern 154'. The second insulating layer pattern 154 includes a different insulating layer than the first insulating layer. The material of the pattern 152 and the third insulating layer pattern 158. Referring to FIG. 56, the second insulating layer pattern 154 is selectively removed from the first insulating interlayer pattern 1 〇 2 to form a second opening 160 between the first insulating layer pattern 152 and the third, rim layer pattern 158. . The second opening ι6 〇 partially exposes the initial conductive pattern 110. As a result, the second insulating interlayer pattern 162 is provided on the first insulating interlayer pattern °1〇2. The second insulating interlayer pattern /62 includes a first insulating layer pattern 152, a third insulating layer pattern 158, and a second opening = 160. Each of the second openings 160 may have the shape of a contact hole. Further, the port 160 can extend in the first direction and the second direction at the same time. One open 1 system two diagrams; engraved plasma pair adjacent 54 to prevent damage in the dry handle engraving process 158: tea: a rim pattern of insulation layer pattern 15 4 . 1^ From the side of the wire, the second is the second. 79 201133757 X "In the exemplary embodiment, the second opening (10) has a width which is substantially smaller than the width of the conventional contact hole formed by the lithography process. The first & port 160 may be arranged in a dashed line on a plane. Referring to Fig. 57, the initial conductive pattern 110 is locally oxidized by an oxidation process so that the metal oxide generated by the initial conductive pattern 11G is grown upward in the second opening 160. Thereby, the lower electrode contact 116 is formed at the second opening. In the oxidation process, the initial conductive pattern 11 turns into the conductive pattern 110a. The electrical pattern 11A has an upper portion including the circular groove and the electrode 116 may have a lower portion including the protrusion, which corresponds to the conductive pattern 〇 a groove. The conductive pattern 11A and the lower electrode contact layer 6 can be obtained by substantially the same or substantially similar to those described with reference to Fig. 4A. Referring to Fig. 58, a phase change material layer is formed on the lower electrode contact 116 to fill the second opening 160, and then the phase change material layer is partially removed until the second insulating interlayer pattern 162 is exposed. Thereby, a phase change structure 12A filling the second opening 160 is formed on the lower electrode contact 116. In an exemplary embodiment, the second opening 16'' may have a relatively small width so that no spacers may be formed on the sidewalls of the second opening 160. However, a spacer may be additionally provided on the side wall of the second opening 160 to extend the width of the second opening 16''. # Referring to FIG. 53, an upper electrode 122 is formed on the phase change structure 120. A third insulating refreshing pattern 124 having a third opening is formed on the second insulating interlayer pattern 162 to cover the upper electrode 122. Next, an upper electrode contact port 28 is formed on the upper electrode 122 in the third opening. Thereby, a phase change memory component having a high integrated body 201133757 -----Γ can be produced. Phase Change of Exemplary Embodiment FIG. 59 is a cross-sectional view showing a memory element in accordance with the present invention. Referring to FIG. 59, a first insulating layer 192 and a pole body 194 are provided on the substrate 190. A second insulating interlayer pattern 202 is formed on the first insulating loss layer 192. The second insulating inflammatory layer pattern includes a first opening H 204 to expose the P_N diode 194. The second insulating interlayer pattern may comprise a nitride such as a nitrogen cut or an oxide such as an oxygen cut. The first lower electrode contact 2〇6& is disposed on the P-N one body 194 to partially fill the first opening. The first-lower electrode contact vein may contain metal. The second lower electrode contact 208a is located on the first lower electrode contact 2〇6a to completely fill the mG4. The second lower electrode contact class a may include a metal oxide produced by the metal in the first-lower electrode contact 206a. In an exemplary implementation, the first-lower electrode contact a and the second lower electrode contact 208a may comprise tungsten and tungsten oxide, respectively. A phase change structure 210 is formed on the first lower electrode contact 208a and the second insulating interlayer pattern 2'2. The upper electrode 212 is disposed on the phase change structure 2〇2. The upper electrode 212 can comprise, for example, a metal nitride. A third insulating layer pattern 214' is disposed on the first insulating interlayer pattern 202. The second insulating interlayer pattern 214 covers the upper electrode 212. A second opening σ is provided through the third insulating interlayer pattern 214. The second opening at least partially exposes the upper electrode 212. An upper electrode contact 216 is disposed on the upper electrode 212 in the second opening. According to an exemplary embodiment, the phase change memory element may have an improved operation because the second lower electrode contacting the phase change structure is difficult to have a large resistance. Insertion ί 6 2 7 62 is a cross-sectional view showing a method of manufacturing a phase change (four) element according to an exemplary embodiment of the present invention. The PN H60' forms a first insulating interlayer 192 and Γρ- on the substrate 190; 192^190^ The second type of sound is formed on the first insulating interlayer 192 to remove the second insulating interlayer. In this way, in the first - absolutely. Dimensional ^ contains the second insulating layer pattern 2第2 of the first-opening. The first opening 204 exposes the ρ_Ν diode μ. The first tungsten 204 is formed on the common ΓΝ ΓΝ diode 194 and the second insulating interlayer pattern 2G2 to fill the first opening 204. The first metal layer can be utilized at the first opening by removing the first metal layer. The initial lower electrode contact 206 has an upper end of the lower electrode first opening 204. Alternatively, the initial 3 surface and the upper end of the first opening 204 may be located in a real-iiH oxygen atmosphere to the initial lower electrode contact-lower to form an initial stage on the first lower electrode contact 2〇6a. - Electrode contact 2G8, while making the initial lower electrode Na 2 () 6 become = : ΓΓ Initially the second lower electrode contact contains the metal oxide produced by the metal in the initial electrical contact. In the second embodiment, since the initial lower electrode contact is oxygenated as the initial second lower electrode contact, the first-lower electrode contact 2〇6a 82 201133757 VVW Λ has the upper surface substantially The upper end is lower than the upper end of the first opening 2〇4. Since the oxidation process is performed around the initial lower electrode contact 206, the initial second lower electrode contact 208 may protrude above the first opening 2〇8. That is, the initial lower electrode contact 206 has an upper surface substantially the same as or substantially lower than the upper end of the second opening 204, so that the metal oxide can be grown isotropically from the initial lower electrode contact 2〇6. The initial second lower electrode contact 2A8 protrudes from the first opening 204. Referring to FIG. 62, the initial second lower electrode contact 2〇8 is partially removed until the first insulating interlayer pattern 202' is discharged to form a second underfill first opening 204 on the first lower electrode contact 206a. Electrode contact 2〇8a. Referring to Fig. 59, a phase change material layer and an upper electrode layer are formed on the second insulating interlayer pattern 2'' to cover the second lower electrode contact 208a. The phase change material layer and the upper electrode layer are patterned to form a phase change structure 21 and an upper electrode 212 on the second lower electrode contact 2'8' and the second insulating interlayer pattern 202. A third insulating interlayer pattern 214' having a second opening is formed on the second insulating interlayer pattern 202 to cover the upper electrode 212. The second opening locally violently exits the upper electrode 212. An upper electrode contact 216 is formed on the upper electrode 212 to fill the second opening. Figure 63 is a diagram showing a broadband communication system including a mobile telecommunications telephone network capable of broadband communication, in accordance with an exemplary embodiment of the present invention. Referring to Figure 63, the broadband communication system 250 includes a sensor module 252, a global positioning system (GPS) 254, and an active telecommunications telephone 256. The broadband communication system 250 can communicate with the data server 258 83 201133757 juuoiinf and the network base 260. Since the mobile telecommunications telephone 250 can receive/transmit large amounts of data from/to the data server 258 and the network base station 26, the mobile telecommunications telephone 256 may require fast communication speed and high data reliability. According to an exemplary embodiment, mobile telecommunications phone 256 may include at least one of a resistive memory device. The resistive memory element can include the above described magnetic memory element and/or phase change memory element. These resistive memory elements can be employed in the mobile telecommunications phone 256 because the resistive memory elements in accordance with the exemplary embodiments ensure low drive current, fast response speed, and high data reliability. The resistive memory element according to an exemplary embodiment can be used for various electrical devices and electronic devices; for example, the secret communication line (5) service ai serial bus, USB) memory, Mp3 player, digital camera or memory card in. Evaluation of the Resistance of the Contact Structure Due to the high resistance of the lower electrode contact, the electric (4) component according to an exemplary embodiment of the present invention can have a high Joule heating rate. Sample to compare its lower electrode contacts with sample 1 to sample 8 Figure 64 is based on the sample! Cross section of the contact structure to the sample 8 Referring to Fig. 64', an insulating interlayer pattern 302 having an opening is formed on the substrate 300. A contact plug is formed in the opening. The contact plug has a pattern of a sunburst 84 201133757 and a tungsten oxide pattern 3〇8 formed on the tungsten pattern 3〇4. The tungsten oxide pattern 308 is obtained by processing the tungsten pattern 3〇4 in an RTA process. The contact plugs 308 of Samples 1 through 8 have different diameters. Table 1 shows the diameter of the contact plugs 3〇8 according to Samples 1 through 8. The contact plugs 3A8 of the samples 1 to 8 have substantially the same configuration as the above-described conductive structure of the resistive memory element. Control Sample 11 to Control Sample 18 Figure 65 is a cross-sectional view showing the contact structure from the control sample 11 to the control sample 18. Referring to Fig. 65, an insulating interlayer pattern 302 having an opening is formed on the substrate 300. A contact plug is formed in the opening. The contact plug 308 has a town pattern 304 and a tantalum nitride pattern 31〇 formed on the crane figure #3〇4. The contact plugs 312 of the sample 11 to the control sample 18 have different diameters. Table 1 below shows the diameter of the contact plug 312 from the control sample u to the control sample 18. β Control Sample 21 to Control Sample 28 FIG. 66 is a cross-sectional view showing the configuration from the control sample 21 to the control sample 28. As shown in Fig. 66, an insulating stalk having an opening is formed on the substrate 3, and a contact plug 314 including a crane is formed in the drawing. The contact woven 314 of Comparative Example 2 to Comparative Example 28 has a different diameter. Table ι shows the contact plug 31 diameter from the control sample 2丨 to the control sample 28. Star Table 1 85 201133757 JVIUJ ipif Diameter 130 nm sample 1 Control sample 11 140 nm sample 2 Control sample 12 Control sample 2? 150 nm sample 3 Control sample 13 Control 160 nm 170 nm sample 4 Control sample 14 Control sample 24 Sample 5 Control sample 15 Control 180 nm - ... J90 nm _ sample 6 Control sample 16 Control sample 7 Control sample 17 Control sample 200 nm sample 8 Control sample 18 Control sample - Figure 67 shows the sample and A graph of the resistance of the contact structure of the control sample. In Fig. 67, 'line 320 represents the resistance of the contact structure according to sample 丨 to sample 8' line 322 represents the resistance of the contact structure according to the control sample U to the control sample ,, and line 324 represents the control sample 21 to the control sample 28 Contact the resistance of the structure. As shown in FIG. 67, in measuring the electric shout with the phase-diameter contact structure according to the sample and the control sample, the resistance according to the sample 丨 to the sample 8 is greater than the control sample 11 to the control sample 19 and ί Γ The resistance of the contact structure to the control sample 28. For example

f 1的直徑為13G奈米之接觸結構具有約為W 較大t電阻,而根據對照樣本11及對照樣; 的餘為⑽奈米之接觸結構則分別具則歐如 1310歐姆之電阻。 如上文所述’本發明之電阻式記憶體元件之接觸結構 86 201133757 w W Λ ^λΙ. 包括鎢圖案及氧化鎢圖案,故接觸結構可具有提高之電 阻。由於接觸結構會提高電阻式記憶體元件之焦耳加熱效 率,故這些電阻式記憶體元件可確保具有增強之特性。 對電阻式記憶體元件之電性特性之評估 樣本9 藉由參照圖45及圖46所述之製程來製成相變記憶體 元件。樣本9之相變記憶體元件具有與參照圖39所述者實 質上相同之垂直組態。根據樣本9之相變記憶體元件之導 電圖案疋使用卿成。藉由以RTA製程對導電圖案進行熱 處理’在第—開口中之導電圖案上形成下電極觸點。下電 極觸點包含氧化鎢。_氮化鈦形成上電極,並利用嫣形 成上電極觸點。 對照實例9 為比較根據樣本9之相變記憶體元件之特性,製成另 一相變記憶體元件。 圖68是繪示根據對照樣本9的相變記憶體元件之剖面 參見圖68,對照實例9之相變記憶體元件包括導電圖 案12a、相變結構52a、上電極24及上電極觸點3〇。此相 變括第1緣夾層圖s 14及第二絕緣爽 層圖案26。在對照實例9之相變記憶體元件中,相變結構 52a配置於導電圖案12a上而無下電極觸點。因此,導電 圖^以用作下電極。對照實例9之相變記憶體元件包括 間隙壁50a,間陴厝® 象坌5〇a配置於形成有相變結構52a的開 87 201133757 JUUJipif 口之側壁上。 根據樣本9及對照樣本9,製成多個相變記憶體元件。 量測這些相變記憶體元件在設定狀態與重設狀態中之電 阻’且亦量測這些相變記憶體元件在重設狀態中之電流。 下表2顯示這些相變記憶體元件之設定電阻、重設電阻及 重設電流。 表2 設定電阻 (Rset) 重設電阻 C Preset) 重設電流(Ireset) 樣本9 1.63千歐姆 〜53.8千歐姆 2.14百萬歐姆 〜6.35百萬歐姆 180 (敌安〜 72微安 對照 樣本9 17千歐姆 〜151千歐姆 1.13百萬歐姆 〜2.27百萬歐姆 166微安〜 188微安 如表2所示,樣本9之相變記憶體元件所具有之設定 電阻小於根據對照實例9之相變記憶體元件之設定電阻, 且樣本9之相變記憶體元件所具有之電阻分佈亦低於根據 對照樣本9之相變記憶體元件之電阻分佈。樣本9之相變 記憶體元件所具有之重設電阻大於根據對照實爿9之相變 記憶體元件之重設電阻。在根據對照實例9之相變記憶體 疋件中,相變結構在開σ中具有相當大之深度,故在相變 結構中會頻繁產生空隙或縫’進而造成相變記憶體元件之 運作故障並使相變記憶體元件之電性特性劣化。 根據本發明之相變記憶體元件可具有低之電阻分佈, 88 201133757, 且在設^狀態與重設狀態之間亦具有大的電阻差異,以輕 易地辨識所儲存資料。因此,本發明之相變記憶體元件可 確保具有所期望之運作特性。 根據本發明,可藉由簡化之製程而輕易地製造包含導 電結構之電阻式記憶體元件,且此導電結構可確保具有優 異之加熱效率。因此,本發明元件之電阻式記憶體可用作 需要具有高積體度及高效能之記憶體元件。 .儘官上文已參照附圖闡述了本發明之示例性實施例, 然而應理解,本發明不應僅限於此等實施例,且熟習此項 技術者在不脫離本發明之範圍及精神之條件下亦可對其作 出各種其他改動及修飾。所有此等改動及修飾皆欲包含於 由隨附申請專利範圍所界定之本發明範圍内。 、 【圖式簡單說明】 結合附圖閱讀上文說明,可更詳盡地理解本發明之示 例性實施例,附圖中: 、 圖1是繪示根據本發明之一示例性實施例的導電結 之剖面圖。 圖2是繪示圖1之導電結構之立體圖。 圖3至圖5是繪示一種形成圖i所示導電結構之 的剖面圖。 表 圖6是繪示根據本發明之一示例性實施例的磁性記. 體元件之剖面圖。 〜 圖7至圖10是繪示一種製造圖6所示磁性記憶體元件 之方法的剖面圖。 89 2011337¾ 圖11是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖12是繪示一種製造圖11所示相變記憶體元件之方 法的剖面圖。 圖13是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖14是繪示一種製造圖13所示相變記憶體元件之方 法的剖面圖。 圖15是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖16是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 圖17是繪示一種形成圖16所示導電結構之方法的剖 面圖。 圖18是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 圖19是繪示圖18之導電結構之立體圖。 圖20是繪示圖18之導電結構之平面圖。 圖21及圖22是繪示一種形成圖18所示導電結構之方 法的剖面圖。 圖23是繪示根據本發明之一示例性實施例的磁性記 憶體元件之剖面圖。 圖24及圖25是繪示一種製造圖23所示磁性記憶體元 件之方法的剖面圖。 201133757 圖26是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖27是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 圖28是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 圖29是繪示一種形成圖28所示導電結構之方法的剖 面圖。 圖30是繪示根據本發明之一示例性實施例的一種製 造圖28所示導電結構之方法的剖面圖。 圖31是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖32是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 圖33是繪示一種製造圖32所示導電結構之方法的剖 面圖。 圖34是繪示根據本發明之一示例性實施例的磁性記 憶體元件之剖面圖。 圖35是繪示根據本發明之一示例性實施例的磁性記 憶體元件之剖面圖。 圖36是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖37是繪示根據本發明之一示例性實施例的導電結 構之剖面圖。 91 201133757 圖38是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖39至圖44是繪示一種製造圖38所示相變記憶體元 件之方法的剖面圖。 圖45是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖46是繪示一種製造圖45所示相變記憶體元件之方 法的剖面圖。 圖47是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖48至圖51是繪示一種製造圖47所示相變記憶體元 件之方法的剖面圖。 圖52是繪示根據本發明之一示例性實施例的相變記 憶體元件之立體圖。 圖53至圖58是繪示一種製造圖52所示相變記憶體元 件之方法的剖面圖。 圖59是繪示根據本發明之一示例性實施例的相變記 憶體元件之剖面圖。 圖60至圖62是繪示一種製造圖59所示相變記憶體元 件之方法的剖面圖。 圖63是繪示根據本發明之一示例性實施例的通訊系 統之示意圖,此通訊系統包括能夠進行寬頻通訊之行動電 話網路。 圖64是繪示根據樣本1至樣本8之接觸結構的剖面 92 201133757 圖。 圖65是繪示根據對照樣本11至對照樣本18之接觸結 構的剖面圖。 圖66是繪示根據對照樣本21至對照樣本28之接觸結 構的剖面圖。 圖67是顯示根據樣本及對照樣本之接觸結構之電阻 的曲線圖。 圖6 8是繪示根據對照樣本9的相變記憶體元件之剖面 圖。 【主要元件符號說明】 8 :基板 10 :第一絕緣夾層 11 : P-N 二極體 12a :導電圖案 14 :第二絕緣夾層圖案 16 :第一開口 18 :下電極觸點 20 :間隙壁 22 :相變材料層 22a :相變結構 24 :上電極 26 :第三絕緣夾層圖案 28 :第二開口 30 :上電極觸點 93 201133757f \»\j^ i 50 : 基板 50a :間隙壁 52 : 絕緣夾層 54 開口 56 阻障金屬層 56a :阻障金屬層圖案 58 金屬層 58a :初始金屬圖案 58b :金屬圖案 59 金屬層 59a :金屬圖案 60 金屬氧化物圖案 62 間隙壁 64 基板 66 絕緣夾層 68 開口 70 阻障金屬層 70a :阻障金屬層圖案 72 :金屬層 72a :金屬圖案 72b :金屬圖案 74 :埋入層 74a :埋入層圖案 76 :金屬氧化物圖案 94 201133757τ ----- 80 : 間隙壁 82 : 金屬圖案 84 : 埋入層圖案 86 : 金屬氧化物圖案 90 : 基板 92 : 金屬圖案 92a :金屬圖案 94 : 絕緣爽層 96 : 開口 98 : 金屬氧化物圖案 98a :金屬氧化物圖案 100 :基板 100a :隔離區 102 :第一絕緣夾層圖 案 104 :第一開口 106 :P-N二極體 108 :金屬矽化物圖案 110 :初始導電圖案 110a :導電圖案 112 :第二絕緣夾層圖 案 114 :第二開口 116 :下電極觸點 118 :間隙壁 120 :相變結構 95 201133757 122 :上電極 124 :第三絕緣夾層圖案 126 :第三開口 128 :上電極觸點 150 :第一溝渠 152 :第一絕緣層圖案 154 :第二絕緣層圖案 156 :第三溝渠 158 :第三絕緣層圖案 160 :第二開口 162 :第一絕緣夾層圖案 190 :基板 192 :第一絕緣夾層 194 : P-N 二極體 202 :第二絕緣夾層圖案 2〇4 :第一開口 206 :下電極觸點 206a :第一下電極觸點 208 :第二下電極觸點 208a :第二下電極觸點 210 :相變結構 212 :上電極 214 :第三絕緣夾層圖案 216 :上電極觸點 96 201133757 250 :寬頻通訊系統 252 :感測器模組 254 :全球定位系統 256 :行動電信電話 258 :資料伺服器 260 :網路基地台 300 :基板 302 :絕緣夾層圖案 304 :鎢圖案 308 ··氧化鎢圖案 310 :氮化鎢圖案 312 :接觸插塞 314 :接觸插塞 400 :半導體基板 402 :閘極絕緣層 404 :閘電極 406 :雜質區 408 :第一絕緣夾層 410 :接觸插塞 412 :導電圖案 414 :第二絕緣夾層 415 :開口 416 :第一阻障金屬層圖案 418 :金屬圖案 97 20113375^The contact structure of f 1 having a diameter of 13 G nm has a resistance of about W and a large t, and according to the control sample 11 and the control; the contact structure of (10) nanometers has a resistance of 1310 ohms, respectively. As described above, the contact structure of the resistive memory device of the present invention 86 201133757 w W Λ ^λΙ. The tungsten pattern and the tungsten oxide pattern are included, so that the contact structure can have an improved resistance. These resistive memory elements ensure enhanced characteristics due to the contact structure that increases the Joule heating efficiency of the resistive memory elements. Evaluation of Electrical Characteristics of Resistive Memory Element Sample 9 A phase change memory element was fabricated by the process described with reference to Figs. 45 and 46. The phase change memory component of sample 9 has the same vertical configuration as that described with reference to FIG. According to the conductive pattern of the phase change memory element of sample 9, 成 is used. The lower electrode contact is formed on the conductive pattern in the first opening by heat-treating the conductive pattern by the RTA process. The lower electrode contact contains tungsten oxide. _Titanium nitride forms the upper electrode and uses the 嫣 to form the upper electrode contact. Comparative Example 9 To compare the characteristics of the phase change memory element according to the sample 9, another phase change memory element was fabricated. 68 is a cross-sectional view showing a phase change memory element according to a control sample 9. Referring to FIG. 68, the phase change memory element of Comparative Example 9 includes a conductive pattern 12a, a phase change structure 52a, an upper electrode 24, and an upper electrode contact 3A. . This phase change includes a first edge interlayer pattern s 14 and a second insulating layer pattern 26. In the phase change memory element of Comparative Example 9, the phase change structure 52a was disposed on the conductive pattern 12a without the lower electrode contact. Therefore, the conductive pattern is used as the lower electrode. The phase change memory element of Comparative Example 9 includes a spacer 50a, and the interlayer 坌5〇a is disposed on the sidewall of the opening 87 201133757 JUUJipif formed with the phase change structure 52a. According to the sample 9 and the control sample 9, a plurality of phase change memory elements were fabricated. The resistance of these phase change memory elements in the set state and the reset state is measured' and the current of these phase change memory elements in the reset state is also measured. Table 2 below shows the set resistance, reset resistance, and reset current for these phase change memory components. Table 2 Set Resistance (Rset) Reset Resistor C Preset) Reset Current (Ireset) Sample 9 1.63 kohms to 53.8 kohms 2.14 million ohms to 6.35 million ohms 180 (enemy ~ 72 microamps control sample 9 17 thousand Ohm ~ 151 kohms 1.13 million ohms ~ 2.27 million ohms 166 microamperes ~ 188 microamps As shown in Table 2, the phase change memory component of sample 9 has a set resistance lower than that of the phase change memory according to Comparative Example 9. The set resistance of the component, and the phase change memory component of sample 9 has a lower resistance distribution than the phase change memory component according to the control sample 9. The reset resistor of the phase change memory component of sample 9 It is larger than the reset resistance of the phase change memory element according to Comparative Example 9. In the phase change memory element according to Comparative Example 9, the phase change structure has a considerable depth in the open σ, so in the phase change structure Frequent occurrence of voids or slits, which in turn causes operational failure of the phase change memory element and degrades the electrical characteristics of the phase change memory element. The phase change memory element according to the present invention can have a low resistance distribution, 88 201133757, and also has a large resistance difference between the set state and the reset state to easily identify the stored data. Therefore, the phase change memory element of the present invention can ensure the desired operational characteristics. The resistive memory element including the conductive structure can be easily fabricated by a simplified process, and the conductive structure can ensure excellent heating efficiency. Therefore, the resistive memory of the element of the present invention can be used as a high product. The present invention has been described with reference to the drawings, but it should be understood that the present invention should not be limited to the embodiments and those skilled in the art. Various other modifications and changes can be made without departing from the scope and spirit of the invention, and all such modifications and variations are intended to be included within the scope of the invention as defined by the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Exemplary embodiments of the present invention can be understood in more detail by reading the above description with reference to the accompanying drawings in which: FIG. Fig. 2 is a perspective view showing the conductive structure of Fig. 1. Fig. 3 to Fig. 5 are sectional views showing the formation of the conductive structure shown in Fig. 1. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 7 to FIG. 10 are cross-sectional views showing a method of manufacturing the magnetic memory element shown in FIG. 6. 89 20113373⁄4 11 is a cross-sectional view showing a phase change memory device according to an exemplary embodiment of the present invention. Fig. 12 is a cross-sectional view showing a method of manufacturing the phase change memory device shown in Fig. 11. Fig. 13 is a A cross-sectional view of a phase change memory element in accordance with an exemplary embodiment of the present invention. Figure 14 is a cross-sectional view showing a method of fabricating the phase change memory element of Figure 13; Figure 15 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. Figure 16 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Figure 17 is a cross-sectional view showing a method of forming the conductive structure shown in Figure 16. Figure 18 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Figure 19 is a perspective view showing the conductive structure of Figure 18. Figure 20 is a plan view showing the conductive structure of Figure 18. 21 and 22 are cross-sectional views showing a method of forming the conductive structure shown in Fig. 18. Figure 23 is a cross-sectional view showing a magnetic memory element in accordance with an exemplary embodiment of the present invention. 24 and 25 are cross-sectional views showing a method of manufacturing the magnetic memory device shown in Fig. 23. 201133757 Figure 26 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. Figure 27 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Figure 28 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Figure 29 is a cross-sectional view showing a method of forming the conductive structure shown in Figure 28. Figure 30 is a cross-sectional view showing a method of fabricating the conductive structure of Figure 28, in accordance with an exemplary embodiment of the present invention. Figure 31 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. Figure 32 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. Figure 33 is a cross-sectional view showing a method of manufacturing the conductive structure shown in Figure 32. Figure 34 is a cross-sectional view showing a magnetic memory element in accordance with an exemplary embodiment of the present invention. Figure 35 is a cross-sectional view showing a magnetic memory element in accordance with an exemplary embodiment of the present invention. Figure 36 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. Figure 37 is a cross-sectional view showing a conductive structure in accordance with an exemplary embodiment of the present invention. 91 201133757 FIG. 38 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. 39 to 44 are cross-sectional views showing a method of manufacturing the phase change memory element shown in Fig. 38. Figure 45 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. Figure 46 is a cross-sectional view showing a method of manufacturing the phase change memory element shown in Figure 45. Figure 47 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. 48 to 51 are cross-sectional views showing a method of manufacturing the phase change memory element shown in Fig. 47. Figure 52 is a perspective view of a phase change memory element in accordance with an exemplary embodiment of the present invention. 53 through 58 are cross-sectional views showing a method of fabricating the phase change memory device of Fig. 52. Figure 59 is a cross-sectional view showing a phase change memory element in accordance with an exemplary embodiment of the present invention. 60 to 62 are cross-sectional views showing a method of manufacturing the phase change memory element shown in Fig. 59. Figure 63 is a diagram showing a communication system including a mobile phone network capable of broadband communication, in accordance with an exemplary embodiment of the present invention. Figure 64 is a cross-sectional view of a cross-section of the contact structure of Sample 1 through Sample 8 92 201133757. Figure 65 is a cross-sectional view showing the contact structure according to the control sample 11 to the control sample 18. Figure 66 is a cross-sectional view showing the contact structure according to the control sample 21 to the control sample 28. Fig. 67 is a graph showing the electric resistance of the contact structure according to the sample and the control sample. Figure 6 is a cross-sectional view showing a phase change memory element according to the control sample 9. [Main component symbol description] 8: Substrate 10: First insulating interlayer 11: PN diode 12a: Conductive pattern 14: Second insulating interlayer pattern 16: First opening 18: Lower electrode contact 20: Clearance wall 22: Phase Variable material layer 22a: phase change structure 24: upper electrode 26: third insulating interlayer pattern 28: second opening 30: upper electrode contact 93 201133757f \»\j^ i 50 : substrate 50a: spacer 52: insulating interlayer 54 Opening 56 barrier metal layer 56a: barrier metal layer pattern 58 metal layer 58a: initial metal pattern 58b: metal pattern 59 metal layer 59a: metal pattern 60 metal oxide pattern 62 spacer 64 substrate 66 insulating interlayer 68 opening 70 barrier Metal layer 70a: barrier metal layer pattern 72: metal layer 72a: metal pattern 72b: metal pattern 74: buried layer 74a: buried layer pattern 76: metal oxide pattern 94 201133757τ ----- 80 : spacer 82 : Metal pattern 84 : Buried layer pattern 86 : Metal oxide pattern 90 : Substrate 92 : Metal pattern 92a : Metal pattern 94 : Insulation layer 96 : Opening 98 : Metal oxide pattern 98a: metal oxide pattern 100: substrate 100a: isolation region 102: first insulating interlayer pattern 104: first opening 106: PN diode 108: metal germanide pattern 110: initial conductive pattern 110a: conductive pattern 112: second Insulating interlayer pattern 114: second opening 116: lower electrode contact 118: spacer 120: phase change structure 95 201133757 122: upper electrode 124: third insulating interlayer pattern 126: third opening 128: upper electrode contact 150: a trench 152: a first insulating layer pattern 154: a second insulating layer pattern 156: a third trench 158: a third insulating layer pattern 160: a second opening 162: a first insulating interlayer pattern 190: a substrate 192: a first insulating interlayer 194 : PN diode 202: second insulating interlayer pattern 2〇4: first opening 206: lower electrode contact 206a: first lower electrode contact 208: second lower electrode contact 208a: second lower electrode contact 210 : Phase change structure 212 : Upper electrode 214 : Third insulating interlayer pattern 216 : Upper electrode contact 96 201133757 250 : Broadband communication system 252 : Sensor module 254 : Global positioning system 256 : Mobile telecommunications telephone 258 : Data servo 260: network base station 300: substrate 302: insulating interlayer pattern 304: tungsten pattern 308 · tungsten oxide pattern 310: tungsten nitride pattern 312: contact plug 314: contact plug 400: semiconductor substrate 402: gate insulation Layer 404: gate electrode 406: impurity region 408: first insulating interlayer 410: contact plug 412: conductive pattern 414: second insulating interlayer 415: opening 416: first barrier metal layer pattern 418: metal pattern 97 20113375^

JL 420 :金屬氧化物圖案 422 :第三絕緣夾層 424 :第二阻障金屬層圖案 426 :自由層圖案 428 :穿隧氧化物層圖案 430a :固定層圖案 430b :固定層圖案 430c :固定層圖案 432 :固定層圖案 434 :第四絕緣夾層 436 :第五絕緣夾層 438 :上電極 440 :位元線 450 :金屬圖案 452 :第二絕緣夾層 453 :開口 454 :金屬氧化物圖案 455 :間隙壁 456 :金屬氧化物圖案 490 ··基板 490a :雜質區 492 :隔離層圖案 494 :第一絕緣夾層 496 :第一開口 98 201133757 500 : P-Ν 二極體 500a:第一多晶矽層圖案 500b :第二多晶矽層圖案 502a :金屬圖案 504 :第二絕緣夾層 505 :第二開口 506 :阻障金屬層圖案 508 :金屬圖案 510 :金屬氧化物圖案 510a :金屬氧化物圖案 512 :第三絕緣夾層 512a :第三絕緣夾層 513 :第三開口 514 :相變材料層圖案/相變結構 514a :相變結構 515 :第三開口 516 :上電極 518 :第四絕緣夾層 518a :第二絕緣夾層 520 :接觸孔 522 :上觸點 530 :金屬圖案 530a :金屬圖案 532 :第三開口 99 201133757 534 :絕緣層圖案 536 :金屬氧化物圖案 550 :第二絕緣夾層 552 :間隙壁 553 :開口 554 :金屬氧化物圖案 556 :相變結構 610 :第一阻障金屬層圖案 612 :金屬圖案 614 :埋入層圖案 616 :金屬氧化物圖案 618 :第三絕緣夾層 650 :阻障金屬層圖案 652 :金屬圖案 654 :埋入層圖案 656 :金屬氧化物圖案 660 :第三絕緣夾層 100JL 420: metal oxide pattern 422: third insulating interlayer 424: second barrier metal layer pattern 426: free layer pattern 428: tunnel oxide layer pattern 430a: fixed layer pattern 430b: fixed layer pattern 430c: fixed layer pattern 432: fixed layer pattern 434: fourth insulating interlayer 436: fifth insulating interlayer 438: upper electrode 440: bit line 450: metal pattern 452: second insulating interlayer 453: opening 454: metal oxide pattern 455: spacer 456 Metal oxide pattern 490 · Substrate 490a: impurity region 492: isolation layer pattern 494: first insulating interlayer 496: first opening 98 201133757 500 : P-Ν diode 500a: first polysilicon layer pattern 500b: Second polysilicon layer pattern 502a: metal pattern 504: second insulating interlayer 505: second opening 506: barrier metal layer pattern 508: metal pattern 510: metal oxide pattern 510a: metal oxide pattern 512: third insulation Interlayer 512a: third insulating interlayer 513: third opening 514: phase change material layer pattern / phase change structure 514a: phase change structure 515: third opening 516: upper electrode 518: fourth insulating interlayer 518a: second insulating interlayer 520 : contact hole 5 22: upper contact 530: metal pattern 530a: metal pattern 532: third opening 99 201133757 534: insulating layer pattern 536: metal oxide pattern 550: second insulating interlayer 552: spacer 553: opening 554: metal oxide pattern 556: phase change structure 610: first barrier metal layer pattern 612: metal pattern 614: buried layer pattern 616: metal oxide pattern 618: third insulating interlayer 650: barrier metal layer pattern 652: metal pattern 654: buried Incoming pattern 656: metal oxide pattern 660: third insulating interlayer 100

Claims (1)

201133757 七、申請專利範圍: 1. 一種半導體元件,包括: 層間絕緣層’配置於基板上,戶斤述層間絕緣層包括開 口,所述開口暴露出所述基板上之導電部分; 幵 阻障層圖案’配置於所述開口内;以及 導電圖案,配置於所述阻障層圖案上,所述導電圖案 具有延伸出所述開口之氧化部以及位於所述開口内之非氧 其中所述導電圖案之寬度取決於所述阻障層圖案之厚 2.如申請專利範圍第1項所述之半導體元件 ’其中所 述導電圖案之所述寬度小於所述開口之寬产。 3.如申請專利範圍第1項所述之半導體元件,其中延 伸出所述開口 部。 之所述氧化部厚於配置於所述開 口内之氧化 4.如申請專鄕㈣丨項所述之半物 述氧化部之寬度實質上相同於所述非氧化部之寬度。、千所 5·如申請專利範圍第!項所述之半導體元件, 述氧化部之寬度大於所述非氧化部之寬度。 、201133757 VII. Patent application scope: 1. A semiconductor component comprising: an interlayer insulating layer disposed on a substrate, wherein the interlayer insulating layer comprises an opening, the opening exposing a conductive portion on the substrate; a pattern 'disposed in the opening; and a conductive pattern disposed on the barrier layer pattern, the conductive pattern having an oxidized portion extending from the opening and a non-oxygen located in the opening, wherein the conductive pattern The width of the barrier layer pattern is determined by the thickness of the barrier layer pattern. The semiconductor device of claim 1, wherein the width of the conductive pattern is smaller than the width of the opening. 3. The semiconductor component according to claim 1, wherein the opening is extended. The oxidized portion is thicker than the oxide disposed in the opening. 4. The width of the oxidized portion of the semi-object described in the above-mentioned application (4) is substantially the same as the width of the non-oxidized portion. , thousands of places 5 · such as the scope of patent application! In the semiconductor device of the above aspect, the width of the oxidized portion is larger than the width of the non-oxidized portion. , 101 201133757 8·如申請專利範圍第1項所述之半導體元件,其中所 述導電圖案包含鎢。 9. 如申請專利範圍第丨項所述之半導 述阻障層圖案包含鈦或氣化鈦至少其中^:0所 10. 如申請專利範圍第丨項所述之半導體元件,其中 所述阻障層圖案包含氮化物或氮氧化物至少其中之一 Γ u.如申請專利範圍第1項所述之半導體元件,其中 所述導電圖案之所述氧化部接觸相變隨機存取記憶體 (PRAM)中之相變材料薄膜。 12. 如申請專利範圍第^項所述之半導體元件,其中 所述阻障層圖案接觸配置於所述阻障層圖案之下的Ρ_Ν二 極體。 一 13. 如申請專利範圍第丨項所述之半導體元件,其中 所述導電圖案之所述氧化部接觸磁性隨機存取記憶體 (MRAM)中之自由層圖案。 14·如申請專利範圍第13項所述之半導體元件,其中 所述阻障層圖案電性接觸配置於所述阻障層圖案之下的金 屬氧化物半導體(MOS)電晶體。 15. 如申請專利範圍第1項所述之半導體元件,其中 所述氧化部在平面圖中之橫截面積之大小小於所述開口在 所述平面圖中之橫截面積之大小。 16. 如申請專利範圍第15項所述之半導體元件,其中 所述氧化部在所述平面圖中之所述橫截面積之所述大小取 決於所述阻障層圖案之所述橫截面積之大小。 102 201133757 π· 一種形解物元件之方法 形成層間絕緣層於基板上; 叹方法包括. 基板 形成開口於所述層間絕緣射,所述開口暴露出户斤述 形成阻障層圖案於所述開口内; 及 形成導電圖案於所述開口内之所述阻障層圖案上;以 述導述導電圖案而生長所述導電圖案,以使所 導電圖案之口 ρ分延伸出所述開口。 方沐專利範圍第17項所述之形成半導體元件之 ΐ t於Λ 導電圖案包括在約4〇o°c至約航之 氛中執行快速熱退火(RTA)製程達約〆 分鐘至約10分鐘。 古、/9甘^中凊專利範圍第17項所述之形成半導體元件之 ,、中生長所述導電圖案包括藉由施加約20瓦至約 瓦之功率而於氧氣氣氛中執行f漿處 約10分鐘。 疋J刀理王 、20.如冑請糊範㈣17項所述之形成半導體元件之 方法其+生長是等向性地執行或非等向性地執行。 、21.如申請專利範圍第17項所述之形成半導體元件之 ,,更包括在所述導電圖案之所述氧化部周圍提供氮氣 氣氛。 ” 、22.如申請專利範圍第17項所述之形成半導體元件之 方法’更包括麵述開口㈣彡成填充圖案,以使所述導電 103 201133757 圖案配置於所述填充圖案與所述阻障層圖案之間。 23_ —種半導體元件,包括: 基板, 具有開口之絕緣層,配置於所述基板上; 金屬圖案,配置於所述基板上;以及 金屬氧化物圖案,配置於所述金屬圖案上及所述開口 内, 其中所述金屬氧化物圖案之橫截面積小於所述金屬 案之橫截面積。 24. 如申請專利範圍第23項所述之半導體元件,其中 所述金屬圖案包含鎢。 〃 25. 如申請專利範圍第23項所述之半導體元件,其中 接觸所述金屬氧化物圖案的所述金屬圖案之部分是凹陷 的,且所述凹陷部接納所述金屬氧化物圖案之突出部。 26. 如申請專利範圍第23項所述之半導體元件,其中 在所述金屬氧化物圖案與所述絕緣層之間配置有間隙壁。 27. 如申請專利範圍第23項所述之半導體元件',、其中 所述金屬圖案配置於p_N接面上。 、 28. 如申請專利範圍第23項所述之半導體元件,其中 所述金屬圖案電性連接至M〇s電晶體。 '29.如申請專利範圍第23項所述之半導體元件,其中 所述金屬氧化物圖案接觸MRAM之自由層随。” 30.如申請專利範圍第23項所述之半導體元件,立中 所述金屬氧化物圖案接觸pRAM之相變材料薄膜。’、 104 201133757 所述相變材二導Μ 材料之底部部分之寬度。刀所具有之寬度寬於所述相變 33· 一種形成半導體元件 形成金屬圖案於基板上t 斤述方法包括: 形成絕緣層於所述金屬圖案上; 形成穿過所述絕緣層之開口, 屬圖案之-部分;以及 斤销口暴路出所述金 氧化所述金屬圖案之所沭異噯 物圖案於所述開口中4暴路科,以形成金屬氧化 方法範圍第33項所述之形成半導體元件之 方法、中所述金屬氧化物圖案接觸^^以之自由層。 利範圍第34項所述之形成半導體元件之 t,其中所述金屬圖案電性接觸所述MRAM之M0 曰曰體。 、36·如”專利制第33項所述之形成半導體元件之 方法’其中所述金屬氧化物圖案接觸PRAM之相變薄膜。 37. 如申請專利範圍第%項所述之形成半導體元件之 方法,其中所述金屬圖案接觸所述PRAM2P_N二極體。 38. 如申請專利範圍第33項所述之形成半導體元件之 方法,其中所述金屬氧化物圖案之寬度小於所述金屬圖案 之寬度。 〃 105 201133757 39. —種半導體元件,包括: 第一絕緣層,配置於基板上, 第二絕緣層,配置於所述第一絕緣層上,所述第二絕 緣層包含開口; 第三絕緣層,配置於所述第二絕緣層上; 第四絕緣層,配置於所述第三絕緣層上; 記憶體儲存元件,配置於所述第四絕緣層上;以及 導電圖案,用於加熱所述記憶體儲存元件,所述導電 圖案包含金屬圖案及金屬氧化物圖案, 其中所述金屬圖案配置於所述第二絕緣層之所述開〇 中,所述金屬氧化物圖案配置於所述第三絕緣層中,且 述導電圖案之寬度小於所述開口之寬度。 40·如申請專利範圍第%項所述之半導體元件, 括,置於所述第-絕緣層中之廳3電晶體以及配置於= 述第四絕緣層中之MRAM之自由層圖案。 、 41.如申請專利範圍帛39項所述之半導體元件勺 =配置於所述第-絕緣層中之p_N二極體以及配置於所^ 第四絕緣層中之相變薄膜。 过 42.如申請專利範圍第%項所述之半導體元件,盆 ===圖案之頂面是與所述第三絕緣層之頂面 括配4置3二口二1第%項所述之半導體元件, 圖案。 圖案與所述第三絕緣層之間的金屬 106 20113375^ 44. 如申請專利範圍第43項所述之半導體元件,其中 所述金屬阻障圖案之頂面是與所述第二絕緣層之頂面配置 於同一平面上。 45. 如申請專利範圍第39項所述之半導體元件,其中 所述第三絕緣層之頂面配置成高於所述金屬圖案之頂面。 46. 如申請專利範圍第43項所述之半導體元件,其中 所述金屬圖案之頂面配置成低於所述金屬阻障圖案之頂 面。 107The semiconductor device of claim 1, wherein the conductive pattern comprises tungsten. 9. The semi-conducting barrier layer pattern of claim 4, wherein the semi-conducting barrier layer pattern comprises titanium or a vaporized titanium, wherein at least one of the semiconductor elements, wherein the resistor is The barrier layer pattern includes at least one of a nitride or an oxynitride. The semiconductor device according to claim 1, wherein the oxidized portion of the conductive pattern contacts a phase change random access memory (PRAM) a phase change material film. 12. The semiconductor device of claim 4, wherein the barrier layer pattern contacts a Ρ_Ν diode disposed under the barrier layer pattern. 13. The semiconductor device of claim 2, wherein the oxidized portion of the conductive pattern contacts a free layer pattern in a magnetic random access memory (MRAM). The semiconductor device according to claim 13, wherein the barrier layer pattern electrically contacts a metal oxide semiconductor (MOS) transistor disposed under the barrier layer pattern. 15. The semiconductor device according to claim 1, wherein a size of a cross-sectional area of the oxidized portion in a plan view is smaller than a size of a cross-sectional area of the opening in the plan view. 16. The semiconductor device according to claim 15, wherein said size of said cross-sectional area of said oxidized portion in said plan view depends on said cross-sectional area of said barrier layer pattern size. 102 201133757 π· A method for forming an element to form an interlayer insulating layer on a substrate; the method of staking includes: forming a substrate with an opening insulating film, the opening exposing a pattern of forming a barrier layer to the opening And forming a conductive pattern on the barrier layer pattern in the opening; growing the conductive pattern by using the conductive pattern to extend the opening of the conductive pattern to the opening. The forming of the semiconductor device described in the above-mentioned patent scope of the invention is carried out in a conductive element comprising performing a rapid thermal annealing (RTA) process in an atmosphere of about 4 〇 ° ° C to about 10 minutes to about 10 minutes. . Forming a semiconductor device according to Item 17, wherein the growth of the conductive pattern comprises performing a slurry in an oxygen atmosphere by applying a power of about 20 watts to about watts. 10 minutes.疋J刀理王, 20. If you are a method of forming a semiconductor device as described in Item (4), the + growth is performed isotropically or non-isotropically. 21. The forming of the semiconductor device of claim 17, further comprising providing a nitrogen atmosphere around the oxidized portion of the conductive pattern. 22. The method of forming a semiconductor device as described in claim 17 further includes a face opening (4) forming a fill pattern such that the conductive pattern 103 201133757 is disposed in the fill pattern and the barrier. Between the layer patterns, a semiconductor device includes: a substrate, an insulating layer having an opening, disposed on the substrate; a metal pattern disposed on the substrate; and a metal oxide pattern disposed on the metal pattern The semiconductor element of the metal oxide pattern according to claim 23, wherein the metal pattern comprises tungsten, and the metal oxide pattern has a cross-sectional area. The semiconductor device of claim 23, wherein a portion of the metal pattern contacting the metal oxide pattern is recessed, and the recess receives a protrusion of the metal oxide pattern 26. The semiconductor device of claim 23, wherein the metal oxide pattern is interposed between the metal oxide pattern and the insulating layer 27. The semiconductor device of claim 23, wherein the metal pattern is disposed on a p_N junction, wherein the semiconductor component of claim 23, wherein The metal pattern is electrically connected to the M〇s transistor. The semiconductor element according to claim 23, wherein the metal oxide pattern contacts the free layer of the MRAM. 30. Patent application The semiconductor device according to Item 23, wherein the metal oxide pattern contacts the phase change material film of the pRAM. ', 104 201133757 The width of the bottom portion of the phase change material two guiding material. The knives have a width wider than the phase change 33. A method of forming a semiconductor element to form a metal pattern on a substrate includes: forming an insulating layer on the metal pattern; forming an opening through the insulating layer, a portion of the pattern; and a smashing out of the gold to oxidize the pattern of the smear of the metal pattern in the opening 4 in the opening to form a metal oxidation method as described in item 33 In the method of the semiconductor device, the metal oxide pattern contacts the free layer. The semiconductor device of claim 34, wherein the metal pattern electrically contacts the M0 body of the MRAM. 36. The method of forming a semiconductor device according to the invention of claim 33, wherein the metal oxide pattern contacts a phase change film of a PRAM. 37. A method of forming a semiconductor device according to the item The metal pattern is in contact with the PRAM 2P_N diode. The method of forming a semiconductor device according to claim 33, wherein a width of the metal oxide pattern is smaller than a width of the metal pattern. 105 201133757 39. A semiconductor device, comprising: a first insulating layer disposed on a substrate, a second insulating layer disposed on the first insulating layer, the second insulating layer comprising an opening; a third insulating layer, Arranging on the second insulating layer; a fourth insulating layer disposed on the third insulating layer; a memory storage element disposed on the fourth insulating layer; and a conductive pattern for heating the memory a storage element, the conductive pattern comprising a metal pattern and a metal oxide pattern, wherein the metal pattern is disposed in the opening of the second insulating layer The metal oxide pattern is disposed in the third insulating layer, and the width of the conductive pattern is smaller than the width of the opening. 40. The semiconductor device according to claim 5, wherein a cell 3 transistor in the first insulating layer and a free layer pattern of the MRAM disposed in the fourth insulating layer. 41. The semiconductor device scoop according to claim 39 is disposed in the first a p_N diode in the insulating layer and a phase change film disposed in the fourth insulating layer. 42. The semiconductor device according to item 5% of the patent application, the top surface of the basin === pattern is The top surface of the third insulating layer includes a semiconductor element, a pattern, and a metal 106 between the pattern and the third insulating layer. 20113375^ 44. The semiconductor device of claim 41, wherein a top surface of the metal barrier pattern is disposed on a same plane as a top surface of the second insulating layer. 45. The semiconductor device according to claim 39, Wherein the top surface of the third insulating layer is configured Higher than the top surface of the metal pattern 46. The semiconductor element of the application of paragraph 43 patentable scope, wherein a top surface of the metal pattern arranged below the top surface of the metallic barrier patterns. 107
TW099139573A 2009-11-17 2010-11-17 Semiconductor device having a conductive strucutre and method of forming the same TWI532138B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090110694A KR101603161B1 (en) 2009-05-27 2009-11-17 Conductive structure, method of forming the same, semiconductor device having the conductive structure and method of manufacturing the semiconductor device
US12/787,056 US8575753B2 (en) 2009-05-27 2010-05-25 Semiconductor device having a conductive structure including oxide and non oxide portions

Publications (2)

Publication Number Publication Date
TW201133757A true TW201133757A (en) 2011-10-01
TWI532138B TWI532138B (en) 2016-05-01

Family

ID=46754781

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099139573A TWI532138B (en) 2009-11-17 2010-11-17 Semiconductor device having a conductive strucutre and method of forming the same

Country Status (1)

Country Link
TW (1) TWI532138B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455402B2 (en) 2015-01-23 2016-09-27 Macronix International Co., Ltd. Resistive memory device with ring-shaped metal oxide on top surfaces of ring-shaped metal layer and barrier layer
TWI572027B (en) * 2015-01-26 2017-02-21 旺宏電子股份有限公司 Resistive memory device and method for manufacturing the same
TWI612699B (en) * 2015-10-20 2018-01-21 台灣積體電路製造股份有限公司 Integrated circuit and method for forming the same
TWI666733B (en) * 2017-12-08 2019-07-21 旺宏電子股份有限公司 Tungsten oxide rram with barrier free structure
CN111512429A (en) * 2017-12-20 2020-08-07 应用材料公司 High pressure oxidation of metal films
EP4362626A1 (en) * 2022-10-31 2024-05-01 Commissariat à l'énergie atomique et aux énergies alternatives Magnetic device and corresponding method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020150451A1 (en) * 2019-01-18 2020-07-23 Everspin Technologies, Inc. Magnetoresistive stack/structure and methods therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455402B2 (en) 2015-01-23 2016-09-27 Macronix International Co., Ltd. Resistive memory device with ring-shaped metal oxide on top surfaces of ring-shaped metal layer and barrier layer
TWI572027B (en) * 2015-01-26 2017-02-21 旺宏電子股份有限公司 Resistive memory device and method for manufacturing the same
TWI612699B (en) * 2015-10-20 2018-01-21 台灣積體電路製造股份有限公司 Integrated circuit and method for forming the same
US9905751B2 (en) 2015-10-20 2018-02-27 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic tunnel junction with reduced damage
US10672975B2 (en) 2015-10-20 2020-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic tunnel junction with reduced damage
US11145806B2 (en) 2015-10-20 2021-10-12 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic tunnel junction with reduced damage
TWI666733B (en) * 2017-12-08 2019-07-21 旺宏電子股份有限公司 Tungsten oxide rram with barrier free structure
CN111512429A (en) * 2017-12-20 2020-08-07 应用材料公司 High pressure oxidation of metal films
TWI794363B (en) * 2017-12-20 2023-03-01 美商應用材料股份有限公司 High pressure oxidation of metal films
EP4362626A1 (en) * 2022-10-31 2024-05-01 Commissariat à l'énergie atomique et aux énergies alternatives Magnetic device and corresponding method
WO2024094571A3 (en) * 2022-10-31 2024-06-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Magnetic device and corresponding method

Also Published As

Publication number Publication date
TWI532138B (en) 2016-05-01

Similar Documents

Publication Publication Date Title
US8575753B2 (en) Semiconductor device having a conductive structure including oxide and non oxide portions
JP5775288B2 (en) Semiconductor device
EP1966841B1 (en) A vertical phase change memory cell and methods for manufacturing thereof
TWI380437B (en) Sidewall structured switchable resistor cell
US7394087B2 (en) Phase-changeable memory devices and methods of forming the same
TWI325166B (en) Programmable resistive ram and manufacturing method
US8039372B2 (en) Methods of manufacturing variable resistance non-volatile memory devices including a uniformly narrow contact layer
TWI317128B (en) A nonvolatile memory cell,a monolithic three dimensional memory array,and a method for forming,setting and resetting a nonvolatile memory cell and associated conductors
TWI354386B (en)
US8288750B2 (en) Phase change memory device with air gap
TW200830545A (en) Phase-change material layer and phase-change memory device including the phase-change material layer
TW201133757A (en) Semiconductor device having a conductive structure and method of forming the same
US10096654B2 (en) Three-dimensional resistive random access memory containing self-aligned memory elements
JP2011109099A5 (en)
TW200901376A (en) Variable resistance non-volatile memory cells and methods of fabricating same
TW201030946A (en) Nonvolatile memory cell including carbon storage element formed on a silicide layer
TW200830538A (en) Phase change memory device and method of fabricating the same
US20090230375A1 (en) Phase Change Memory Device
TW201104872A (en) Variable and reversible resistive element, non-volatile memory device and methods for operating and manufacturing the non-volatile memory device
KR101603161B1 (en) Conductive structure, method of forming the same, semiconductor device having the conductive structure and method of manufacturing the semiconductor device
TW200818411A (en) Nonvolatile semiconductor memory device to realize multi-bit cell and method for manufacturing the same
US10957370B1 (en) Integration of epitaxially grown channel selector with two terminal resistive switching memory element
US20130200328A1 (en) Phase change memory devices
TW201135999A (en) Phase change structure, method of forming a phase change layer, phase change memory device and method of manufacturing a phase change memory device
TW200840033A (en) Nonvolatile phase change memory cell having a reduced contact area and method of making