TWI572027B - Resistive memory device and method for manufacturing the same - Google Patents

Resistive memory device and method for manufacturing the same Download PDF

Info

Publication number
TWI572027B
TWI572027B TW104102459A TW104102459A TWI572027B TW I572027 B TWI572027 B TW I572027B TW 104102459 A TW104102459 A TW 104102459A TW 104102459 A TW104102459 A TW 104102459A TW I572027 B TWI572027 B TW I572027B
Authority
TW
Taiwan
Prior art keywords
layer
annular metal
resistive memory
metal layer
barrier
Prior art date
Application number
TW104102459A
Other languages
Chinese (zh)
Other versions
TW201628184A (en
Inventor
林昱佑
李峰旻
蔣光浩
李明修
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104102459A priority Critical patent/TWI572027B/en
Publication of TW201628184A publication Critical patent/TW201628184A/en
Application granted granted Critical
Publication of TWI572027B publication Critical patent/TWI572027B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

電阻式記憶體元件及其製造方法 Resistive memory element and method of manufacturing same

本發明是有關於一種電阻式記憶體元件及其製造方法,且特別是有關於一種具有改良電子特性的電阻式記憶體元件及其製造方法。 The present invention relates to a resistive memory device and a method of fabricating the same, and more particularly to a resistive memory device having improved electronic characteristics and a method of fabricating the same.

記憶體元件,例如非揮發性記憶體元件,一般是設計為,當記憶體元件失去或移除電源後仍能保存資料狀態的完整性。目前業界已有許多不同型態的非揮發性記憶體元件被提出。不過相關業者仍不斷研發新的設計或是結合現有技術,進行記憶胞平面的堆疊以達到具有更高儲存容量的記憶體元件之結構。例如已有一些三維堆疊反及閘(NAND)型快閃記憶體結構被提出。 Memory components, such as non-volatile memory components, are typically designed to preserve the integrity of the data state when the memory component loses or removes power. Many different types of non-volatile memory components have been proposed in the industry. However, related companies continue to develop new designs or combine existing technologies to stack memory cell planes to achieve the structure of memory components with higher storage capacity. For example, some three-dimensional stacked NAND (NAND) type flash memory structures have been proposed.

可變電阻式記憶體(Resistive random-access memory,RRAM或ReRAM)是非揮發性記憶體的其中一種型態。電阻式記憶體由於其簡單的金屬-絕緣物-金屬(Metal-Insulator-Metal,MIM)的結構和有前途的可擴展性而受到許多注目。根據介電材料的不同種類,從鈣鈦礦(perovskites)到過渡金屬氧化物到硫屬化合物(chalcogenides),不同形式的可變電阻 式記憶體已經被揭露。然而,傳統的電阻式記憶體元件在進行製造程序的填充步驟時,仍會產生接縫(seams)和空孔(voids)等缺陷於金屬層中。第1圖係繪示一種具有缺陷之傳統電阻式記憶體元件的一部分。如第1圖所示,具有通孔的一圖案化介電層12係形成於一底部電極11上,一障壁層13沿著圖案化介電層12之通孔的側壁和底表面形成,和一金屬層14填滿通孔,之後再進行研磨和氧化製程以形成金屬氧化物做為電阻式記憶體元件之記憶體層。在傳統的金屬填充步驟中,很容易在金屬層14中產生接縫14a和空孔14b等缺陷,特別是在金屬層14的中央部分最容易產生。接縫14a和/或空孔14b等缺陷會造成金屬層14內部的較弱區域(weaker region)(例如,產生接縫的區域比起金屬層14的其他區域更容易被氧化),氧化製程之後較弱區域的電阻值將產生變異,因而降低電阻式記憶體元件之電子特性的可靠度。 Resistive random-access memory (RRAM or ReRAM) is one of the types of non-volatile memory. Resistive memory has received much attention due to its simple Metal-Insulator-Metal (MIM) structure and promising scalability. Depending on the type of dielectric material, from perovskites to transition metal oxides to chalcogenides, different forms of variable resistors Memory has been revealed. However, conventional resistive memory elements still produce defects such as seams and voids in the metal layer during the filling step of the manufacturing process. Figure 1 is a diagram showing a portion of a conventional resistive memory device with defects. As shown in FIG. 1, a patterned dielectric layer 12 having via holes is formed on a bottom electrode 11, and a barrier layer 13 is formed along sidewalls and a bottom surface of the via hole of the patterned dielectric layer 12, and A metal layer 14 fills the vias, and then a grinding and oxidation process is performed to form a metal oxide as a memory layer of the resistive memory device. In the conventional metal filling step, defects such as the seam 14a and the void 14b are easily generated in the metal layer 14, particularly at the central portion of the metal layer 14. Defects such as seams 14a and/or voids 14b may cause a weaker region inside the metal layer 14 (e.g., the region where the seam is created is more susceptible to oxidation than other regions of the metal layer 14), after the oxidation process The resistance value of the weaker region will vary, thus reducing the reliability of the electronic properties of the resistive memory component.

因此,相關業者無不希望可以研發和製造出一種兼具可靠結構和優異電子特性的電阻式記憶體元件。 Therefore, the related industry has no desire to develop and manufacture a resistive memory element that has both a reliable structure and excellent electronic characteristics.

本發明係有關於一種電阻式記憶體元件及其製造方法。實施例之電阻式記憶體元件提供了一種簡單又可靠的結構以縮小接觸孔之尺寸(即,環形金屬氧化物),並大幅增進記憶體元件的電子特性。 The present invention relates to a resistive memory element and a method of fabricating the same. The resistive memory element of the embodiment provides a simple and reliable structure to reduce the size of the contact hole (i.e., the annular metal oxide) and greatly enhance the electronic characteristics of the memory element.

根據一實施例,係提出一種電阻式記憶體元件,包括一底部電極,具有通孔之一圖案化介電層形成於底部電極上, 一障壁層形成於通孔的側壁和底表面上為一襯裡,一環形金屬層形成於障壁層的側壁和底表面上,以及一環形金屬氧化物形成於環形金屬層之上表面處。 According to an embodiment, a resistive memory device is provided, comprising a bottom electrode having a patterned dielectric layer formed on the bottom electrode A barrier layer is formed on the sidewalls and the bottom surface of the via hole as a liner, an annular metal layer is formed on the sidewalls and the bottom surface of the barrier layer, and an annular metal oxide is formed on the upper surface of the annular metal layer.

根據實施例,係提出一種電阻式記憶體元件之製造方法,包括:提供一底部電極,形成具有通孔之一圖案化介電層於底部電極上,形成一障壁層於通孔側壁和底表面上為一襯裡,形成一環形金屬層於障壁層的側壁和底表面上,以及形成一環形金屬氧化物於環形金屬層之上表面處。 According to an embodiment, a method for fabricating a resistive memory device is provided, comprising: providing a bottom electrode, forming a patterned dielectric layer having a via hole on the bottom electrode, forming a barrier layer on the sidewall and bottom surface of the via hole The upper layer is formed with an annular metal layer on the sidewalls and the bottom surface of the barrier layer, and an annular metal oxide is formed on the upper surface of the annular metal layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下。然而,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In order to better understand the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings are set forth below. However, the scope of the invention is defined by the scope of the appended claims.

2‧‧‧電阻式記憶體元件 2‧‧‧Resistive memory components

11、21、71‧‧‧底部電極 11, 21, 71‧‧‧ bottom electrode

12、22、72‧‧‧圖案化介電層 12, 22, 72‧‧‧ patterned dielectric layer

22t、72t‧‧‧圖案化介電層之上表面 22t, 72t‧‧‧ patterned dielectric layer upper surface

13、23、73、73’、73”‧‧‧障壁層 13, 23, 73, 73’, 73” ‧ ‧ barrier layers

23s、73s‧‧‧障壁層之側壁 23s, 73s‧‧ ‧ sidewall of the barrier layer

23b、73b‧‧‧障壁層之底表面 23b, 73b‧‧‧ bottom surface of the barrier layer

23t、73t‧‧‧障壁層之上表面 23t, 73t‧‧‧ upper surface of the barrier layer

14‧‧‧金屬層 14‧‧‧metal layer

14a‧‧‧接縫 14a‧‧‧Seam

14b‧‧‧空孔 14b‧‧‧ holes

24、74、74’、74”‧‧‧環形金屬層 24, 74, 74', 74" ‧ ‧ annular metal layers

24t、74t‧‧‧環形金屬層之上表面 24t, 74t‧‧‧ upper surface of the annular metal layer

25、75‧‧‧環形金屬氧化物 25, 75‧‧‧ Ring Metal Oxide

26、74h‧‧‧孔洞 26, 74h‧‧ hole

27‧‧‧中間層 27‧‧‧Intermediate

72v‧‧‧通孔 72v‧‧‧through hole

77‧‧‧障壁氧化物 77‧‧‧Baffle oxide

78‧‧‧導電氧化物 78‧‧‧ conductive oxide

Vs‧‧‧通孔的側壁 Side wall of Vs‧‧ hole

Vb‧‧‧通孔的底表面 Vb‧‧‧ bottom surface of the through hole

IL、IL’‧‧‧絕緣層 IL, IL'‧‧‧ insulation

ML‧‧‧導體 ML‧‧‧ conductor

ML’、ML”‧‧‧導電層 ML', ML"‧‧‧ conductive layer

第1圖係繪示一種具有缺陷之傳統電阻式記憶體元件的一部分。 Figure 1 is a diagram showing a portion of a conventional resistive memory device with defects.

第2A圖係根據本揭露一實施例之一電阻式記憶體元件的剖面示意圖。 2A is a schematic cross-sectional view of a resistive memory device in accordance with an embodiment of the present disclosure.

第2B圖係根據本揭露一實施例之一電阻式記憶體元件的上視圖。 2B is a top view of a resistive memory element in accordance with an embodiment of the present disclosure.

第3A圖顯示一種傳統電阻式記憶體元件之操作,包括初次形成、設定和重置之過程。 Figure 3A shows the operation of a conventional resistive memory device, including the process of initial formation, setup, and reset.

第3B圖顯示一實施例之一電阻式記憶體元件之操作,包括初次形成、設定和重置之過程。 Figure 3B shows the operation of one of the resistive memory elements of an embodiment, including the process of initial formation, setting, and resetting.

第4圖顯示相關實驗中以RTO進行氧化製程的傳統和實施例之電阻式記憶體元件的起始電阻。 Fig. 4 is a graph showing the initial resistance of a conventional and exemplary resistive memory device in which an oxidation process is performed by RTO in the related experiments.

第5圖為形成過程中實施例之電阻式記憶體元件之形成電壓與起始電阻之關係曲線圖,其中環形金屬氧化物以不同RTO製程溫度形成。 Fig. 5 is a graph showing the relationship between the formation voltage of the resistive memory element and the initial resistance of the embodiment in the formation process, wherein the annular metal oxide is formed at different RTO process temperatures.

第6圖顯示一種實施例之電阻式記憶體元件之初次形成、設定和重置)的模擬操作,其中操作條件為5V/500μA。 Figure 6 shows an analog operation of the initial formation, setting and reset of the resistive memory element of one embodiment, wherein the operating conditions are 5V/500μA.

第7A圖至第7F圖繪示本揭露一實施例之電阻式記憶體元件的第一種製造方法。 7A to 7F illustrate a first method of fabricating a resistive memory device according to an embodiment of the present disclosure.

第8A圖至第8F圖繪示本揭露一實施例之電阻式記憶體元件的第二種製造方法。 8A to 8F illustrate a second method of fabricating a resistive memory device according to an embodiment of the present disclosure.

此揭露內容之實施例係提出一種電阻式記憶體元件及其製造方法。實施例之電阻式記憶體元件可以廣泛地被應用於各種電阻式記憶體(例如可變電阻式記憶體,ReRAM)陣列。根據實施例,電阻式記憶體元件提供了一種簡單又可靠的結構以縮小接觸孔之尺寸(即,環形金屬氧化物),並增進了電阻式記憶體元件的電子特性。再者,實施例之電阻式記憶體元件顯示了高起始電阻(high initial resistance),代表了實施例是具有良好且均勻的 氧化物。 Embodiments of the disclosure disclose a resistive memory element and a method of fabricating the same. The resistive memory element of the embodiment can be widely applied to various resistive memory (e.g., variable resistance memory, ReRAM) arrays. According to an embodiment, the resistive memory element provides a simple and reliable structure to reduce the size of the contact hole (i.e., the ring metal oxide) and to enhance the electronic characteristics of the resistive memory element. Furthermore, the resistive memory element of the embodiment exhibits a high initial resistance, representing that the embodiment is good and uniform. Oxide.

須注意的是,本揭露並非顯示出所有可能的實施例,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖示內容僅作敘述實施例之用,而非作為限縮本揭露保護範圍之用。另外,實施例中之敘述,例如細部結構、製程步驟和材料應用等等,僅為舉例說明之用,並非對本揭露欲保護之範圍做限縮。實施例之步驟和結構各元素之細節可在不脫離本揭露之精神和範圍內根據實際應用製程之需要而加以變化與修飾。 It should be noted that the disclosure does not show all possible embodiments, and other embodiments not disclosed in the disclosure may also be applied. Furthermore, the dimensional ratios on the drawings are not drawn in proportion to the actual product. Therefore, the description and illustration are for illustrative purposes only and are not intended to be limiting. In addition, the description in the embodiments, such as the detailed structure, the process steps, the material application, and the like, are for illustrative purposes only and are not intended to limit the scope of the disclosure. The details of the steps and the various elements of the structure of the embodiments may be varied and modified as needed in accordance with the actual application process without departing from the spirit and scope of the disclosure.

第2A圖係根據本揭露一實施例之一電阻式記憶體元件的剖面示意圖。第2B圖係根據本揭露一實施例之一電阻式記憶體元件的上視圖。如第2A圖和第2B圖所示,一電阻式記憶體元件2包括一底部電極(bottom electrode)21,一圖案化介電層22形成於底部電極21上且具有一通孔(via),一障壁層23形成於通孔的側壁Vs和底表面Vb上如一襯裡,一環形金屬層(ring-shaped metal layer)24形成於障壁層23的側壁23s和底表面23b上,和一環形金屬氧化物(ring-shaped metal oxide)25形成於環形金屬層24之上表面24t處。 2A is a schematic cross-sectional view of a resistive memory device in accordance with an embodiment of the present disclosure. 2B is a top view of a resistive memory element in accordance with an embodiment of the present disclosure. As shown in FIGS. 2A and 2B, a resistive memory device 2 includes a bottom electrode 21, and a patterned dielectric layer 22 is formed on the bottom electrode 21 and has a via, a The barrier layer 23 is formed on the sidewall Vs and the bottom surface Vb of the via hole as a liner, and a ring-shaped metal layer 24 is formed on the sidewall 23s and the bottom surface 23b of the barrier layer 23, and an annular metal oxide A ring-shaped metal oxide 25 is formed on the upper surface 24t of the annular metal layer 24.

根據實施例,形成於環形金屬層24之上表面24t處的環形金屬氧化物係定義出一孔洞26,一中間層(a medium layer)27例如一絕緣物(insulation)或一導電層(conductive layer)係填滿孔洞26(其製法詳述於後)。一實施例中,一上電極(未繪示) 可形成於環形金屬氧化物25上,其中上電極和環形金屬氧化物25產生一自整流特性(self-rectified property)。 According to an embodiment, the annular metal oxide formed on the upper surface 24t of the annular metal layer 24 defines a hole 26, a medium layer 27 such as an insulation or a conductive layer. ) fills the hole 26 (the method of which is detailed later). In one embodiment, an upper electrode (not shown) It may be formed on the annular metal oxide 25, wherein the upper electrode and the annular metal oxide 25 produce a self-rectified property.

一實施例中,障壁層23之上表面23t係低於圖案化介電層22之上表面22t。一實施例中,環形金屬層24之上表面24t係低於圖案化介電層22之上表面22t。一實施例中,環形金屬氧化物25之上表面25t係實質上齊平於圖案化介電層22之上表面22t(如第2A圖所示),或稍微高過於圖案化介電層22之上表面22t。 In one embodiment, the upper surface 23t of the barrier layer 23 is lower than the upper surface 22t of the patterned dielectric layer 22. In one embodiment, the upper surface 24t of the annular metal layer 24 is lower than the upper surface 22t of the patterned dielectric layer 22. In one embodiment, the upper surface 25t of the annular metal oxide 25 is substantially flush with the upper surface 22t of the patterned dielectric layer 22 (as shown in FIG. 2A), or slightly higher than the patterned dielectric layer 22. Upper surface 22t.

注意的是,電阻式記憶體元件的細部結構可能根據實際應用之製作程序而稍加變化與修飾。第2A圖之結構僅繪示其中一種實施例,而結構中的一些元素可能存在但未顯示於第2A圖中。舉例而言,電阻式記憶體元件可更包括一障壁氧化物(barrier oxide,例如氧化鈦TiOx)(未繪示於第2A圖),在氧化製程後障壁氧化物係形成於障壁層23之上表面23t。 It is noted that the detailed structure of the resistive memory element may be slightly modified and modified depending on the fabrication procedure of the actual application. The structure of Fig. 2A shows only one of the embodiments, and some elements of the structure may exist but are not shown in Fig. 2A. For example, the resistive memory device may further include a barrier oxide (for example, titanium oxide TiOx) (not shown in FIG. 2A), and the barrier oxide is formed on the barrier layer 23 after the oxidation process. Surface 23t.

實施例之底部電極21係以一導電材料製作,例如金屬或半導體材料。可製作底部電極21的金屬例如是鐿(Yb)、鋱(Tb)、釔(Y)、鑭(La)、鈧(Sc)、鉿(Hf)、鋯(Zr)、鋁(Al)、鉭(Ta)、(鈦(Ti)、鈮(Nb)、鉻(Cr)、釩(V)、鋅(Zn)、鎢(W)、鉬(Mo)、銅(Cu)、錸(Re)、釕(Ru)、鈷(Co)、鎳(Ni)、銠(Rh)、鈀(Pd)、鉑(Pt)等,但本揭露並不僅限於此。一實施例中,底部電極21例如一層矽化鎢(tungsten silicide,WSix)沈積於一半導體層上例如N+多晶矽或P+多晶矽,以避免矽化鎢層剝落。根據一實施例,圖案化介電層 22包括氧化物(例如二氧化矽)或氮化物。根據實施例,環形金屬層24例如是,但不限制是,包括鎢(W)、矽化鎢(WSi)、鈦(Ti)、氮化鈦(TiN)、鉿(Hf)、鋁(Al)、矽化鈷(CoSi)、矽化鎳(NiSi)、銅(Cu)、鋯(Zr)、鈮(Nb)、鉭(Ta)或其他適合之材料。根據一實施例,環形金屬氧化物25例如是,但不限制是,包括氧化鎢(WOx)、矽氧化鎢(WSiOx、WxSiyOz或WSixOy)、矽氧化鈷(CoxSiyOz)、矽氧化氮(NixSiyOz)、氧化鈦(TiOx)、氧化鎳(NiOx)、氧化鋁(AlOx)、氧化銅(CuOx)、氧化鋯(ZrOx)、氧化鈮(NbOx)、氧化鉭(TaOx)、氮氧化鈦(TiNO)或其他適合之材料。上述列舉之材料僅為說明之用,實施例中各元素之材料可根據實際應用所需而作相應調整與變化。 The bottom electrode 21 of the embodiment is made of a conductive material such as a metal or semiconductor material. The metal capable of producing the bottom electrode 21 is, for example, Yb, Tb, Y, Y, Sc, Hf, Zr, Al, Al (Ta), (titanium (Ti), niobium (Nb), chromium (Cr), vanadium (V), zinc (Zn), tungsten (W), molybdenum (Mo), copper (Cu), antimony (Re), Ruthenium (Ru), cobalt (Co), nickel (Ni), rhodium (Rh), palladium (Pd), platinum (Pt), etc., but the disclosure is not limited thereto. In one embodiment, the bottom electrode 21 is, for example, layered. Tungsten silicide (WSix) is deposited on a semiconductor layer such as N+ polysilicon or P+ polysilicon to avoid spalling of the tungsten carbide layer. According to an embodiment, the patterned dielectric layer 22 includes an oxide such as hafnium oxide or a nitride. According to an embodiment, the annular metal layer 24 is, for example, but not limited to, comprising tungsten (W), tungsten telluride (WSi), titanium (Ti), titanium nitride (TiN), hafnium (Hf), aluminum (Al), Cobalt telluride (CoSi), nickel (NiSi), copper (Cu), zirconium (Zr), niobium (Nb), tantalum (Ta) or other suitable materials. According to an embodiment, the annular metal oxide 25 is, for example, but not limited to, tungsten oxide (WOx), tantalum tungsten oxide (WSiOx, WxSiyOz or WSixOy), cobalt oxide (CoxSiyOz), niobium nitric oxide (NixSiyOz), Titanium oxide (TiOx), nickel oxide (NiOx), aluminum oxide (AlOx), copper oxide (CuOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), titanium oxynitride (TiNO) or others Suitable materials. The materials listed above are for illustrative purposes only, and the materials of the elements in the examples may be adjusted and changed according to the needs of the actual application.

再者,環形金屬層24可利用化學氣相沈積(chemical vapor deposition,CVD)、物理氣相沈積(physical vapor deposition,PVD)、原子層沈積(Atomic Layer Deposition,ALD)、濺鍍製程、或其他適合之製程形成。一實施例中,環形金屬層24的厚度Tm是在約數十Å到數百Å之範圍內。再者,環形金屬氧化物25可利用快速熱氧化(rapid thermal oxidation,RTO)、濕式化學氧化(wet chemical oxidation)、電漿電解氧化(plasma electrolytic oxidation,PEO)或其他適合之製程形成。一實施例中,環形金屬氧化物25的厚度Tmo是在約100Å到400Å之範圍內。 Furthermore, the annular metal layer 24 may utilize chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), sputtering process, or the like. Suitable for the formation of processes. In one embodiment, the thickness Tm of the annular metal layer 24 is in the range of about tens of Å to hundreds of Å. Furthermore, the annular metal oxide 25 can be formed by rapid thermal oxidation (RTO), wet chemical oxidation, plasma electrolytic oxidation (PEO) or other suitable processes. In one embodiment, the thickness Tmo of the annular metal oxide 25 is in the range of about 100 Å to 400 Å.

根據本揭露,實施例之電阻式記憶體元件具有可靠 的結構和改良的電子特性。以一具有氧化鎢(WOx)之金屬氧化層(i.e.記憶體層)的可變電阻式記憶體(ReRAM)為例。第3A圖顯示一種傳統電阻式記憶體元件之操作,包括初次形成(Forming)、設定(SET)和重置(RESET)之過程。第3B圖顯示一實施例之一電阻式記憶體元件之操作,包括初次形成(Forming)、設定(SET)和重置(RESET)之過程。請同時參照第3A圖和第3B圖。第3A圖和第3B圖中,可變電阻式記憶體(ReRAM)包括氧化鎢(WOx)為金屬氧化層(i.e.記憶體層)係提供以做為測試,以比較特性之用。傳統的電阻式記憶體元件(即,如第1圖所示之金屬層14完全填滿障壁層13之通孔,和成長之金屬氧化層完全覆蓋金屬層14的上方)。初次形成過程(Forming processes)之一起始電阻(initial resistance)非常低(例如,約1K至10K歐姆),而需要較高的一起始電流(例如,約3毫安培至6毫安培)以將低的起始電阻拉至一較高的電阻以進行操作。 According to the present disclosure, the resistive memory element of the embodiment has reliability Structure and improved electronic properties. A variable resistance memory (ReRAM) having a metal oxide layer (i.e. memory layer) of tungsten oxide (WOx) is taken as an example. Figure 3A shows the operation of a conventional resistive memory device, including the processes of initial forming, setting (SET), and reset (RESET). Figure 3B shows the operation of one of the resistive memory elements of an embodiment, including the processes of initial forming, setting (SET), and resetting (RESET). Please refer to both Figures 3A and 3B. In FIGS. 3A and 3B, a variable resistance memory (ReRAM) including tungsten oxide (WOx) is provided as a metal oxide layer (i.e. memory layer) for testing to compare characteristics. A conventional resistive memory element (i.e., the metal layer 14 as shown in Fig. 1 completely fills the via hole of the barrier layer 13, and the grown metal oxide layer completely covers the metal layer 14). One of the initial forming processes has a very low initial resistance (eg, about 1K to 10K ohms) and a higher initial current (eg, about 3 milliamps to 6 milliamps) to be low. The starting resistance is pulled to a higher resistance for operation.

如第3B圖所示,實施例之電阻式記憶體元件(如,一環形WOx ReRAM)可以經由施加一正電流而到達重置狀態(RESET state),其中在操作時係從一低阻值提高至一高阻值。而且,實施例之電阻式記憶體元件也可以經由施加一負電流而到達設定狀態(SET state),其中在操作時係從一高阻值降低至一低阻值。再者,實施例之電阻式記憶體元件顯示一高的起始電阻(例如,約1兆歐姆(mega ohm)到1千兆歐姆(giga ohm)之範圍內),代表電阻式記憶體具有良好和均勻的氧化物。再者,實施例之電 阻式記憶體元件僅需要較低的一起始電流(例如,約0.4毫安培至0.6毫安培)以進行操作。 As shown in FIG. 3B, the resistive memory device of the embodiment (eg, a ring-shaped WOx ReRAM) can reach a reset state (RESET state) by applying a positive current, wherein the operation is increased from a low resistance value. To a high resistance value. Moreover, the resistive memory device of the embodiment can also reach a set state (SET state) by applying a negative current, wherein the operation is reduced from a high resistance value to a low resistance value. Furthermore, the resistive memory device of the embodiment exhibits a high initial resistance (for example, in the range of about 1 mega ohm to 1 giga ohm), which means that the resistive memory has good And a uniform oxide. Furthermore, the power of the embodiment Resistive memory components require only a relatively low initial current (eg, from about 0.4 milliamps to 0.6 milliamps) for operation.

和傳統的電阻式記憶體元件(如:第3A圖之WOx ReRAM)相較,實施例之電阻式記憶體元件也可以成功進行設定過程(SET process)和重置過程(RESETprocess)的操作,但在形成過程(Forming processes)顯示了一較高的起始電阻,且較低的電流就能操作。再者,沒有接縫和/或空孔等缺陷會在實施例之電阻式記憶體元件的金屬層中產生,因而可避免發生如傳統電阻式記憶體元件的電阻值變異之問題。因此,實施例之電阻式記憶體元件的電子特性和操作穩定度都可大幅增加。以下表1係列出傳統和實施例之電阻式記憶體元件的其中一組實驗數據。 Compared with the conventional resistive memory component (such as WOx ReRAM in FIG. 3A), the resistive memory component of the embodiment can also successfully perform the SET process and the reset process (RESETprocess), but The forming process shows a higher initial resistance and a lower current can be operated. Further, defects such as no seams and/or voids are generated in the metal layer of the resistive memory element of the embodiment, so that the problem of variation in resistance value of the conventional resistive memory element can be avoided. Therefore, the electronic characteristics and operational stability of the resistive memory element of the embodiment can be greatly increased. Table 1 below is a series of experimental data from a series of conventional and exemplary resistive memory elements.

另外,實施例之電阻式記憶體元件更具有可控制的 起始電阻,其起始電阻值係隨氧化製程之溫度而改變。若環形金屬層24的氧化是以快速熱氧化(RTO)製程進行。根據實驗結果可觀察到:具有環形金屬層和環形金屬氧化物的實施例之電阻式記憶體元件(例如環形WOx ReRAM),根據RTO的製程溫度係表現出更敏感的製程窗口(sensitive window)和可控制的起始電阻。 In addition, the resistive memory element of the embodiment is more controllable The initial resistance, whose initial resistance value changes with the temperature of the oxidation process. If the oxidation of the annular metal layer 24 is carried out by a rapid thermal oxidation (RTO) process. According to the experimental results, it can be observed that the resistive memory element (for example, the ring-shaped WOx ReRAM) of the embodiment having the annular metal layer and the annular metal oxide exhibits a more sensitive process window and a process window according to the process temperature of the RTO. Controllable starting resistance.

第4圖顯示相關實驗中以RTO進行氧化製程的傳統和實施例之電阻式記憶體元件的起始電阻。第4圖中,曲線(1)和(2)代表實施例之電阻式記憶體元件中分別以400℃和500℃形成環形金屬氧化物25,且曲線(1)和(2)的起始電阻有明顯的區別。第4圖中,曲線(3)和(4)代表傳統電阻式記憶體元件中分別以400℃和500℃形成金屬氧化物,兩者所呈現的起始電阻幾乎沒有差異。 Fig. 4 is a graph showing the initial resistance of a conventional and exemplary resistive memory device in which an oxidation process is performed by RTO in the related experiments. In Fig. 4, curves (1) and (2) represent annular metal oxides 25 formed at 400 ° C and 500 ° C, respectively, in the resistive memory device of the embodiment, and the initial resistances of the curves (1) and (2) There are obvious differences. In Fig. 4, curves (3) and (4) represent the formation of metal oxides at 400 ° C and 500 ° C in conventional resistive memory devices, respectively, and the initial resistance exhibited by the two is almost the same.

第5圖為形成過程中實施例之電阻式記憶體元件之形成電壓(forming voltages)與起始電阻之關係曲線圖,其中環形金屬氧化物以不同RTO製程溫度形成。第5圖中,曲線(5)代表實施例之電阻式記憶體元件具有以400℃之RTO製程溫度形成之環形金屬氧化物25,其相應於形成電壓之起始電阻(Rin)約為8.25×107Ω。曲線(6)代表實施例之電阻式記憶體元件具有以450℃之RTO製程溫度形成之環形金屬氧化物25,其相應於形成電壓之起始電阻(Rin)約為之5.4×108Ω。曲線(7)代表實施例之電阻式記憶體元件具有以500℃之RTO製程溫度形成之環形金屬氧化物25,其相應於形成電壓之起始電阻(Rin)約為1.63×109Ω。根據實驗結 果,實施例之電阻式記憶體元件的起始電阻係隨形成環形金屬氧化物25的氧化製程之溫度變化而相應地改變。再者,如第5圖所示,形成電壓係隨起始電阻的提高而增加。即起始電阻越高,形成電壓亦越高。注意此處實驗所提出的RTO製程溫度僅為例示,並非限制之用。其他適當的RTO製程溫度亦可選擇做為實施例之氧化製程溫度。一實施例中,環形金屬氧化物25可經由氧化製程溫度在400℃到600℃之間的一氧化製程而形成。 Figure 5 is a graph showing the formation voltages of the resistive memory elements of the embodiment during formation versus the initial resistance, wherein the annular metal oxide is formed at different RTO process temperatures. In Fig. 5, the curve (5) represents that the resistive memory device of the embodiment has the ring-shaped metal oxide 25 formed at an RTO process temperature of 400 ° C, and the initial resistance (Rin) corresponding to the formation voltage is about 8.25 × 10 7 Ω. The curve (6) represents that the resistive memory element of the embodiment has the ring-shaped metal oxide 25 formed at an RTO process temperature of 450 ° C, which corresponds to a starting resistance (Rin) of the formation voltage of about 5.4 × 10 8 Ω. Curve (7) represents that the resistive memory device of the embodiment has a toroidal metal oxide 25 formed at an RTO process temperature of 500 ° C, which corresponds to a starting resistance (Rin) of a formation voltage of about 1.63 × 10 9 Ω. According to the experimental results, the initial resistance of the resistive memory element of the embodiment changes correspondingly with the temperature change of the oxidation process for forming the annular metal oxide 25. Furthermore, as shown in Fig. 5, the formation voltage system increases as the initial resistance increases. That is, the higher the initial resistance, the higher the formation voltage. Note that the RTO process temperature set forth in this experiment is for illustrative purposes only and is not limiting. Other suitable RTO process temperatures may also be selected as the oxidation process temperature of the examples. In one embodiment, the annular metal oxide 25 can be formed via an oxidation process having an oxidation process temperature between 400 ° C and 600 ° C.

當實施例之電阻式記憶體元件應用至一實際陣列結構,結構之電子特性將可被明顯改善。第6圖顯示一種實施例之電阻式記憶體元件之初次形成(Forming)、設定(SET)和重置(RESET)的模擬操作,其中操作條件為5V/500μA(ECL實驗數據)。如第6圖所示,形成狀態(Forming state)、設定狀態(SET state)和重置狀態(RESET state)可以明顯的區分。當實施例之電阻式記憶體元件應用至1T1R(1電晶體,1電阻)陣列,由於實施例電阻式記憶體元件改良的結構,使整體陣列可呈現更多優異的電子特性。 When the resistive memory device of the embodiment is applied to an actual array structure, the electronic characteristics of the structure can be significantly improved. Figure 6 shows the initial operations of forming, setting (SET) and resetting (RESET) of the resistive memory elements of one embodiment, with operating conditions of 5V/500μA (ECL experimental data). As shown in Fig. 6, the forming state, the SET state, and the RESET state can be clearly distinguished. When the resistive memory device of the embodiment is applied to a 1T1R (1 transistor, 1 resistance) array, the overall array can exhibit more excellent electronic characteristics due to the improved structure of the resistive memory device of the embodiment.

以下係提出兩種可應用之實施例電阻式記憶體元件(具有環形記憶體層)的製造方法作舉例說明,但僅為例示之用,本揭露並不僅限於此兩種製法。 The following is a description of the manufacturing method of the two applicable resistive memory elements (having a ring memory layer), but for illustrative purposes only, the disclosure is not limited to the two methods.

第7A圖至第7F圖繪示本揭露一實施例之電阻式記憶體元件的第一種製造方法。如第7A圖所示,具有一通孔72v之一圖案化介電層72係形成於一底部電極71上,且一障壁層 73(例如TiN)沈積於圖案化介電層72上並形成於通孔72v的側壁Vs和底表面Vb上如同一襯裡。如第7B圖所示,一環形金屬層(例如鎢)74沈積於障壁層73的側壁73s和底表面73b上(藉由CVD、PVD、ALD、濺鍍或其他適合製程),其中環形金屬層74係定義出一孔洞74h。如第7C圖所示,一絕緣層(如一介電層,材料例如是氧化物)IL係沈積於環形金屬層74上並填滿孔洞74h。如第7D圖所示,對絕緣層IL、環形金屬層74和障壁層73進行平坦化,例如利用化學機械研磨(CMP),以形成絕緣物IL’。如第7E圖所示,之後回蝕障壁層73’(亦可選擇性地回蝕絕緣物IL’)。如第7F圖所示,藉由一氧化製程(例如RTO、濕式化學氧化、電漿電解氧化或其他適合製程)以氧化環形金屬層74’,進而形成環形金屬氧化物75於環形金屬層74”之上表面74t處。 7A to 7F illustrate a first method of fabricating a resistive memory device according to an embodiment of the present disclosure. As shown in FIG. 7A, a patterned dielectric layer 72 having a via 72v is formed on a bottom electrode 71 and a barrier layer 73 (e.g., TiN) is deposited on the patterned dielectric layer 72 and formed on the sidewall Vs of the via 72v and the bottom surface Vb as the same liner. As shown in FIG. 7B, an annular metal layer (e.g., tungsten) 74 is deposited on sidewalls 73s and bottom surfaces 73b of the barrier layer 73 (by CVD, PVD, ALD, sputtering, or other suitable process), wherein the annular metal layer The 74 series defines a hole 74h. As shown in Fig. 7C, an insulating layer (e.g., a dielectric layer, such as an oxide) IL is deposited on the annular metal layer 74 and fills the holes 74h. As shown in Fig. 7D, the insulating layer IL, the annular metal layer 74, and the barrier layer 73 are planarized, for example, by chemical mechanical polishing (CMP) to form the insulator IL'. As shown in Fig. 7E, the barrier layer 73' is then etched back (and the insulator IL' can also be selectively etched back). As shown in FIG. 7F, the annular metal layer 74' is oxidized by an oxidation process (eg, RTO, wet chemical oxidation, plasma electrolytic oxidation, or other suitable process) to form an annular metal oxide 75 in the annular metal layer 74. "At the top surface 74t.

根據第7A圖至第7F圖所例示之製造方法,一障壁氧化物(barrier oxide)(例如TiOx)77亦於氧化製程時形成於障壁層73”之上表面73t處(第7F圖),其中障壁氧化物77和環形金屬氧化物75係同時形成。一實施例中,氧化製程後之絕緣物IL’的上表面係高於環形金屬層74”之上表面74t。再者,一實施例中,圖案化介電層72之上表面72t係高於障壁層73”之上表面73t,亦高於環形金屬層74”之上表面74t。 According to the manufacturing method illustrated in FIGS. 7A to 7F, a barrier oxide (for example, TiOx) 77 is also formed on the upper surface 73t of the barrier layer 73" during the oxidation process (FIG. 7F), wherein The barrier oxide 77 and the annular metal oxide 75 are simultaneously formed. In one embodiment, the upper surface of the insulator IL' after the oxidation process is higher than the upper surface 74t of the annular metal layer 74". Moreover, in one embodiment, the upper surface 72t of the patterned dielectric layer 72 is higher than the upper surface 73t of the barrier layer 73" and higher than the upper surface 74t of the annular metal layer 74".

第8A圖至第8F圖繪示本揭露一實施例之電阻式記憶體元件的第二種製造方法。第8A圖至第8F圖中與第7A圖至第7F圖相同和/或相似元件係沿用相同和/或相似標號。如第8A 圖所示(同第7A圖),其有一通孔72v之一圖案化介電層72係形成於一底部電極71上,且一障壁層73(例如TiN)沈積於圖案化介電層72上並形成於通孔72v的側壁Vs和底表面Vb上如同一襯裡。如第8B圖所示(同第7B圖),一環形金屬層(例如鎢)74沈積於障壁層73的側壁73s和底表面73b上(藉由CVD、PVD、ALD、濺鍍或其他適合製程),其中環形金屬層74係定義出一孔洞74h。 8A to 8F illustrate a second method of fabricating a resistive memory device according to an embodiment of the present disclosure. The same and/or similar reference numerals are used for the same and/or similar elements in FIGS. 8A to 8F as in FIGS. 7A to 7F. Like 8A As shown in FIG. 7A, a patterned dielectric layer 72 having a via 72v is formed on a bottom electrode 71, and a barrier layer 73 (eg, TiN) is deposited on the patterned dielectric layer 72. And formed on the side wall Vs of the through hole 72v and the bottom surface Vb as the same lining. As shown in FIG. 8B (same as FIG. 7B), an annular metal layer (eg, tungsten) 74 is deposited on sidewalls 73s and bottom surfaces 73b of barrier layer 73 (by CVD, PVD, ALD, sputtering, or other suitable process). Wherein the annular metal layer 74 defines a hole 74h.

如第8C圖所示,一導體(如一金屬層)ML係沈積於環形金屬層74上並填滿孔洞74h。如第8D圖所示,對導體ML、環形金屬層74和障壁層73進行平坦化,例如利用化學機械研磨(CMP),以形成一導電層ML’。如第8E圖所示,之後回蝕障壁層73’和導電層ML’。如第8F圖所示,藉由一氧化製程(例如RTO、濕式化學氧化、電漿電解氧化或其他適合製程)以氧化環形金屬層74’,進而形成環形金屬氧化物75於環形金屬層74”之上表面74t處,並同時形成一導電氧化物78於導電層ML”的上表面。根據第8A圖至第8F圖所例示之製造方法,一障壁氧化物(barrier oxide)(例如TiOx)77亦於氧化製程時形成於障壁層73”之上表面73t處(第8F圖),其中障壁氧化物77、環形金屬氧化物75和導電氧化物78係同時形成。一實施例中,氧化製程後之導電層ML”的上表面係高於環形金屬層74”之上表面74t。再者,一實施例中,圖案化介電層72之上表面72t係高於障壁層73”之上表面73t,亦高於環形金屬層74”之上表面74t,也高於導電層ML”之上表面。 As shown in Fig. 8C, a conductor (e.g., a metal layer) ML is deposited on the annular metal layer 74 and fills the holes 74h. As shown in Fig. 8D, the conductor ML, the annular metal layer 74, and the barrier layer 73 are planarized, for example, by chemical mechanical polishing (CMP) to form a conductive layer ML'. As shown in Fig. 8E, the barrier layer 73' and the conductive layer ML' are then etched back. As shown in FIG. 8F, the annular metal layer 74' is oxidized by an oxidation process (eg, RTO, wet chemical oxidation, plasma electrolytic oxidation, or other suitable process) to form the annular metal oxide 75 in the annular metal layer 74. "At the upper surface 74t, and simultaneously forming a conductive oxide 78 on the upper surface of the conductive layer ML". According to the manufacturing method illustrated in FIGS. 8A to 8F, a barrier oxide (for example, TiOx) 77 is also formed on the upper surface 73t of the barrier layer 73" during the oxidation process (Fig. 8F), wherein The barrier oxide 77, the annular metal oxide 75 and the conductive oxide 78 are simultaneously formed. In one embodiment, the upper surface of the conductive layer ML" after the oxidation process is higher than the upper surface 74t of the annular metal layer 74". In one embodiment, the upper surface 72t of the patterned dielectric layer 72 is higher than the upper surface 73t of the barrier layer 73", and is higher than the upper surface 74t of the annular metal layer 74", and is also higher than the conductive layer ML" surface.

根據上述實施例,實施例之電阻式記憶體元件可以廣泛地被應用於各種電阻式記憶體(例如可變電阻式記憶體,ReRAM)陣列。根據實施例,電阻式記憶體元件提供了一種簡單又可靠的結構以縮小接觸孔之尺寸(即,環形金屬氧化物),且亦增進了電阻式記憶體元件的電子特性。例如,沒有接縫和/或空孔等缺陷會在實施例之電阻式記憶體元件的金屬層中產生,且可以獲得一更高(且可控制的)起始電阻(Rin)。實施例之電阻式記憶體元件的起始電阻可藉由變化氧化製程之溫度而作相應調整與控制。再者,形成電壓係隨起始電阻(Rin)的提高而增加(即起始電阻越高,形成電壓亦越高)。另外,實施例之電阻式記憶體元件之製造方法提供了簡單的製作流程,且採用非耗時亦非昂貴之程序,在製作上適合量產。 According to the above embodiment, the resistive memory device of the embodiment can be widely applied to various resistive memory (e.g., variable resistance memory, ReRAM) arrays. According to an embodiment, the resistive memory element provides a simple and reliable structure to reduce the size of the contact hole (i.e., the annular metal oxide) and also enhances the electrical characteristics of the resistive memory element. For example, defects such as no seams and/or voids can be created in the metal layer of the resistive memory device of the embodiment, and a higher (and controllable) starting resistance (Rin) can be obtained. The initial resistance of the resistive memory device of the embodiment can be adjusted and controlled accordingly by varying the temperature of the oxidation process. Furthermore, the formation voltage increases as the initial resistance (Rin) increases (ie, the higher the initial resistance, the higher the formation voltage). In addition, the manufacturing method of the resistive memory element of the embodiment provides a simple manufacturing process, and adopts a non-time consuming and non-expensive program, which is suitable for mass production in production.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

2‧‧‧電阻式記憶體元件 2‧‧‧Resistive memory components

22‧‧‧圖案化介電層 22‧‧‧ patterned dielectric layer

25‧‧‧環形金屬氧化物 25‧‧‧Circular metal oxides

27‧‧‧中間層 27‧‧‧Intermediate

Claims (10)

一種電阻式記憶體元件,至少包括:一底部電極(bottom electrode);一圖案化介電層具有一通孔(via),該圖案化介電層形成於該底部電極上;一障壁層,形成於該通孔的側壁和一底表面上作為一襯裡;一環形金屬層(ring-shaped metal layer)形成於該障壁層的側壁和一底表面上;和一環形金屬氧化物(ring-shaped metal oxide)形成於該環形金屬層之一上表面處和該障壁層的一上表面處;其中該環形金屬層之該上表面和該障壁層的該上表面皆低於該圖案化介電層之一上表面。 A resistive memory device includes at least: a bottom electrode; a patterned dielectric layer having a via formed on the bottom electrode; and a barrier layer formed on the barrier layer a sidewall of the through hole and a bottom surface as a liner; a ring-shaped metal layer formed on the sidewall and a bottom surface of the barrier layer; and a ring-shaped metal oxide Forming at an upper surface of the annular metal layer and an upper surface of the barrier layer; wherein the upper surface of the annular metal layer and the upper surface of the barrier layer are lower than one of the patterned dielectric layers Upper surface. 如申請專利範圍第1項所述之電阻式記憶體元件,更包括一障壁氧化物(barrier oxide)形成於該障壁層之該上表面處。 The resistive memory device of claim 1, further comprising a barrier oxide formed on the upper surface of the barrier layer. 如申請專利範圍第1項所述之電阻式記憶體元件,其中該環形金屬層係定義一孔洞於該通孔中,且一中間層(a medium layer)係填滿該孔洞。 The resistive memory device of claim 1, wherein the annular metal layer defines a hole in the through hole, and a medium layer fills the hole. 如申請專利範圍第3項所述之電阻式記憶體元件,其中該中間層係為一導電層(conductive layer),且該導電層和該障壁層包括相同材料。 The resistive memory device of claim 3, wherein the intermediate layer is a conductive layer, and the conductive layer and the barrier layer comprise the same material. 一種電阻式記憶體元件之製造方法,至少包括:提供一底部電極(bottom electrode); 形成一圖案化介電層於該底部電極上,該圖案化介電層具有一通孔(via);形成一障壁層於該通孔的側壁和一底表面上作為一襯裡;形成一環形金屬層(ring-shaped metal layer)於該障壁層的側壁和一底表面上;和形成一環形金屬氧化物(ring-shaped metal oxide)於該環形金屬層之一上表面處和該障壁層的一上表面處;其中該環形金屬層之該上表面和該障壁層的該上表面皆低於該圖案化介電層之一上表面。 A method for manufacturing a resistive memory device, comprising at least: providing a bottom electrode; Forming a patterned dielectric layer on the bottom electrode, the patterned dielectric layer having a via; forming a barrier layer on the sidewall and a bottom surface of the via as a liner; forming an annular metal layer (ring-shaped metal layer) on the sidewall and a bottom surface of the barrier layer; and forming a ring-shaped metal oxide on an upper surface of the annular metal layer and on the barrier layer a surface; wherein the upper surface of the annular metal layer and the upper surface of the barrier layer are lower than an upper surface of the patterned dielectric layer. 如申請專利範圍第5項所述之製造方法,其中該環形金屬層係定義一孔洞於該通孔中,且該方法更包括填充一中間層(a medium layer)於該孔洞。 The manufacturing method of claim 5, wherein the annular metal layer defines a hole in the through hole, and the method further comprises filling a medium layer in the hole. 如申請專利範圍第6項所述之製造方法,其中該中間層係為一絕緣物(insulation),且填充該絕緣物於該孔洞之步驟包括:沈積一絕緣層於該環形金屬層上並填滿該孔洞;和平坦化該絕緣層、該環形金屬層和該障壁層,而形成該絕緣物。 The manufacturing method of claim 6, wherein the intermediate layer is an insulation, and the step of filling the insulator in the hole comprises: depositing an insulating layer on the annular metal layer and filling Filling the hole; and planarizing the insulating layer, the annular metal layer, and the barrier layer to form the insulator. 如申請專利範圍第6項所述之製造方法,更包括:回蝕該障壁層之該上表面;和藉由氧化該環形金屬層而形成該環形金屬氧化物;其中,氧化後該絕緣物之一上表面係高於該環形金屬層之該上表面。 The manufacturing method of claim 6, further comprising: etch back the upper surface of the barrier layer; and forming the annular metal oxide by oxidizing the annular metal layer; wherein the insulating An upper surface is higher than the upper surface of the annular metal layer. 如申請專利範圍第8項所述之製造方法,更包括:藉由氧化以形成一障壁氧化物(barrier oxide)於該障壁層之該上表面處,其中該障壁氧化物和該環形金屬氧化物係同時形成。 The manufacturing method of claim 8, further comprising: forming a barrier oxide at the upper surface of the barrier layer by oxidation, wherein the barrier oxide and the annular metal oxide It is formed at the same time. 如申請專利範圍第6項所述之製造方法,其中該中間層係為一導電層(conductive layer),且填充該導電層於該孔洞之步驟包括:沈積一導體於該環形金屬層上並填滿該孔洞;和平坦化該導體、該環形金屬層和該障壁層,而形成該導電層。 The manufacturing method of claim 6, wherein the intermediate layer is a conductive layer, and the step of filling the conductive layer in the hole comprises: depositing a conductor on the annular metal layer and filling Filling the hole; and planarizing the conductor, the annular metal layer and the barrier layer to form the conductive layer.
TW104102459A 2015-01-26 2015-01-26 Resistive memory device and method for manufacturing the same TWI572027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104102459A TWI572027B (en) 2015-01-26 2015-01-26 Resistive memory device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104102459A TWI572027B (en) 2015-01-26 2015-01-26 Resistive memory device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201628184A TW201628184A (en) 2016-08-01
TWI572027B true TWI572027B (en) 2017-02-21

Family

ID=57181869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104102459A TWI572027B (en) 2015-01-26 2015-01-26 Resistive memory device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI572027B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669716B (en) * 2018-11-09 2019-08-21 華邦電子股份有限公司 Memory storage apparatus and forming method of resistive memory device thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201133757A (en) * 2009-11-17 2011-10-01 Samsung Electronics Co Ltd Semiconductor device having a conductive structure and method of forming the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201133757A (en) * 2009-11-17 2011-10-01 Samsung Electronics Co Ltd Semiconductor device having a conductive structure and method of forming the same

Also Published As

Publication number Publication date
TW201628184A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
TWI450390B (en) Nonvolatile memory devices that use resistance materials and internal electrodes, and related methods and processing systems
US10276793B2 (en) Variable resistance memory devices and methods of manufacturing the same
JP5488458B2 (en) Resistance change element and manufacturing method thereof
TWI628818B (en) Method of making a resistive random access memory device
US10748966B2 (en) Three-dimensional memory device containing cobalt capped copper lines and method of making the same
US8618524B2 (en) Phase change memory with various grain sizes
KR100672274B1 (en) Rram memory cell electrodes
EP2202816B1 (en) Method for manufacturing a resistive switching memory device
TWI621290B (en) Sidewall-type memory cell
WO2009096363A1 (en) Resistance nonvolatile memory device and method for manufacturing same
WO2014030393A1 (en) Resistance changing element, and method for manufacturing resistance changing element
TW201013920A (en) Resistive memory device and method of fabricating the same
KR20100053205A (en) Non-volatile memory device
TWI752268B (en) Phase change memory structure and the same
US9281477B2 (en) Resistance change element and method for producing the same
JP5464148B2 (en) Variable resistance element
WO2022200145A1 (en) Phase change memory
TWI418027B (en) Phase-change memory devices and methods for fabricating the same
TWI572027B (en) Resistive memory device and method for manufacturing the same
CN105990518B (en) Resistance-type memory element and its manufacturing method
US9455402B2 (en) Resistive memory device with ring-shaped metal oxide on top surfaces of ring-shaped metal layer and barrier layer
JP6102121B2 (en) Resistance change element and method of forming resistance change element
JP5412012B1 (en) Resistance variable nonvolatile memory element and manufacturing method thereof
TWI730475B (en) Integrated circuit device and forming method thereof
JP4746683B2 (en) Manufacturing method of semiconductor device