TW201125732A - Optical layered product, polarizer and display using the optical layered product - Google Patents

Optical layered product, polarizer and display using the optical layered product Download PDF

Info

Publication number
TW201125732A
TW201125732A TW099129620A TW99129620A TW201125732A TW 201125732 A TW201125732 A TW 201125732A TW 099129620 A TW099129620 A TW 099129620A TW 99129620 A TW99129620 A TW 99129620A TW 201125732 A TW201125732 A TW 201125732A
Authority
TW
Taiwan
Prior art keywords
optical
functional layer
layer
layered body
optical layered
Prior art date
Application number
TW099129620A
Other languages
Chinese (zh)
Other versions
TWI490124B (en
Inventor
Kazuya Ohishi
Chikara Murata
Masaomi Kuwabara
Hideki Moriuchi
Naoki Serizawa
Takayuki Kawanishi
Takayuki Nakanishi
Original Assignee
Tomoegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009240799A external-priority patent/JP5490487B2/en
Application filed by Tomoegawa Co Ltd filed Critical Tomoegawa Co Ltd
Publication of TW201125732A publication Critical patent/TW201125732A/en
Application granted granted Critical
Publication of TWI490124B publication Critical patent/TWI490124B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Provided is an optical layered product having a single-layered structure with excellent anti-static property, light resistance, saponification resistance and scratch resistance, a polarizer and a display using the optical layered product. The optical layered product is one with at least an optical functional layer disposed directly on a light-transmitting substrate or with other layer(s) interposed therebetween. The optical functional layer at least contains a conductive material. The surface resistivity of the surface of the optical layered product obtained after a carbon-arc type light exposure test is less than 1.0x10<SP>12</SP> Ω / □ , and the ratio of surface resistivity, i.e., R2/R1, prior and after the test is less than 10<SP>4</SP>, wherein R1 represents the surface resistivity prior to the carbon-arc type light resistance test, and R2 represents the surface resistivity after the carbon-arc type light resistance test.

Description

201125732 六、發明說明: 【發明所屬之技術領域】 本發明涉及光學積層體、偏光板及使用該光學積層體 之顯示裝置。 【先前技術】 就液晶顯示裝置(LCD)、布朗(Braun)管(CRT)顯示器、 投影顯示器、電漿顯示器(PDP)、電致發光 (electroluminescene)顯示器等圖像顯示裝置而言,在顯 示裝置表面,由於螢光燈等的室内照明、太陽光從窗戶的 入射、操作者的影子等的映入,而妨礙圖像的可見性。此 外’還要求對該圖像顯示面賦予耐擦傷性,以防止在操作 a寺:^成傷。為此,對這些顯示器的表面而言,為了提高 圖像、可見性’而在最表面設置具有形成了微細凹凸結構 的防眩(antiglare,亦稱防炫)層、硬塗層等光學功能層的 層體’㈣一凸結構能夠使表面反射光擴散、抑 制外的正反射、防止外部環境的映人(具有防眩性)。 些光學積層體而言,通常有如下的光學積層體被 製二' 即’在聚對笨二甲酸乙二醋(以下,稱為 诚二酷酸纖維素(以下,稱為“TAC”)等透光性基 础、iTy* &amp;層形成有微細凹凸結構的防眩層的光學積層 /,正散層上積層有低折射率㈣光學積層體,現 學積層體。1藉由層構造的組合來提供所希望的功能的光 的性質。例如,光學功能層具 光學功能層具有所希望 4 322324 201125732 - 有硬塗性的光學積層體,能夠用作具備硬塗層的硬塗膜。 _ 另外’在光學功能層的表面形成有微細凹凸結構的光學積 層體,不僅能夠用作硬塗膜,並且,也能夠用作具備防眩 _層的防眩膜。此外,作為光學功能層,也可以使用光擴散 -層、低折射率層。藉由將這些硬塗層、防眩層等光學功能 層以單層形式使用或者進行多層式組合,而使得具備有所b 希望的功能的光學積層體的開發在不斷進展。 二 =示:的最表面(觀察面側),存在有由於靜電而 &amp;成的私附者、液晶顯示工作不良等問題,而 =二?功能的光學積層體。尤其是,伴隨著顯示器的 古也包括塵埃的附著容易變得顯眼的原因,而 直而求帶有抗靜電功能的光學積層體。 „料’對於顯示㈣最表面(觀θ察面側),可預料到有 嚴峻婦(由物理、機械、化學刺激 :預,沾有玻璃清潔劑(表面活嶋等 =二的抹布擦拭附著於顯示器表面的灰塵、 求改善防污性。㈣塗膜表面’ 一直要 作為帶有抗靜電功能的抗靜 透明基材膜上依次積層有透明眩膜,有人提出了在 (例如’參照專利文獻… ^層和防眩層而成的膜 另外’藉由塗布樹脂層能夠 眩膜,該層結構的抗靜電防 物,並添加有用於賦予防眩性的電性的四級銨鹽性化合 、透光性微粒(例如,專利文 322324 5 201125732 獻 2 、 3)。 另外,作為導電材料,有人提出了使用聚苯胺、聚噻 吩(polythiophene)等有機導電材料的光學積層體。由於有 機系導電材料的耐光性比無機系材料差,不能保持抗靜電 性能,而一直要求對其進行改良。這裏,為了改善耐光性, 有人提出了與玻璃轉移點高的樹脂混合的方法(例如,專利 文獻4)。 另外,有人公開了將硬塗層直接設置在包含三醋酸纖 維素膜的基材上而成的抗靜電硬塗膜,該硬塗層含有粒徑 lOOnm以下的三氧化二銻等金屬氧化物、分子内具有3個 以上丙稀醯基的化合物和分子内含有氣原子的丙烯酸類化 合物(例如,參照專利文獻5)。 專利文獻1 :日本特開2002-254573號公報 專利文獻2 : W02007/032170號公報 專利文獻3 :日本特開2009-66891號公報 專利文獻4:日本特開2008-181120號公報 專利文獻5 :日本特許第4221990號公報 【發明内容】 (發明欲解決的課題) 對於用於顯示器的光學積層體,一直要求抗靜電性 能。這裏,為了能夠耐受在室外用途中使用,而要求抗靜 電性能不因太陽光等光而發生變化的耐光性。另外,用於 顯示器的偏光板的保護膜,在將偏光基體和三醋酸纖維素 系保護膜貼合時,通常進行皂化等處理來提高偏光基體和 6 322324 201125732 保護膜的黏接性。因此,對於在三醋酸纖維素系保護膜上 ' 積層的光學功能層、光學積層體,要求抗靜電性能不變化 的财皂化性。 如專利文獻1所示,作為具有抗靜電功能的抗靜電防 * 眩膜,提出了在透明基材膜上依次積層有透明導電層和防 眩層而成的膜,就該構造而言,抗靜電性、防眩性等優異, 但是,由於是在透明基材膜上積層有2層的構造,因此存 在成本高的問題。 如專利文獻2、3所示,藉由塗布樹脂層而能得到在透 明基材膜上積層有丨層的構造的光學積層體,該樹脂層含 有用於賦予抗靜電性的四級銨鹽系化合物,並添加有用於 賦予防眩性的透光性微粒,但是,該構造會產生導電性因 皂化處理而降低等的問題。 就使用有聚苯胺、聚噻吩等導電性高分子的光學積層 體而言,由於有機系導電材料的耐光性比無機系材料差, 不能保持抗靜電性能,因此,一直要求對其進行改良。這 裏,如專利文獻4所示,為了改善耐光性,提出了與玻璃 轉移點高的樹脂混合的方法,但是,由於這裏使用的玻璃 轉移點高的樹脂自身的硬度低,而存在表面硬度低、耐劃 傷性降低的問題。 專利文獻5所記載的抗靜電硬塗膜的抗靜電性、耐擦 傷性優異。但是,該抗靜電硬塗膜中添加有用於控制折射 率的氟材料,得不到足夠的防污性,當實施皂化處理時, 硬塗層中的氟材料溶出,存在防污性降低的問題。即,要 7 322324 201125732 求改善皂化處理後的防污性。 本發明鑒於上述情況,目的在於提供一種以一層構造 就具有優異的抗靜電性能且耐光性、耐皂化性以及耐劃傷 性優異的光學積層體、偏光板及使用該光學積層體之顯示 裝置。 進而,本發明的目的在於提供一種表現出抗靜電性以 及防污性、即使進行了皂化處理時抗靜電性和防污性也不 太會降低的光學積層體以及使用該光學積層體之偏光板和 顯示裝置。 (解決課題的手段) . 本發明藉由下述技術構成,而解決上述技術課題。 (1) 一種光學積層體,其為在透光性基體上直接或者隔 著其他層至少設置有光學功能層的光學積層體,該光學功 能層至少含有導電材料,該光學積層體表面的碳弧(carbon arc)式耐光性試驗後的表面電阻率為1. 0x1012Ω / □以 下,並且,碳弧式耐光性試驗前後的表面電阻率之比 (R2/R1 ; R1為碳弧式耐光性試驗前的表面電阻率,R2為碳 弧式耐光性試驗後的表面電阻率)為104以下。 (2) 如前項(1)所述的光學積層體,其中,碳弧式耐光 性試驗後的飽和帶電電壓為1. 5kV以下。 (3) 如前項(1)或(2)所述的光學積層體,其中,前述光 學功能層含有樹脂成分、和透光性微粒或經由凝聚而能形 成凹凸的無機成分的至少一種而成者。 (4) 如前項(1)至(3)中任一項所述的光學積層體,其 8 322324 201125732 中,前述光學功能層含有電離放射線固化型氟化丙烯酸酯。 ' (5)如前項(4)所述的光學積層體,其中,前述光學功 能層是將至少含有電離放射線固化型氟化丙烯酸酯和導電 性金屬氧化物的組成物進行固化而得到的層,前述電離放 ' 射線固化型氟化丙烯酸酯的分子量為1000以上,且含有3 個以上丙烯醯基。 (6) 如前項(5)所述的光學積層體,其中,前述電離放 射線固化型氟化丙烯酸酯含有全氟烷基。 (7) 如前項(5)或(6)所述的光學積層體,其中,前述電 離放射線固化型氟化丙烯酸酯的氟原子含有率為20%以上。 (8) 如前項(5)至(7)中任一項所述的光學積層體,其 中,前述電離放射線固化型氟化丙烯酸酯是用下式(A)表示 的化合物。 r[Technical Field] The present invention relates to an optical laminate, a polarizing plate, and a display device using the same. [Prior Art] In the case of an image display device such as a liquid crystal display device (LCD), a Braun tube (CRT) display, a projection display, a plasma display (PDP), or an electroluminescence display, a display device The surface is hindered by the indoor illumination such as a fluorescent lamp, the incidence of sunlight from a window, the shadow of an operator, and the like. In addition, it is also required to impart scratch resistance to the image display surface to prevent injury in the operation of a temple. For this reason, for the surface of these displays, an optical functional layer such as an antiglare layer or an anti-glare layer having a fine uneven structure is formed on the outermost surface for the purpose of improving image and visibility. The layered body '(4)-convex structure can diffuse the reflected light from the surface, suppress the external regular reflection, and prevent the external environment from being reflected (with anti-glare). In the case of some optical laminates, the following optical laminates are usually produced in the form of polyethylene terephthalate (hereinafter referred to as "TAC"). The light-transmissive base, the iTy* &amp; layer is formed with an optical layer of the anti-glare layer having a fine uneven structure, and the low-refractive-index (4) optical layered body is laminated on the positive dispersion layer, and the laminated body is now studied. To provide the properties of the light of the desired function. For example, the optical functional layer has an optically functional layer having the desired 4 322324 201125732 - hard-coated optical laminate which can be used as a hard coat with a hard coat. 'An optical layered body having a fine uneven structure formed on the surface of the optical functional layer can be used not only as a hard coat film but also as an antiglare film having an antiglare layer. Further, as an optical functional layer, A light diffusion layer and a low refractive index layer are used, and an optical layered body having a desired function is provided by using an optical functional layer such as a hard coat layer or an antiglare layer in a single layer form or a combination of layers. Development Continued progress. Second = shows: the most surface (observation side), there are problems such as static electricity due to static electricity, liquid crystal display failure, etc., and the optical layer of the function of the second function. The ancient display also includes the reason that the adhesion of dust is easy to become conspicuous, and the optical laminate with antistatic function is straightforward. For the display (4), the most surface (viewing the side of the surface) can be expected Severe women (by physical, mechanical, chemical stimuli: pre-drinked with glass cleaner (surface smear, etc. 2 wipe the dust attached to the surface of the display to improve the anti-fouling properties. (4) the surface of the coating' has always been used as a belt A transparent glare film is laminated on the anti-static transparent substrate film having an antistatic function, and it has been proposed to be capable of glazing by coating a resin layer (for example, 'refer to the patent document...the film of the layer and the anti-glare layer. The antistatic material of this layer structure is added with an electric quaternary ammonium salt compound and light-transmitting fine particles for imparting anti-glare properties (for example, Patent Document 322324 5 201125732 2, 3). As an electric material, an optical layered body using an organic conductive material such as polyaniline or polythiophene has been proposed. Since an organic conductive material is inferior in light resistance to an inorganic material and cannot maintain antistatic properties, it has been required to be carried out. In order to improve the light resistance, a method of mixing a resin having a high glass transition point has been proposed (for example, Patent Document 4). Further, it has been disclosed that a hard coat layer is directly provided on a substrate containing a cellulose triacetate film. An antistatic hard coat film comprising a metal oxide such as antimony trioxide having a particle diameter of 100 nm or less, a compound having three or more acrylonitrile groups in the molecule, and acrylic acid having a gas atom in the molecule. A compound of the kind (for example, refer to Patent Document 5). Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2008-. Japanese Patent Publication No. 4221990 (Disclosure of the Invention) (Problems to be Solved by the Invention) The optical laminate used for a display has been required to have antistatic properties. Here, in order to be able to withstand use in outdoor use, it is required to have light resistance which does not change due to light such as sunlight. Further, when the polarizing substrate and the cellulose triacetate protective film are bonded together, the protective film for the polarizing plate of the display is usually subjected to a treatment such as saponification to improve the adhesion between the polarizing substrate and the protective film of 6 322324 201125732. Therefore, the optical functional layer and the optical laminate which are laminated on the triacetylcellulose-based protective film are required to have no change in antistatic property. As shown in Patent Document 1, as an antistatic anti-glare film having an antistatic function, a film in which a transparent conductive layer and an antiglare layer are sequentially laminated on a transparent substrate film has been proposed, and in this structure, resistance is exhibited. It is excellent in electrostatic properties, anti-glare property, and the like. However, since it has a structure in which two layers are laminated on a transparent base film, there is a problem of high cost. As shown in Patent Documents 2 and 3, by coating a resin layer, an optical layered body having a structure in which a ruthenium layer is laminated on a transparent base film, which contains a quaternary ammonium salt system for imparting antistatic properties, can be obtained. Although the light-transmitting fine particles for imparting anti-glare properties are added to the compound, this structure causes a problem that the conductivity is lowered by the saponification treatment. In the case of using an optical layered product having a conductive polymer such as polyaniline or polythiophene, since the organic conductive material is inferior in light resistance to an inorganic material and cannot maintain antistatic properties, it has been required to be improved. Here, as shown in Patent Document 4, in order to improve light resistance, a method of mixing a resin having a high glass transition point has been proposed. However, since the resin having a high glass transition point used herein has a low hardness, the surface hardness is low. The problem of reduced scratch resistance. The antistatic hard coat film described in Patent Document 5 is excellent in antistatic property and scratch resistance. However, a fluorine material for controlling the refractive index is added to the antistatic hard coat film, and sufficient antifouling property is not obtained. When the saponification treatment is performed, the fluorine material in the hard coat layer is eluted, and the antifouling property is lowered. . That is, it is required to improve the antifouling property after the saponification treatment by 7 322324 201125732. In view of the above, it is an object of the present invention to provide an optical layered body, a polarizing plate, and a display device using the same, which have excellent antistatic properties and are excellent in light resistance, saponification resistance, and scratch resistance. Further, an object of the present invention is to provide an optical layered body which exhibits antistatic property and antifouling property, and which is less likely to be deteriorated in antistatic property and antifouling property even when saponification treatment is performed, and a polarizing plate using the optical laminate. And display device. (Means for Solving the Problem) The present invention solves the above technical problems by the following technical configuration. (1) An optical layered body which is an optical layered body provided with at least an optical functional layer directly or via another layer on a light-transmitting substrate, the optical functional layer containing at least a conductive material, and a carbon arc on the surface of the optical layered body The surface resistivity after the (carbon arc) type light resistance test was 1. 0x1012 Ω / □ or less, and the ratio of surface resistivity before and after the carbon arc type light resistance test (R2/R1; R1 before the carbon arc light resistance test) The surface resistivity, R2 is a surface resistivity after the carbon arc light resistance test, is 104 or less. (2) The saturated electrified voltage after the carbon arc type light resistance test is 1. 5 kV or less. (3) The optical layered body according to the above aspect, wherein the optical functional layer contains at least one of a resin component and a light-transmitting fine particle or an inorganic component capable of forming irregularities by agglomeration. . (4) The optical layered body according to any one of the above items (1) to (3), wherein the optical functional layer contains an ionizing radiation-curable fluorinated acrylate. The optical layered body according to the above aspect, wherein the optical functional layer is a layer obtained by curing a composition containing at least an ionizing radiation-curable fluorinated acrylate and a conductive metal oxide. The ionizing radiation-curable fluorinated acrylate has a molecular weight of 1,000 or more and contains three or more acrylonitrile groups. (6) The optical layered body according to the above aspect, wherein the ionizing radiation-curable fluorinated acrylate contains a perfluoroalkyl group. (7) The optical layered body according to the above aspect, wherein the ionizing radiation-curable fluorinated acrylate has a fluorine atom content of 20% or more. (8) The optical layered product according to any one of the above aspects, wherein the ionizing radiation-curable fluorinated acrylate is a compound represented by the following formula (A). r

Cy —- XNHC02CH2C V.Cy —- XNHC02CH2C V.

(CH2OCOCH2CH2SCH2CH2RF) n、 (CH2OCOCH = CH2)3_n (A) (這裏,Cy是其氫的一部分被上述式的取代基以及任意地 被甲基或乙基取代的5或6員環的環烷基部分,a是1至3 的整數,X是亞曱基或直接鍵結,RF是碳原子數4至9的全 氟烧基,η是1至3的整數。其中,前述a為2以上時, 前述X、Rf、η相互獨立地選擇。) (9) 如前項(5)至(8)中任一項所述的光學積層體,其 中,前述電離放射線固化型氟化丙烯酸酯是氨基甲酸酯 (urethane)丙稀酸酯。 (10) 如前項(1)至(9)中任一項所述的光學積層體,其 9 322324 201125732 中’前述光學功能層含有π共軛系導電性高分子和高分子 摻雜劑的複合物。 (U)如前項(1)至(1〇)中任一項所述的光學積層體,1 I化處理後的表面電阻率為Ι.ΟχΙΟ^Ω/□以下。 (12) —種偏光板,其由前述(1)至(11)中的任一項所述 的光學積層體積層於偏光基體上而成者。 (13) 一種顯示骏置,其係具備前述(1)至(6)中的任一 項所述的光學積層體而成者。 (發明的效果) 根據本發明(1)至(13),能提供以一層構造就具有優異 的抗靜電性能且耐光性、耐皂化性以及耐劃傷性優異的光 學積層體、偏光板及使用該光學積層體之顯示裝置。 ^進而,根據本發明(5)、(12)、(13),能夠得到表現出 抗靜電性以及防污性,且即使進行了皂化處理時抗靜電性 Μ及防污性也不太會降低的光學積層體以及使用該光學積 層體之偏光板和顯示裝置。 ^根據本發明(6)、(7),會獲得能夠充分導入氟原子的 果。 根據本發明(8),尤其是由於全氟烷基η的 數為4至9,因此含有氟的分子鏈集中而形成晶體結構, 由此能夠形成局部地表露出導電性金屬氧化物的部位,合 獲得不易妨礙導電性金屬氧化物的功能的效果。 &quot; 根據本發明(9) ’會獲得製膜性良好、進而固化物的耐 劃傷性和伸長率以及柔軟性得以提高的效果。 322324 10 201125732 根據本發明(3),藉由透光性微粒在表面形成凹凸而使 ' 光散射或者在光學功能層内部使光散射,由此,會獲得能 夠用作防眩膜的效果。 &quot; 【實施方式】 本實施方式涉及的光學積層體的基本構造為:在透光 性基體上積層有含有樹脂成分和導電材料的光學功能層。 作為光學功此層的形成材料’加入透光性微粒或者夢由、疑 聚而能形成凹凸的無機成分,由此,能夠提供一種進—步 具備防眩性的光學功能層。 於此 剛返无学功能層直接或者隔著其他層積層於透 光性基體上,可以積層在透光性基體的單面,也可以積層 在透光性基體的兩面上。進一步,光學積層體還可以具有 其他層。這裏,作為其他層,例如,可舉出光擴散層、防 污層、偏光基體、低反射層、其他的功能賦予層(例i,抗 靜電層、紫外線·近紅外線(NIR)吸收層、色純度的提^ (neoncut)層、電磁波屏蔽層、硬塗層)。另外,關於該其 他層的位置’例如在偏光基體的情況下,為與前述光^功 能層相反面的前述透光性基體上,在低反射層的情況下, 為前述光學功能層上,在其他的功能性賦予層的情況下, 為前述光學功能層的下層。依次積層有偏光基體、透光性 基It以及光㈣能層而成的積層體’可以用作偏 面’對本士實f、方、式涉及的光學積層體的各構成要素(透光性 基體、樹脂成分等)進行詳細敍述。 〈透光性基體〉 322324 11 201125732 作=優實施方式涉及的透光性基體,只要具有透光 ,,^ ^ 用石央破螭、鈉鈣玻璃等玻 璃,但可較佳使用聚對苯二曱一 ^ 欠。二酯(PET)、三醋酸纖維 素(TAC)、聚萘二甲酸乙二酯Γρρ , 、w 、聚曱基丙烯酸曱酯 (PMMA)、聚碳酸酯(PC)、聚醯亞 “m、. 兑如(PI)、聚乙烯(PE)、聚 丙烯(PP)、聚乙烯醇(PVA)、聚^ ,、A 來乳乙烯(PVC)、環烯烴共聚 物(C0C)、含降冰片烯樹脂、聚齡 Λ 風、赛璐玢、芳香族聚醯 胺等各種樹脂膜。這些膜可以倍 使用未實施拉伸的膜,也可 以使用貫施了拉伸加H從機械強度、尺寸穩定性優 異的角度考慮’特別較佳為實施了雙轴拉伸加卫的聚對苯 二甲酸乙二醋膜’從膜面_⑽目差非常少的觀點考慮, 較佳為未實施拉伸的三醋酸纖維素膜(TAC&gt;用於pDp、LCD 的情況下,更佳這些PET、TAC膜。 這些透光性基體的透明性越高越好,作為全光線透射 率(JISK7105),較佳為80%以上,更佳為90%以上。另外, 作為4光性基體的厚度,從輕量化的觀點考慮,較佳薄的 厚度’但是,考慮到其生產率、操作性,適合使用1至从瓜 的範圍的基體’較佳使用20至250 的基體。將本發明 的光學積層體用於LCD用途時,較佳使用20至80//m的 TAC作為透光性基體。就本發明的光學積層體而言,尤其 是使用20至8〇em的TAC作為透光性基體時,由於能夠防 止捲曲,因此,能夠合適地用於要求薄型輕量化的LCD用 途。 藉由對透光性基體表面實施鹼處理、電暈處理、電裝 322324 12 201125732 處理、濺射處理等加工處理,表面活性劑、矽烷耦合劑等 底漆塗布,Si蒸鍍等薄膜乾式塗布等,由此,能夠提高透 光性基體和光學功能層的密合性,提高該光學功能層的耐 _ 劃傷性、物理強度、耐化學藥品性。另外,在透光性基體 * 和光學功能層之間設置其他層的情況下,藉由上述同樣的 方法,也能夠提高各層界面的密合性、提高該光學功能層 的物理強度、耐化學藥品性。 〈光學功能層〉 光學功能層是含有樹脂成分和導電材料,藉由固化該 樹脂成分而形成的層。光學功能層中除了樹脂成分和導電 材料之外,加入透光性微粒或者藉由凝聚能形成凹凸的無 機成分時,可進一步具備防眩性,因此較佳。 [樹脂成分] 作為構成光學功能層的樹脂成分,只要是固化後形成 的皮膜具有足夠的強度並具有透明性的樹脂成分,就可以 無特別限制地使用。作為前述樹脂成分,可舉出熱固性樹 脂、熱塑性樹脂、電離放射線固化型樹脂、二液混合型樹 脂等,其中,電離放射線固化型樹脂是合適的,其在利用 電子束、紫外線照射的固化處理中,藉由簡單的加工操作 就能有效地固化。 作為電離放射線固化型樹脂,可單獨或者以適當混合 而成組成物的形式使用具有丙烯醯基、曱基丙烯醯基、丙 烯醯氧基、曱基丙烯醯氧基等自由基聚合性官能基、環氧 基、乙烯基醚基、氧雜環丁烷基等陽離子聚合性官能基的 13 322324 201125732 單體、低聚物、預聚物。作為單體的例子,可舉出丙稀酸 曱酯、曱基丙烯酸甲酯、曱氧基聚乙二醇曱基丙烯酸酯、 曱基丙烯酸環己酯、曱基丙烯酸笨氧基乙酯、乙二醇二甲 基丙烯酸酯、二季戊四醇六丙烯酸酯、三羥曱基丙烷三甲 基丙烯酸酯、季戊四醇三丙烯酸酯等。作為低聚物、預聚 物,可舉出聚酯丙烯酸酯、聚氨基甲酸酯丙烯酸酯、多官 能氨基甲酸醋丙烤酸醋、環氧基丙婦酸§旨、聚㈣丙稀酸醋、 醇酸(alkyd)丙稀酸酉旨、三聚氰胺丙烯㈣、石夕酉同丙稀酸酉旨 等丙烯酸自旨化合物’不飽和聚s旨、四甲樓二醇二縮水甘油 醚、丙二醇二縮水甘油醚、新戊二醇二縮水甘油醚、雙酚 A二縮水甘油醚、各種脂環式環氧基等環氧系化合物,3一 乙基-3-經基甲基氧雜環丁燒、乙基_3_氧雜環 丁基)甲敦基]甲基}苯、二[卜乙基(3_氧雜環丁基)]甲喊等 氧雜環丁烷化合物。這些可以單獨或者多種混合使用。 在這些電離放射線固化型樹脂中,(甲基)丙稀酿氧基 f 3個以上的多官能單體、多官能氨基甲_旨丙烯酸醋, 能夠加快固化速度、提高固化物的硬度。另外,與導電材 料混合使㈣’由於導電材料被固定在高度交聯後的分子 鏈内,因此會產生如下效果,即,不易因4化處理、耐光 性試驗而產生導電材料成分的脫落等不良情況,不易因皂 化處理而產生導電性降低,不^因耐光性試驗*產生抗靜 電性降低。 另外,使用了多官能氨基甲酸酯丙烯酸酯的情況下, 能夠賦予S]化物硬度、柔軟性等,在製成塗料時能夠賦予 322324 14 201125732 提高黏度的效果’因此,能夠提高製膜性。 - 光學功能層中所含的電離放射線固化型樹脂的比例並 無特別限制’在樹脂、纟且成物1 〇 0質量份中’較佳為2 〇至 80質量%,更佳為30至70質量%。 作為使上述樹脂組成物固化的電離放射線,可以是紫 外線、可見光、紅外線、電子束中的任一種。另外,這些 放射線可以是偏光也可以是非偏光。從設備成本、安全性、 運營成本等觀點考慮,尤其較佳為紫外線。作為紫外線的 能量線源,例如,較佳為高壓水銀燈、齒素燈、氙燈、金 屬齒化物燈、氮分子激光器、電子束加速裝置、玫射性元 素等。關於能量線源的照射量,作為紫外線波長365nm下 的累積曝光量,較佳為!〇〇至5000mJ/cm2的範圍,更佳為 300至3000mJ/cm2的範圍,當小於100raj/cm2時,固化不充 分,因此,有時光學功能層的硬度降低。另外,當超過 5000mJ/cm2時,光學功能層產生著色,透明性降低。 作為電離放射線固化型樹脂,可使用電離放射線固化 型氟化丙烯酸酯。電離放射線固化型氟化丙烯酸酯與其他 氟化丙烯酸酯相比,是電離放射線固化型,由此,能夠產 生分子間交聯,因此,可產生耐化學藥品性優異、皂化處 理後也表現出充分的防污性的效果。 將電離放射線固化型氟化丙烯酸酯與導電材料混合使 用時,氟化丙烯酸酯的氟成分偏聚於光學功能層的表層附 近,由此,可產生如下效果,即,不易因皂化處理、耐光 性試驗而產生導電材料成分的脫落等不良情況,不易因息 322324 15 201125732 化處理而產生抗靜電性降低、不易因财紐試驗而產生抗 靜電度降低。這畏,基於第1圖對「表層」加以說明。第 1圖疋在透光性基體10上積層光學功能層2〇而成的光學 積層體1。在第1圖中,作為光學功能層的一個例子,記 載了防眩層。具備防眩層作為光學功能層的光學積層體能 夠作為具有防眩性的防眩膜使用,因此較佳。光學功能層 20的對於透光性基體1〇相隔一定距離的面側為表層21。 适裏,使用氟系表面活性劑來代替電離放射線固化型 氟化丙婦酸S旨時,會產生如下不良情況:(1)氟成分過量地 滲出到表面,損害導電劑的功能;(2)由於氟系表面活性劑 不是電離放射線固化型,因此,皂化處理時成分脫落,同 時也產生導電成分的脫落,抗靜電性消失等。 作為電離放射線固化型氟化丙烯酸酯,例如,可使用 曱基丙烯酸2-(全氟癸基)乙酯、曱基丙烯酸2_(全氟一 7_ 曱基辛基)乙酯、曱基丙烯酸3_(全氟_7_曱基辛基)_2_羥 基丙酯、甲基丙烯酸2-(全氟-9-甲基癸基)乙酯、甲基丙 烯酸3-(全氟-8-甲基癸基)-2-羥基丙酯、丙烯酸3_全氟辛 基-2-羥基丙酯、丙烯酸2-(全氟癸基)乙酯、丙烯酸2_(全 氟-9-曱基癸基)乙酯、(甲基)丙烯酸十五氟辛酯、(曱基) 丙烯酸十一氟己酯、(曱基)丙烯酸九氟戊酯、(甲基)丙烯 酸五氟丁酯、(曱基)丙烯酸八氟戊酯、(曱基)丙烯酸五氟 丙酯、三氟(甲基)丙烯酸酯、(曱基)丙烯酸三氟異丙酯、(曱 基)丙烯酸二氟乙g旨、下述化合物(丨)至(χχχ)等。下述化合 物都是表示丙烯酸酯的情況的化合物,式中的丙烯醯基都 322324 16 201125732 能變更為甲基丙稀酿基。 〇) CH2〇COCH2CH2CH2CH2C4F9 HOCH2—pCH2OCOCH®CH2 ch2〇coch=ch2 (ίϊ) CH2OCOCH2CH2C8F17 ch3ch2—j—ch2ococh=ch2 ch2〇c〇ch=ch2 m ch2ococh2ch2ch2gh2c8f17 hoch2—j—CH20COCHSCH2 ch2〇coch=ch2 ο 0Η2-— -^-C^CH2)^-S-CH-C-fCH2^-C4F9 (ϊν) CH2---^OCOCH:CH2) 2 Ο(CH2OCOCH2CH2SCH2CH2RF) n, (CH2OCOCH = CH2)3_n (A) (here, Cy is a cycloalkyl moiety of a 5- or 6-membered ring in which a part of hydrogen is substituted by a substituent of the above formula and optionally substituted by a methyl group or an ethyl group. a is an integer of 1 to 3, X is an anthracene group or a direct bond, RF is a perfluoroalkyl group having 4 to 9 carbon atoms, and η is an integer of 1 to 3. When the a is 2 or more, The optical layered body according to any one of the above aspects, wherein the ionizing radiation-curable fluorinated acrylate is uric acid. Urethane acrylate. (10) The optical layered body according to any one of the above items (1) to (9), wherein the optical function layer contains a combination of a π-conjugated conductive polymer and a polymer dopant in 9 322324 201125732 Things. (U) The optical layered body according to any one of the above items (1) to (1), wherein the surface resistivity after the treatment is Ι.ΟχΙΟ^Ω/□ or less. (12) A polarizing plate comprising the optical layered layer according to any one of the above (1) to (11), which is formed on a polarizing substrate. (13) A display device comprising the optical layered body according to any one of the above (1) to (6). (Effect of the Invention) According to the inventions (1) to (13), it is possible to provide an optical layered body, a polarizing plate, and an optical layer having excellent antistatic properties and excellent in light resistance, saponification resistance, and scratch resistance. A display device for the optical laminate. Further, according to the inventions (5), (12), and (13), it is possible to obtain antistatic properties and antifouling properties, and the antistatic properties and antifouling properties are less likely to be lowered even when the saponification treatment is performed. An optical laminate and a polarizing plate and a display device using the optical laminate. According to the inventions (6) and (7), a fruit capable of sufficiently introducing a fluorine atom is obtained. According to the invention (8), in particular, since the number of perfluoroalkyl groups η is 4 to 9, the molecular chain containing fluorine concentrates to form a crystal structure, whereby a portion where the conductive metal oxide is partially exposed can be formed. The effect of not easily impeding the function of the conductive metal oxide is obtained. &quot; According to the invention (9)', the film forming property is good, and the scratch resistance and elongation of the cured product and the flexibility are improved. 322324 10 201125732 According to the invention (3), by forming irregularities on the surface of the light-transmitting fine particles, light scattering or scattering of light inside the optical function layer is obtained, whereby an effect of being able to be used as an anti-glare film can be obtained. [Embodiment] The optical layered body according to the present embodiment has a basic structure in which an optical functional layer containing a resin component and a conductive material is laminated on a light-transmitting substrate. As the material for forming the optical work layer, an optical component capable of forming an anti-glare property can be provided by adding a light-transmitting fine particle or an inorganic component which can be formed into a concavo-convex and suspected aggregation. Here, the non-learning functional layer may be laminated on the light-transmitting substrate directly or via another layer on the light-transmitting substrate, or may be laminated on both surfaces of the light-transmitting substrate. Further, the optical laminate may have other layers. Here, examples of the other layer include a light diffusion layer, an antifouling layer, a polarizing substrate, a low reflection layer, and other function providing layers (Example i, an antistatic layer, an ultraviolet ray, a near infrared ray (NIR) absorbing layer, and a color. A neoncut layer of purity, an electromagnetic wave shielding layer, a hard coat layer). Further, the position of the other layer is, for example, in the case of a polarizing substrate, on the light-transmitting substrate opposite to the optical function layer, and in the case of the low-reflection layer, on the optical functional layer. In the case of another functional imparting layer, it is the lower layer of the optical functional layer. A laminated body in which a polarizing substrate, a light-transmitting group It, and a light (four) energy layer are laminated in this order can be used as a polarizing surface for each component of the optical layered body of the present invention. The resin component and the like are described in detail. <Translucent Substrate> 322324 11 201125732 The light-transmitting substrate according to the preferred embodiment is a glass-transparent or soda-lime glass, as long as it has light transmission, but polyphenylene terephthalate can be preferably used.曱一^ owe. Diester (PET), cellulose triacetate (TAC), polyethylene naphthalate Γρρ , , w , polymethyl methacrylate (PMMA), polycarbonate (PC), poly phthalate "m,. For example, (PI), polyethylene (PE), polypropylene (PP), polyvinyl alcohol (PVA), poly-, A, lactide (PVC), cyclic olefin copolymer (C0C), norbornene-containing resin Various kinds of resin films, such as 聚 Λ 、, celluloid, aromatic polyamine, etc. These films can be used as a film that is not stretched, or can be applied by stretching and H, which is excellent in mechanical strength and dimensional stability. From the viewpoint of 'particularly preferably a polyethylene terephthalate film which has been subjected to biaxial stretching and edging', from the viewpoint that the film surface _(10) has a very small difference, it is preferably triacetic acid which is not subjected to stretching. For the cellulose film (TAC), in the case of pDp or LCD, these PET and TAC films are more preferable. The higher the transparency of these light-transmitting substrates, the better, and the total light transmittance (JISK7105) is preferably 80%. More preferably, it is 90% or more. Further, as the thickness of the four-light base material, a thin thickness is preferable from the viewpoint of weight reduction. In view of its productivity and operability, it is suitable to use a substrate of 1 to a range of melons, preferably a substrate of 20 to 250. When the optical laminate of the present invention is used for LCD applications, it is preferably used 20 to 80//. In the optical layered body of the present invention, in particular, when TAC of 20 to 8 〇em is used as the light-transmitting substrate, curling can be prevented, so that it can be suitably used for thin film. Lightweight LCD application: By subjecting the surface of the light-transmitting substrate to alkali treatment, corona treatment, electrical equipment 322324 12 201125732 treatment, sputtering treatment, etc., primer coating such as surfactant and decane coupling agent, Si steaming By dry coating such as plating, it is possible to improve the adhesion between the light-transmitting substrate and the optical functional layer, and to improve the scratch resistance, physical strength, and chemical resistance of the optical functional layer. When another layer is provided between the substrate * and the optical functional layer, the adhesion of the interface of each layer can be improved, the physical strength of the optical functional layer can be improved, and the chemical resistance can be improved by the same method as described above. <Optical functional layer> The optical functional layer is a layer formed by curing a resin component and a conductive material, and a light-transmitting fine particle is added to the optical functional layer in addition to the resin component and the conductive material. When the inorganic component which forms the unevenness is formed, it is preferable to have an anti-glare property. [Resin component] The resin component constituting the optical functional layer is a resin having sufficient strength and transparency as a film formed after curing. The component is not particularly limited, and examples of the resin component include a thermosetting resin, a thermoplastic resin, an ionizing radiation-curable resin, and a two-liquid mixing resin. Among them, an ionizing radiation-curable resin is suitable. In the curing treatment by electron beam or ultraviolet irradiation, it can be effectively cured by a simple processing operation. As the ionizing radiation-curable resin, a radical polymerizable functional group having an acrylonitrile group, a mercaptopropenyl group, an acryloxy group, a mercaptopropenyloxy group, or the like may be used singly or in a form of a suitable mixture. 13 322324 201125732 monomer, oligomer, prepolymer of cationically polymerizable functional group such as epoxy group, vinyl ether group or oxetane group. Examples of the monomer include decyl acrylate, methyl methacrylate, decyloxy polyethylene glycol methacrylate, cyclohexyl methacrylate, phenyloxy methacrylate, and B. Glycol dimethacrylate, dipentaerythritol hexaacrylate, trihydroxydecyl propane trimethacrylate, pentaerythritol triacrylate, and the like. Examples of the oligomer and the prepolymer include polyester acrylate, polyurethane acrylate, polyfunctional carbamate vinegar, acetoacetate, and poly(tetra) acrylate vinegar. Alkyd acid (alkyd) acrylic acid, melamine propylene (tetra), lithograph, acrylic acid, etc., such as acrylic acid, unsaturated compound, tetramethyl diol diglycidyl ether, propylene glycol condensate Glycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether, epoxy compounds such as various alicyclic epoxy groups, 3-ethyl-3-carbylmethyloxetane, Ethyl-3-3 oxetanyl)methylidene]methyl}benzene, bis[iethyl(3-oxetanyl)]methyl oxetane and other oxetane compounds. These can be used alone or in combination. Among these ionizing radiation-curable resins, three or more polyfunctional monomers and polyfunctional urethanes of (meth)acryloyloxy group f can accelerate the curing rate and increase the hardness of the cured product. Further, when it is mixed with a conductive material, (4) 'Because the conductive material is fixed in the highly crosslinked molecular chain, there is an effect that it is difficult to cause a fall of the conductive material component due to the four-treatment treatment and the light resistance test. In this case, it is difficult to cause a decrease in conductivity due to the saponification treatment, and it is not preferable that the antistatic property is lowered due to the light resistance test*. When a polyfunctional urethane acrylate is used, it is possible to impart hardness and flexibility to the S] compound, and it is possible to impart an effect of increasing the viscosity of 322324 14 201125732 when it is used as a coating material. Therefore, film forming properties can be improved. - The ratio of the ionizing radiation-curable resin contained in the optical functional layer is not particularly limited to 'in the resin, 纟 and the composition is 1 〇 0 parts by mass, preferably 2 〇 to 80% by mass, more preferably 30 to 70% quality%. The ionizing radiation for curing the above resin composition may be any of ultraviolet rays, visible light, infrared rays, and electron beams. In addition, these radiations may be polarized or non-polarized. From the viewpoints of equipment cost, safety, operation cost, and the like, ultraviolet rays are particularly preferred. As the energy source of the ultraviolet rays, for example, a high pressure mercury lamp, a tooth lamp, a xenon lamp, a metal toothed lamp, a nitrogen molecular laser, an electron beam acceleration device, a laser element, or the like is preferable. The amount of irradiation of the energy ray source is preferably as the cumulative exposure amount at an ultraviolet wavelength of 365 nm! The range of 〇〇 to 5000 mJ/cm 2 is more preferably in the range of 300 to 3000 mJ/cm 2 , and when it is less than 100 raj/cm 2 , the curing is insufficient, and therefore, the hardness of the optical functional layer may be lowered. Further, when it exceeds 5000 mJ/cm2, the optical functional layer is colored, and the transparency is lowered. As the ionizing radiation-curable resin, ionizing radiation-curable fluorinated acrylate can be used. The ionizing radiation-curable fluorinated acrylate is ionizing radiation-curable type compared with other fluorinated acrylates, thereby enabling intermolecular cross-linking. Therefore, it is excellent in chemical resistance and sufficient after saponification treatment. The effect of antifouling. When the ionizing radiation-curable fluorinated acrylate is used in combination with a conductive material, the fluorine component of the fluorinated acrylate is segregated in the vicinity of the surface layer of the optical functional layer, whereby the following effects can be obtained, that is, saponification treatment and light resistance are less likely to occur. In the test, problems such as falling off of the conductive material component occur, and it is difficult to reduce the antistatic property due to the treatment of the 322324 15 201125732 treatment, and it is difficult to reduce the antistatic property due to the financial test. This fear, based on Figure 1, illustrates the "surface layer." Fig. 1 is an optical layered body 1 in which an optical functional layer 2 is laminated on a light-transmitting substrate 10. In Fig. 1, an anti-glare layer is recorded as an example of an optical functional layer. An optical layered body having an antiglare layer as an optical functional layer can be used as an antiglare film having antiglare property, which is preferable. The surface side of the optical functional layer 20 which is separated from the light-transmitting substrate 1 by a certain distance is the surface layer 21. When a fluorine-based surfactant is used instead of the ionizing radiation-curable fluorinated acetoacetate S, the following problems may occur: (1) excessive leaching of the fluorine component to the surface and impairing the function of the conductive agent; (2) Since the fluorine-based surfactant is not ionizing radiation-curable, the components are detached during the saponification treatment, and the conductive component is detached, and the antistatic property is lost. As the ionizing radiation-curable fluorinated acrylate, for example, 2-(perfluorodecyl)ethyl methacrylate, 2-(perfluoro-7-nonyloctyl)ethyl methacrylate, and methacrylic acid 3 _ can be used. Perfluoro_7_decyloctyl)_2_hydroxypropyl ester, 2-(perfluoro-9-methylindenyl)ethyl methacrylate, 3-(perfluoro-8-methylindenyl) methacrylate -2-hydroxypropyl ester, 3-fluoroperfluoro-2-hydroxypropyl acrylate, 2-(perfluorodecyl)ethyl acrylate, 2-(perfluoro-9-fluorenyl)ethyl acrylate Pentafluorooctyl (meth)acrylate, undecylhexyl (decyl)acrylate, nonafluoropentyl (meth)acrylate, pentafluorobutyl (meth)acrylate, octafluoropentyl (mercapto)acrylate Ester, pentafluoropropyl (mercapto) acrylate, trifluoro(meth) acrylate, trifluoroisopropyl (meth) acrylate, difluoro ethane (mercapto) acrylate, the following compounds (丨) to (χχχ) and so on. The following compounds are all compounds which represent the case of acrylates, and the propylene groups in the formula are all 322324 16 201125732 which can be changed to a methyl propylene group. 〇) CH2〇COCH2CH2CH2CH2C4F9 HOCH2—pCH2OCOCH®CH2 ch2〇coch=ch2 (ίϊ) CH2OCOCH2CH2C8F17 ch3ch2—j—ch2ococh=ch2 ch2〇c〇ch=ch2 m ch2ococh2ch2ch2gh2c8f17 hoch2—j—CH20COCHSCH2 ch2〇coch=ch2 ο 0Η2-— ^-C^CH2)^-S-CH-C-fCH2^-C4F9 (ϊν) CH2---^OCOCH:CH2) 2 Ο

ο CH2- (V) &lt;ch2- L 〇ht (Vi) HOCH2 (vi«) CHnCH, -C-(CH^-S-CH-C*^CH2^-C6F13 0 CH2OCOCH2〇H2SCH2CH2C4F9 —i——ΟΗ^ΟΟΟΟΗ®ΟΗ2 ch2ococh:ch2 CHzO COCH2CH2SCH2CH2C4F9 -J—CH2〇C〇CHaCH2 ch2ococh=ch2 17 322324 201125732 (νίϋ) (ix&gt; (x) (κί) 〇3«7 CH2〇COCH2CH2NCH2CH2C8F17 HOCH2—j-CH2〇COCH=CH2 ch2〇coch=ch2CH20COCH2CH2SCH2CH2C8F17 CH3〇H2'~,,|~~CH2〇COCHS!::〇H2 ch2ococh=ch2 CH20COCH2CH2SCH2CH2C4P8H CH3CK2—j—CH2〇COOH=CH2 ch2ococh=ch2 iH2〇H2(CF(CF3)-O^F2)3rC2p5 CH2OCOCH2OH2SCH CH3CH2-|-CH2OCOCH=CH2 CH2OCOCH=CH2 (Xii| CHz-iOC^irOCO^CHaSCHiCHzCeF^ CH3CH2--|--CH2-(〇C2H4)s-〇C〇〇H=CH2 CHriOC^^-OCOCHsCHi r + s + t*3ο CH2- (V) &lt;ch2- L 〇ht (Vi) HOCH2 (vi«) CHnCH, -C-(CH^-S-CH-C*^CH2^-C6F13 0 CH2OCOCH2〇H2SCH2CH2C4F9 —i——ΟΗ ^ΟΟΟΟΗ®ΟΗ2 ch2ococh:ch2 CHzO COCH2CH2SCH2CH2C4F9 -J—CH2〇C〇CHaCH2 ch2ococh=ch2 17 322324 201125732 (νίϋ) (ix&gt; (x) (κί) 〇3«7 CH2〇COCH2CH2NCH2CH2C8F17 HOCH2—j-CH2〇COCH= CH2 ch2〇coch=ch2CH20COCH2CH2SCH2CH2C8F17 CH3〇H2'~,,|~~CH2〇COCHS!::〇H2 ch2ococh=ch2 CH20COCH2CH2SCH2CH2C4P8H CH3CK2—j—CH2〇COOH=CH2 ch2ococh=ch2 iH2〇H2(CF(CF3)-O ^F2)3rC2p5 CH2OCOCH2OH2SCH CH3CH2-|-CH2OCOCH=CH2 CH2OCOCH=CH2 (Xii| CHz-iOC^irOCO^CHaSCHiCHzCeF^CH3CH2--|--CH2-(〇C2H4)s-〇C〇〇H=CH2 CHriOC^^ -OCOCHsCHi r + s + t*3

(xiHJ ^ococh=ch2 CH2 CH2&quot;~~OCOCH®CfH2 C2H5OCO—CH2—|—CH2CH2—|一CH2—OCJOCH2CH25CH2CH2C8F-I7 CH2 CH2—OCOC2H5 ^JCOCgHs CHy CHrS:Hr CHy _ --^OCOCH2CH2SCH2CH2〇eFi| ^ -—^&gt;COCH=CH^ 18 322324 201125732 (XV) C2Hr ^COCH^WeF,) 1 \OQOCHSCH2) 3 OCOCHsCH2 CHi CH2-OCOCH2CH2SCH2CH2C6F13 (xvi) CH3CH2-j~CH2OCH2 七 CH2CH3 ch2 ch2—ococh=ch2 NOOOCHsCH2 (xvii) CHz PCOCH2〇H2SCH2〇H2CbFi7 ch3ch2 如 ch2och2•2 —*OM •4—OH2CH3 CH2-〇&lt; ^DCOCHsCHjj C〇CH2CH2SCH2CH2CeF17 OCOCHsCH2 /OCOCHzCHzSCHaCHfeF!/ CH2 CHz-DCOCH2CH2SCH2CH2C8F17 HOCH2--|--CH2〇^H2-}--CH2-〇COCH=CH2 CH2 CHz -OCOCHSCH2 *2 \&gt;coch=ch3 *2(xiHJ ^ococh=ch2 CH2 CH2&quot;~~OCOCH®CfH2 C2H5OCO—CH2—|—CH2CH2—|CH2—OCJOCH2CH25CH2CH2C8F-I7 CH2 CH2—OCOC2H5 ^JCOCgHs CHy CHrS:Hr CHy _ --^OCOCH2CH2SCH2CH2〇eFi| ^ - —^&gt;COCH=CH^ 18 322324 201125732 (XV) C2Hr ^COCH^WeF,) 1 \OQOCHSCH2) 3 OCOCHsCH2 CHi CH2-OCOCH2CH2SCH2CH2C6F13 (xvi) CH3CH2-j~CH2OCH2 Seven CH2CH3 ch2 ch2—ococh=ch2 NOOOCHsCH2 (xvii CHz PCOCH2〇H2SCH2〇H2CbFi7 ch3ch2 as ch2och2•2 —*OM •4—OH2CH3 CH2-〇&lt; ^DCOCHsCHjj C〇CH2CH2SCH2CH2CeF17 OCOCHsCH2 /OCOCHzCHzSCHaCHfeF!/ CH2 CHz-DCOCH2CH2SCH2CH2C8F17 HOCH2--|--CH2〇^H2-} --CH2-〇COCH=CH2 CH2 CHz -OCOCHSCH2 *2 \&gt;coch=ch3 *2

CH2 CH2—OCOCH2CH2SCH2CH2CeFiJ HOCH2—j^H2〇CH2*j-CH2 —OCOCH2CH2SCrt2CH2〇aF17 ch2 ch2—ococh=ch2 ^oooch«oh2 ococh=ch2 2CsHCOCO-C1 0h2 CHZ OCOCH2CH2SCH2CH2CeF17 H2+OH2〇CH2-|~CH2-〇c〇CH2CH2^CH;iCH2CBF17 CH2 cH2 -OCOCH*CH2 OCOCH^HzSCHzCHzCeF^ 322324 19 201125732 (χχ*) OC〇CH2CH2SCH^CH2CeF17 CH2 CH2~〇COCH2CH2SCH2CH2C8F17 H2C=HC〇CO-CH2—j-CH2〇CH2-j—ch2-ococh=ch2CH2 CH2—OCOCH2CH2SCH2CH2CeFiJ HOCH2—j^H2〇CH2*j-CH2 —OCOCH2CH2SCrt2CH2〇aF17 ch2 ch2—ococh=ch2 ^oooch«oh2 ococh=ch2 2CsHCOCO-C1 0h2 CHZ OCOCH2CH2SCH2CH2CeF17 H2+OH2〇CH2-|~CH2-〇c 〇CH2CH2^CH;iCH2CBF17 CH2 cH2 -OCOCH*CH2 OCOCH^HzSCHzCHzCeF^ 322324 19 201125732 (χχ*) OC〇CH2CH2SCH^CH2CeF17 CH2 CH2~〇COCH2CH2SCH2CH2C8F17 H2C=HC〇CO-CH2—j-CH2〇CH2-j—ch2 -ococh=ch2

CHi〇COCH2CH2SCH2CH2C4F9 WHCH202CH2+-CH2〇COCH2QH2SCH^CH2C4F9 ch2ococh=ch2 CH20COCH2CH2SCH2CH2C4F9 hco2ch2c-—CH2OCOCH2CH2SCH2CH2C4F3 、h2ococh:ch2 (xxfii) CH2OCOCH2CH2N(C3H7)CH2C6Fn NHC〇2CH2C^~CH2OCOCH2CH2N{C3H7}CH2C6F&lt;|3 0\jh2ococh=ch2 CH2OCOCH2CH2N(CsH7)CH2C6I^ NHCOzCHsC^-CHzOCOCHsCHz Vh2〇cochsch2 ch2ococh2ch2sch2ch2c8f17 •NHC〇2CH2cC-CH2〇COCH2CH2SCH2CH2CbF17 \»42〇COCH:CH2 (xxiv)CHi〇COCH2CH2SCH2CH2C4F9 WHCH202CH2 + -CH2〇COCH2QH2SCH ^ CH2C4F9 ch2ococh = ch2 CH20COCH2CH2SCH2CH2C4F9 hco2ch2c - CH2OCOCH2CH2SCH2CH2C4F3, h2ococh: ch2 (xxfii) CH2OCOCH2CH2N (C3H7) CH2C6Fn NHC〇2CH2C ^ ~ CH2OCOCH2CH2N {C3H7} CH2C6F &lt; | 3 0 \ jh2ococh = ch2 CH2OCOCH2CH2N ( CsH7)CH2C6I^ NHCOzCHsC^-CHzOCOCHsCHz Vh2〇cochsch2 ch2ococh2ch2sch2ch2c8f17 •NHC〇2CH2cC-CH2〇COCH2CH2SCH2CH2CbF17 \»42〇COCH:CH2 (xxiv)

CH2〇COOH2CH^SCHfiH2C9Pi7 iJHC〇2CH2C~—CH2〇C〇CH=CH2 ch2ococh=ch2 20 322324 201125732 ch2ococh=ch2 j CHzOCOCHzCH^HzCHzCeF,/ rNHCO2CH2CCH2〇CH2CCH20COQHsCH2 CHzOCOCHzOHzSCH^H^F^ CH2〇COCHsCH2 CH2〇COCH=CH2 CH2〇C〇CH2CH2SCH2CH2CaF17 NHC〇2CH2CCH2〇CH2CCH2〇COCH=CH2 ch2ococh2ch2sch2ch2c8f17 ch2ococh=ch2 V/CH2〇COOH2CH^SCHfiH2C9Pi7 iJHC〇2CH2C~—CH2〇C〇CH=CH2 ch2ococh=ch2 20 322324 201125732 ch2ococh=ch2 j CHzOCOCHzCH^HzCHzCeF, / rNHCO2CH2CCH2〇CH2CCH20COQHsCH2 CHzOCOCHzOHzSCH^H^F^ CH2〇COCHsCH2 CH2〇COCH=CH2 CH2 〇C〇CH2CH2SCH2CH2CaF17 NHC〇2CH2CCH2〇CH2CCH2〇COCH=CH2 ch2ococh2ch2sch2ch2c8f17 ch2ococh=ch2 V/

(xxvQ (xxv)(xxvQ (xxv)

CH^HCOiCI^C^^A^jCHzCMaOCOCHiCHzSCHiCHaCeFij 6H2pHjOCOCIiaCH2 (xxvil) wCH^HCOiCI^C^^A^jCHzCMaOCOCHiCHzSCHiCHaCeFij 6H2pHjOCOCIiaCH2 (xxvil) w

O ^HjCHpCOCHsCHa (χχνΙβ)O ^HjCHpCOCHsCHa (χχνΙβ)

CH2=CHC»2&lt;iN2C«2V||Ai|^CH2ai2〇COCH2CH2SC«t€342C4F^ICH2=CHC»2&lt;iN2C«2V||Ai|^CH2ai2〇COCH2CH2SC«t€342C4F^I

oW 0H2CH2〇COCHsCH2 mzm^oomfiHzSCHiCMzCdFnoW 0H2CH2〇COCHsCH2 mzm^oomfiHzSCHiCMzCdFn

QH^m^&gt;cocHsscnz (X3〇0 OH2〇I^COOH«ai2 322324 21 201125732 乂些可以單獨或者多種混合使^在氟化丙婦酸醋之 中’從固化物的耐_性和伸長㈣及錄性的觀點考 慮,較佳為具有氨基甲酸醋鍵的含氣化烧基的氨基甲酸醋 丙烯酸酯。另外,在I化丙烯酸g旨之中,多官能氣化丙稀 酸醋是合適的。這裏的多宫能氟化丙稀酸較指具有2個 以上(較佳為3個以上,更佳為4個以上)的(甲基)丙稀酿 氧基的It化丙婦酸醋。 電離放射線固化型樹脂可藉由直接照射電子束來固 化,作為使用的放射線,可以是紫外線、可見光、紅外線、 電子束中的任一種。另外,這些放射線可以是偏光也可以 疋非偏光。 藉由紫外線照射進行固化時,需要添加光聚合引發 劑。作為光聚合引發劑,可使用以往習知的引發劑。例如, 可例不出笨偶姻、苯偶姻曱基醚、苯偶姻乙基醚、苯偶姻 異丙基醚、^义卜四甲基-4,4,-二胺基二苯甲酮、苯偶 醯(benzil)曱基縮酮等苯偶姻及其烷基醚類;苯乙酮、3_ 甲基苯乙酮、4-氯二苯曱酮、4, 4’-二曱氧基二苯曱酮、2, 2_ 一曱氧基-2-苯基苯乙酮、1-羥基環己基苯基酮等苯乙酮 類;甲基蒽醌、2-乙基蒽醌、2-戊基蒽醌等蒽醌類;咕噸 酮(xanthone) ; °塞嘲酮(thioxanthone)、2,4-二乙基嗔嘲 調、2, 4-二異丙基噻噸酮等噻噸酮類;苯乙酮二曱基縮酮、 苯偶醯二甲基縮酮類等縮酮類;二苯曱酮、4,4_二(曱基胺 基)二苯甲酮等二苯甲酮類;以及1-(4-異丙基苯基)_2_經 基-2-曱基丙烷-1-酮等。這些可以單獨或者作為2種以上 322324 22 201125732 &quot; 的混合物使用。光聚合引發劑的使用量而言,以全部固體 ’ 成分比例來計,相對於放射線固化型樹脂組成物,較佳為 5%以下左右,更佳為1至4%。 ' 另外,電離放射線固化型樹脂可以含有流平(leveling) ' 劑、增稠劑、抗靜電劑、填充劑、體質顏料等添加劑。例 如,流平劑具有使塗膜表面的張力均勻化、在形成塗膜前 修復缺陷的功用,可採用界面張力、表面張力都比上述電 離放射線固化型樹脂低的物質。. 關於電離放射線固化型樹脂等樹脂成分的調配量,相 對於構成光學功能層的樹脂組成物中的固體成分的全部質 量,較佳含有50質量%以上,更佳含有60質量%以上。上 限值並無特別限制,例如為99.6質量%。如果小於50質量 %的話,則存在得不到足夠的硬度等問題。 電離放射線固化型樹脂等樹脂成分的固體成分包括後 述的無機成分以外的全部固體成分,不僅包括電離放射線 固化型樹脂等樹脂成分的固體成分,也包括其他任意成分 的固體成分。 [導電材料] 本發明的光學功能層含有導電材料。藉由添加導電材 料,能夠有效防止光學積層體的表面上附著塵埃。作為導 電材料的具體例子,可舉出四級銨鹽、吡啶鑌鹽、具有一 級至三級胺基等陽離子性基團的各種陽離子性化合物,具 有磺酸鹽基、硫酸酯鹽基、磷酸酯鹽基、膦酸鹽基等陰離 子性基團的陰離子性化合物,胺基酸系、胺基硫酸酯系等 23 322324 201125732 兩性化合物,胺基醇系、丙三醇系、聚乙二醇系等非離子 性化合物’錫以及鈦的醇鹽這樣的有機金屬化合物和它們 的乙醯丙醐鹽這樣的金屬螯合化合物等,進一步可舉出使 上述列出的化合物高分子量化而得到的化合物。另外,具 有三級胺基、四級銨基或者金屬螯合部且具有能藉由電離 放射線進行聚合的單體、低聚物或官能基的耦合劑這樣的 有機金屬化合物等的聚合性化合物也能夠作為抗靜電劑使 用0 另外 可舉出導電性微粒。作為導電性微粒的具體例 子可舉出由金屬氧化物構成的微粒(下面,也稱作導電性 金屬氧化物)。作為這樣的導電性金屬氧化物,可舉出ZnO、QH^m^&gt;cocHsscnz (X3〇0 OH2〇I^COOH«ai2 322324 21 201125732 乂 These can be mixed alone or in combination to make _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ From the viewpoint of the recording property, a carbamate-containing urethane acrylate having a urethane bond is preferable. Further, among the acrylic acid, a polyfunctional gasified acryl vinegar is suitable. Here, the polyfluorene fluorinated acid refers to an acetoacetate having two or more (preferably three or more, more preferably four or more) (meth) acryloxy groups. The ionizing radiation-curable resin can be cured by directly irradiating an electron beam, and the radiation to be used may be any one of ultraviolet light, visible light, infrared light, and electron beam. Further, these radiations may be polarized or non-polarized. When curing by ultraviolet irradiation, it is necessary to add a photopolymerization initiator. As the photopolymerization initiator, a conventionally known initiator can be used. For example, benzoin, benzoin thiol ether, benzoin ethyl group can be used. Ether, benzoin isopropyl ether, ^ Benzoin and its alkyl ethers such as tetramethyl-4,4,-diaminobenzophenone and benzil decyl ketal; acetophenone, 3-methylacetophenone, Acetophenone such as 4-chlorodiphenyl ketone, 4, 4'-dimethoxy benzophenone, 2, 2-1-methoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone Classes; hydrazines such as methyl hydrazine, 2-ethyl hydrazine, 2-pentyl hydrazine; xanthone; ° thioxanthone, 2,4-diethyl hydrazine , thioxanthones such as 2,4-diisopropylthioxanthone; ketals such as acetophenone didecyl ketal and benzoin dimethyl ketal; dibenzophenone, 4, 4_ a benzophenone such as bis(decylamino)benzophenone; and 1-(4-isopropylphenyl)_2-pyridyl-2-mercaptopropan-1-one, etc. These may be used alone or It is used as a mixture of two or more types of 322324 22 201125732 &quot; The amount of use of the photopolymerization initiator is preferably about 5% or less with respect to the radiation-curable resin composition, based on the total solid component ratio. It is preferably 1 to 4%. ' In addition, ionizing radiation-curable resin may contain leveling ( Leveling) Additives such as agents, thickeners, antistatic agents, fillers, extender pigments, etc. For example, leveling agents have the function of uniformizing the tension on the surface of the coating film and repairing defects before forming the coating film. Interfacial tension can be used. The amount of the resin component such as the ionizing radiation-curable resin is preferably such that the amount of the resin component such as the ionizing radiation-curable resin is higher than the total mass of the solid component in the resin composition constituting the optical functional layer. 50% by mass or more, more preferably 60% by mass or more. The upper limit is not particularly limited and is, for example, 99.6% by mass. If it is less than 50% by mass, there is a problem that sufficient hardness cannot be obtained. The solid content of the resin component such as the ionizing radiation-curable resin includes all the solid components other than the inorganic component described later, and includes not only the solid component of the resin component such as the ionizing radiation-curable resin but also the solid component of any other component. [Electrically Conductive Material] The optical functional layer of the present invention contains a conductive material. By adding a conductive material, it is possible to effectively prevent dust from adhering to the surface of the optical layered body. Specific examples of the conductive material include a quaternary ammonium salt, a pyridinium salt, and various cationic compounds having a cationic group such as a primary to tertiary amine group, and have a sulfonate group, a sulfate group, and a phosphate. An anionic compound such as a salt group or a phosphonate group, an amino acid system, an amine sulfate type, etc. 23 322324 201125732 Amphoteric compound, amino alcohol type, glycerol type, polyethylene glycol type, etc. Further, examples of the nonionic compound 'organic metal compound such as tin and titanium alkoxide, and a metal chelate compound such as an acetamidine salt thereof include a compound obtained by polymerizing the above-listed compounds. Further, a polymerizable compound such as an organometallic compound having a tertiary amino group, a quaternary ammonium group or a metal chelate portion and having a monomer, an oligomer or a functional group coupling agent which can be polymerized by ionizing radiation is also It can be used as an antistatic agent. Further, conductive fine particles are mentioned. Specific examples of the conductive fine particles include fine particles composed of a metal oxide (hereinafter also referred to as a conductive metal oxide). Examples of such a conductive metal oxide include ZnO.

Ce〇2、Sb2〇2、Sb2〇3、Sbz〇5、Sn〇2、常被簡稱為 ΙΤ0 的氧化 銦錫、Ilh〇3、Ah〇3、經掺雜銻的氧化錫(簡稱為ΑΤΟ)、經 摻雜叙的氧化鋅(簡稱為azq)等。作為導電性金屬氧化物, 並無特別限制,可舉出氧化錫銦、經摻雜銻的氧化錫 — 姊馱鋅'氧化銻。作為導電性金屬氧化物,可以選 們之中的—種,也可以將它們之中的兩種以上組合來 工微米r 最好為經摻雜銻的氧化錫。所說的微粒是指 0 的即亞微米大小的粒子,較佳為平均粒徑為 無特別限制微粒。導電性金屬氧化物的平均粒徑並 平均粒徑是二,為2至'Ο&quot;&quot; ’更佳為5至25咖。 ⑽個用透射型電子顯微鏡⑽)進行照相’對 藉由使用、▲次粒子的粒徑,作為其平均值來求出。 9 —的導電性金屬氧化物,可得到抑制導電 322324 24 201125732Ce〇2, Sb2〇2, Sb2〇3, Sbz〇5, Sn〇2, indium tin oxide, Ilh〇3, Ah〇3, which is often referred to as ΙΤ0, and antimony-doped tin oxide (abbreviated as ΑΤΟ) , doped with zinc oxide (abbreviated as azq) and so on. The conductive metal oxide is not particularly limited, and examples thereof include indium tin oxide and antimony-doped tin oxide-yttrium-zinc oxide. As the conductive metal oxide, one of them may be selected, or two or more of them may be combined to form a tin oxide, preferably a germanium-doped tin oxide. The microparticles refer to particles of submicron size of 0, and preferably have an average particle diameter of no particular particles. The average particle diameter of the conductive metal oxide and the average particle diameter are two, and is 2 to 'Ο&quot;&quot; is more preferably 5 to 25 coffee. (10) Photographs were taken by a transmission electron microscope (10). The particle diameters of the particles were used as the average value. 9 — Conductive metal oxides, which can be suppressed by conduction 322324 24 201125732

性金屬氧化物引起著色的钕I 先學六能層中含有的導電 性金屬氧化物的比例並盔牿·予力月匕層τ 3有 θ .x, .^i;. 1 &quot;、、寺別限制,在樹脂組成物100質 量份中,較佳為1至40皙旦〇/ 貝里/〇,更佳為3至35質量%,進 一步最好為5至20質量g/如 w 如果小於1質量%,則抗靜電性 容易變得不充分。如果超過在 β ^ ^ &lt; 40質垔%,則光學功能層著色’ 或者光學功能層的透明性容易減少,因此不受期待。 另外,作為導電材料的其他的具體例子,可舉出冗共 輛系導電性高分子。;γ共㈣導電性高分子,只要是主鍵 以7Γ共㈣構㈣高分子即可,並無特別限制,例如,可 舉出從脂祕共α、多並苯(pQlyaeene)、聚奠 (polyazulene)、芳香族共㈣的聚苯#、雜環式共輛系的 聚心各、聚&quot;塞吩、聚異硫節(pQlyisQthianaphthene)、含 雜原子共軛系的聚苯胺、聚(噻吩撐乙烯撐)、混合型共軛 系的聚(苯樓乙烯撐)、分子中具有多個共輛鏈的共軛系即 多鏈型共㈣、它們的導電性聚合物的衍生物、以及將這 些共輛高分子鏈接枝共聚或者嵌段共聚於飽和高分子而得 到的向刀子即導電性複合物組成的群組中選擇的至少一 種。其中,更佳為使用聚噻吩、聚笨胺、聚吡咯等共軛系 導電性高分子。藉由使用上述7Γ共輛系導電性高分子,能 夠在發揮優異的抗靜電性能的同時高光學積層體的全 光線透射率,並且降低霧度值。另外,出於提高導電性、 &amp;尚抗靜電性能的目的,添加有機橫酸、氯化鐵等陰離子 作為摻雜劑(供電子劑)’也可以作為複合物使用。依據添 加摻雜劑的效果,共軛系導電性高分子和高分子摻雜劑的 322324 25 201125732 複合物的透明性、抗靜電性尤其焉,因此較佳。 作為7Γ共辆糸導電性问刀子和南分子推雜劑的複合 '物,從熱穩定性比較高、塗膜成型後的透明性有利的觀點 考慮,較佳為經摻雜聚苯乙烯磺酸的聚(3, 4-乙禮二氧噻吩) (簡稱為 PED0T-PSS)。 相對於樹脂組成物中的固體成分的總質量,必須含有 0. 3至20. 0質量%的導電材料,最好含有〇 5至ι5. 〇質量 %。如果導電材料的調配量少於0. 3質量%,則難以表現出 抗靜電性。如果導電材料的調配量比2〇質量%多,則有可 能損害透明性。 這裏,將7Γ共軛系導電性高分子和高分子摻雜劑的複 合物與電離放射線固化型樹脂混合,藉由放射線使其固化 時,複合物均勻地分散於光學功能層中(面内以及洙度方 向),獲得難以因皂化處理、耐光性試驗而使抗靜電性降低 的效果。此外,作為電離放射線固化型樹脂,藉由與i分 子中具有3(更佳為4,進一步較佳為5)個以上的(甲基)氏 埽醯氧基的單體或低聚物、預聚物,例如多官能丙稀酸酷 多官能氨基甲賴⑽酸喊者多官能氟化丙烯酸酿混名 得在放射線固化後,π共㈣、導電性高分子和清 的複合物被蚊在牢固地交聯後的樹脂成分合 二低:,處理,試_ 評職的降低。另外’ α共軛系 雜劑的複合物不偏聚於光學功能 73 α而分子书 向上也適當分散,由此,能^=表+層附近,在厚w 制因耐光性試驗造成抗# 322324 26 201125732 電性降低。 導電材料中,π共軛系導電性高分子和高分子摻雜劑 的複合物以比其他導電材料少的添加量,就能约得到抗靜 電性。因此,從比較容易與用於賦予防眩性的透光性微粒、 藉由凝聚能形成凹凸的無機成分混合的角度考慮,是較佳 的。 為了改善因耐光性試驗造成的抗靜電性降低,有在樹 脂成分和導電材料的混合物中添加紫外線吸收劑的方法。 但是,該方法中,使用硬度優異的電離放射線固化型樹脂 作為樹脂成分時,會產生妨礙紫外線照射引起的固化的不 良情況,因此,光學積層體所需的耐劃傷性容易減少。在 本發明中,由於即使不適用紫外線吸收劑也能抑制因财光 1*生•成的抗靜電性降低,因此,能夠兼顧以往難以獲得的 耐劃傷性和抗靜電性。 [透光性微粒] 藉由使光學功能層含有透光性微粒,可以使光學功能 層的表層形成凹凸。作為透光性微粒’可使用由丙烯酸樹 月曰、t本乙稀樹脂、苯乙婦-丙烯酸共聚物、聚乙埽樹脂、 環氧樹脂、矽酮樹脂、聚偏氟乙烯、聚氟乙烯系樹脂等形 成的有機透光性樹脂粒子、二氧化矽、氧化鋁、氧化鈦、 氧化鍅、氧化鈣、氧化錫、氧化銦、氧化銻等 性微粒。透光性微粒具有某種程度的直經,並且,與段 功能層中的基質(matrix)之間具有折射率差,具有在予 形成凹凸使光散射或者在光學功能層内部使光散射 边324 27 201125732 能。具備含有透光性微粒的光學功能層*成的光 可以用作防眩膜。這襄,透光性微粒的平均粒徑較佳為曰〇 3 至1〇#m ’更佳為1至8,。粒徑小於0. 3/zm時,防眩性 降低,另外,大於lQ//m時,產生閃燥,並且,表面凹凸 程度過大’使得表面看上去發白’因此不被期待。透光性 微粒的折射率較佳為1.4G至1· 75,折射率小於丨.4〇或者 大於1.75時,與透光性基體或者樹脂基質的折射率差過 大,全光線透射率降低。另外’透光性微粒和樹脂成分的 折射率之差為〇. 2以下。光學功能層中所含的透光性 微粒的比例並無特別限制,在樹脂組成物議質量份中為 1至20質量科,可h J馮足防眩功能、閃爍等特性,容易控 制光學!^層表㈣微細的凹凸形狀和霧度值,因而較 佳^晨,「折射率」是指基於JIS K-7142的測定值。另 外,「平均粒徑早# 」疋晶用電子顯微鏡實測的100個粒子的直 徑的平均值。 透光! 生微粒的平均㈣較佳為處於G. 3至的範 圍’更佳為1至8,粒徑小於0· 3㈣時,防眩性降低, 另外,大於10/ζιη時’產生閃爍,並且,表面凹凸程度過 大/使仟表面看上去發白,因此不被期待。 [藉由凝聚能形成凹凸的無機成分] w另!Li發明的光學功能層能夠利用無機成分的凝聚 == 作為使用的無機成分,只要是光學功能 可。二為I搡在製膜時凝聚形成表面凹凸的無機成分即 &quot; …、成”,有石夕溶膠、氧化鍅溶膠等金屬氧化物 322324 28 201125732 ' 溶膠、氣相二氧化矽(AEROSIL)、膨脹性黏土、層狀有機黏 • 土等。這些無機成分中,從能夠穩定地形成表面凹凸的觀 點考慮,最好為層狀有機黏土。作為層狀有機黏土能穩定 ' 地形成表面凹凸的理由,可舉出:層狀有機黏土與樹脂成 • 分(有機物成分)的相溶性高,也具有凝聚性,因此容易形 成第一相和第二相交織的結構,在製膜時容易形成表面凹 凸。在本發明中,所謂的層狀有機黏土是指在膨脹性黏土 的層間導入有機鏽(onium)離子的黏土。層狀有機黏土對於 特定的溶劑,其分散性低,使用層狀有機黏土以及具備特 定性質的溶劑作為光學功能層形成用塗料時,藉由選擇該 溶劑,在光學功能層不含微粒的條件下就會形成具有表面 凹凸的光學功能層。 (膨脹性黏土) 膨脹性黏土只要是具有陽離子交換能力,並在該膨脹 性黏土的層間使水進入進行膨脹的膨脹性黏土即可,可以 是天然物也可以是合成物(包括取代物、衍生物)。另外, 可以是天然物和合成物的混合物。 作為膨脹性黏土,例如,可舉出雲母、合成雲母、蛭 石、蒙脫石、鐵蒙脫石、貝得石(beidellite)、皂石、水 輝石、石夕鎂石(stevensite)、綠脫石、麥經石夕納石 (magadiite)、伊萊利石、水石夕納石、層狀欽酸、蒙皂石 (smectite)、合成蒙皂石等。這些膨脹性黏土可以使用1 種,也可以混合多種使用。 (有機鑌離子) 29 322324 201125732 有機鎢離子只要是能利用膨脹性黏土的陽離子交換性 進行有機化麟子即可’並無特別關。作為錯離子,例 如’可使用=甲基二硬脂基銨鹽、三甲基硬脂基敍鹽等四 級銨鹽、具有苄基、聚氧乙撐基的銨鹽,或者可以使用由 鎸鹽、吡啶鏽鹽、咪唑鏽鹽形成的離子。作為鹽,例如, 可舉出與C Γ、Br-、N〇3—、OH—、ClhCOO-等陰離子形成的鹽。 作為鹽’最好使用四級錄鹽。 有機鏽離子的官能基並無限制,較佳為使用含有烧 基、苄基、聚氧丙撐基或者苯基中的任一種的材料,因為 可容易發揮防眩性。 烧基的較佳範圍是碳原子數1至3 〇,例如,可舉出甲 基、乙基、丙基、異丙基、丁基、戊基、己基、庚基、辛 基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四 烷基、十五烷基、十八烷基等。 聚氧丙撐基[(CMH(CH3)0)nH 或者(CH2CH2CH2〇)nH]的 η 的較佳範圍是1至5〇,尤佳為5至50,其加成莫耳數越多, 對有機溶劑的分散性越好,但如果過於過量的話,生成物 會帶有黏著性,因此,如杲著重於對溶劑的分散性的話,η 的數目更佳為20至50。另外,η的數目為5至20時,生 成物為非黏著性,且粉碎性優異。另外,從分散性和操作 性的觀點考慮,四級銨鹽整體的η的總數較佳為5至50。 作為該四級錄鹽的具體例子,可舉出四烧基氯化按、 四烧基溴化銨、聚氧丙撐·三烷基氯化銨 '聚氧丙撐•三 烧基氣化銨、二(聚氧丙撐)·二烷基氯化銨、二(聚氧丙 30 322324 201125732 .撐)·二烧基漠化銨、三(聚氧丙撐)·院基氯化銨、三(聚 氧丙撐)·院基溴化錢等。 . 在通式⑴的四級銨離子中,R1較佳為甲基或节基。r2 較佳為碳原子數丨至12眺基,尤佳為碳原子數丨至4的 ^基。R3較佳為碳原子數i至25的烧基。R4較佳為碳原子The metal oxide causes the coloring of 钕I. The ratio of the conductive metal oxide contained in the six-energy layer is first learned and the τ3 θ.x, .^i;. 1 &quot;, The temple is limited, and in the resin composition, 100 parts by mass, preferably 1 to 40 皙 〇 / berry / 〇, more preferably 3 to 35% by mass, further preferably 5 to 20 MPa / such as w When it is less than 1% by mass, the antistatic property tends to be insufficient. If it exceeds β ^ ^ &lt; 40 mass %, the optical functional layer is colored or the transparency of the optical functional layer is easily reduced, so that it is not expected. Further, as another specific example of the conductive material, a redundant conductive polymer is exemplified. The γ-co-(tetra) conductive polymer is not particularly limited as long as it is a primary bond of 7 Γ (tetra) (4), and examples thereof include p-lyophilized α, polypyrene, and polyazulene. Polycyclic benzene # of aromatic (4), polycentric of heterocyclic composite system, poly&quot; phenophene, polyisothiophene (pQlyisQthianaphthene), polyaniline containing hetero atom conjugated system, poly(thiophene) (ethylene), a mixed conjugated poly(phenylene vinylene), a conjugated system having a plurality of common chain in a molecule, that is, a multichain type (four), a derivative of the conductive polymer thereof, and these At least one selected from the group consisting of a knife, that is, a conductive composite, obtained by copolymerization of a plurality of polymer chains or block copolymerization of a saturated polymer. Among them, a conjugated conductive polymer such as polythiophene, polyphenylamine or polypyrrole is more preferably used. By using the above-mentioned 7-inch common-type conductive polymer, it is possible to exhibit high total transmittance of the optical laminate while exhibiting excellent antistatic performance, and to lower the haze value. Further, for the purpose of improving conductivity and antistatic performance, an anion such as an organic acid or a ferric chloride may be added as a dopant (electron donor), or may be used as a composite. 322324 25 201125732 The composite of the conjugated conductive polymer and the polymer dopant is particularly preferable because it has an effect of adding a dopant and is particularly excellent in transparency and antistatic property. As a composite of a 7-inch conductive conductive knife and a southern molecular dopant, it is preferably doped polystyrenesulfonic acid from the viewpoint of high thermal stability and transparency after coating film formation. Poly(3,4-ethyldioxythiophene) (referred to as PED0T-PSS). The mass of the conductive material of the resin composition is preferably from 0.3 to 20.0% by mass, preferably from 〇5 to ι. If the amount of the conductive material is less than 0.3% by mass, it is difficult to exhibit antistatic properties. If the amount of the conductive material is more than 2% by mass, the transparency may be impaired. Here, when a composite of a 7-inch conjugated conductive polymer and a polymer dopant is mixed with an ionizing radiation-curable resin and cured by radiation, the composite is uniformly dispersed in the optical functional layer (in-plane and In the twist direction), it is difficult to reduce the antistatic property due to the saponification treatment and the light resistance test. Further, as the ionizing radiation-curable resin, a monomer or oligomer having 3 (more preferably 4, more preferably 5) or more (meth) decyloxy groups in the i molecule is used. A polymer, such as a polyfunctional acrylic acid, a polyfunctional aminocarbazide (10) acid singer, a polyfunctional fluorinated acrylic acid, and a compound of π (four), a conductive polymer, and a clear compound after being cured by radiation. The resin composition after cross-linking is low: processing, trial _ evaluation of the lowering. In addition, the complex of the 'α-conjugated dopant is not segregated to the optical function 73 α and is appropriately dispersed in the molecular book upwards, thereby enabling the vicinity of the surface of the layer to be in the vicinity of the layer and causing resistance to light resistance in the thickness w. 322324 26 201125732 Electrically reduced. Among the conductive materials, the composite of the π-conjugated conductive polymer and the polymer dopant can obtain about the antistatic property with a smaller amount than the other conductive materials. Therefore, it is preferable from the viewpoint of easily mixing with the light-transmitting fine particles for imparting anti-glare properties and the inorganic components capable of forming irregularities by agglomeration. In order to improve the antistatic property due to the light resistance test, there is a method of adding a UV absorber to a mixture of a resin component and a conductive material. However, in this method, when an ionizing radiation-curable resin having excellent hardness is used as the resin component, the curing due to ultraviolet irradiation is hindered, and therefore the scratch resistance required for the optical layered body is likely to be reduced. In the present invention, since the antistatic property of the green light is reduced even if the ultraviolet absorber is not applied, the scratch resistance and the antistatic property which have been difficult to obtain in the past can be achieved. [Translucent fine particles] By including the light-transmitting fine particles in the optical functional layer, the surface layer of the optical functional layer can be formed into irregularities. As the light-transmitting fine particles, an acrylic resin, a vinyl resin, a styrene-acrylic copolymer, a polyethylene oxide resin, an epoxy resin, an anthrone resin, a polyvinylidene fluoride, a polyvinyl fluoride resin can be used. Organic light-transmitting resin particles formed of a resin or the like, fine particles such as cerium oxide, aluminum oxide, titanium oxide, cerium oxide, calcium oxide, tin oxide, indium oxide, or cerium oxide. The light-transmitting fine particles have a certain degree of straightness, and have a refractive index difference from a matrix in the segment functional layer, having light scattering at a pre-formed unevenness or scattering light 324 inside the optical functional layer. 27 201125732 Yes. Light having an optical functional layer containing light-transmitting fine particles can be used as an anti-glare film. Here, the average particle diameter of the light-transmitting fine particles is preferably 曰〇 3 to 1 〇 #m ', more preferably 1 to 8. When the particle diameter is less than 0.3/zm, the anti-glare property is lowered, and when it is larger than lQ//m, flashing occurs, and the degree of surface unevenness is too large to make the surface appear white, which is not expected. The refractive index of the light-transmitting fine particles is preferably from 1.4 G to 1.75, and when the refractive index is less than 丨.4 〇 or more than 1.75, the refractive index difference from the light-transmitting substrate or the resin matrix is too large, and the total light transmittance is lowered. Further, the difference in refractive index between the light-transmitting fine particles and the resin component is 〇. 2 or less. The ratio of the light-transmitting fine particles contained in the optical functional layer is not particularly limited, and it is 1 to 20 masses in the mass fraction of the resin composition, and it is easy to control the optics by the characteristics of anti-glare function and flicker. The layer table (4) has a fine uneven shape and a haze value, and thus it is preferable that the "refractive index" refers to a measured value based on JIS K-7142. Further, the "average particle size early #" twin crystal was measured by an electron microscope to measure the average diameter of 100 particles. Light transmission! The average (4) of the green particles is preferably in the range of G. 3 to 'more preferably 1 to 8, when the particle diameter is less than 0.3 (4), the anti-glare property is lowered, and when it is greater than 10/ζιη, the flicker is generated. Moreover, the surface unevenness is too large/the surface of the crucible looks white, so it is not expected. [Inorganic component capable of forming irregularities by agglomeration] w! The optical functional layer of Li invention can utilize the aggregation of inorganic components == The inorganic component to be used may be an optical function. The second is the inorganic component which aggregates to form surface irregularities during film formation, that is, "," and "metal oxides such as shi sol, cerium oxide sol, etc. 322324 28 201125732 'Sol, AEROSIL, Among these inorganic components, layered organic clay is preferable as a layered organic clay from the viewpoint of stably forming surface irregularities, and the reason why the layered organic clay can stably form surface unevenness is considered. It can be mentioned that the layered organic clay has high compatibility with the resin (organic component) and also has cohesiveness, so that it is easy to form a structure in which the first phase and the second phase are interlaced, and surface unevenness is easily formed during film formation. In the present invention, the so-called layered organic clay refers to a clay in which organic rust ions are introduced between layers of expanded clay. The layered organic clay has low dispersibility for a specific solvent, and uses layered organic clay and When a solvent having a specific property is used as a coating material for forming an optical functional layer, by selecting the solvent, a film is formed under the condition that the optical functional layer does not contain fine particles. Optically functional layer having surface irregularities (expandable clay) The expandable clay may be a natural or synthetic material as long as it has cation exchange ability and allows water to enter and expand between the layers of the expandable clay. (including a substitute, a derivative), and may be a mixture of a natural product and a composition. Examples of the swelling clay include mica, synthetic mica, vermiculite, montmorillonite, iron montmorillonite, and shellfish. Beidellite, saponite, hectorite, stevensite, greenite, meridite (magadiite), iriline, water stone, stone, layered acid, Mongolia Smectite, synthetic smectite, etc. These swelling clays may be used singly or in combination. (Organic cerium ions) 29 322324 201125732 The organic tungsten ions can be used as long as they can utilize the cation exchangeability of the swelling clay. Organic linings can be 'not particularly relevant. As a counter ion, for example, 'a quaternary ammonium salt such as methyl stearyl ammonium salt or trimethyl stearyl salt, having a benzyl group, As the ammonium salt of the oxyethylene group, an ion formed from a sulfonium salt, a pyridine rust salt or an imidazole rust salt can be used. Examples of the salt include C Γ, Br-, N〇 3 -, OH -, ClhCOO. a salt formed by an anion. It is preferable to use a quaternary salt as the salt. The functional group of the organic rust ion is not limited, and it is preferred to use any of a group containing a burnt group, a benzyl group, a polyoxypropylene group or a phenyl group. One material is easy to exhibit anti-glare property. The preferred range of the alkyl group is 1 to 3 Å, and examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and a pentyl group. , hexyl, heptyl, octyl, decyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, octadecyl and the like. The preferred range of η of the polyoxypropylene group [(CMH(CH3)0)nH or (CH2CH2CH2〇)nH] is 1 to 5 Å, particularly preferably 5 to 50, and the more the molar number is added, the more The dispersibility of the organic solvent is better, but if it is excessively excessive, the product may have an adhesive property. Therefore, if the enthalpy is focused on the dispersibility of the solvent, the number of η is more preferably 20 to 50. Further, when the number of η is 5 to 20, the resultant is non-adhesive and excellent in pulverizability. Further, the total number of η of the quaternary ammonium salt as a whole is preferably from 5 to 50 from the viewpoint of dispersibility and handling. Specific examples of the quaternary salt include, for example, a tetraalkyl chlorinated, a tetraalkyl ammonium bromide, a polyoxypropylene, a trialkyl ammonium chloride, a polyoxypropylene, and a tricarbide ammonium hydride. , bis(polyoxypropylene)·dialkylammonium chloride, bis(polyoxypropylene 30 322324 201125732 .support)·dicalcium desertification, tris(polyoxypropylene)·household ammonium chloride, three (Polyoxypropylene) · Hospital based bromide money. In the quaternary ammonium ion of the formula (1), R1 is preferably a methyl group or a benzyl group. R2 is preferably a carbon atom number 丨 to 12 眺 group, and particularly preferably a carbon atom number 丨 to 4 ^ group. R3 is preferably a burnt group having from 1 to 25 carbon atoms. R4 is preferably a carbon atom

文 1 至 25 的燒基、(cH2CH(CH3)0)nH 基團或者(CH2CH2C_nH 基團。η較佳為5至50。 --—The alkyl group of the formula 1 to 25, the (cH2CH(CH3)0)nH group or the (CH2CH2C_nH group. η is preferably 5 to 50. ---

I R2 -N+ ~R4 ( ι )I R2 -N+ ~R4 ( ι )

I ___ R3 __ 所3有的層狀有機黏土的調配量,相對於樹脂組成物 中的固體成分的總質量,較佳為Q. i至1()質量%,尤佳為 .2至5貝里如果層狀有機黏土的調配量小於ο.】質量 則存在料形成㈣數量的表面凹凸、⑽性不充分的 門題如果層狀有機黏土的調配量超過1〇質量%,則存在 表面凹凸數變多、損害可視性的問題。、 、 〜就/合劑來說,作為形成用於得到防眩性的表面凹凸的 溶劑,較佳為含有第一溶劑和第二溶劑。 藉由在上述的本發明的樹脂組成物中加入第一溶劑和 第二溶劑,能夠製成可形成本發明的光學功能層的塗料。 由於可形成本發明的光學功能層的塗料含有上述第一溶劑 2第二溶劑’因此,即使不添加以往所認為的用於製成光 學功能層的表面凹凸形狀所必需的微粒,也能夠製作出光 322324 31 201125732 學功能層的表面凹凸形狀。 所謂的第一溶劑是指實質上不使層狀有 濁、能以具有透明性的狀態來分散的溶劑。—黏土產生渾 渾濁是指,除了完全不產生渾濁以外,也〜貫質上不產生 生渾濁的情況。作為第一溶劑,具體來講.if可看做不產 狀有機黏土 100質量份,添加1000質量份的疋扣相對於層 混合的混合液的#度值為以下的溶^的第—溶劑進行 進行混合的混合液的霧度值較佳為8%以下添加第一溶劑 下。混合液的霧度值的下限值並無特別,尤佳為6%以 作為第一溶劑,例如,可以使用所言田'例如為〇· 1%° (非極性溶劑)。這是因為,由於層狀有:^性小的溶劑 處理,因此容易被上述溶劑分散。可使 經過有機化 層狀有機黏土的種類而不同,例如,作為展 ^很據 用合成蒙皂石時’作為第一溶劑,可以使有土使 甲苯專方香知:&gt;谷劑。這些第一溶劑可以使用一 混•合多種來使用。 也可以 第二溶劑是指可以使層狀有機黏土以產生渾濁的狀離 來分散的溶劑。作為第二溶劑’具體來講,是指 二 狀有機黏土 1G0質量份,添加1咖質量份的第二溶劑來二 合的混合液的霧度值為30%以上的溶劑。添加第二容漸丨進 行混合的混合液的霧度值較佳為40%以上,尤佳為以 上。混合液的霧度值的上限值並無特別限制,例如為99%。 作為第二溶劑,例如可以使用所謂的極性溶劑。這是 因為,由於層狀有機黏土經過有機化處理,難以被上述溶 322324 32 201125732 劑分散。能夠使用的第二溶 不同,例如,作為層狀有機 θ狀有機黏土的種類而 第一溶劑,可使用水、 吏用合成蒙4石時,作為 乙基酮、異丙醇等。這丙醇、異丙醇、甲基 混合多種使用。 “第-洛劑可以使用-種,也可以 使^容易形成用於得到防眩性的表面凹凸,較 溶劑的混合比,以質量比來計,劑和第二 的範圍内,就容易形成用於 〇 . 90至90 . 10 為較佳者。作為第一溶劑和第: 生的表面凹凸,因此 來_,氐π. 第一〉谷劑的混合比,以質量比 80 . 20 In · 85 ^ 85 : 15 的範圍’更佳為 20 : 80 至 如果第一溶劑切10質量份,則存在因 t 產生外觀缺陷的問題。如果第-溶劑超過9。質 =,則存在得不到用於得到足夠的防眩性的表面凹凸的 問題。 )另外,樹脂組成物和溶劑(將第一溶劑和第二溶劑組合 後的溶劑)的調配量,以質量比來計,在70 : 30至30 : 70 的範圍内即可。如果樹脂組成物小於30質量份,則存在如 下問題’ ~ ’產生乾燥不均等,外觀變差,並且,表面凹 凸數增夕,損害可見性。如果樹脂組成物超過70質量份, 貝J固體成分的溶解性容易受損,因此存在不能製膜的問題。 (將藉由無機成分开》成凹凸的方法和藉由微粒賦予凹凸的 方法進行組合的情況) 可以將藉由無機成分的凝聚來形成凹凸的方法和藉由 322324 33 201125732 微粒來賦㈣凸的方法進行組合。藉由在樹肺成物中添 加透光f生的微粒’容易調節該光學功能層的表面凹凸的形 狀、數量。 在光予功旎層形成用塗料中添加微粒形成光學功能層 的情況下,微粒偏聚於藉由無機成分的凝聚所形成的凸部 的緣部(光學功能層的凹部)。 作為微粒偏聚於凸部的緣部的原因,認為如下。 微粒在塗布後的塗布層内,在無機材料成分在對流區 域内形成凝聚結構的同時,開始偏聚於該凝聚結構的緣 部。藉由乾燥工序,在塗液的流動性消失的時刻,微粒被 固定化,最終偏聚於凸部的緣部。 藉由添加微粒,具有能夠調節藉由無機成分的凝聚所 形成的表面凹凸的形成的優點。藉由調節光學功能層表面 的形狀’能夠提高光學功能層表面的财擦傷性和表面硬度。 (偏光基體) 在本發明中’可以在與光學功能層相反面的透光性基 體上積層偏光基體。藉由將光學功能層、透光性基體和偏 光基體積層,能夠製成偏光板。這些層彼此之間可以直接 積層’也可以隔著黏著層等其他層來積層。於此,該偏光 基體可以使用只透射特定的偏光而吸收其他的光的光吸收 型的偏光膜、或只透射特定的偏光而反射其他光的反射型 的偏光膜。作為光吸收型的偏光膜,可使用使聚乙烯醇、 聚乙烯撐(polyvinylene)拉伸而得到的膜,例如,可舉出 對吸附有作為雙色性單元的碘或染料的聚乙烯醇進行單軸 34 322324 201125732 拉伸而得到的聚乙烯醇(PVA)膜。作為光反射型的偏光膜, 例如,可舉出:3M公司製造的“DBEF” ,其構成為,將拉 伸時拉伸方向的折射率不同的2種聚酯樹脂(PEN以及PEN 共聚物)藉由擠出成型技術相互交替積層數百層並拉伸;曰 東電工公司製造的“ NIP0CS ”或Merck公司製造的 “TRANSMAX”等,其構成為,將膽甾型液晶聚合物層和1/4 波長板積層,將從膽留型液晶聚合物層一側入射的光分離 成彼此相反的2個圓偏光,使一方透射,並使另一方反射, 藉由1/4波長板將在膽留型液晶聚合物層中透射的圓偏光 轉換為直線偏光。 用於液晶顯不裔的偏光板猎由將設置有防眩層、硬塗 層等光學功能層的三醋酸纖維素系保護膜、對染色過的聚 乙烯醇進行拉伸處理而得到的偏光基體和三醋酸纖維素系 保護膜進行積層來構成。 將偏光基體和三醋酸纖維素系保護膜進行貼合時,進 行皂化處理,使偏光基體和保護膜的黏接性提高。於此, 為達不設置防眩層等塗布層(光學功能層)的三醋酸纖維素 膜表面的親水化的目的,進行皂化處理。但是,由於藉由 將設置有光學功能層等塗布層的膜整體浸潰於各種溶液來 進行皂化處理,因此,設置於三醋酸纖維素的光學功能層 等塗布層表面也被加以處理。 利用皂化處理對三醋酸纖維素表面進行的親水化可藉 由測定水的接觸角來確認,三醋酸纖維素膜表面的水的接 觸角在處理前為55 °以上、在處理後為20 °以下時,可知皂 35 322324 201125732 化處理進行得當。 皂化處理藉由浸潰於驗性水溶液、水洗、向酸性水溶 液:浸潰來中和、水洗以及熱乾燥來進行。於此,藉由息 化處理,用於形成設置於三醋酸纖維I ___ R3 __ The amount of the layered organic clay to be 3 is preferably from Q.i to 1 (% by mass), particularly preferably from 2 to 5, based on the total mass of the solid component in the resin composition. If the blending amount of the layered organic clay is less than ο.] the mass is formed, the amount of the surface is uneven, and the (10) is insufficient. If the amount of the layered organic clay is more than 1% by mass, there are surface irregularities. A problem that increases and damages visibility. The solvent is preferably a first solvent and a second solvent as a solvent for forming surface irregularities for obtaining anti-glare properties. By adding the first solvent and the second solvent to the resin composition of the present invention described above, a coating material capable of forming the optical functional layer of the present invention can be obtained. Since the coating material capable of forming the optical functional layer of the present invention contains the first solvent 2 and the second solvent', it is possible to produce light without adding conventionally necessary particles for forming the surface unevenness of the optical functional layer. 322324 31 201125732 Learn the surface relief shape of the functional layer. The first solvent is a solvent which is substantially turbid in a layer form and can be dispersed in a state of being transparent. - Clay produces 浑 turbidity means that, in addition to no turbidity at all, there is no turbidity in the quality. As the first solvent, specifically, ifif can be regarded as 100 parts by mass of the organic clay which is not produced, and 1000 parts by mass of the shackle is added with respect to the solvent of the layer-mixed mixture having the following degree value The haze value of the mixed liquid to be mixed is preferably 8% or less, and the first solvent is added. The lower limit of the haze value of the mixed liquid is not particularly limited, and particularly preferably 6% is used as the first solvent. For example, it is possible to use, for example, 〇·1%° (non-polar solvent). This is because the layered material has a small solvent treatment, so that it is easily dispersed by the above solvent. It can be different depending on the type of the organic layered organic clay. For example, when the synthetic smectite is used as a first solvent, it is possible to make the toluene specific to the soil: &gt; These first solvents can be used in a mixture of a plurality of types. It is also possible that the second solvent means a solvent which can disperse the layered organic clay in a state of being turbid. Specifically, the second solvent is a solvent having a haze value of 30% or more by adding 1 part by mass of the second solvent to the second solvent. The haze value of the mixed liquid to which the second volume is gradually added is preferably 40% or more, and more preferably more. The upper limit of the haze value of the mixed solution is not particularly limited and is, for example, 99%. As the second solvent, for example, a so-called polar solvent can be used. This is because, because the layered organic clay is organically treated, it is difficult to be dispersed by the above-mentioned solvent 322324 32 201125732. The second solvent which can be used is different, for example, as the type of the layered organic θ-shaped organic clay, and the first solvent may be ethyl ketone or isopropyl alcohol when water or ruthenium is used. This propanol, isopropanol, and methyl group are used in combination. "The first agent can be used in a variety of ways, and it is also possible to easily form surface irregularities for obtaining anti-glare properties, and the mixing ratio with respect to the solvent is preferably formed by mass ratio, in the range of the agent and the second range.于〇. 90 to 90 . 10 is preferred. As the first solvent and the first: the surface irregularities, so _, 氐 π. The first > mixture ratio of the grain, with a mass ratio of 80. 20 In · 85 ^ 85 : The range of 15 is more preferably 20: 80. If the first solvent is cut by 10 parts by mass, there is a problem of appearance defects due to t. If the first solvent exceeds 9. Quality =, there is no use for The problem of obtaining surface unevenness of sufficient anti-glare property is obtained.) In addition, the compounding amount of the resin composition and the solvent (solvent in which the first solvent and the second solvent are combined) is expressed by mass ratio at 70:30 to 30 If the resin composition is less than 30 parts by mass, the following problems may occur: '~', resulting in uneven drying, deterioration in appearance, and an increase in surface unevenness, impairing visibility. If the resin composition exceeds 70 parts by mass, the solubility of shell J solid components is easy There is a problem that the film cannot be formed. (The method of forming the unevenness by the inorganic component opening and the method of providing the unevenness by the fine particles) The method of forming the unevenness by the aggregation of the inorganic component and borrowing The combination of 322324 33 201125732 microparticles gives a four-fold method. It is easy to adjust the shape and number of surface irregularities of the optical functional layer by adding light-transmissive particles in the tree lungs. When the optical component is formed by adding fine particles to the coating material for forming, the fine particles are segregated in the edge portion (the concave portion of the optical functional layer) of the convex portion formed by the aggregation of the inorganic component. The fine particles are segregated on the edge of the convex portion. The reason for this is considered to be as follows: In the coating layer after coating, the inorganic material component forms agglomerated structure in the convection region, and starts to segregate at the edge of the agglomerated structure. The flow of the coating liquid by the drying process At the moment when the sex disappears, the particles are immobilized and finally segregate at the edge of the convex portion. By adding the particles, it is possible to adjust the formation by the aggregation of the inorganic components. The advantage of the formation of surface irregularities. By adjusting the shape of the surface of the optical functional layer', the scratch and surface hardness of the surface of the optical functional layer can be improved. (Polarizing substrate) In the present invention, 'the opposite side to the optical functional layer can be penetrated. A polarizing substrate is laminated on the optical substrate. The optical functional layer, the light transmissive substrate and the polarizing base volume layer can be used to form a polarizing plate. These layers can be directly laminated with each other or laminated via other layers such as an adhesive layer. Here, as the polarizing substrate, a light-absorbing polarizing film that transmits only other polarized light and absorbs other light, or a reflective polarizing film that transmits only a specific polarized light and reflects other light can be used as the light-absorbing polarizing film. As the film, a film obtained by stretching polyvinyl alcohol or polyvinylene can be used. For example, a polyvinyl alcohol having iodine or a dye adsorbed as a dichroic unit can be uniaxially 341324324 201125732. The obtained polyvinyl alcohol (PVA) film. For example, the "DBEF" manufactured by 3M Company is a polyester resin (PEN and PEN copolymer) having different refractive indices in the stretching direction during stretching. By extrusion molding technology, several hundred layers are alternately laminated and stretched; "NIP0CS" manufactured by Jidong Electric Co., Ltd. or "TRANSMAX" manufactured by Merck Corporation, etc., which is composed of a cholesteric liquid crystal polymer layer and 1/ 4 wavelength plate layer, the light incident from the side of the cholesteric liquid crystal polymer layer is separated into two circularly polarized lights opposite to each other, so that one side transmits and the other side reflects, and the 1/4 wavelength plate will be in the gallbladder The circularly polarized light transmitted in the liquid crystal polymer layer is converted into linearly polarized light. A polarizing plate for liquid crystal display is a polarizing substrate obtained by stretching a dyed polyvinyl alcohol by a triacetylcellulose-based protective film provided with an optical functional layer such as an antiglare layer or a hard coat layer. It is formed by laminating a protective film of cellulose triacetate. When the polarizing substrate and the cellulose triacetate protective film are bonded together, saponification treatment is performed to improve the adhesion between the polarizing substrate and the protective film. Here, the saponification treatment is carried out for the purpose of hydrophilizing the surface of the cellulose triacetate film in which the coating layer (optical functional layer) such as an antiglare layer is not provided. However, since the entire film of the coating layer provided with the optical functional layer is immersed in various solutions to carry out the saponification treatment, the surface of the coating layer such as the optical functional layer of cellulose triacetate is also treated. The hydrophilization of the surface of cellulose triacetate by saponification can be confirmed by measuring the contact angle of water, and the contact angle of water on the surface of the cellulose triacetate film is 55 ° or more before the treatment and 20 ° or less after the treatment. At the time, it is known that the soap 35 322324 201125732 is properly processed. The saponification treatment is carried out by dipping in an aqueous solution, washing with water, neutralization with an acidic aqueous solution: impregnation, washing with water, and heat drying. Here, by the chemical treatment, it is used to form a cellulose triacetate.

向鹼性水溶液或酸性水溶液中溶出# I 驻㈣以 4,由此,有可能產生 h的^目此’對於要積層於三醋酸纖維素系保護膜 上的先予功能層、光學積層體,要求 降低因皂化處理所造成的抗靜電性料化。 -直就用於偏光板的三醋酸纖維素系保護膜而 I: ί:ΐ理過的防眩層等塗布層露出於表面來使用,因 #體::纖维素系保伽上積層的光學功能層、光學積 層體,兩要一併具有耐皂化性和耐光性。 ⑽功能層的本發明的光學積層體成為财光性和 耐皂化性皆優異者。 亦即,本發明的光學功能層和光學積層體,在放射昭 度500W/m2(測定波長範 θ體在放射… 莉*固300至700⑽)、黑板溫度50±5 Γ 8G小時的碳5瓜式耐光性試驗後的表面電阻 率和未處理時的表面電阻率R1之比(r2/ri)需要為Μ 以’較佳為10以下,特佳為1〇2以下。另外,本發明的 光學功能層和光學積層體,未處理時的表面電阻率R1和皂 化處理後的表面電阻率以之比(R3/R1)較佳為1〇以下,更 佳為5· 0以下,特佳A ^ · 〇以下。另外,皂化處理和放射 照又500W/m (測定波長範圍3⑼至谓岭黑板加产5〇±5 t條件下’照射80小時的石炭弧式财光性試驗後的=電阻 322324 36 201125732 率R4和未處理時的表面電阻率R1之比(R4/R1)需要為1〇4 • 以下,較佳為1〇3以下,特佳為1〇2以下。 本發明的光學功能層和光學積層體的圖像鮮明性較佳 為5. 0至80. 0的範圍(基於JIS K7105,採用〇. 5mm光梳 • (optical comb)測定的值),更佳為20. 0至75. 〇。如果圖 像鮮明性小於5. 0 ’則對比度變差,如果超過8〇. 〇,則防 眩性變差’因此,不適於用於顯示器表面的光學積層體。 本發明的光學功能層和光學積層體,基於jIS K7105 的全光線透射率較佳為91. 0%以上,更佳為92. 0%以上,特 佳為93. 0%以上。如果全光線透射率小於91· 〇%,則對比度 變差,不適於用於顯示其表面的光學積層體。 此外’為了表現出抗靜電性以及防污性,且即使進行 皂化處理時抗靜電性和防污性也不太會降低,而更期望以 下的實施方式。本實施方式涉及的光學積層體具有光學功 月&amp;層和透光性基體’該光學功能層藉由對含有電離放射線 固化型氟化丙烯酸酯和導電性金屬氧化物的組成物進行固 化而得。於此,前述光學功能層可以積層於透光性基體的 單面也可以積層於兩面上。此外,該光學積層體也可以具 有其他層。此處,作為其他層,例如,可舉出偏光基體、 其他的功能賦予層(例如,近紅外線(NIR)、吸收層、色純 度的提升層、電磁波屏蔽層)。另外,該其他層的位置,例 如在偏光基體的情況下’為與前述光學功能層相反面的前 述透光性基體上,在其他的功能性賦予層的情況下,為前 述光學功能層的下層。但是,光學積層體最好僅由透光性 37 322324 201125732 基體和直接設置於前述透級基體上的光學魏㈣成, 因為這樣可減少層數,且根據本發明最佳實施方式的經成 物能夠得到如下的光學積層體,其即使是這樣構造的光學 積層體纟具有充分滿足在應用於液晶顯示器等圖像顯示 裝置時所要求的特性的性f。以下,對本發明最佳實施方 式的光學積層體的各構成要素(光學功能層、透光性基 進行詳細敍述。 (電離放射線固化型氟化丙烯酸酯) 本實施方式的電離放射線固化型氟化丙烯酸酯的分子 量為1000以上。作為電離放射線固化型氟化丙烯酸酯,較 佳為採用分子量為1000至4000的氟化丙烯酸酯。藉由使 分子量為1000以上,即使進行了皂化處理時’抗靜電性和 防污性也不易降低。分子量小於1000時,不能充分導入氟 原子,並且,得不到足夠的流平性,因此不被期待。當分 子量大於4000時,交聯密度降低,得不到足夠的硬度,因 此亦不被期待。 藉由添加電離放射線固化型氟化丙烯酸酯,使得光學 功能層的耐化學藥品性優異,在皂化處理後也能發揮充分 的防污性。另外,與其他非電離放射線固化型的化合物相 比,電離放射線固化型氟化丙烯酸酯是電離放射線固化 型,由此在分子間產生交聯,因此,可產生耐化學藥品性 優異、皂化處理後也表現出充分的防污性的效果。最好氣 化丙烯酸酯成分偏聚於光學功能層的表層附近,且最好氣 化丙烯酸酯分子中的氟成分偏聚於光學功能層的表層附 322324 38 201125732 近。由此’不易產生因皂化處理而導致的導電性金屬氧化 物脫落等不良情況。例如’氟化丙烯酸酯相較於透光性基 體一側傾向偏聚於表面一側是指’在含有氟化丙烯酸酯的 光學功能層表面至深5nm的範圍内存在的氟元素比率為 10%以上。氣元素比率错由X射線電子分光法(Ei ectron Spectroscopy for Chemical Analysis(化學分析用電子能 谱法)·下面’稱作ESCA )來測定。在ESCA中,根據在 深5nm處得到的氟、碳、氧以及矽等的峰面積算出說的存 在比例。另外,藉由ESCA ’從光學功能層的表面以每次5nm 的幅度測定深至200nm的範圍時,從該光學功能層表面至 深5mn以5nm的幅度測定所得到的整個深5nm處所存在的 氟元素比率’除以從該光學功能層表面的深5nm至深2〇〇咖 處存在的氟元素比率的平均值所得到的值較佳為1〇以 上,更佳為20以上。上限並無特別限制,例如為1〇〇〇以 下。藉由使該值為10以上,能夠使氟原子有效地存在於光 學功能層表面’因此’即使使用高價的氟材料,也能提供 經濟性優異的光學積層體。 最好電離放射線固化型氟化丙烯酸酯含有含全氟烷基 的丙烯,該全氟烧基由_cnF2n+1表示,n的數為4至9。 η為3以下時’不能充分導人ι原子,因此不被期待。〇為 10以上時,交聯密度降低、得不到足夠的硬度,因此不被 期待。塗布氟化丙烯酸㈣,可預料到含有氟的層偏聚於 最表面來製膜。因此,與導電性金屬氧化物並用時,有可 此在V電14金屬氧化物的上層形成含_,表面電阻率上 322324 39 201125732 斗。令盡、哈装广—Γ D \ ..Dissolving #I in the alkaline aqueous solution or the acidic aqueous solution to 4 (4), whereby it is possible to produce a pre-functional layer or an optical layered body to be laminated on the cellulose triacetate-based protective film. It is required to reduce the antistatic materialization caused by the saponification treatment. - Straight-line cellulose acetate-based protective film for polarizing plate and I: ί: A coating layer such as a treated anti-glare layer is exposed on the surface, and is used as a film: The optical functional layer and the optical laminate have both saponification resistance and light resistance. (10) The optical layered body of the present invention having a functional layer is excellent in both light and saponification resistance. That is, the optical functional layer and the optical laminate of the present invention have a carbon intensity of 500 W/m 2 (measurement wavelength θ θ body in radiation ... Li * solid 300 to 700 (10)), blackboard temperature 50 ± 5 Γ 8 G hours of carbon 5 melon The ratio (r2/ri) of the surface resistivity after the light resistance test to the surface resistivity R1 at the time of no treatment needs to be Μ, preferably 10 or less, particularly preferably 1 Torr or less. Further, in the optical functional layer and the optical laminate of the present invention, the ratio (R3/R1) of the surface resistivity R1 at the time of untreatment and the surface resistivity after saponification treatment is preferably 1 Torr or less, more preferably 5·0. Below, the special A ^ · 〇 below. In addition, the saponification treatment and radiography are again 500W/m (measurement wavelength range 3 (9) to the condition of the addition of 5 〇 ± 5 t under the condition of the blackboard, the electric resistance test after the 80-hour exposure to the charcoal arc type photometric test = resistance 322324 36 201125732 rate R4 The ratio (R4/R1) of the surface resistivity R1 to the untreated surface needs to be 1〇4 or less, preferably 1〇3 or less, and particularly preferably 1〇2 or less. The optical functional layer and the optical laminate of the present invention. 0至75. 如果 If the image sharpness is preferably in the range of 5.0 to 80. 0 (based on JIS K7105, using a value measured by 〇. 5mm optical comb • (optical comb)), more preferably from 20. 0 to 75. The sharpness of the image is less than 5.0. The contrast is deteriorated. If it exceeds 8 〇. 防, the anti-glare property is deteriorated. Therefore, it is not suitable for the optical layered body for the surface of the display. The optical functional layer and the optical layer of the present invention. The total light transmittance based on the jIS K7105 is preferably 91.0% or more, more preferably 92.0% or more, particularly preferably 93.0% or more. If the total light transmittance is less than 91·〇%, the contrast ratio Deterioration, not suitable for use in the optical laminate to display its surface. In addition, 'in order to show antistatic and anti-static The antistatic property and the antifouling property are less likely to be lowered even when the saponification treatment is performed, and the following embodiments are more desirable. The optical laminate according to the present embodiment has an optical power &amp; layer and a light transmissive substrate The optical functional layer is obtained by curing a composition containing an ionizing radiation-curable fluorinated acrylate and a conductive metal oxide. Here, the optical functional layer may be laminated on one side of the light-transmitting substrate or laminated. In addition, the optical layered body may have other layers. Here, as another layer, for example, a polarizing substrate and other function-imparting layers (for example, near-infrared rays (NIR), an absorbing layer, and color purity) may be mentioned. The lift layer or the electromagnetic wave shielding layer. The position of the other layer is, for example, in the case of a polarizing substrate, the case of the other light-transmitting substrate opposite to the optical functional layer, and the other functional imparting layer. The lower layer of the optical function layer is as follows. However, the optical layered body is preferably only provided by the light transmissive 37 322324 201125732 substrate and directly disposed in the foregoing The optical Si (4) formation on the substrate, because the number of layers can be reduced, and the optical product according to the preferred embodiment of the present invention can obtain an optical laminate which is evenly satisfied in the application of the optical laminate body thus constructed. The characteristics of the characteristics required for an image display device such as a liquid crystal display device. Hereinafter, each component (optical functional layer and light-transmitting group) of the optical layered body according to the preferred embodiment of the present invention will be described in detail. (Ionizing Radiation Curing Type fluorinated acrylate) The ionizing radiation-curable fluorinated acrylate of the present embodiment has a molecular weight of 1,000 or more. As the ionizing radiation-curable fluorinated acrylate, a fluorinated acrylate having a molecular weight of 1,000 to 4,000 is preferably used. When the molecular weight is 1,000 or more, the antistatic property and the antifouling property are not easily lowered even when the saponification treatment is carried out. When the molecular weight is less than 1,000, the fluorine atom is not sufficiently introduced, and sufficient leveling property is not obtained, so that it is not expected. When the molecular weight is more than 4,000, the crosslinking density is lowered, and sufficient hardness is not obtained, so that it is not expected. By adding the ionizing radiation-curable fluorinated acrylate, the optical functional layer is excellent in chemical resistance, and sufficient antifouling properties can be exhibited even after the saponification treatment. In addition, the ionizing radiation-curable fluorinated acrylate is ionizing radiation-curable type, and cross-linking occurs between molecules, so that it is excellent in chemical resistance and after saponification treatment, compared with other non-ionizing radiation-curable compounds. It also exhibits sufficient antifouling effect. Preferably, the vaporized acrylate component is segregated in the vicinity of the surface layer of the optical functional layer, and preferably the fluorine component in the vaporized acrylate molecule is segregated on the surface layer of the optical functional layer 322324 38 201125732. Therefore, problems such as loss of the conductive metal oxide due to the saponification treatment are less likely to occur. For example, the fact that the fluorinated acrylate phase tends to be segregated on the surface side of the light-transmitting substrate side means that the fluorine element ratio in the range of 5 nm deep to the surface of the optical functional layer containing the fluorinated acrylate is 10%. the above. The gas element ratio error is measured by X-ray electron spectroscopy (Ei ectron Spectroscopy for Chemical Analysis, hereinafter referred to as ESCA). In ESCA, the ratio of the peaks of fluorine, carbon, oxygen, helium, etc. obtained at a depth of 5 nm is calculated. Further, when ESCA' was used to measure the depth to the range of 200 nm from the surface of the optical functional layer every 5 nm, the fluorine present at the entire depth of 5 nm was measured from the surface of the optical functional layer to the depth of 5 nm at a range of 5 nm. The value obtained by dividing the element ratio ' by the average value of the fluorine element ratio from the depth of 5 nm to the depth of 2 on the surface of the optical functional layer is preferably 1 Å or more, and more preferably 20 or more. The upper limit is not particularly limited, and is, for example, 1 or less. When the value is 10 or more, the fluorine atom can be effectively present on the surface of the optical functional layer. Therefore, even if an expensive fluorine material is used, an optical layered body excellent in economy can be provided. Preferably, the ionizing radiation-curable fluorinated acrylate contains a perfluoroalkyl group-containing propylene, and the perfluoroalkyl group is represented by _cnF2n+1, and the number of n is 4 to 9. When η is 3 or less, the ι atom cannot be sufficiently introduced, and therefore it is not expected. When 〇 is 10 or more, the crosslinking density is lowered and sufficient hardness is not obtained, so that it is not expected. By coating the fluorinated acrylic acid (iv), it is expected that the fluorine-containing layer will be segregated on the outermost surface to form a film. Therefore, when used in combination with a conductive metal oxide, the upper layer of the V-oxide 14 metal oxide may be formed to contain _, and the surface resistivity is 322324 39 201125732. Let's do it, haha wide-Γ D \ ..

而容易提高防污性,因此為較佳者。 就電離放射線固化型貌化丙稀酸赌而言,最好氟原子 含,率為2G%以上。氟原子含有率為在氣化丙烯酸酉旨的分 子里中所占的氟原子量的比例,藉由下式求出。 氟原子含有率=[(分子内所含的氟原子量)/(分子量)]xl〇〇 使用氟原子含有率小於2〇%的電離放射線固化型氟化 丙烯酸酯時,為了表現出足夠的防污性,需要增多氟化丙 烯酸酯的使用量,而產生如下問題,亦即,經濟上不划算, 或者,必須在充分研究大量添加時與其他材料的相溶性之 後再決定詳細的調配比。 電離放射線固化型氟化丙烯酸酯含有3個以上的丙烯 醯基。由於含有3個以上的丙烯醯基,因此能夠提高光學 功能層的硬度。另外,與導電性金屬氧化物混合使用時, 由於導電性金屬氧化物被固定在高度交聯的分子鏈内,因 此會產生如下效果,亦即,難以因皂化處理而產生防污成 分、導電性金屬氧化物成分脫落等不良情況’難以因息化 處理而產生防污性以及導電性的降低。 322324 40 2〇1125^32 - €離放射線固化型氟化丙烯_較佳為氨基曱酸酿丙 • '稀酸酿。由於氟化丙稀酸醋是氨基曱酸醋丙烯酸醋,因此 黏度高。因此’製膜性良好。從固化物的耐劃傷性和伸長 - 率以及柔軟性的觀點考慮’氟化丙烯酸酉旨較佳為氨基甲酸 . 酯丙烯酸酿° 作為電離放射線固化型氟化丙烯酸酯,可使用下述化 合物(i)^(vii)等。下述化合物都是表示丙烯酸酯時的化 合物,式中的丙烯醯基都可變更為曱基丙烯醯基。It is easy to improve the antifouling property, so it is preferable. In the case of ionizing radiation-curable surface-type acrylic acid gambling, it is preferable that the fluorine atom contains a rate of 2 G% or more. The ratio of the fluorine atom content to the amount of fluorine atoms in the molecules of the vaporized acrylic acid is determined by the following formula. Fluorine atom content rate = [(amount of fluorine atom contained in the molecule) / (molecular weight)] x l When an ionizing radiation-curable fluorinated acrylate having a fluorine atom content of less than 2% by weight is used, in order to exhibit sufficient antifouling Sexuality requires an increase in the amount of fluorinated acrylate to be used, which is economically uneconomical, or the compatibility ratio must be determined after sufficiently studying the compatibility with other materials in the case of a large amount of addition. The ionizing radiation-curable fluorinated acrylate contains three or more propylene groups. Since three or more acrylonitrile groups are contained, the hardness of the optical functional layer can be improved. Further, when used in combination with a conductive metal oxide, since the conductive metal oxide is fixed in the highly crosslinked molecular chain, the following effects are obtained, that is, it is difficult to produce an antifouling component and conductivity by saponification treatment. Disadvantages such as loss of metal oxide component 'it is difficult to cause antifouling property and decrease in electrical conductivity due to the treatment. 322324 40 2〇1125^32 - € Radiation-cured fluorinated propylene _ preferably amino citrate-brown C • Dilute sour. Since the fluorinated acrylic acid vinegar is an amino acid vinegar vinegar vinegar, the viscosity is high. Therefore, the film forming property is good. From the viewpoint of scratch resistance, elongation-proportionability, and flexibility of the cured product, the fluorinated acrylic acid is preferably a carbamic acid. The ester acrylic acid is used as the ionizing radiation-curable fluorinated acrylate, and the following compounds can be used ( i)^(vii) and so on. The following compounds are all compounds which represent acrylates, and the acryl fluorenyl groups in the formula are all more fluorenyl fluorenyl groups.

Hr H2·. 卿 -拦抑201=13 ) (1) CHr -4f〇COCHssCH2)Hr H2·. Qing - arrest 201=13 ) (1) CHr -4f〇COCHssCH2)

CH2-C-^CH2j2~C^F13 J /OCOOtCHiSCHzCHiCdPir CHa —〇C〇CH^H2$CH2CH2CeF17 (ii) (iii) 十 CH^-ocoQiHsCHz GH2 CHjj -〇c〇CH«CHiCH2-C-^CH2j2~C^F13 J /OCOOtCHiSCHzCHiCdPir CHa —〇C〇CH^H2$CH2CH2CeF17 (ii) (iii) X CH^-ocoQiHsCHz GH2 CHjj -〇c〇CH«CHi

NjDOCHaCHj /«OOOCHsCH2 CHi 9^2 —OCOCHaCMzaCHaCfWij HOCH2-{-CH2〇CH2-f-CH2 —ΟΟΟΟΗ2〇Η280Κ2ΟΗ2〇βΡ1? CH2 **000〇Η®〇Η2 ^&quot;OGOCMeCHzNjDOCHaCHj / «OOOCHsCH2 CHi 9^2 —OCOCHaCMzaCHaCfWij HOCH2-{-CH2〇CH2-f-CH2 —ΟΟΟΟΗ2〇Η280Κ2ΟΗ2〇βΡ1? CH2 **000〇Η®〇Η2 ^&quot;OGOCMeCHz

Cilz-OCOCH CHj QH2 OOOCHsCHg〇OOCHaCH2 OCOCH^SCH^H^ff M5HgCH2®^Ma^H*Cep47 &gt;C〇0H»CH2 322324 41 (iv) 201125732 (v) CH2OC〇CH2CH2MCC$H7)CH2CeF1$ MHCOaCHaC^-CKiOCOCHaCHzNCsHyfCHaCePis ι2οοοοη»οη2iH2〇eFi$ NHC&lt; ~ ~ \ |2OCOCHaCH2 CH2〇COCH2CH2M(CaH7)CI ϊ〇2〇Η2〇^-ΟΗ2000〇Ηβ〇Η2 CH2OCOCHaCH2 (vi) CH2〇COOH2CH29CH2CH2C8Pi7 NHC02CH2€^—CHaOCOCHsCHzSCHzCHzCaP^ • \pH2OCOCH«OH2Cilz-OCOCH CHj QH2 OOOCHsCHg〇OOCHaCH2 OCOCH^SCH^H^ff M5HgCH2®^Ma^H*Cep47 &gt;C〇0H»CH2 322324 41 (iv) 201125732 (v) CH2OC〇CH2CH2MCC$H7)CH2CeF1$ MHCOaCHaC^- CK OC OC OC OC OC OC OC OC OC OC OC OC OC «OH2

/H2〇COCH2GH2S〇H2〇H2CeF17 HC02CH2C~CH2〇COCHeCH2 CH2OCOCHarCH2 (vii)/H2〇COCH2GH2S〇H2〇H2CeF17 HC02CH2C~CH2〇COCHeCH2 CH2OCOCHarCH2 (vii)

CH2OCOCHBCH2 CH^OCOOH2CH2SCH2CH2CBFt7 NHC02CH2CCHi〇CH2CCH2p〇〇^HsCH2 1 iH2〇COCH2CH29CH2CH2CeFl7 HzOOOCHsOH? CH2OCOCHSCH2 CHzOOOCHzCHaSC^CH^Qefi? HC〇2QH2l €H2〇CH2CCHi〇COCHe〇H2 占 H2〇C〇CH2CH28CH2CH2CeP17 OH2〇COCHaCH2 這些可以单獨或者多種混合使用。在氟化丙稀酸g旨之 中,從固化物的耐劃傷性和伸長率以及柔軟性的觀點考 慮,較佳為具有氨基甲酸酯鍵的含氟化烧基的氨基f酸酯 丙烯酸酯。另外’在氟化丙烯酸酯之中’較佳為多官能氟 化丙烯酸酯。此處的多官能氟化丙烯酸酯是指具有3個以 42 322324 201125732 上、更佳為4個以上的(曱基)丙稀酸氧基的氟化丙稀酸g旨。 作為電離放射線固化型氟化丙烯酸酯,可舉出下式(A) 表示的化合物作為較佳例。 Γ (CH2OCOCH2CH2SCH2CH2RF)n^| (A)CH2OCOCHBCH2 CH^OCOOH2CH2SCH2CH2CBFt7 NHC02CH2CCHi〇CH2CCH2p〇〇^HsCH2 1 iH2〇COCH2CH29CH2CH2CeFl7 HzOOOCHsOH? CH2OCOCHSCH2 CHzOOOCHzCHaSC^CH^Qefi? HC〇2QH2l €H2〇CH2CCHi〇COCHe〇H2 占H2〇C〇CH2CH28CH2CH2CeP17 OH2〇COCHaCH2 These can be used alone or in multiple Mixed use. Among the fluorinated acrylic acid g, from the viewpoint of scratch resistance, elongation, and flexibility of the cured product, a fluorine-containing alkyl group-containing acid ester acrylic acid having a urethane bond is preferable. ester. Further, 'in the fluorinated acrylate' is preferably a polyfunctional fluorinated acrylate. The polyfunctional fluorinated acrylate herein refers to a fluorinated acrylic acid g having three (indenyl) acrylate acid groups of 42 322324 201125732, more preferably four or more. The ionizing radiation-curable fluorinated acrylate is preferably a compound represented by the following formula (A). Γ (CH2OCOCH2CH2SCH2CH2RF)n^| (A)

Cy — - XNHC02CH2C 、 \ (CH2OCOCH=CH2)3_n (其中,Cy是其氫的一部分被上述式的取代基以及任意地 被曱基或乙基取代的5或6員環的環烷基部分,a是1至3 的整數,X是亞甲基或直接鍵結,RF是碳原子數4至9的全 氟烷基,η是1至3的整數,其中,該a為2以上時,該X、 Rf、η相互獨立地選擇。) 上述式(Α)表示的化合物中,特佳為下式(Β)表示的化 合物 nhco2ch2cCy — — XNHC02CH2C , \ (CH 2 OCOCH=CH 2 ) 3 — n (wherein Cy is a cycloalkyl moiety of a 5- or 6-membered ring in which a part of its hydrogen is substituted by a substituent of the above formula and optionally substituted with a thiol or ethyl group, a Is an integer from 1 to 3, X is a methylene group or a direct bond, RF is a perfluoroalkyl group having 4 to 9 carbon atoms, and η is an integer of 1 to 3, wherein when the a is 2 or more, the X is Rf and η are selected independently of each other.) Among the compounds represented by the above formula (Α), the compound nhco2ch2c represented by the following formula (Β) is particularly preferred.

nhco2ch2c (CH2OCOCH2CH2SCH2CH2Rf) n (CH2OCOCH = CH2)3_n (B) (CH2OCOCH2CH2SCH2CH2RF)m 、(CH2OCOCH=CH2)3_m (其中,Rf是碳原子數4至9的全氟烷基,n是1至3的整 數,m是0或1至3的整數,n+m是3以下的整數。) 更具體來講,最好是以下的(1)或(2)的化合物。 43 322324 (1) 201125732Nhco2ch2c (CH2OCOCH2CH2SCH2CH2Rf) n (CH2OCOCH = CH2)3_n (B) (CH2OCOCH2CH2SCH2CH2RF)m, (CH2OCOCH=CH2)3_m (wherein Rf is a perfluoroalkyl group having 4 to 9 carbon atoms, and n is an integer of 1 to 3, m is an integer of 0 or 1 to 3, and n+m is an integer of 3 or less.) More specifically, it is preferably a compound of the following (1) or (2). 43 322324 (1) 201125732

CH2OCOCH2CH2SCH2CH2CbF17 ,NHC02CH2C^-—CH2OCOCH2CH2SCH2CH2C8F17 CH2〇COCH=CH2 CH2〇COCH2CH2SCH2CH2C8F17 NHC02CH2C^CH2OCOCH=CH2 CH2OCOCH=CH2CH2OCOCH2CH2SCH2CH2CbF17,NHC02CH2C^--CH2OCOCH2CH2SCH2CH2C8F17 CH2〇COCH=CH2 CH2〇COCH2CH2SCH2CH2C8F17 NHC02CH2C^CH2OCOCH=CH2 CH2OCOCH=CH2

/CH2OCOCH2CH2SCH2CH2C4F9 ,nhco2ch2c-~CH2OCOCH2CH2SCH2CH2C4F9 CH2OCOCH=CH2 (2) .CH20COCH2CH2SCH2CH2C4F9 nhco2ch2c ς-~ch2ococh=ch2 nch2ococh=ch2 光學功能層中所含的電離放射線固化型氟化丙烯酸酯 的比例並無特別限制,在樹脂組成物100質量份中,較佳 為0.05至50質量%,更佳為0.2至20質量%。如果電離放 射線固化型氟化丙烯酸酯的調配量少於0.05質量% ’則拒 水效果、光滑性降低,耐劃傷性、防污性、耐化學藥品性 變差。如果電離放射線固化型氟化丙烯酸酯的調配量多於 50質量%,則製膜性可能變差。 44 322324 201125732 在上述樹脂組成物的系統中,可以在不妨礙其聚合固 化的範圍内添加使用高分子樹脂。該高分子樹脂是可溶於 在後述的光學功能層塗料中使用的有機溶劑的熱塑性樹 脂,具體來講,可舉出丙烯酸樹脂、醇酸樹脂、聚酯樹脂、 纖維素衍生物等,且最好這些樹脂中具有羧基、磷酸基、 績酸基等酸性官能基。 〈光學積層體〉 將含有上述構成成分的光學功能層形成用塗料直接或 者隔著其他層塗布在透光性基體上,然後,藉由熱或者照 射電離放射線(例如,照射電子束或者紫外線),使該光學 功能層形成用塗料固化,由此形成光學功能層,可以得到 本發明的光學積層體。作為光學功能層的構成成分,即使 是不含有透光性粒子或者藉由凝聚能形成凹凸的無機成分 的至少一種的情況下,也可以使用上述第一溶劑和第二溶 劑。光學功能層可以形成在透光性基體的單面,也可以形 成在兩面上。 光學功能層的厚度較佳為1. 0至12. 0/zm的範圍,更 佳為2. 0至11. 0/zm的範圍,特佳為3. 0至10. 0/zm的範 圍。光學功能層比1. 0 // m薄的情況下,在紫外線固化時容 易因氧的阻礙而產生固化不良,光學功能層的耐劃傷性容 易劣化。光學功能層比12. 0/im厚時,因光學功能層的固 化收縮而產生捲曲、產生微裂、與透光性基體的密合性降 低、進而產生光透射性降低。另外,隨著膜厚增加,所需 塗料量也增加,這也成為成本增高的原因。 45 322324 201125732 〈表面電阻率〉 上述光學積層體的由光學功能層表面測定的表面電阻 率需要在1. 0χ1012Ω/□以下。如果超過丨.0χ1〇ΐ2Ω/〇, 則可能得不到充分的抗靜電性能。上述表面電阻率較佳為 1. 0χ1012Ω/□至1. ΟχΗ^Ω/□,該範圍内會帶有靜電荷 但會馬上衰減,更佳為帶電少的1.0χ1〇ι〇Ω/□以下,特 佳為1.0χ109Ω/□以下。下限值並無限定,例如為1〇χ 106Ω/□以上。將上述光學積層體搭載在pVA (Patterned Vertical Alignment :圖案垂直排列)液晶上時,上述表面 電阻率需要在1.〇χ1〇1()Ω/□以下。如果超過該值,則產 生如因顯示器表面帶有靜電而造成的液晶翻轉等圖像顯示 的不良。 光學積層體在皂化處理後的表面電阻率需要在1〇χ 1〇12Ω/□以下。如果超過1. 0χ1012Ω/□,則可能得不到 充分的抗靜電性能。上述表面電阻率在1.〇χ1〇ΐ2Ω/□至 1. 0xl01QQ/□的範圍内,則顯示出雖然帶有靜電但馬上衰 減的性質’較佳為帶電少的1.〇χ1〇1〇Ω/□以下。下限值 並無限制,例如為1. 0χ106Ω/□以上。 〈飽和帶電電壓〉 i述光學積層體最好在最表面的飽和帶電電壓為 1.5kV以下。為了使飽和帶電電壓為15kV以下,可藉由 在光學功能層内添加顯示良好導電性的導電材料、或者增 加導電材料的添加量來實現。飽和帶電電壓和表面電阻率 相關’表面電阻率越低,飽和帶電電壓就越低。如果上述 46 322324 201125732 飽和帶電電壓超過1.5kV時,尤其是在IPS模式的液晶顯 不器中,由於在配置於水平方向的電極之間施加電位,則 因液晶顯示器表面帶電,而可能使顯示容易錯亂。上述飽 和帶電電壓更佳為1. OkV以下,特佳為0. 5kV以下。下限 值並無特別限制,例如為O.OlkV。 上述飽和帶電電壓可根據JIS L1094進行測定,可舉 出半衰期測定法。上述半衰期測定法可使用靜電衰減測試 儀(STATIC HONESTMETER)H-0110(西西都(SHISHID0)靜電 氣公司製造’測定條件:施加電壓l〇kV、距離20mm、25 °C、40%RH)等市售的測定器進行測定。 作為具體的測定方法’例如,將試樣(4cmx4cm)固定於 轉盤使其旋轉,施加電壓,藉由上述測定器測定試樣表面 的耐電壓值(kV)。藉由描繪耐電壓相對於時間的衰減曲 線,能夠測定半衰期(帶電量達到初期值一半的時間)和飽 和帶電電壓。 〈耐光性〉 用於顯示器的设置有防眩層、硬塗層等光學功能層的 光學積層體係设想在室外使用,並要求耐光性。财光性的 試驗,有藉由在太陽光下自然暴露來進行的方法,但在產 生劣化之前需要較長時間’因此,通常進行照射人工光的 加速試驗。在加速試驗中,可以使用碳弧式耐光性試驗機, 其採用紫外線碳弧燈作為光源。利用碳弧式耐光性試驗機 的試驗條件由JIS K 5600-7-5所規定,在本說明書中,使 用基於該試驗條件測定的值。 47 322324 201125732 藉由财光性試驗機中發出 性基體上的光學功能岸 ’、卜線,使侍設置於透光 能產生特性的劣化。二於分子鍵的斷裂等結構變化而可 學功能層、光學積層此,對於積層於透紐基體上的光 光性試驗造成的抗靜電性::耐光性’尤其要求降低因耐 〈霧度〉 ^ 本發明最佳實 至13,更佳為4至 〈全光線透射率〉 施方式的光學積層體之全霧度較佳為 10· 5 ’特佳為5至9。 90%以上’更佳為 光學積層體的全光線透射率 90. 5%以上,特佳為91%以上。 〈圖像鮮明性〉 ,光:積層體在4化處理前的圖像鮮明性而言,基於 伟a 光梳&amp;佳為G至議,更佳為ig至77.5%,特 佳為20至75%。 〈閃爍〉 =光干積層體的_、而言,使與光學積層體形成面相 反面隔著無色透明的點著層’貼合於解析度(—η) =的4個液:顯不器表面上,藉由⑽相機進行照相, 圖像有無冋度偏差來進行判斷。就閃燦而言,以不能 用解析度更高的顯示器確認者為宜,較佳為在解析度為ι〇ι 至140ρρι的液晶顯示器中沒有閃爍。 〈平均傾斜角度〉 本發明的光學積層體錢學魏層的表面具有微細的 322324 48 201125732 凹凸形狀。此處,該微細的凹凸形狀較佳為由根據ASME95 求出的平均傾斜算出的平均傾斜角度係於0.2至1.4的範 圍,更佳為0· 25至1. 2,特佳為0. 25至1. 0。如果平均傾 斜角度小於0.2,則防眩性變差,如果平均傾斜角度超過 1.4,則對比度變差,因此,不適於用於顯示器表面的光學 積層體。 〈表面粗糙度〉 另外,就本發明的光學積層體而言,作為光學功能層 的微細的凹凸形狀,表面粗糙度Ra較佳為0. 05至0. 2^111, 更佳為0.05至0. 15/zm,特佳為0.05至0. 10/zm。如果表 面粗糙度Ra小於0.05/zm,則光學積層體的防眩性不充 分。如果表面粗糖度Ra超過0. 2 # m,則光學積層體的對 比度變差。 〈接觸角〉 光學積層體在皂化處理前對水的接觸角較佳為100°以 上,更佳為105°以上。對上限並無特別限制,例如為150° 以下。光學積層體在皂化後對水的接觸角較佳為90°以上, 更佳為95°以上。對上限沒有特別限制,例如為150°以下。 〈防污性〉 防污性可藉由在光學功能層上用油性筆(商品名: McKee(註冊商標),ZEBRA製造)進行劃線時油墨的擦拭容 易度來評價。根據利用無塵布(產品編號:FF-390C Kuraray Kuraf lex股份有限公司製造)進行擦拭的方法來評價,防 污性越好,越容易擦拭。較佳為以500g/cm2的載重往復擦 49 322324 201125732 拭20次後可完全擦拭乾淨的積層體。 〈麥克貝斯(Macbeth)濃度〉 本發明的光學積層體的麥克貝斯反射濃度所表示者, 在使光學膜的透光性基體的與樹脂層相反側的面變黑的狀 態下測定的值越大就越黑。麥克貝斯反射濃度的值較佳為 3. 2以上。在顯示器等的表面使用光學膜時’很少在白顯 示中看出大的差異,因此,為了高對比度化,需要強調黑 顯示時的黑度。如果麥克貝斯反射濃度小於3. 2,則高對 比度化不充分。 〈光澤度〉 本發明的光學積層體的60°光澤度較佳為1〇〇至130 的範圍。60°光澤度大於130時,防眩性降低,因此不被期 待。另外,60°光澤度小於1〇〇時,雖然防眩性良好,但光 在表面的散射増強,使得明室對比度降低,因此不被期待。 〈光學積層體的製造方法〉 作為在透光性基體上塗布光學功能層形成用塗料的方 法,可應用通常的塗布方式、印刷方式。具體而言,可使 用氣刀塗布、棒塗布、刮板塗布、刮刀塗布、逆向塗布、 轉印輥塗布、凹版輥塗布、接觸塗布、鑄塗、喷塗、狹縫 喷嗔型塗布、簾式塗布、擋板塗布(dam c〇ating)、浸潰塗 布、模塗等塗布、凹版印刷等凹版印刷、網版印刷等孔版 印刷等印刷等。 (實施例) 面,採用實施例對本發明加以說明,但本發明並不 322324 50 201125732 限於這些實施例。 ' (製造例1)合成蒙皂石的製造 在10L的燒杯中加入水4L,溶解3號水玻璃(Si 〇2 28%, Na2〇 9%,莫耳比3. 22)860g,邊攪拌邊一次性地加入95% 硫酸162g,得到石夕酸鹽溶液。接著,在水1L中溶解MgC 12 · 6H2O優級純試劑(純度98%)560g,將其加入’到前述砍酸溶 液中製備成均質混合溶液。將其一邊攪拌一邊用5分鐘滴 加於2N-Na0H溶液3. 6L中。將得到的反應沈澱物立即用日 本礙子(股)製造的橫向流動方式的過滤糸統[橫向流動過 濾器(陶瓷膜過濾器:孔徑2/zm,管型,過濾面積400cm2)、 加壓:2kg/cm2、濾布:tetoron 1310]進行過濾和充分水 洗後,加入由200ml水和14. 5g的Li(OH) · H2O組成的溶 液製成漿液狀。將其移入高壓爸中,在41kg/cm2、250°C條 件下水熱反應3小時。冷卻後,取出反應物,在80°C乾燥 並粉碎,得到下式的合成蒙皂石。對該合成蒙皂石進行分 析,結果得到如下組成的化合物。Na〇.4Mg2.6Li0.4Si4〇i()(OH)2。 另外,藉由亞曱藍吸附法測定的陽離子交換容量為110毫 當量/100g。 (製造例2)合成蒙皂石系層狀有機黏土 A的製造 使在製造例1中合成的合成蒙皂石20g分散於自來水 1000ml中,製成懸浮液。將溶解有相當於該合成蒙皂石的 陽離子交換容量的1.00倍量的下式(II)的四級銨鹽(98% 含量產品)的水溶液500ml,添加於前述合成蒙皂石懸浮液 中,邊授拌邊在室溫下反應2小時。對生成物進行固液分 51 322324 201125732 離,洗滌,由此除去副生鹽類,然後,進行乾燥,得到合 成蒙皂石系層狀有機黏土 A。 CH3/CH2OCOCH2CH2SCH2CH2C4F9, nhco2ch2c-~CH2OCOCH2CH2SCH2CH2C4F9 CH2OCOCH=CH2 (2) .CH20COCH2CH2SCH2CH2C4F9 nhco2ch2c ς-~ch2ococh=ch2 nch2ococh=ch2 The ratio of the ionizing radiation-curable fluorinated acrylate contained in the optical functional layer is not particularly limited. In 100 parts by mass of the substance, it is preferably from 0.05 to 50% by mass, more preferably from 0.2 to 20% by mass. When the blending amount of the ionizing radiation-curable fluorinated acrylate is less than 0.05% by mass, the water repellency and smoothness are lowered, and scratch resistance, antifouling property, and chemical resistance are deteriorated. If the amount of the ionizing radiation-curable fluorinated acrylate is more than 50% by mass, the film formability may be deteriorated. 44 322324 201125732 In the system of the above resin composition, a polymer resin can be added in a range that does not inhibit polymerization and solidification. The polymer resin is a thermoplastic resin which is soluble in an organic solvent used in an optical functional layer coating material to be described later, and specific examples thereof include an acrylic resin, an alkyd resin, a polyester resin, a cellulose derivative, and the like. It is preferable that these resins have an acidic functional group such as a carboxyl group, a phosphoric acid group or a scintillation acid group. <Optical Laminate> The coating for forming an optical functional layer containing the above-described constituent components is applied onto the light-transmitting substrate directly or via another layer, and then irradiated with radiation (for example, irradiated with an electron beam or ultraviolet rays) by heat or irradiation. The optical layer formed by the coating of the optical functional layer is cured to form an optical functional layer. As the constituent component of the optical functional layer, the first solvent and the second solvent may be used in the case where at least one of the light-transmitting particles or the inorganic component capable of forming irregularities is formed by aggregation. The optical functional layer may be formed on one side of the light transmissive substrate or on both sides. The range of the range of 1. 0 to 10. 0 / zm, particularly preferably in the range of 3. 0 to 10. 0 / zm. When the optical functional layer is thinner than 1. 0 // m, it is liable to cause curing failure due to inhibition of oxygen during ultraviolet curing, and the scratch resistance of the optical functional layer is easily deteriorated. When the optical functional layer is thicker than 12.0/μm, curling occurs due to curing shrinkage of the optical functional layer, microcracking occurs, adhesion to the light-transmitting substrate is lowered, and light transmittance is lowered. In addition, as the film thickness increases, the amount of coating material required also increases, which also becomes a cause of cost increase. 45 322324 201125732 <Surface resistivity> The surface resistivity of the optical layered body measured by the surface of the optical functional layer is required to be 1.0 χ 1012 Ω / □ or less. If it exceeds 丨.0χ1〇ΐ2Ω/〇, sufficient antistatic properties may not be obtained. The surface resistivity is preferably 1.0 χ 1012 Ω / □ to 1. ΟχΗ ^ Ω / □, the range will have an electrostatic charge but will decay immediately, more preferably less than 1.0 χ 1 〇 ι Ω / □ less charged, Very good is 1.0χ109Ω/□ or less. The lower limit is not limited and is, for example, 1 〇χ 106 Ω/□ or more. When the optical layered body is mounted on a pVA (Patterned Vertical Alignment) liquid crystal, the surface resistivity needs to be 1.1 〇 1 〇 1 () Ω / □ or less. If this value is exceeded, an image display such as liquid crystal flipping due to static electricity on the surface of the display may occur. The surface resistivity of the optical laminate after saponification treatment needs to be 1 〇χ 1 〇 12 Ω / □ or less. If it exceeds 1.0 χ 1012 Ω / □, sufficient antistatic properties may not be obtained. The above surface resistivity is in the range of 1. 〇χ1 〇ΐ 2 Ω / □ to 1. 0xl01QQ / □, and it shows that the property is attenuated immediately with static electricity. It is preferable to charge less than 1. 〇χ1〇1 〇 Ω. /□ below. The lower limit is not limited, and is, for example, 1.0 χ 106 Ω/□ or more. <Saturated charging voltage> It is preferable that the optical laminated body has a saturated charging voltage of 1.5 kV or less at the outermost surface. In order to make the saturated charging voltage 15 kV or less, it is possible to add a conductive material exhibiting good conductivity to the optical functional layer or to increase the amount of addition of the conductive material. Saturated Charged Voltage vs. Surface Resistivity The lower the surface resistivity, the lower the saturated charge voltage. If the above-mentioned 46 322324 201125732 saturated charging voltage exceeds 1.5kV, especially in the IPS mode liquid crystal display, since the potential is applied between the electrodes arranged in the horizontal direction, the display may be easily charged due to the surface of the liquid crystal display being charged. Confused. 5克以下以下。 The above-mentioned saturated charging voltage is preferably 1. OkV or less, particularly preferably 0. 5kV or less. The lower limit value is not particularly limited, and is, for example, O.OlkV. The above saturated charging voltage can be measured in accordance with JIS L1094, and a half-life measuring method can be given. The above-described half-life measurement method can be performed by using a static decay tester (STATIC HONESTMETER) H-0110 (manufactured by Western Digital (SHISHID0) Electrostatic Gas Co., Ltd.' measurement conditions: applied voltage l〇kV, distance 20 mm, 25 ° C, 40% RH). The measuring instrument sold was measured. As a specific measurement method, for example, a sample (4 cm x 4 cm) is fixed to a turntable to be rotated, a voltage is applied, and the withstand voltage value (kV) of the surface of the sample is measured by the above measuring device. By plotting the attenuation curve of withstand voltage with respect to time, it is possible to measure the half-life (the time when the amount of charge reaches half of the initial value) and the saturated charging voltage. <Light resistance> An optical layering system for an optical functional layer such as an antiglare layer or a hard coat layer for use in a display is intended to be used outdoors and is required to have light resistance. The fiscal test has a method of naturally exposing under sunlight, but it takes a long time before the deterioration occurs. Therefore, an accelerated test for irradiating artificial light is usually performed. In the accelerated test, a carbon arc light resistance tester using a ultraviolet carbon arc lamp as a light source can be used. The test conditions using the carbon arc type light resistance tester are defined by JIS K 5600-7-5, and in the present specification, values measured based on the test conditions are used. 47 322324 201125732 By means of the optical function of the illuminating substrate on the illuminating test machine, the wire is placed on the light-transmitting energy to deteriorate the characteristics. Second, in the structural changes such as the molecular bond break, the functional layer and the optical layer can be learned, and the antistatic property caused by the photo-optic test on the laminated base substrate:: light resistance is particularly required to reduce the resistance to haze. The optimum haze of the optical layered body of the present invention is preferably from 10 to 9, more preferably from 4 to <all light transmittance. 90% or more is more preferably an optical layer having a total light transmittance of 90.5% or more, particularly preferably 91% or more. <Image sharpness>, light: In terms of image sharpness before the 4-layer treatment, based on the wei-a comb &amp; good G to the discussion, more preferably ig to 77.5%, especially good for 20 to 75%. <Flickering> = _, the light-drying layer is formed, and the opposite layer of the optical layer-forming surface is bonded to the four layers of the resolution (-η) = via the colorless and transparent dot-layer layer: the surface of the display In the above, the camera is photographed by (10), and the image is judged with or without the deviation of the image. In the case of flashing, it is preferable to confirm with a display having a higher resolution, and it is preferable that there is no flicker in a liquid crystal display having a resolution of ι〇ι to 140ρρι. <Average tilt angle> The surface of the optical layered layer of the optical layered body of the present invention has a fine 322324 48 201125732 concave-convex shape.至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至至1. 0. If the average tilt angle is less than 0.2, the anti-glare property is deteriorated, and if the average tilt angle exceeds 1.4, the contrast is deteriorated, and therefore, it is not suitable for the optical layered body for the surface of the display. The surface roughness Ra is preferably 0. 05 to 0. 2^111, more preferably 0.05 to 0, as the optically-structured layer of the optical layer of the present invention. 15/zm, particularly preferably from 0.05 to 0. 10/zm. If the surface roughness Ra is less than 0.05/zm, the antiglare property of the optical laminate is insufficient. If the surface roughness of Ra exceeds 0.2 Å, the contrast of the optical laminate deteriorates. <Contact angle> The contact angle of the optical layered body to water before the saponification treatment is preferably 100 or more, more preferably 105 or more. There is no particular limitation on the upper limit, for example, 150° or less. The contact angle of the optical layered body to water after saponification is preferably 90 or more, more preferably 95 or more. The upper limit is not particularly limited and is, for example, 150 or less. <Antifouling property> The antifouling property can be evaluated by the wiping ease of ink when scribing with an oil-based pen (trade name: McKee (registered trademark), manufactured by ZEBRA) on the optical functional layer. According to the method of wiping with a dust-free cloth (product number: FF-390C Kuraray Kuraf lex Co., Ltd.), the better the antifouling property, the easier it is to wipe. It is preferred to reciprocate with a load of 500 g/cm 2 49 322324 201125732 After wiping 20 times, the cleaned laminate can be completely wiped off. <Macbeth concentration> The value measured by the Macbeth reflection density of the optical layered product of the present invention is larger in a state where the surface of the optically transparent substrate of the optical film opposite to the resin layer is blackened. The darker it is. The value of the Macbeth reflection concentration is preferably 3. 2 or more. When an optical film is used on the surface of a display or the like, a large difference is rarely seen in the white display. Therefore, in order to increase the contrast, it is necessary to emphasize the blackness at the time of black display. If the Macbeth reflection concentration is less than 3.2, the high contrast is insufficient. <Glossiness> The 60° gloss of the optical layered body of the present invention is preferably in the range of from 1 Å to 130. When the 60° gloss is more than 130, the anti-glare property is lowered, so that it is not expected. Further, when the 60° gloss is less than 1 Å, although the anti-glare property is good, the scattering of light on the surface is strong, and the bright room contrast is lowered, so that it is not expected. <Method for Producing Optical Laminate> As a method of applying a coating material for forming an optical functional layer on a light-transmitting substrate, a usual coating method or printing method can be applied. Specifically, air knife coating, bar coating, blade coating, blade coating, reverse coating, transfer roller coating, gravure coating, contact coating, cast coating, spray coating, slit squeezing coating, curtain type may be used. Printing such as coating, dam coating, coating by dip coating or die coating, gravure printing such as gravure printing, and printing such as stencil printing such as screen printing. (Embodiment) The present invention will be described by way of examples, but the invention is not limited to 322324 50 201125732. (Production Example 1) Production of synthetic smectite 4 L of water was added to a 10 L beaker to dissolve 860 g of No. 3 water glass (Si 〇 2 28%, Na 2 〇 9%, Mo Er ratio 3.22), while stirring 162 g of 95% sulfuric acid was added in one portion to obtain a solution of the solution. Next, 560 g of MgC 12 · 6H 2 O superior pure reagent (purity: 98%) was dissolved in 1 L of water, and this was added to the above-mentioned chopping acid solution to prepare a homogeneous mixed solution. The mixture was added dropwise to a 2N-Na0H solution of 3. 6 L. The obtained reaction precipitate was immediately applied to a transverse flow filtration system manufactured by Nippon Insulator Co., Ltd. [transverse flow filter (ceramic membrane filter: pore size 2/zm, tubular type, filtration area 400 cm 2 ), pressurization: 2 kg / cm 2 , filter cloth: tetoron 1310] After filtration and sufficient water washing, a solution consisting of 200 ml of water and 14. 5 g of Li(OH) · H 2 O was added to make a slurry. It was transferred to a high pressure dad and hydrothermally reacted for 3 hours at 41 kg/cm2, 250 °C. After cooling, the reactant was taken out, dried at 80 ° C and pulverized to obtain a synthetic smectite of the following formula. The synthetic smectite was analyzed to obtain a compound having the following composition. Na〇.4Mg2.6Li0.4Si4〇i()(OH)2. Further, the cation exchange capacity measured by the indigo blue adsorption method was 110 meq/100 g. (Production Example 2) Production of Synthetic Montmorillonite Layered Organic Clay A 20 g of synthetic smectite synthesized in Production Example 1 was dispersed in 1000 ml of tap water to prepare a suspension. 500 ml of an aqueous solution of a quaternary ammonium salt (98% content product) of the following formula (II) in an amount equivalent to 1.00 times the cation exchange capacity of the synthetic smectite is added to the synthetic smectite suspension. The mixture was allowed to react at room temperature for 2 hours while stirring. The product was subjected to solid-liquid partitioning 51 322324 201125732, and washed, thereby removing by-product salts, and then drying to obtain a synthetic smectite-based layered organic clay A. CH3

Ci^l33-N+-C18H37 Cf (Ii) CH3 (製造例3 )電離放射線固化型氟化丙烯酸酿b液的合成 在500ml的反應燒瓶中,向異佛爾酮二異氰.酸醋22. 2g (0.1莫耳)的MIBK(曱基異丁基酮)100ml溶液中,邊進行 空氣起泡邊在25°C滴加季戊四醇三丙烯酸酯59.6g(〇.20 莫耳)的MIBK 50ml溶液。滴加結束後,加入二月桂酸二丁 基錫0. 3g,進一步在7(TC加熱攪拌4小時。反應結束後, 用5%鹽酸l〇〇ml洗滌反應溶液。分離取得有機層後,在4〇 °C以下減壓蒸餾除去溶劑’由此得到無色透明黏稠液體的 氨基甲酸酯丙烯酸酯80. 5g。在200ml反應燒瓶中投入製 備好的氨基甲酸酯丙烯酸酯40 8g(0.05莫耳)、全氟辛基 乙基硫醇71. 9g(〇. 15莫耳)、MIBK 60g,使其均勻化。在 該混合溶液中在25t慢慢加入三乙胺l.Og。添加結束後, 進一步在50t:攪拌3小時。反應結束後’在5〇。(:以下的條 件下採用蒸發器,減壓蒸餾除去三乙胺,進一步用真空泵 進行乾燥’由此得到由混合物構成的電離放射線固化型氟 化丙烯酸酯B液,該混合物含有由結構式1表示的含氟化 烷基的氨基甲酸酯丙烯酸酯、並進一步含有丙烯醯基和全 氟辛基乙基硫醇的加成反應的位置與前述結構式1不同的 52 322324 201125732 化合物。 結構式1 nhco2ch2c*_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In a 100 ml solution of (0.1 mol) MIBK (indenyl isobutyl ketone), 59.6 g (〇.20 mol) of MIBK 50 ml of pentaerythritol triacrylate was added dropwise at 25 ° C while air bubbling. After the completion of the dropwise addition, 0. 3 g of dibutyltin dilaurate was added, and further stirred at 7 (TC for 4 hours). After the reaction was completed, the reaction solution was washed with 5% hydrochloric acid, and the organic layer was separated and then dried. The solvent was distilled off under reduced pressure at ° C. to give a colorless transparent viscous liquid of urethane acrylate 80. 5 g. The prepared urethane acrylate 40 8 g (0.05 mol) was placed in a 200 ml reaction flask. Perfluorooctylethyl thiol 71.0 g (〇. 15 mol), MIBK 60 g, homogenized. In the mixed solution, triethylamine 1.0 g was slowly added at 25 t. After the addition, further 50 t: stirring for 3 hours. After the completion of the reaction, 'at 5 〇. (: under the following conditions, an evaporator was used, triethylamine was distilled off under reduced pressure, and further dried by a vacuum pump) to obtain an ionizing radiation-curable fluorine composed of a mixture. An acrylate B solution containing the fluorinated alkyl urethane acrylate represented by Structural Formula 1 and further containing an addition reaction of propylene fluorenyl group and perfluorooctyl ethyl thiol The foregoing structural formula 1 is different 52 322324 201125732 Compound. Structural formula 1 nhco2ch2c*

,CH2OCOCH2CH2SCH2CH2C8F17 oh2ococh2ch2sch2ch2c8f17 ch2ococh=ch2 nhco2ch,CH2OCOCH2CH2SCH2CH2C8F17 oh2ococh2ch2sch2ch2c8f17 ch2ococh=ch2 nhco2ch

CH2OCOCH2CH2SCH2CH2C8F17 —ch2ococh=ch2 ch2ococh=ch2 分子量:2259 氟原子含有率:42. 9% (製造例4)聚苯乙烯磺酸的合成 在1000ml的離子交換水中溶解206g的苯乙烯磺酸 鈉,在80 C攪拌,同時花20分鐘滴加氧化劑溶液 的過硫酸銨預先溶解於l〇ml水中),將該溶液攪拌U 時。在知到的含苯乙烯石黃酸鈉的溶液中添加稀 10質量%的硫酸,採用超遽法,除去含聚苯乙缔續酸溶, 的約1000ml溶液,在殘液中加入2〇〇〇ml的離子交換=乂 採用超濾法除去約2000ml溶液。上述超濾操作重複3 ^ 進一步,在得到的濾液中添加約2〇Q〇ml的離子交換水&lt; 用超濾法除去約2000ml溶液。該超濾操作重複3 ^。採 人。將得 322324 53 201125732 =溶液中的機㈡,得觀㈣苯剛竣的固 (製造例5)經摻雜聚笨w姐的聚(3 (PPS-PED0T)的合成 羊^塞吩) 將36. 7g的在製造例4中人士、 2000ml的離子交換水中,將I 聚本乙婦%酸溶解於 乙撑二氧爾2rc混合將將所和巧的3- 川。r,一禧俨挫 丸 子由此侍到的混合溶液保持於 L甘 慢添加氧化催化劑溶液,轉3 小時使其進行反應,魄化催化财液是將2 = 酸銨和㈣的魏鐵轉於咖㈣子錢水中^: 在得到的反應液中添加2G_的離子交換水,採用超滤法 除去約2000ml的溶液。該操作重複3次。然後,在得到的 今液中加人2GGml的稀釋至1()質量%的硫酸和·_的離 子交換水’採用料法除去約2G_的溶液,在其中加入 2000ml的離子交換水’採用超濾法除去約聊―的溶液。 該操作重複3次。進一步,在得到的溶液中加人2〇〇〇mi的 離子交換水’採用超濾、法除去約2_ml㈣液。該操作重 複5次’得到1.5質量%的藍色的經摻雜聚苯乙烯磺酸的聚 (3,4_乙樓二氧噻吩)(PPS-PEDOT)的水溶液。 (製造例6)經摻雜聚苯乙婦續酸的聚(3, 乙樓二氧嗔吩) (PPS-PEDOT)的異丙醇分散液c液的製成 取在製造例5中合成的經摻雜聚笨乙烯磺酸的聚 (3,4-乙撐二氧嘍吩)(PPS-PEDOT)的1.5質量%的水分散浪 100g到燒瓶中’添加異丙醇100g,邊攪拌邊添加〇. 5ml的 54 322324 201125732 10%鹽酸。然後,持續攪拌30分鐘後,放置1小時。採用 玻璃過濾器對得到的凝膠狀物進行減壓過濾,然後,添加 異丙醇200g,重複8次減壓過濾操作。在固體成分未完全 乾燥的狀態下,從玻璃過濾器中取出,根據加熱質量的減 * 少來算出固體成分質量,得到固體成分7.8%的濕潤藍色固 體15g。取異丙醇15g到燒杯中,添加胺環氧烷加成物(商 品名:Ethomeen C/15,LION ΑΚΖ0 公司製造)0.4g,然後, 添加所得到的濕潤藍色固體15g,採用乳化分散機(商品 名:TK均質機,特殊機化工業製造),以4000rpm的旋轉 數處理10分鐘,得到PSS-PED0T異丙醇分散液(C液)(固 體成分濃度5%,水含量20%以下)。 採用Nanotrac粒徑分佈測定裝置UPA-EX150C日機裝 股份有限公司製造),利用單分散模式,對所得到的 PSS-PED0T異丙醇分散液(固體成分濃度5%,水含量20%以 下)的平均粒徑進行測定。於此,平均粒徑(d50)為20mn, d90 為 40nm。 (製造例7)含有四級銨鹽基的共聚物D液製造例 在具備攪拌裝置、氮氣導入管、溫度計以及回流冷凝 管的燒瓶中’饋入曱基丙烯酸正丁酯40g、LIGHT-ESTER DQ-100(共榮化學社製造)50g、甲基丙烯酸N,N-二曱胺基 乙酯5g、丙烯酸5g、曱醇60g、曱基溶纖劑6〇g,在燒瓶 内邊導入氮氣邊擾拌30分鍾,進行氮氣置換,然後,將燒 瓶内的内容物升溫至75°C。接著,在燒瓶内添加AIBN(偶 氮雙異丁腈)〇.5g。一邊將燒瓶内的内容物維持在75。(:, 55 322324 201125732 一邊每1小時添加2次AI BN 0. 5g。從最初添加AI BN開始 9小時後冷卻至室温,得到聚合物濃度45%的含四級銨鹽基 的共聚物D液。對於所得到的共聚物v利用GPC進行測定, 結果,質量平均分子量為100, 〇〇〇。另外,測定聚合物的 SP值,結果為12. 15。 [實施例1] 將含有前述層狀有機黏土 A、電離放射線固化型氟化 丙烯酸酯B液、PSS-PEDOT異丙醇分散液C液的表1所記 載的預定的混合物,用分散機攪拌30分鐘,由此得到光學 功能層形成用塗料,將該塗料以輥塗方式塗布(線速度: 20m/分鐘)在膜厚80 am、全光線透射率92%的透明基體的 TAC膜(富士軟片公司製造,TD80UL)的單面上,在30至50 °C經過20秒鐘的預備乾燥後,在100°C乾燥1分鐘,在氮 氣環境中(氮氣置換),進行紫外線照射(燈:聚光型高壓水 銀燈,燈的輸出功率:120W/cm,燈數:4盞,照射距離: 20cm),由此使塗布膜固化。這樣,得到具有厚度5.5//m 的光學功能層的實施例1的光學積層體。 [實施例2] 將光學功能層形成用塗料變更為表1所記載的預定的 混合液,除此以外,與實施例1同樣地操作,得到具有厚 度5.8# m的光學功能層的實施例2的光學積層體。 [比較例1] 將光學功能層形成用塗料變更為含有含四級銨鹽基共 聚物D液的表1記載的預定的混合液,除此以外,與實施 56 322324 201125732 例1同樣地操作,得到具有厚度4. 0 // m的光學功能層的比 較例1的光學積層體。 [比較例2 ] 將光學功能層形成用塗料變更為不含導電材料的表1 ' 記載的預定的混合液,除此以外,與實施例1同樣地操作, 得到具有厚度5. 6 # m的光學功能層的比較例2的光學積層 57 322324 201125732 表1CH2OCOCH2CH2SCH2CH2C8F17 —ch2ococh=ch2 ch2ococh=ch2 Molecular weight: 2259 Fluorine atom content: 42.9% (Manufacturing example 4) Synthesis of polystyrenesulfonic acid 206 g of sodium styrenesulfonate was dissolved in 1000 ml of ion-exchanged water at 80 C While stirring, the ammonium persulfate of the oxidizing agent solution was added dropwise for 20 minutes in advance to dissolve in 100 ml of water, and the solution was stirred for U. Adding 10% by mass of sulfuric acid to the known solution containing sodium styrene sulphate, removing about 1000 ml of solution containing polyphenylene-containing acid-dissolving solution by super-twisting method, and adding 2 在 to the residue. Ion exchange of 〇ml = 约 Approximately 2000 ml of solution was removed by ultrafiltration. The above ultrafiltration operation was repeated 3 ^ Further, about 2 〇 Q 〇 ml of ion-exchanged water was added to the obtained filtrate &lt; About 2000 ml of the solution was removed by ultrafiltration. This ultrafiltration operation is repeated 3^. Pick people. Will get 322324 53 201125732 = machine in solution (two), get (four) benzene gangrene solid (manufacturing example 5) doped poly w w 姐 聚 poly (3 (PPS-PED0T) synthetic sheep 塞 )) 36 7 g of the person in the production example 4, 2000 ml of ion-exchanged water, dissolved in the ethylene-dioxide 2rc mixture will be the same as the 3-chuan. r, a mixed solution of the smashed pellets is kept in the L-slow addition of the oxidation catalyst solution, and the reaction is carried out for 3 hours, and the catalyzed chemistry is to transfer 2 = ammonium sulphate and (iv) ferro-iron Coffee (4) sub-money water ^: 2G_ of ion-exchanged water was added to the obtained reaction solution, and about 2000 ml of the solution was removed by ultrafiltration. This operation was repeated 3 times. Then, 2 GGml of the diluted solution to 1 ()% by mass of sulfuric acid and ·_ ion-exchanged water was added to the obtained solution, and the solution of about 2 G_ was removed by the method, and 2000 ml of ion-exchanged water was added thereto. The filter removes the solution about the chat. This operation was repeated 3 times. Further, 2 μM of ion-exchanged water was added to the obtained solution. About 2 ml of the liquid was removed by ultrafiltration. This operation was repeated 5 times to obtain an aqueous solution of 1.5% by mass of blue doped polystyrenesulfonic acid poly(3,4-diphenyldioxythiophene) (PPS-PEDOT). (Manufacturing Example 6) Preparation of polyisopropanol dispersion liquid of poly(trimethylene dioxy porphin) (PPS-PEDOT) doped with polystyrene was synthesized in Production Example 5. 1.5 g of water-dispersed wave of 1.5% by mass of poly(3,4-ethylenedioxythiophene) (PPS-PEDOT) doped with polystyrenesulfonic acid was added to the flask to add 100 g of isopropanol, and added while stirring. 〇. 5ml of 54 322324 201125732 10% hydrochloric acid. Then, after stirring for 30 minutes, it was allowed to stand for 1 hour. The obtained gel was filtered under reduced pressure using a glass filter, and then 200 g of isopropyl alcohol was added thereto, and the pressure filtration operation was repeated 8 times. When the solid content was not completely dried, it was taken out from the glass filter, and the mass of the solid component was calculated from the decrease in the heating mass to obtain 15 g of a wet blue solid having a solid content of 7.8%. 15 g of isopropyl alcohol was placed in a beaker, 0.4 g of an amine alkylene oxide adduct (trade name: Ethomeen C/15, manufactured by LION ΑΚΖ0) was added, and then 15 g of the obtained wet blue solid was added thereto, using an emulsification disperser. (trade name: TK homogenizer, manufactured by special machine industry), and treated with a rotation number of 4000 rpm for 10 minutes to obtain a PSS-PED0T isopropanol dispersion (liquid C) (solid content concentration 5%, water content 20% or less) . The obtained PSS-PED0T isopropanol dispersion (solid content concentration 5%, water content 20% or less) was obtained by a monodisperse mode using a Nanotrac particle size distribution measuring apparatus (manufactured by UPA-EX150C Nikkiso Co., Ltd.). The average particle size was measured. Here, the average particle diameter (d50) was 20 nm, and d90 was 40 nm. (Production Example 7) Production Example of Copolymer D Liquid Containing a Quaternary Ammonium Salt Group In a flask equipped with a stirring device, a nitrogen gas introduction tube, a thermometer, and a reflux condenser, 40 g of n-butyl methacrylate was fed, LIGHT-ESTER DQ -100 (manufactured by Kyoei Chemical Co., Ltd.) 50 g, N,N-diamylaminoethyl methacrylate 5 g, acrylic acid 5 g, decyl alcohol 60 g, fluorenyl cellosolve 6 〇 g, nitrogen gas was introduced into the flask After mixing for 30 minutes, nitrogen substitution was carried out, and then the contents of the flask were heated to 75 °C. Next, AIBN (azobisisobutyronitrile) 〇.5 g was added to the flask. The contents of the flask were maintained at 75 while maintaining. (:, 55 322324 201125732 Add AI BN 0. 5g twice per hour. After 9 hours from the initial addition of AI BN, cool to room temperature to obtain a quaternary ammonium salt-containing copolymer D solution with a polymer concentration of 45%. The obtained copolymer v was measured by GPC, and as a result, the mass average molecular weight was 100 Å. Further, the SP value of the polymer was measured and found to be 12.15. [Example 1] The layered layer described above was contained. The predetermined mixture described in Table 1 of the organic clay A, the ionizing radiation-curable fluorinated acrylate B liquid, and the PSS-PEDOT isopropyl alcohol dispersion liquid C was stirred by a disperser for 30 minutes to obtain an optical functional layer. In the coating, the coating was applied by roll coating (linear velocity: 20 m/min) on a single side of a TAC film (manufactured by Fujifilm Co., Ltd., TD80UL) having a film thickness of 80 mm and a total light transmittance of 92%. 30 to 50 ° C after 20 seconds of preliminary drying, drying at 100 ° C for 1 minute, in a nitrogen atmosphere (nitrogen replacement), ultraviolet irradiation (light: concentrating high-pressure mercury lamp, lamp output: 120W / Cm, number of lights: 4 inches, illumination distance 20 cm), whereby the coating film was cured. Thus, an optical layered body of Example 1 having an optical function layer having a thickness of 5.5/m was obtained. [Example 2] The coating material for forming an optical function layer was changed to Table 1. An optical layered product of Example 2 having an optical functional layer having a thickness of 5.8 # m was obtained in the same manner as in Example 1 except that the predetermined mixed liquid was described. [Comparative Example 1] Coating for forming an optical functional layer The optical function having a thickness of 4.00 m was obtained in the same manner as in Example 1 of 56 322324 201125732, except that it was changed to the predetermined mixed liquid of the first-order ammonium salt-based copolymer D liquid. The optical layered product of Comparative Example 1 was used. [Comparative Example 2] The operation was carried out in the same manner as in Example 1 except that the coating material for forming an optical function layer was changed to a predetermined mixed liquid described in Table 1 of the conductive material. , Optical composite layer of Comparative Example 2 having an optical functional layer having a thickness of 5.6 # m was obtained. 322324 201125732 Table 1

No 成分 公司名 產品名 質量份 電離放射線固化型氟化丙烯酸酯 — B液 0. 13 多官能氨基甲睃δΙ丙烯酸酯 共榮社化學 UA306I 42. 17 二李戊四醇六丙烯酸酯 日+本化藥 KAYARAD DPHA 13.71 季戊四酵三丙烯酸酯 曰本化藥 KAYARAD PET-30 34. 46 光聚合引發劑 汽巴精化曰本 I rgacure 184 4. 72 實施例1 PSS-PED0T異两酵分散液 (平均粒徑20nm) - C 液(5%) 47. 91 層狀有機黏土 A - - 0. 40 PMMA粒子(粒徑1. 5仁m) — - 2. 00 甲苯 - - 29. 18 異丙醇 - - 52. 34 電離放射線固化型氟化丙烯酸酯 - B液 0. 13 多官能氨基甲酸酯丙烯酸酯 共榮社化學 IJA306I 23. 75 二季戊四酵六丙烯酸酯 曰本化藥 KAYARAD DPHA 13. 50 李戊四醇四丙烯酸酯 共榮社化學 LIGHT-ACRYLATE PE-4A 7. 27 季戊四醇多丙烯酸酯 荒川化學 BEAMSET 710 44. 65 實施例2 PMMA粒子(粒徑5/z ro) - - 4. 50 光聚合引發劑 汽巴精化曰本 Irgacure 184 4. 60 PSS-PED0T異丙畔分散液 (平均粒徑20nm) - C 液(5%) 32. 00 甲苯 - — 36. 67 異丙酵 - - 55. 15 含四級銨鹽的共聚物(45%) 一 D液 18. 00 季戊四酵三丙烯酸酯 共榮社化學 LIGHT-ACRYLATE PE-3A 82. 15 光聚合引發劑 汽巴精化曰本 I rgacure 184 4. 75 比較例1 二氧化矽粒子 富士 SILYSIA 化學 SYLOSPHERE C3504 2. 25 分散劑(含羧基聚合物改性物) 共榮社化學 Flowlen G700 0. 25 丙二酵單甲基醚 一 - 89. 00 丁酵 — - 14. 17 電離放射線固化型氟化丙烯酸酯 一 B液 0. 13 多官能氨基甲酸酯丙烯酸酯 共榮社化學 UA306I 42. 17 二李戊四酵六丙烯酸酯 曰本化藥 KAYARAD DPHA 13. 71 季戊四醇三丙烯酸酯 共榮社化學 LIGHT-ACRYLATE PE-3A 36. 88 比較例2 光聚合引發劑 汽巴精化曰本 Irgacure 184 4. 72 層狀有機黏土 A - — 0. 40 PMMA粒子(粗徑1. 5卩m) 一 - 2. 00 甲苯 - - 29. 18 * 異丙酵 - — 97. 87 58 322324 201125732 . (製造例8)電離放射線固化型氟化丙烯酸酯E液的合成No Ingredient company name Product name Part by mass ionizing radiation curing type fluorinated acrylate - B liquid 0. 13 Multifunctional aminomethine δ Ι acrylate Co., Ltd. UA306I 42. 17 Two plum pentoxide hexaacrylate day + localization KAYARAD DPHA 13.71 Pentaerythritol triacrylate 曰 化 KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA Average particle size 20nm) - C liquid (5%) 47. 91 Layered organic clay A - - 0. 40 PMMA particles (particle size 1. 5 ren m) — - 2. 00 Toluene - - 29. 18 Isopropanol - - 52. 34 Ionizing radiation-curable fluorinated acrylate-B solution 0. 13 Polyfunctional urethane acrylate Kyoei Chemical IJA306I 23. 75 dipentaerythra hexaacrylate phthalate KAYARAD DPHA 13. 50 Lipentaerythritol tetraacrylate Co., Ltd. LIGHT-ACRYLATE PE-4A 7. 27 Pentaerythritol polyacrylate Arakawa Chemical BEAMSET 710 44. 65 Example 2 PMMA particles (particle size 5/z ro) - - 4. 50 Photopolymerization initiator Ciba refined 曰本 Irgacure 184 4. 60 P SS-PED0T Isopropyl dispersion (average particle size 20nm) - C solution (5%) 32. 00 Toluene - 36. 67 Isozyme - - 55. 15 Copolymer containing quaternary ammonium salt (45%) A D liquid 18. 00 pentaerythritol triacrylate glory AC LIGHT-ACRYLATE PE-3A 82. 15 photopolymerization initiator Ciba refined 曰 I rgacure 184 4. 75 Comparative Example 1 cerium oxide particles Fuji SILYSIA Chemistry SYLOSPHERE C3504 2. 25 Dispersant (Carboxylated Polymer Modified) Flowlen G700 0. 25 Propylene Glycol Monomethyl - 89. 00 Butyrate - - 14. 17 Ionizing Radiation Curing Fluorinated acrylate-B liquid 0. 13 Polyfunctional urethane acrylate Kyoei Chemical UA306I 42. 17 Two Lee pentane hexaacrylate phthalate carbamide KAYARAD DPHA 13. 71 Pentaerythritol triacrylate Co., Ltd. Chemical LIGHT-ACRYLATE PE-3A 36. 88 Comparative Example 2 Photopolymerization initiator Ciba refined 曰本 Irgacure 184 4. 72 Layered organic clay A - — 0. 40 PMMA particles (large diameter 1. 5卩m) - 2. 00 Toluene - - 29. 18 * Isozyme - 97. 87 58 322324 201125732 . Production Example 8) Synthesis of ionizing radiation-curable fluorinated acrylate E solution

在500ml的反應燒瓶中,向異佛爾酮二異氰酸酯22· 2g - (〇. 1莫耳)的MIBK(甲基異丁基酮)i〇〇mi溶液中,在25°C 邊進行空氣起泡邊滴加季戊四醇三丙稀酸酯59. 6g(0. 20 莫耳)的MIBK 50ml溶液。滴加結束後,加入二月桂酸二丁 基錫0· 3g ’進一步在70t加熱攪拌4小時。反應結束後, 用5%鹽酸l〇〇ml洗滌反應溶液。分取有機層後,在4〇。〇以 下減壓蒸顧除去溶劑’由此得到無色透明黏稠液體的氨基 甲酸酯丙烯酸酯80. 5g。在200ml反應燒瓶中投入製備好 的氨基甲酸酯丙烯酸酯40. 8g(0. 05莫耳)、全氟丁基乙基 琉醇42g(〇. 15莫耳)、MIBK 60g,使其均勻化。在該混合 /合液中在25。(:慢慢加入三乙胺1. 0g。添加結束後’進一步 在50 C授拌3小時。反應結束後’在50¾以下的條件下採 用煞發器,減壓蒸餾除去三乙胺,進一步用真空泵進行乾 燥’由此得到由混合物構成的電離放射線固化型氟化丙烯 馱酯E液,該混合物含有由結構式2表示的含氟化烷基的 氨基曱酸酯丙烯酸酯、並進一步含有丙烯醯基和全氟丁基 乙基硫醇的加成反應的位置與前述結構式2不同的化合 物。 59 322324 201125732 結構式2In a 500 ml reaction flask, to a solution of isophorone diisocyanate 22·2 g - (〇. 1 mol) in MIBK (methyl isobutyl ketone) i〇〇mi, air at 25 ° C 5,5 g (0.20 mol) of MIBK 50 ml solution was added dropwise to the blister with pentaerythritol triacrylate. After the completion of the dropwise addition, dibutyltin dilaurate (0.3 g) was further added and the mixture was further heated and stirred at 70 t for 4 hours. After the reaction was completed, the reaction solution was washed with 5% hydrochloric acid. After the organic layer was separated, it was taken at 4 〇. 5克。 The urethane acrylate 80. 5g. The prepared urethane acrylate 40. 8g (0.05 mol), perfluorobutyl ethyl decyl alcohol 42g (〇. 15 mol), MIBK 60g were homogenized in a 200 ml reaction flask. . At 25 in the mixing/liquid mixture. (: Slowly add 1. 0 g of triethylamine. After the end of the addition, 'further mix at 50 C for 3 hours. After the reaction is finished', use a hair dryer under the conditions of 503⁄4 or less, and distillate the triethylamine under reduced pressure for further use. The vacuum pump is dried to thereby obtain an ionizing radiation-curable fluorinated propylene acrylate E liquid composed of a mixture containing the fluorinated alkyl group-containing phthalic acid ester acrylate represented by Structural Formula 2, and further containing propylene oxime The addition reaction of the group and perfluorobutyl ethyl mercaptan is different from the compound of the above formula 2. 59 322324 201125732 Structural formula 2

CH2OCOCH=CH2 /CH2〇_2CH2SCH2〇W9 ,nhco2ch2c--CH2OCOCH2CH2SCH2CH2C4F9 nhco2ch2cCH2OCOCH=CH2 /CH2〇_2CH2SCH2〇W9 ,nhco2ch2c--CH2OCOCH2CH2SCH2CH2C4F9 nhco2ch2c

ch2ococh2ch2sch2ch2c4f9 —ch2ococh=ch2 ch2ococh=ch2 分子量:1659 氟原子含有率:30. 9°/〇 (製造例9)電離放射線固化型氟化丙烯酸酯F液的合成 在帶有擾拌裝置、迪安~斯塔克(Dean-Stark)分水器 的500ml燒瓶中,饋入全氟己基乙基硫醇150. 0g、硫代蘋 果酉夂30. 0g、濃硫酸1. 5g、甲苯200ml ,進行加熱回流, 直至此夠除去理論產罝的水分(7. ig)。冷卻至6〇。(3後,加 入熟石灰20g,在相同溫度下攪拌3〇分鐘。過濾後,減壓 蒸顧除去曱苯,由此得到作為黃色透明黏性液體的硫代蘋 果酸二(全氟己基乙基酯)168. 。 在200ml反應燒瓶中,投入季戊四醇四丙稀酸酯(東亞 合成股份有限公司製造的ARONIX M-450)17. 6g(0.05莫 耳)、硫代蘋果酸二(全氟己基乙基酯)43. 7g(0. 05莫耳)、 60 322324 201125732 乙酸乙酯10g,在50°C攪拌下,慢慢加入三乙胺1. Og。添 加結束後,進一步在50°C攪拌3小時。反應結束後,在50 °C以下的條件下,減壓蒸餾除去乙酸乙酯、三乙胺,然後, 進一步用真空泵乾燥,由此得到下述結構式3表示的含氟 化烧基丙烯酸i旨F液25. Og。 結構式3 OCOCH=CH, H2OHCOC〇-Ch 2 2 2 2 2 2 2 2 2 2 2 2 2 2克内的含的水的流水,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Until this is enough to remove the theoretical calf (7. ig). Cool to 6 〇. (3, 20 g of slaked lime was added and stirred at the same temperature for 3 minutes. After filtration, the benzene was removed under reduced pressure to obtain thiomalate bis(perfluorohexylethyl ester) as a yellow transparent viscous liquid. 168. In a 200 ml reaction flask, pentaerythritol tetrapropyl acrylate (ARONIX M-450 manufactured by Toagosei Co., Ltd.) was introduced. 17.6 g (0.05 mol), thiomalate di(perfluorohexylethyl) Og) 43. 7g (0. 05 Moer), 60 322324 201125732 Ethyl acetate 10g, while stirring at 50 ° C, slowly added triethylamine 1. Og. After the end of the addition, further stirred at 50 ° C for 3 hours After the completion of the reaction, ethyl acetate and triethylamine are distilled off under reduced pressure at 50 ° C or lower, and then further dried by a vacuum pump to obtain a fluorinated alkyl acrylate i represented by the following structural formula 3. The F liquid is 25. Og. The structural formula 3 OCOCH=CH, H2OHCOC〇-

0II Ό—C-^CH2·^- s—CH— C— S—^CH2^C6F13 0 OCOCH=CH2 CH; C-S{-CH2^C8F13 3 分子量:1162 氟原子含有率:42. 5% (製造例10)氟系表面活性劑G液的合成 在具備攪拌裝置.、冷凝器、溫度計的玻璃燒瓶中,饋 入含氟化烷基(曱基)丙烯酸酯單體(結構式4)19重量份、 具有支鏈狀脂肪族烴基的乙烯性不飽和單體(結構式5)30 重量份、在側鏈具有分子量400的環氧乙烷和環氧丙烷的 共聚物的單丙烯酸酯化合物39重量份、四乙二醇的兩末端 被甲基丙烯酸酯化的化合物4重量份、曱基丙烯酸甲酯8 重量份以及異丙醇(以下,簡稱為IPA)350重量份,在氮氣 流中、在回流下,添加作為聚合引發劑的偶氮雙異丁腈(以 下,簡稱為AIBN)1重量份和作為鏈轉移劑的月桂基硫醇 10重量份之後,在85°C回流7小時,完成聚合,得到含氟 61 322324 201125732 低聚物。該聚合物的藉由凝膠滲透層析(下面簡稱為GPC) 聚苯乙烯換算得到的分子量為Mn=5500。氟原子含有率為 11. 8%。以該共聚物為氟系表面活性劑G液。 結構式4 CH2=CHCOOCH2CH2C8F17 結構式50II Ό—C—^CH2·^- s—CH— C— S—^CH2^C6F13 0 OCOCH=CH2 CH; CS{-CH2^C8F13 3 Molecular weight: 1162 Fluorine atom content: 42. 5% (Production example) 10) Synthesis of a fluorine-based surfactant G liquid In a glass flask equipped with a stirring device, a condenser, and a thermometer, 19 parts by weight of a fluorine-containing alkyl (mercapto) acrylate monomer (Structure 4) was fed. 30 parts by weight of an ethylenically unsaturated monomer having a branched aliphatic hydrocarbon group (Structure 5), 39 parts by weight of a monoacrylate compound having a copolymer of ethylene oxide and propylene oxide having a molecular weight of 400 in a side chain, 4 parts by weight of a methacrylated compound at both ends of tetraethylene glycol, 8 parts by weight of methyl methacrylate, and 350 parts by weight of isopropyl alcohol (hereinafter abbreviated as IPA) in a nitrogen stream under reflux After adding 1 part by weight of azobisisobutyronitrile (hereinafter abbreviated as AIBN) as a polymerization initiator and 10 parts by weight of lauryl mercaptan as a chain transfer agent, the mixture was refluxed at 85 ° C for 7 hours to complete polymerization. Fluorine 61 322324 201125732 oligomer. The molecular weight of the polymer obtained by gel permeation chromatography (hereinafter abbreviated as GPC) polystyrene conversion was Mn = 5,500. The fluorine atom content was 11.8%. This copolymer is a fluorine-based surfactant G liquid. Structural formula 4 CH2=CHCOOCH2CH2C8F17 Structural Formula 5

Me MeMe Me

Me-4CH2CHCH2CH2CHCH20C0CH=CH2 Me MeMe-4CH2CHCH2CH2CHCH20C0CH=CH2 Me Me

Me-CCH2CH—Me l^le (製造例11)含ATO的紫外線固化型樹脂H液的合成 製備在純水400g中溶解有錫酸鉀13〇g和酒石酸銻钾 30g的混合溶液。在60。(:花12小時,將該製備的溶液添加 於攪拌下的溶解有硝酸銨l.0g和15%氨水12g的純水 lOOOg中,進行水解。此時,同時添加1〇%硝酸溶液以使 pH值保持於9.0。過濾洗滌生成的沈澱物後,使其再度分 散於水中,製備出固體成分濃度2〇重量%的金屬氧化物前 驅物氫氧化物分散液。將該分散液在溫度1〇(rc喷霧乾燥, 製備出金屬氧化物前驅物氫氧化物粉體。對該粉體在空氣 裒境下在550 C進行2小時的加熱處理,由此得到經換 雜Sb的氧化錫(ΑΤΟ)粉末。 / 使該粉末60g分散於漢度4, 3重量%的氮氧化奸水溶液 140g ’將分散液保持於獅的同時,时磨機粉碎3小時, 322324 62 201125732 製備溶膠。接著,用離子交換樹脂對該溶膠進行脫鹼離子 ‘ 處理,直至pH值達到3. 0,接著,加入純水,製備固體成 分濃度20重量%的ΑΤ0分散液。該ΑΤ0分散液的pH值為 3. 3。另外,ΑΤ0微粒的平均粒徑為1 Onm。 ' 接著,將ΑΤ0分散液100g調節至25°C,花3分鐘添 加四乙氧基矽烷(多摩化學(股)製造:正矽酸乙酯,Si〇2 濃度28. 8重量«4. Og,然後,攪拌30分鐘。之後,花1 分鐘添加乙醇100g,用30分鐘升温至50°C,加熱處理15 小時。此時的固體成分濃度為10重量%。 接著,籍由超濾膜過濾,將作為分散介質的水、乙醇 置換為乙醇,製備出固體成分濃度30重量%的用有機矽化 合物進行過表面處理的ΑΤΟ分散液。 將該用有機矽化合物進行過表面處理的ΑΤΟ分散液 13.1g、季戊四醇三丙烯酸酯(共榮社化學製造的ΡΕ-3Α) 25.6g、氨基甲酸酯丙烯酸酯(共榮社化學製造的UA306I) 17. lg、光聚合引發劑(汽巴精化製造的Irgacure 184) 2. 5g、乙醇34. 2g、曱苯7. 5g進行混合,用塗料震盪器混 合30分鐘,得到固體成分濃度49重量%的含ΑΤΟ紫外線固 化型樹脂Η液。 [實施例3] 將含有前述電離放射線固化型氟化丙烯酸酯Β液、含 ΑΤΟ紫外線固化型樹脂Η液的表2所記載的預定的混合物, 用分散機攪拌30分鐘,由此得到光學功能層形成用塗料, 將該塗料以輥塗方式塗布(線速度:20m/分鐘)在膜厚 63 322324 201125732 80#m、全光線透射率92%的透明基體的TAC膜(富士軟片 公司製造,TD80UL)的單面上,在30至50°C經過20秒鐘 的預備乾燥後,在100°C乾燥1分鐘,在氮氣環境中(氮氣 置換),進行紫外線照射(燈:聚光型高壓水銀燈,燈的輸 出功率:120W/cm,燈數:4盞,照射距離:20cm),由此 使塗布膜固化。由此,得到具有厚度7. 3# m的光學功能層 的實施例3的光學積層體。 [實施例4] 將光學功能層形成用塗料變更為含有前述電離放射線 固化型氟化丙烯酸酯B液、含ΑΤΟ紫外線固化型樹脂Η液 的表2所記載的預定的混合液,除此以外,與實施例3同 樣地操作,得到具有厚度7. 2# m的光學功能層的實施例2 的光學積層體。 [實施例5] 將光學功能層形成用塗料變更為含有前述電離放射線 固化型氟化丙烯酸酯E液、含ΑΤΟ紫外線固化型樹脂Η液 的表2所記載的預定的混合液,除此以外,與實施例3同 樣地操作,得到具有厚度7. 3/zm的光學功能層的實施例5 的光學積層體。 [實施例6] 將光學功能層形成用塗料變更為含有前述電離放射線 固化型氟化丙烯酸酯F液、含ΑΤΟ紫外線固化型樹脂Η液 的表2所記載的預定的混合液,除此以外,與實施例3同 樣地操作,得到具有厚度7. 2//m的光學功能層的實施例6 64 322324 201125732 的光學積層體。 [比較例3 ] 將光學功能層形成用塗料變更為含有作為電離放射線 固化型氟化丙烯酸酯的共榮社化學製造的LINC_3A、以及 含ΑΤ0紫外線固化型樹脂Η液的表2所記載的預定的混合 液,除此以外,與實施例3同樣地操作,得到具有厚度 7·2//ιη的光學功能層的比較例3的光學積層體。licn_3a 的結構式如下所示。LICN-3A是結構式6和結構式7的混 合品’(結構式6):(結構式7) = 65 : 35(重量比)。 結構式6Me-CCH2CH-Mel^ (Production Example 11) Synthesis of ATO-containing UV-curable resin H liquid A mixed solution of 13 〇g of potassium stannate and 30 g of bismuth potassium tartrate was dissolved in 400 g of pure water. At 60. (: After 12 hours, the prepared solution was added to 1000 g of pure water in which 0.1 g of ammonium nitrate and 15 g of ammonia water were dissolved under stirring, and hydrolysis was carried out. At this time, a 1% nitric acid solution was simultaneously added to adjust the pH. The value was maintained at 9.0. The precipitate formed by washing and washing was again dispersed in water to prepare a metal oxide precursor hydroxide dispersion having a solid concentration of 2% by weight. The dispersion was at a temperature of 1 Torr ( The rc was spray-dried to prepare a metal oxide precursor hydroxide powder, and the powder was heat-treated at 550 C for 2 hours in an air atmosphere, thereby obtaining a tin oxide (ΑΤΟ) substituted with Sb. Powder. / Disperse 60g of this powder in Hando 4, 3 wt% aqueous solution of nitrous oxide 140g 'When the dispersion is kept in the lion, the mill grinds for 3 hours, 322324 62 201125732 to prepare the sol. Next, use ion exchange I. The pH of the ΑΤ0 dispersion is 3. 3, in addition to the pH of the sol. , ΑΤ0 particle flat The average particle size was 1 Onm. ' Next, 100 g of the ΑΤ0 dispersion was adjusted to 25 ° C, and tetraethoxy decane was added for 3 minutes (manufactured by Tama Chemical Co., Ltd.: ethyl decanoate, Si 〇 2 concentration 28. 8 weight «4. Og, and then stirred for 30 minutes. Thereafter, 100 g of ethanol was added for 1 minute, and the temperature was raised to 50 ° C over 30 minutes, and heat treatment was carried out for 15 hours. The solid content concentration at this time was 10% by weight. The mixture was filtered through an ultrafiltration membrane, and water and ethanol as a dispersion medium were replaced with ethanol to prepare a ruthenium dispersion liquid having a surface concentration of 30% by weight of an organic ruthenium compound. The organic ruthenium compound was subjected to surface treatment. ΑΤΟ ΑΤΟ dispersion, 13.1 g, pentaerythritol triacrylate (ΡΕ-3Α, manufactured by Kyoeisha Chemical Co., Ltd.) 25.6 g, urethane acrylate (UA306I, manufactured by Kyoeisha Chemical Co., Ltd.) 17. lg, photopolymerization initiator (steam) Irgacure 184) manufactured by Bajing Chemical Co., Ltd. 2. 5 g, ethanol 34.2 g, and benzene benzene 7. 5 g were mixed and mixed with a paint shaker for 30 minutes to obtain a cerium-containing ultraviolet curable resin mash having a solid concentration of 49% by weight. [Example 3] The predetermined mixture described in Table 2 containing the ionizing radiation-curable fluorinated acrylate liquid and the cerium-containing ultraviolet curable resin mash was stirred by a disperser for 30 minutes to obtain a coating material for forming an optical functional layer. The coating was applied by roll coating (linear velocity: 20 m/min) on a single side of a TAC film (Fuji Film Co., Ltd., TD80UL) having a film thickness of 63 322324 201125732 80#m and a total light transmittance of 92%. 30 to 50 ° C after 20 seconds of preliminary drying, drying at 100 ° C for 1 minute, in a nitrogen atmosphere (nitrogen replacement), UV irradiation (light: concentrating high-pressure mercury lamp, lamp output: 120W / Cm, number of lamps: 4 inches, irradiation distance: 20 cm), thereby curing the coating film. Thus, an optical layered body of Example 3 having an optical functional layer having a thickness of 7.3 m was obtained. [Example 4] The coating material for forming an optical function layer was changed to a predetermined mixed liquid described in Table 2 containing the ionizing radiation-curable fluorinated acrylate B liquid and the cerium-containing ultraviolet curable resin mash. An optical layered body of Example 2 having an optical functional layer having a thickness of 7. 2 # m was obtained in the same manner as in Example 3. [Example 5] The coating material for forming an optical function layer was changed to a predetermined mixed liquid described in Table 2 containing the ionizing radiation-curable fluorinated acrylate E liquid and the cerium-containing ultraviolet curable resin mash. An optical layered body of Example 5 having an optical functional layer having a thickness of 7.3/zm was obtained in the same manner as in Example 3. [Example 6] The coating material for forming an optical function layer was changed to a predetermined mixed liquid described in Table 2 containing the ionizing radiation-curable fluorinated acrylate F liquid and the cerium-containing ultraviolet curable resin mash. An optical laminate of Example 6 64 322324 201125732 having an optical functional layer having a thickness of 7.2/m was obtained in the same manner as in Example 3. [Comparative Example 3] The coating material for forming an optical function layer was changed to a predetermined one described in Table 2, which includes LINC_3A manufactured by Kyoei Chemical Co., Ltd., which is an ionizing radiation-curable fluorinated acrylate, and Η0 ultraviolet-curable resin mash. An optical layered product of Comparative Example 3 having an optical functional layer having a thickness of 7·2//ηη was obtained in the same manner as in Example 3 except for the mixture. The structural formula of licn_3a is as follows. LICN-3A is a mixture of Structural Formula 6 and Structural Formula 7 (Structure 6): (Structure 7) = 65: 35 (weight ratio). Structural formula 6

HCHC

CH2 t 三—it基十七氟壬麟季戊四醇 分子量:728 322324 201125732 氟原子含有率:44.3% 結構式7CH2 t Tri-ityl heptafluoroquine uniline pentaerythritol Molecular weight: 728 322324 201125732 Fluorine atom content: 44.3% Structural formula 7

0 Ο0 Ο

季戊四醇四丙烯酸酯 [比較例4] 將光學功能層形成用塗料變更為含有作為非電離放射 線固化型It化丙烯酸醋的氟系表面活性劑〇液、以及含ατό 紫外線固化型樹脂Η液的表2所記載的預定的混合液,除 此以外’與實施例3同樣地操作,得到具有厚度7.3//m的 光學功能層的比較例4的光學積層體》 [比較例5 ] 66 322324 201125732 將絲功能層形成用塗料變更為含有作為電離放射線 固化型氟化丙稀酸酯的丙烯酸2-f入备 、王鼠肀基)-乙酯(商品 名:UGHT-AmLATE FA-⑽,共榮社化學製造)、以及含 ΑΤ0紫外線固化型樹脂Η液的表2所記載的預定的混合液, 除此以外,與實施例3同樣地操作,得到具有厚度7. 4&quot;^ 的光學功能層的比較例5的光學積層體。㈣酸%_(全敗 辛基)-乙S旨的結構式如下所示(結構式8 )。 結構式8 H2C=CHCOOCH2CH2C8F17 分子量:518 敦原子含有率:62.4% [比較例6 ] 將光學功能層形成用塗料變更為不含電離放射線固化 型氟化丙烯酸醋但含有含ΑΤ0紫外線固化型樹脂Η液的表 2所記載的預定的混合液’除此以外,與實施例3同樣地 操作,得到具有厚度7. 3 era的光學功能層的比較例6的光 學積層體。 [比較例7 ] 將光學功能層形成用塗料變更為含有前述電離放射線 固化型氟化丙烯酸酯B液、含四級銨鹽基共聚物d液的表 2所記載的預定的混合液,除此以外,與實施例1同樣地 操作,得到具有厚度7. 3# m的光學功能層的比較例7的光 學積層體。 [比較例8 ] 67 322324 201125732 將光學功能層形成用塗料變更為含有前述電離放射線 固化型氟化丙烯酸酯B液的表2所記載的預定的混合液, 除此以外,與實施例3同樣地操作,得到具有厚度7. 3/zm 的光學功能層的比較例8的光學積層體。 68 322324 201125732 表2Pentaerythritol tetraacrylate [Comparative Example 4] The coating material for forming an optical functional layer was changed to a fluorine-based surfactant sputum containing non-ionizing radiation-curable type acrylated vinegar, and Table 2 containing an ατό ultraviolet-curable resin sputum. The optical layered body of Comparative Example 4 having an optical functional layer having a thickness of 7.3/m was obtained in the same manner as in Example 3 except that the predetermined mixed liquid was described. [Comparative Example 5] 66 322324 201125732 The coating for forming a functional layer is changed to include 2-f acrylonitrile-ethyl acrylate-ethyl ester as an ionizing radiation-curable fluorinated acrylate (trade name: UGHT-AmLATE FA-(10), Kyoeisha Chemical Co., Ltd. A comparative example of an optical functional layer having a thickness of 7.4 &quot;^ was obtained in the same manner as in Example 3 except that the predetermined mixed liquid described in Table 2 of the 紫外线0 ultraviolet curable resin mash was used. 5 optical laminate. (4) The structural formula of the acid %_(completely octyl)-B is as follows (Structure 8). Structural Formula 8 H2C=CHCOOCH2CH2C8F17 Molecular Weight: 518 Atom Content: 62.4% [Comparative Example 6] The coating for forming an optical functional layer was changed to an ion-free radiation-curable fluorinated acrylic vinegar but containing a ΑΤ0 ultraviolet curable resin sputum An optical layered body of Comparative Example 6 having an optical functional layer having a thickness of 7.3 Å was obtained in the same manner as in Example 3 except that the predetermined mixed liquid described in Table 2 was used. [Comparative Example 7] The coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 2 containing the ionizing radiation-curable fluorinated acrylate B liquid and the quaternary ammonium salt-based copolymer d liquid. An optical layered product of Comparative Example 7 having an optical functional layer having a thickness of 7. 3 # m was obtained in the same manner as in Example 1. [Comparative Example 8] In the same manner as in Example 3 except that the coating material for forming an optical function layer was changed to the predetermined mixed liquid described in Table 2 containing the ionizing radiation-curable fluorinated acrylate B liquid. The optical laminate of Comparative Example 8 having an optical functional layer having a thickness of 7.3/zm was obtained. 68 322324 201125732 Table 2

No 成分 公司名 產品名 甘量份 電艫放射線困化也氱化丙烯酸鸪 - Β液 0. 31 多官能氨基甲酸睢丙烯酸a音 共榮社化半 UA306I 0. 45 季戊四W三丙烯 曰本化铒 KAYARAD ΡΕΤ-30 0. 45 實施例3 光聚合51發剣 汽巴精化日本 1 rKacure 184 0. 06 含ΑΤ0紫外線®化型榭脂 - Η 液(49X) 77. 52 PMUA粒子(粒徑1. 5 w η) — — 3. 90 甲笨 - — 9. 71 IFA - - 7. 60 電離放射線团化窀CL化丙烯酸抽 - Β液 0. 21 务官陡氨基甲睃6S丙烯酸61 共榮社化學 UA306I 0.3! 李戊四醉三丙烯酸鲳 共祭社化學 ΡΕΤ-3Α 0. 31 光&amp;合引發劑 汽巴精化曰本 Irgacure 184 0. 04 貧施例4 含ΑΤ0紫外線ΙΒ化坦樹脂 -. Η 液(49X) 78. 70 ΡΜΜΑ粒子(粗徑1. 5 π) - - 3. 92 甲笨 - - 0. 10 — - 0. 56 ΜΕΚ - - 15. 93 電離放射線团化型氟化丙烯酸醋 - Ε液 0. 21 多官能氨基甲酸酯丙烯酸β§ 共榮社化學 UA306I 0. 31 李戊四醇三丙烯酸fig 曰本化格 KAYARAD PET-30 0. 31 先聚合引發ffl 汽巴精化曰本 I rgacure 184 0. 04 T施例5 含ΑΤΟ紫外線E化也樹脂 - H 液(49K) 78. 70 PMMA粒子(粒徑1. 5 w m) - - 3. 92 甲笨 - - 0.10 L· &amp; - - 0. 56 UEK - ~ 15. 93 電離放射線因化墊氱化丙烯酸聪 - F液 0. 21 多官能氨基甲酸鲳丙烯故皤 共榮社化學 UA306I 0. 31 李戊四辟三丙烯酸賭 曰本化铕 KAYARAD PET-30 0. 31 光聚合引發》 汽巴精化Β本 I reacure 184 0. 04 實施例6 含ΑΤ0絷外線E化型樹菔 - H 液(49X) 78. 70 ΡΜΜΑ粒子(粒徑1. 5 ϋ η) - — 3. 92 甲笨 - - 0. 10 乙醇 - - 0. 56 UEK — — 15. 93 電離放射線Ξ化钽氱化丙烯酸61 共榮社化學 LINC-3A 0. 83 光聚合引發《 汽巴精化日本 I rgacure 184 0. 04 含ΑΤ0紫外線Ε化型樹® - H 液(49¾) 78. 70 PUMA粒子(粒徑1.5 ί/ η) - - 3. 92 比較例3 甲笨 - - - 0. 10 ΙΡΑ - - 0. 04 乙醇 — - 0. 48 甲醇 - - 0.04 ΜΕΚ - - 15. 93 *1系表面活化谢 G液 0.21 光聚合引發劑 汽巴精化日本 Irgacure 184 0. 04 含ΑΤ0絷外線固化钽樹脂 — H 液(49¾) 78. 70 ΡΜΜΑ粒子(粒徑1. 5 w m) - - 3.92 比較例4 甲笨 — - 0. 1 0 ΙΡΑ - - 0. 04 乙酵 - - 0. 48 甲畔 - 一 0. 04 ΜΕΚ — - 15.93 電離放射線Ε化镏氟化丙烯酸6S 共榮社化學 LIGHT-ACRYLATE FA108 0. 21 多官能氨基甲酸酯丙烯酸醋 共祭社化學 UA3061 0. 31 李戊四醉三丙烯酸S Β本化藥 KAYARAD PET-30 0.31 先&amp;合引發劑 汽巴精化日本 1 rgacure ]84 0. 04 比較例5 含ΑΤ0紫外線固化型樹脂 - H 液(49¾) 78. 70 ΡΜΜΑ粒子(粒徑1. 5 ϋ m) — - 3. 92 甲笨 - - 0.10 乙» - 、 - 0.56 UEK - 一 15. 93 多官能氨基甲酸Μ丙烯酸61 共祭社化學 UA306I 0. 35 李戊四铒三丙烯酸ai 共榮社化半 PET3A 0. 48 光聚合51發劑 汽巴精化Β本 I rgacure 184 0. 04 含ΑΤ0紫外線ffl化逭樹篛 一 H 液(49X) 78. 70 PMMA粒子(粒徑1. 5 “ π) - 一 3. 92 甲笨 一 — 0.10 乙薛 - - 0.56 MEE — - 15. 93 電《1放射線S)化奄氱化两烯睃6S - B液 0.21 含四級《S基的共聚物(45X) D液 7. 80 多t能氡糸甲政61丙烯故酯 共榮社化學 DA306I 0.3] 李戊四醉三丙烯«曲 曰本化格 KAYARAD PET-30 0. 31 比較例7 光聚合引發m 汽巴精化曰本 I rgacure 184 0. 04 PMMA粒子(粒徑1. 5ju m) — - 3. 92 甲笨 - - 0. 10 乙畔 - — 0. S6 MEK - - 15. 93 電離放射線(D化型氟化丙烯酸聪 - B液 0.21 多官能氨基甲酸61丙烯酸fil 共榮社化學 UA306I 21. 30 李戊四醇三丙烯酸61 共祭社化學 PE-3A 15. 00 光聚合引發劑 汽巴精化Β本 Ireacure 184 2. 10 PMMA粒子(粒徑1. 5 « π) - - 3.92 甲笨 - - 11.03 乙醇 - — 15. 50 UEK — - 30. 93 69 322324 201125732 〈評價方法〉 接下來,對實施例和比較例的光學積層體,評價下述 項目。 (皂化處理) 光予積層體的皂化處理按照以下步驟進行。測定構成 光學積層體的TAC膜表面對水的接觸角,結果,皂化處理 前為55以上的積層體,在皂化處理後為2〇。以下,因此, 可確認出適當進行了皂化處理。 (1) 55 C,6%的氫氧化鈉水溶液中浸潰2分鐘 (2) 水洗30秒鐘 (3) 35 C,0. 1當量的硫酸中浸潰秒鐘 (4) 水洗30秒鐘 (5) 120°C,熱風乾燥1分鐘 對上述得到的各光學積層體,測定初期(沒有進行皂化 處理和耐候性試驗的階段)的表面電阻率(r 1 )、皂化處理後 的表面電阻率(R3)。於此,以R3/R1小於10者為〇,以 10以上者為X。 (耐光性試驗) 耐光性試驗按以下條件進行。 試驗機.碳孤式耐光性試驗機(須贺試驗機(股)製造的 耐光性試驗機) 產品名:紫外線 Auto Fade Meter U48AU-B” 試驗條件:黑板溫度50±5°C 放射照度:500W/m2(測定波長範圍300至700nm) 70 322324 201125732 照射時間:80小時 對於上述得到的光學積層體’測定初期(沒有進行皂化 .處理和耐候性試驗的階段)的表面電阻率(R1 )、碳弧式耐光 性试驗後的表面電阻率(R2)。以R2/R1為1 〇4以下者為〇, 以超過1〇4者為x。另外,對於上述得到的光學積層體,測 定初期(沒有進行皂化處理和耐候性試驗的階段)的表面電 阻率(R1)、皂化處理以及碳弧式耐光性試驗後的表面電阻 率(R4)。R4/R1為1〇4以下者為〇,超過1〇4者為χ。 (全光線透射率) 根據JIS Κ7105,採用霧度計(商品名:NDH2000,日 本電色公司製造),測定全光線透射率。 (霧度值) 根據JIS Κ7105,採用霧度計(商品名:NDH2000,日 本電色公司製造),測定霧度值。表中的霧度是全霧度的值。 (表面粗糙度、凹凸的平均間隔) 表面粗糙度Ra和凹凸的平均間隔Sm,根據JISB06(H-1994 ’採用表面粗糙度測定器(商品名:Surfcorder SE1700 α ’小阪研究所公司製造)進行測定。 (平均傾斜角度) 平均傾斜角度,根據ASME95,採用表面粗糙度測定器 (商品名:Surfcorder SE1700 α,小阪研究所公司製造) 求出平均傾斜,根據下式算出平均傾斜角度。 平均傾斜角度KarT1(平均傾斜) (圖像鮮明性) 71 322324 201125732 根據JISK7105,採用映像性測定器(商品名:ICM-1DP, 須贺試驗機公司製造),將測定器設定為透射模式,用寬 0. 5mm的光梳進行測定。 (防眩性) 關於防眩性,在圖像鮮明性的值為0至80時設為〇, 在81至100時設為X。 (表面電阻率) 表面電阻率根據JIS K6911,採用高電阻率計(商品 名:Hiresta-UP,三菱化學製造)進行測定。測定是在將樣 品在20°C、65%RH環境下調濕i小時後,在2〇〇c、65%rh 的條件下進行的。從光學積層體的光學功能層的表面側, 以施加電壓250V、施加時間1〇秒鐘的條件,實施表面電 阻率的測定。 以1.0x10 Ω/□以下時為◎,以超過ι.〇χ1〇9Ω/〇 且在1.(^1〇。〇/口以下時為〇,以超過1〇&gt;&lt;1〇1。〇/口且 在1.0χ1012Ω/□以下時為Λ,以超過1〇χ1〇12Ω/□時為 X ° (飽和帶電電壓) 使用靜電衰減測試儀Η_〇11〇(西西都靜電氣公司製 造),在施加電壓1〇kV、駔離20mm、25°C、40°/〇RH的條件 下,根據JIS LI094測定兔和帶電電壓。 (耐劃傷性) 將日本鋼絲絨公司製造的鋼絲絨# 〇 〇 〇 〇安裝於财磨耗 4驗機(Fu Chien公司製邊,以加,M〇del : 322324 201125732 以載重250g/cm2往復擦拭光學功能層面ι〇大紙 後,在螢紐τ確耗部分的㈣。傷餘為g = ◎:傷痕數為!條以上且小於i〇條時為〇,傷 ’: 條以上且小於30條時為△,以傷痕數為別條以上為 (明室對比度) 呀馬X。 關於明室對比度,在實施例和比較例的光學積層 _,使與光學功能層的形成面之相反面,隔著盈二· 黏著層貼合於液晶顯示裝置(商品名:IX-37瞻,夏並八 司製造)的晝面表面,從液晶顯示裝置晝面的正面曰, =方向,用螢光燈(商品名:聰咖L,Nati_^^ 使液晶顯不器表面的照度達到2⑽勒克斯(㈣後 色彩南度計(商品名·· BM-5A ’拓#康(T_N)公司 測定使液晶顯示裝置為白顯示和黑顯示時的高度,藉由以 下的式子對所得到的黑顯示時的高度(c ,高度〇進行計算,此時算出的值在刪 δ〇ι以上時為〇。 了馮X, 對比度=白顯示的高度/黑顯示的高度 (暗室對比度) 關於暗室對比度,在實施例和比較例的光學 中’使與光學功能層的形成面之相反面, - =層貼合於液晶顯示裝置(商品名:lc_3?gxiw,夏普= 畫在暗室條件下,用色彩高度計(商: 里 6音康公司製造)測定使液晶顯示裝置為白县頁 不和黑顯示時的高度,用以下的式子對所得到的黑顯示:; 322324 73 201125732 的高度(cd/m2)和白顯示時的高度(cd/m2)進行計算,此時算 出的值為900至1100時設為X,為1101至1300時設為△’ 為1301至1500時設為〇。 對比度=白顯示的高度/黑顯示的高度 實施例1至2和比較例1至2所得到的結果示於表3 和表4 〇 74 322324 201125732 I-1No Ingredient company name product name Ganliang part electric radiation radiation trapping 氱 鸪 鸪 Β Β 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA铒 KAYARAD ΡΕΤ-30 0. 45 Example 3 Photopolymerization 51 hairpin Ciba refined Japan 1 rKacure 184 0. 06 ΑΤ0 UV 化 化 - - Η liquid (49X) 77. 52 PMUA particles (particle size 1. 5 w η) — — 3. 90 A stupid — — 9. 71 IFA - - 7. 60 Ionizing radiation lumps 窀 CL 丙烯酸 acrylic pumping - Β 0 0. 21 陡 陡 steep amino 睃 6S acrylic 61 Chemistry UA306I 0.3! Li Wu four drunk three acrylic 鲳 祭 社 ΡΕΤ ΡΕΤ Α Α Α Α Α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -. Η liquid (49X) 78. 70 ΡΜΜΑ particles (large diameter 1. 5 π) - - 3. 92 甲笨 - - 0. 10 — - 0. 56 ΜΕΚ - - 15. 93 ionizing radiation-type fluorination Acrylic vinegar - sputum 0. 21 polyfunctional urethane acrylate β§ 荣 荣 chemistry UA306I 0. 31 pentane tetraol Acidic g 化 化 KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA Particles (particle size 1. 5 wm) - - 3. 92 A stupid - - 0.10 L· &amp; - - 0. 56 UEK - ~ 15. 93 Ionizing radiation factoring pad 氱化acrylic C-F solution 0. 21 more Functional bismuth carbamate propylene 皤 皤 皤 皤 UA UA UA UA UA UA UA UA UA 戊 戊 铕 铕 铕 铕 铕 铕 铕 铕 铕 YA YA YA YA YA YA YA YA YA YA YA KAYARAD PET-30 0. 31 Photopolymerization initiation Ciba refined Β I Reacure 184 0. 04 Implementation Example 6 ΑΤ0絷External E-type tree 菔- H liquid (49X) 78. 70 ΡΜΜΑ particles (particle size 1. 5 ϋ η) - — 3. 92 甲笨- - 0. 10 ethanol - - 0. 56 UEK — — 15. 93 Ionizing Radiation Deuterated Deuterated Acrylic Acid 61 Gongrongshe Chemical LINC-3A 0. 83 Photopolymerization Initiation “ Ciba Refined Japan Irgacure 184 0. 04 UV-containing Deuterated Tree® - H Solution (493⁄4) 78. 70 PUMA particles (particle size 1.5 ί/ η) - - 3. 92 Comparative Example 3 A stupid - - - 0. 10 ΙΡΑ - - 0. 04 Ethanol - - 0. 48 Methanol - - 0.04 ΜΕΚ - - 15. 93 *1 series surface activation Xie liquid 0.21 photopolymerization initiator Ciba refined Japan Irgacure 184 0. 04 ΑΤ0絷 external curing 钽 resin - H liquid (493⁄4) 78. 70 ΡΜΜΑ particles ( Particle size 1. 5 wm) - - 3.92 Comparative Example 4 A stupid - - 0. 1 0 ΙΡΑ - - 0. 04 B-fermented - - 0. 48 A-side - a 0. 04 ΜΕΚ - - 15.93 Ionizing radiation Ε 镏Fluorinated Acrylic 6S Gongrongshe Chemical LIGHT-ACRYLATE FA108 0. 21 Multifunctional Carbamate Acrylic Vinegar Co., Ltd. UA3061 0. 31 Li Wu Si Drunken Acrylic Acid S Sakamoto Chemical KAYARAD PET-30 0.31 First &amp; Initiator Ciba refined Japan 1 rgacure ] 84 0. 04 Comparative Example 5 UV-curable resin containing ΑΤ0 - H liquid (493⁄4) 78. 70 ΡΜΜΑ particles (particle size 1. 5 ϋ m) — - 3. 92 A Stupid - - 0.10 B » - , - 0.56 UEK - A 15.93 Polyfunctional carbamate oxime Acrylic 61 Total ISA306I 0. 35 Li Wu Si Yi San Acrylic Acid ai Gongrong Society Semi PET3A 0. 48 Photopolymerization 51 Hair spray Ciba refined Β本 I rgacure 184 0. 04 ΑΤ0 UV ffl eucalyptus One H liquid (49X) 78. 70 PMMA particles (particle size 1. 5 " π) - a 3.92 A stupid one - 0.10 乙薛 - - 0.56 MEE - - 15. 93 electric "1 radiation S) 奄氱Diethyl hydrazine 6S-B solution 0.21 contains four grades of S-based copolymer (45X) D liquid 7. 80 more t can be 氡糸甲政61 propylene ester ester glory chemical DA306I 0.3] Li Wu four drunk three propylene «曲曰本化KAYARAD PET-30 0. 31 Comparative Example 7 Photopolymerization initiation m Ciba refined 曰 I rgacure 184 0. 04 PMMA particles (particle size 1. 5ju m) — - 3. 92 - 0. 10 乙乙 - - 0. S6 MEK - - 15. 93 Ionizing radiation (D-type fluorinated acrylic acid - B liquid 0.21 polyfunctional carbamate 61 acrylic fil Co., Ltd. UA306I 21. 30 Lee pentaerythritol Triac Acrylic 61 Synthetic Chemical PE-3A 15. 00 Photopolymerization Initiator Ciba Refined Sakamoto Ireacure 184 2. 10 PMMA Particles (particle size 1. 5 « π) - - 3.92 A stupid - - 11.03 Ethanol - 15. 50 UEK — - 30. 93 69 322324 201125732 <Evaluation method> Next, the following items were evaluated for the optical laminates of the examples and the comparative examples. (Saponification Treatment) The saponification treatment of the light-receiving layer was carried out in the following procedure. The contact angle of the surface of the TAC film constituting the optical layered product with water was measured, and as a result, the layered body of 55 or more before the saponification treatment was 2 Å after the saponification treatment. Hereinafter, it was confirmed that the saponification treatment was appropriately performed. (1) 55 C, 6% sodium hydroxide solution was dipped for 2 minutes (2) Washed for 30 seconds (3) 35 C, 0.1 equivalent of sulfuric acid in the dipping seconds (4) Washed for 30 seconds ( 5) The surface resistivity (r 1 ) at the initial stage (the stage where the saponification treatment and the weather resistance test was not performed) and the surface resistivity after the saponification treatment were measured for each optical laminate obtained above at 120 ° C and hot air drying for 1 minute ( R3). Here, R3/R1 is less than 10, and 10 or more is X. (Light resistance test) The light resistance test was carried out under the following conditions. Test machine. Carbon solitary light resistance tester (light resistance tester manufactured by Suga Tester Co., Ltd.) Product name: Ultraviolet Auto Fade Meter U48AU-B" Test conditions: Blackboard temperature 50±5°C Radiation: 500W /m2 (measurement wavelength range 300 to 700 nm) 70 322324 201125732 Irradiation time: 80 hours Surface resistivity (R1), carbon at the initial stage of measurement (the stage where saponification, treatment and weather resistance test was not performed) of the optical layered body obtained above The surface resistivity (R2) after the arc-type light resistance test is 〇 for R2/R1 of 1 〇4 or less, and x for more than 1〇4, and the initial stage of measurement for the optical layered body obtained above ( The surface resistivity (R1), the saponification treatment, and the surface resistivity (R4) after the carbon arc type light resistance test were not performed at the stage of the saponification treatment and the weather resistance test. When R4/R1 was 1〇4 or less, it was 〇, exceeding (1) The total light transmittance is measured by a haze meter (trade name: NDH2000, manufactured by Nippon Denshoku Co., Ltd.) according to JIS Κ7105. (Haze value) According to JIS Κ7105, Haze meter Product name: NDH2000, manufactured by Nippon Denshoku Co., Ltd.), the haze value is measured. The haze in the table is the value of the full haze. (The average interval between surface roughness and unevenness) The average interval Sm between the surface roughness Ra and the unevenness, according to JISB06 (H-1994 'measured by surface roughness measuring instrument (trade name: Surfcorder SE1700 α 'made by Kosaka Research Co., Ltd.). (Average tilt angle) Average tilt angle, according to ASME95, surface roughness measuring device (trade name) :Surfcorder SE1700 α, manufactured by Kosaka Research Co., Ltd.) The average tilt is obtained, and the average tilt angle is calculated according to the following equation: Average tilt angle KarT1 (average tilt) (image sharpness) 71 322324 201125732 According to JIS K7105, the image measuring device is used ( Product name: ICM-1DP, manufactured by Suga Test Machine Co., Ltd., the measuring device is set to the transmission mode, and the measurement is performed with a light comb having a width of 0.5 mm. (Anti-glare) About the anti-glare property, the image is sharp. When the value is 0 to 80, it is set to 〇, and when it is 81 to 100, it is set to X. (Surface resistivity) Surface resistivity according to JIS K6911, high resistivity meter (trade name: H) Measured by iresta-UP (manufactured by Mitsubishi Chemical Co., Ltd.). The measurement was carried out under conditions of 2 ° C and 65% rh after adjusting the sample for 12 hours at 20 ° C and 65% RH. On the surface side of the optical functional layer, the surface resistivity was measured under the conditions of a voltage of 250 V and an application time of 1 sec. When it was 1.0×10 Ω/□ or less, it was ◎, and it was more than ι.〇χ1〇9Ω/〇. And at 1. (^1〇. When 〇/口 is below 〇, it is more than 1〇&gt;&lt;1〇1. 〇/□ 且 χ 12 12 12 12 χ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ 超过 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电 静电The rabbit and the charging voltage were measured in accordance with JIS LI094 under the conditions of a voltage of 1 〇 kV, a deviation of 20 mm, 25 ° C, and 40 ° / 〇 RH. (Scratch resistance) The steel wool ## manufactured by Japan Steel Wool Co., Ltd. was installed on the side of the Fujian 4 inspection machine (Fu Chien company side, plus, M〇del: 322324 201125732, reciprocating wipe with a load of 250g/cm2 After the optical function level is ι〇大纸, the part of the flash is τ (4). The residual is g = ◎: the number of scars is !, and it is less than i 〇 〇, injury ': more than 30 and less than 30 The time is Δ, and the number of the flaws is the other one or more (bright room contrast) ah Ma X. Regarding the bright room contrast, in the optical layer _ of the embodiment and the comparative example, the opposite side to the formation surface of the optical functional layer is separated. Adhesive 2 · Adhesive layer is attached to the surface of the liquid crystal display device (trade name: IX-37, manufactured by Xia Heba), from the front side of the liquid crystal display device, = direction, with fluorescent light ( Product name: Cong coffee L, Nati_^^ The illuminance of the surface of the liquid crystal display is 2 (10) lux ((4) after the color south meter (trade name · BM-5A ' extension # 康 (T_N) company to make the liquid crystal display device The height of the white display and the black display, and the black display obtained by the following expression The height (c, height 〇 is calculated, and the value calculated at this time is 〇 when δ 〇 ι or more is deleted. von X, contrast = height of white display / height of black display (dark room contrast) In the optics of the examples and the comparative examples, 'the opposite side to the surface on which the optical functional layer is formed, -= the layer is attached to the liquid crystal display device (trade name: lc_3?gxiw, Sharp = painted in darkroom conditions, using a color altimeter) : 里 6 音康公司) Measure the height of the liquid crystal display device when it is displayed in the white county page and black, and display the obtained black with the following formula: 322324 73 201125732 height (cd/m2) and white The height (cd/m2) at the time of display is calculated. When the calculated value is 900 to 1100, it is set to X. When it is 1101 to 1300, it is set to △'. When it is 1301 to 1500, it is set to 〇. Contrast = height of white display The results obtained by height examples 1 to 2 and comparative examples 1 to 2 are shown in Table 3 and Table 4 〇74 322324 201125732 I-1

CO 暗室對比度 〇 〇 &lt; 〇 1 1 1 明室對比度 〇 〇 X 〇 防眩性 防眩性 〇 〇 〇 〇 圖像鮮明性 〇〇 00 CO 05 CO 〇 in Oi CO CO CO 耐劃傷性 〇 〇 〇 〇 平均傾斜角度 (。) CO 〇 CQ LO o oo o o 呀 o Ra (Mm) 0. 08 CO 1—H o 卜 o σ&gt; c=&gt; 〇 全光線透射率 (%) CO 〇 CO σ&gt; LO 05 1—^ 05 o cn σ&gt; oo CV] o CO 05 霧度 (%) CO &lt;NJ ι—Η 4. 60 5. 64 ______ LO 却 厚度 (卵) l〇 LO 〇〇 LO O CO LO 内容 實施例1 實施例2 比較例1 比較例2 75 322324 201125732 皂化處理α及碳弧式耐光性試驗後 飽和帶電 電壓 (KV) 〇 0.40 2.00 2.00 R4/R1 〇 〇 X 〇 1 ! 坑靜電性 &lt; &lt;1 X X 表面電&amp;率 R4 (Ω/口) 1.45x10&quot; 2.47x10'° Μ CS § Ι.ΟχΗΓ以上 4化處理後 飽和帶電 電壓 (KV) 0.02 0.02 0.90 〇 R3/R1 〇 〇 X 〇 抗靜電性 ◎ 〇 &lt; X 表面電阻串 R3 (Ω/D) 1.99x10' 7. 85x10&quot; 2.60x10&quot; Μ *〇 碳弧式耐光性试驗後 飽和帶電 電壓 (KV) 0.90 0. 90 2.00 2.00 R2/R1 〇 〇 X 〇 坑靜電性 〇 〇 X X 表面電阻率 R2 (Ω/Π) 4.80x10&quot;· 1.80xl0lD 1.0χ10Η 以上 1.0χ10Η 以上 試驗前(初期) 飽和帶電 電壓 (KV) 0.02 〇 0.02 2.00 抗靜電性 ◎ 〇 〇 X 表面電阻毕 R1 (Ω/ϋ) 3. 72x10' 9.15χ10β 2.11x10° 1.0x10&quot;以上 内容 賁施例1 實施例2 比較例1 -! 比較例2 76 322324 201125732 如上所述,根據本發明, 優異的抗靜電性能且•性、耐光性以::::就具有 的光學積層體、偏純叹使㈣絲闕^^優異 對於實施例3至6和比較例3至8,除和裝置。 '、丨則述評價以 外,還進行以下評價。 (接觸角) 測定光學功能層表面對水的接觸角。' 處理過的光學魏層表面對水的接觸角。 =定專化 據JIS R3257(基板玻璃表面的潤濕性試驗方法^觸角,根 觸角計(商品名:ErumaG-i型接觸自 使用接 進行測定。 。,Eruma公司製造) (閃爍) 關於閃爍,分別使各實施例和各比較例 形成面的相反面,隔著無色透明的黏著層貼合於 5〇PPi的液晶顯示器(商品名:lc_32Gd並广析度為 解析度為lGGppi的液晶顯示器(商品名:^ =製造)、 普公司製造)、解析度為l2〇ppi ~B,夏 LC-37GX1W,夏普公司製造)、解析 口名. 鮮析度為14〇ΡΡΐ的液晶顯示 器(商品名:VGN-TX72B,新力公司製造)、解析度為15〇卯丄 的液晶顯示器(商品名:nw8240-PM780,日本HP(Hewlett-Packard)公司製造)、解析度為200ppi的液晶顯示器(商品 名.PC-CV50FW ’夏普公司製造)的晝面表面,在暗室下使 液晶顯示器為綠顯示,然後,在從各液晶TV的法線方向以 解析度 200ppi 的 CCD 相機(CV-200C,基恩士(KEYENCE)公 77 322324 201125732 司製造)攝影付到的圖像上,不能確認出高度偏差時的解析 度的值為0至50ppi時設為X 為51至lOOppi時設為△’ 為101至14〇PP1時設為〇,為141至200ppi時設為◎。 (防污性McKee(註冊商標)試驗) 在所製作的光學積層體的光學功能層上,用油性筆(商 品名:McKee(註冊商標),ZEBRA製造)晝出長3cm的線, 放置1分鐘後’藉由利用無塵布(產品編號:FF_390C Kuraray KuraΠ ex股份有限公司製造)進行擦拭的方法來 評價。以500g/cm2載重往復擦拭20次後,完全擦掉時設為 〇,有不能擦掉的部分時設為△,完全擦不掉時設為X。 (麥克貝斯濃度) 關於麥克貝斯反射濃度,根據JIS K7654採用麥克貝 斯反射濃度計(商品名:RD-914,阪田工程(SAKATA ENGINEERING)公司製造),用Magic Ink(註冊商標)將實施 例和各比較例的光學積層體的透光性基體與樹脂層相反侧 的面塗黑後,測定樹脂層表面的麥克貝斯反射濃度。 (光澤度) 關於光澤度,根據JIS Z8741,採用光澤計(商品名: VG2000,日本電色公司製造),測定60°鏡面光澤度。 對實施例3至6和比較例3至8所得到的結果示於表 5中。表中的數據只要沒有特別說明,就是對皂化處理前 的光學積層體進行測定的結果。 78 322324 201125732 暗室 對比度 〇 〇 〇 Ο 〇 ο 〇 〇 〇 〇 明室 對比度 〇 〇 〇 Ο 〇 〇 〇 〇 Ο 〇 防眩性 〇 〇 〇 〇 〇 X X 〇 〇 〇 53 坦 田像 鮮明性 74.0 卜 CO 72.0 L〇 77.4 C&gt;J Si m ΙΛ OO 79.0 ΙΛ OO 〇 〇 〇 Ο 〇 〇 o. 〇 Ο 〇 先澤度 128.3 122.3 121.3 CO σ&gt; CO 05 CM 〇〇 g CO in eo CM· CO 128.3 CO 麥克貝 斯濃度 3.30 3.29 3.28 eo 3.28 1 3.22 3.30 3. 28 3. 29 c^o CO 防污性 〇 〇 〇 〇 X X X X 〇 〇 水的 接觸角 (.) Οϊ Oi 〇〇 ΟΪ in OO m OO eo OO to β) Oi σ» Λ&gt; Sfc ί! 4㈣ 〇 〇 〇 〇 〇 〇 〇 〇 X X 表面電阻率 (Ω/口) 5. 8χ10β 6. 9x10' 6.9x10s 6.9x10* 1 6.7x109 6. 8x10s 6. 9x10s 1 1 6.5x10, L. 5. 7x10&quot; lxlO14以上 防污性 〇 〇 〇 〇 〇 0 〇 X 〇 〇 Ϊ £ 水的 接觸角 C) μ r— ο S σ&gt; 〇i s TO is 1 sfc ί! 〇 〇 〇 〇 〇 0 〇 o 〇 X 表面電阻率 (〇/□) 5. 7x109 5. 9x109 6. 1x10, 6.0x10* 6. 3x10s 5. 9x10fl 5.8x10, 6.0xl09 5.7x10* lxlOH以上 平均傾斜 角度 C) 0.52 1___ ο O 1 ! 0.41 | 0.43 0.45 K O 0. 52 0,51 Sa (//η) t— CO σ&gt; OO LD OO 〇&gt; 卜 Ra (μη) CO ο ο 0.069 0.075 0. 069 s o m c〇 o o 〇 s o CO o o 0.080 OO d 全光線 透《率 (X) 91.7 CM CsJ 05 O cvi ΟΪ 91.9 o c^i 05 CJ σ&gt; CM 〇S σ&gt; 91.8 CM csi O) ΤΓ CO· 05 蒋度 (X) CO cd CD CD cd OO CD m CD σ&gt; cc&gt; OO ς〇 卜’ 00 cd σ&gt; CO 厚度 (/ζ〇) CO 卜· c-a 卜’ CO 卜’ Cvl 〇* 卜’ CO eo 卜’ r—· eo 卜·· 内容 實施例3 實施例4 實施例5 實施例6 比較例3 比校例4 比較例5 比較例6 比較例7 比較例8 79 322324 201125732 結果 [表6] 表6是涉及實施例3至6和比較例8的耐光性的 驗 表面電阻值'-Ί ------ 碳弧式对光性 破弧式耐光性 試驗後R2 (Ω/口) ---- 阻值(皂化後) 試驗前R1 (Ω/Π) R2/R1 礙弧式耐光性 試驗前R3 碳弧式耐光性 試驗後R4 實施例3 5. 7x10* ---- 6· OxlO9 ------ (Ω/Q) (Ω/Q) 實施例' 4 5. 9x10' -------- 6. lxl〇9 一 〇 5.8xl〇9 6. 0x10° 6.9xl〇9 實施例5 6. 1x10s ·--— 7. 2xl09 6. OxlO9 〇 6.9x10&quot; 7 QV1ηβ 實施例6 6. OxlO8 6. 3x10s 〇 6.9x10&quot; 7. lxio9 比較例8 1. 0χ10Μ 以上 1· Oxl〇H 以上 X 1. 0x10“ 以上 1. OxlO14 以上 如上所述’根據本發明,可以提供具有優異的抗靜電 性能、耐光性’並且耐皂化性優異的光學積層體,及使用 該光學積層體之顯示裝置。 【圖式簡單說明】 第1圖是光學積層體的剖面圖。 【主要元件符號說明】 1 光學積層體 10 透光性基體 20 光學功能層 21 表層 80 322324CO Darkroom contrast 〇〇&lt; 〇1 1 1 Bright room contrast 〇〇X 〇Anti-glare anti-glare 〇〇〇〇Image sharpness〇〇00 CO 05 CO 〇in Oi CO CO CO Scratch resistant 〇〇 〇〇 average tilt angle (.) CO 〇CQ LO o oo oo 呀 o Ra (Mm) 0. 08 CO 1—H o 卜 o σ> c=&gt; 〇 total light transmittance (%) CO 〇CO σ&gt; LO 05 1—^ 05 o cn σ&gt; oo CV] o CO 05 Haze (%) CO &lt;NJ ι—Η 4. 60 5. 64 ______ LO but thickness (egg) l〇LO 〇〇LO O CO LO EXAMPLES Example 1 Comparative Example 1 Comparative Example 2 Comparative Example 2 75 322324 201125732 Saturated charged voltage (KV) after saponification treatment of α and carbon arc light resistance test 〇0.40 2.00 2.00 R4/R1 〇〇X 〇1 ! Pit electrostaticity &lt;;&lt;1 XX Surface Electric &amp; R4 (Ω/口) 1.45x10&quot; 2.47x10'° Μ CS § Ι.ΟχΗΓThe saturated voltage (KV) after the above 4 treatments 0.02 0.02 0.90 〇R3/R1 〇〇X 〇Antistatic ◎ 〇&lt; X Surface resistance string R3 (Ω/D) 1.99x10' 7. 85x10&quot;2.60x10&quot; Μ *〇Carbon arc resistance after saturation test Electric voltage (KV) 0.90 0. 90 2.00 2.00 R2/R1 〇〇X 静电Pit static 〇〇 XX Surface resistivity R2 (Ω/Π) 4.80x10&quot;· 1.80xl0lD 1.0χ10Η More than 1.0χ10Η Before the test (initial) Saturated charging voltage (KV) 0.02 〇0.02 2.00 Antistatic ◎ 〇〇X Surface resistance R1 (Ω/ϋ) 3. 72x10' 9.15χ10β 2.11x10° 1.0x10&quot;The above contents Example 1 Example 2 Comparative Example 1 -! Comparative Example 2 76 322324 201125732 As described above, according to the present invention, excellent antistatic properties, and the properties of light and light resistance are:::: optical laminates, partial sighs, and (4) silk 阙 ^ ^ Examples 3 to 6 and Comparative Examples 3 to 8, the summing device. In addition to the evaluations, the following evaluations were also conducted. (Contact angle) The contact angle of the surface of the optical functional layer with respect to water was measured. 'The contact angle of the treated optical layer surface to water. =Specifications according to JIS R3257 (Test method for wettability of substrate glass surface ^ antenna angle, root antenna angle meter (product name: ErumaG-i type contact, self-use measurement, made by Eruma) (flashing) The opposite surface of each of the examples and the comparative examples was bonded to a liquid crystal display of 5 〇PPi via a colorless and transparent adhesive layer (product name: lc_32Gd and a liquid crystal display having a resolution of 1 GGppi). Name: ^ = manufacturing), manufactured by the company), resolution is l2〇ppi ~ B, summer LC-37GX1W, manufactured by Sharp Corporation, and the name of the solution is analyzed. Liquid crystal display with a resolution of 14 inches (trade name: VGN) -TX72B, manufactured by Sony Corporation), a liquid crystal display with a resolution of 15 inches (trade name: nw8240-PM780, manufactured by HP (Hewlett-Packard), Japan), and a liquid crystal display with a resolution of 200 ppi (trade name: PC- CV50FW 'Sharp company's kneading surface, the liquid crystal display is green under the dark room, and then, at a resolution of 200 ppi from the normal direction of each LCD TV (CV-200C, Keyence (KEYENC) E) Gong 77 322324 201125732 Manufactured by the company) On the image to which the photograph is paid, the value of the resolution when the height deviation cannot be confirmed is 0 to 50 ppi. When X is 51 to 100 ppi, the value is set to Δ' to 101 to 14 〇. When PP1 is set to 〇, it is set to ◎ when it is 141 to 200 ppi. (Anti-fouling property, McKee (registered trademark) test) The oil-based pen (trade name: McKee (registered trademark), manufactured by ZEBRA) was used to draw a 3 cm long line on the optical functional layer of the optical laminate. The latter was evaluated by a method of wiping with a dust-free cloth (product number: FF_390C Kuraray KuraΠex Co., Ltd.). After reciprocating wiping for 20 times with a load of 500 g/cm2, it is set to 〇 when it is completely wiped off, △ when there is a portion that cannot be wiped off, and X when it is completely wiped off. (McBes Concentration) Regarding the Macbeth reflection density, a Macbeth reflection densitometer (trade name: RD-914, manufactured by SAKATA ENGINEERING) was used according to JIS K7654, and Examples and each were used with Magic Ink (registered trademark). After the light-transmitting substrate of the optical layered product of the comparative example was blackened on the surface opposite to the resin layer, the Macbeth reflection density on the surface of the resin layer was measured. (Glossiness) The glossiness was measured by a gloss meter (trade name: VG2000, manufactured by Nippon Denshoku Co., Ltd.) according to JIS Z8741, and the specular gloss of 60° was measured. The results obtained for Examples 3 to 6 and Comparative Examples 3 to 8 are shown in Table 5. The data in the table is the result of measurement of the optical layered body before the saponification treatment unless otherwise specified. 78 322324 201125732 Darkroom contrast 〇〇〇Ο 〇ο 〇〇〇〇明室比〇〇〇Ο 〇〇〇〇Ο 〇Anti-glare 〇〇〇〇〇 〇〇〇〇〇 〇〇〇 53 Tantian image sharpness 74.0 Bu CO 72.0 L〇77.4 C&gt;J Si m ΙΛ OO 79.0 ΙΛ OO 〇〇〇Ο 〇〇o. 〇 〇先泽度128.3 122.3 121.3 CO σ&gt; CO 05 CM 〇〇g CO in eo CM· CO 128.3 CO Macbeth concentration 3.30 3.29 3.28 eo 3.28 1 3.22 3.30 3. 28 3. 29 c^o CO Antifouling 〇〇〇〇XXXX Contact angle of water (.) Οϊ Oi 〇〇ΟΪ in OO m OO eo OO to β) Oi σ» Λ&gt; Sfc ί! 4(4) 〇〇〇〇〇〇〇〇XX Surface resistivity (Ω/port) 5. 8χ10β 6. 9x10' 6.9x10s 6.9x10* 1 6.7x109 6. 8x10s 6. 9x10s 1 1 6.5x10 , L. 5. 7x10&quot; lxlO14 or more antifouling 〇〇〇〇〇0 〇X 〇〇Ϊ £ Contact angle of water C) μ r— ο S σ&gt; 〇is TO is 1 sfc ί! 〇〇〇〇〇 0 〇o 〇X Surface resistivity (〇/□) 5. 7x109 5. 9 X109 6. 1x10, 6.0x10* 6. 3x10s 5. 9x10fl 5.8x10, 6.0xl09 5.7x10* Average tilt angle above lxlOH C) 0.52 1___ ο O 1 ! 0.41 | 0.43 0.45 KO 0. 52 0,51 Sa (// η) t—CO σ&gt; OO LD OO 〇&gt; 卜 Ra (μη) CO ο ο 0.069 0.075 0. 069 somc〇oo 〇so CO oo 0.080 OO d Full light penetration rate (X) 91.7 CM CsJ 05 O cvi ΟΪ 91.9 oc^i 05 CJ σ&gt; CM 〇S σ&gt; 91.8 CM csi O) ΤΓ CO· 05 蒋度(X) CO cd CD CD cd OO CD m CD σ> cc&gt; OO ς〇 ' ' 00 cd σ&gt; CO Thickness (/ζ〇) CO Bu·ca Bu 'CO Bu' Cvl 〇* Bu 'CO eo 卜' r-· eo 卜·· Contents Example 3 Example 4 Example 5 Example 6 Comparative Example 3 Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 79 322324 201125732 Results [Table 6] Table 6 is the surface resistance value of the light resistance of Examples 3 to 6 and Comparative Example 8 '-Ί ---- -- R2 (Ω/□) after carbon arc type photo-shattering resistance test - Resistance value (after saponification) R1 (Ω/Π) before test R2/R1 R3 before light resistance test Carbon arc light resistance test R4 Example 3 5. 7x10* ---- 6· OxlO9 ------ (Ω/Q) (Ω/Q) Example ' 4 5. 9x10' -------- 6. lxl 〇9 一〇5.8xl〇9 6. 0x10° 6.9xl〇9 Example 5 6. 1x10s ·--- 7. 2xl09 6. OxlO9 〇6.9x10&quot; 7 QV1ηβ Example 6 6. OxlO8 6. 3x10s 〇6.9x10&quot 7. lxio9 Comparative Example 8 1. 0χ10Μ or more 1·Oxl〇H or more X 1. 0x10" Above 1. OxlO14 or more As described above, 'according to the present invention, it is possible to provide excellent antistatic property, light resistance' and saponification resistance An optical laminate excellent in properties and a display device using the optical laminate. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of an optical laminate. [Explanation of main component symbols] 1 Optical laminated body 10 Translucent substrate 20 Optical functional layer 21 Surface layer 80 322324

Claims (1)

201125732 七、.申請專利範圍: N; —種光學積層體,其為在透光性基體上直接或者隔著其 他層至少設置有光學功能層的光學積層體,該光學功能 層至少含有導電材料,該光學積層體表面的碳弧式耐光 性試驗後的表面電阻率為1.0χ1012Ω/□以下,並且, 碳弧式耐光性試驗前後的表面電阻率之比(R2/R1 ; 為碳弧式耐光性試驗前的表面電阻率,R2為碳弧式耐 光性試驗後的表面電阻率)為104以下。 2. 如申請專利範圍第丨項所述之光學積層體,其中,碳弧 式耐光性試驗後的飽和帶電電壓為丨.5kv以下。 3. 如申請專利範圍第丨項或第2項所述之光學積層體,其 中,讓光學功能層含有樹脂成分、和透光性微粒或經由 凝聚而能形成凹凸的無機成分的至少一種而成者。 4. 如申請專利範圍第丨項至第3項中任一項所述之光學積 層體,其中,該光學功能層含有電離放射線固化型氟化 丙稀酸酯。 5·如申請專利範圍第4項所述之光學積層體,其中,該光 學功能層是將至少含有電離放射線固化型氟化丙烯酸 酯和導電性金屬氧化物的組成物進行固化而得到的 層,該電離放射線固化型氟化丙婦酸 _以上,且含有3個以上丙稀醒基。的刀子里為 6. 如申請專利範圍第5項所述之光學積層體,其中,該電 離放射線固化型氟化丙烯酸酯含有全氟烷基。 7. 如申請專利範圍第5項或第6焐讲卞+ 樹 X乐ϋ項所述之光學積層體,其 322324 81 201125732 中,該電離放射線固化型氟化丙烯酸酯的氟原子含有率 為20%以上。 如申請專利範圍第5項至第7項中任一項所述之光學積 層體,其中,該電離放射線固化型氟化.丙烯酸酯是用下 式(A)表示的化合物,201125732 VII. Patent application scope: N; an optical layered body, which is an optical layered body provided with at least an optical functional layer directly or via another layer on a light-transmitting substrate, the optical functional layer containing at least a conductive material, The surface resistivity after the carbon arc type light resistance test on the surface of the optical layered body was 1.0 χ 1012 Ω/□ or less, and the ratio of surface resistivity before and after the carbon arc type light resistance test (R2/R1; carbon arc type light resistance) The surface resistivity before the test, R2 is a surface resistivity after the carbon arc light resistance test, was 104 or less. 2. The optical laminate according to the invention of claim 2, wherein the saturated electrification voltage after the carbon arc type light resistance test is 丨.5 kv or less. 3. The optical layered product according to the invention of claim 2, wherein the optical functional layer contains at least one of a resin component and a light-transmitting fine particle or an inorganic component capable of forming irregularities by agglomeration. By. The optical layered body according to any one of claims 3 to 3, wherein the optical functional layer contains an ionizing radiation-curable fluorinated acrylate. The optical layered body according to claim 4, wherein the optical functional layer is a layer obtained by curing a composition containing at least an ionizing radiation-curable fluorinated acrylate and a conductive metal oxide. The ionizing radiation-curable fluorinated benzoic acid _ is more than three, and contains three or more propylene ketone groups. 6. The optical layered body according to claim 5, wherein the ionizing radiation-curable fluorinated acrylate contains a perfluoroalkyl group. 7. The optical layered body of the ionized radiation-curable fluorinated acrylate has a fluorine atom content of 20 in the 322324 81 201125732, as in the optical layered body described in the fifth or sixth paragraph of the patent application, 322324 81 201125732. %the above. The optical layered body according to any one of the items 5 to 7, wherein the ionizing radiation-curable fluorinated acrylate is a compound represented by the following formula (A). Cy — XNHC02CH2C (CH2OCOCH2CH2SCH2CH2RF)n、(CH2〇COCH=CH2)3_n (A) 其中,Cy是其氫的一部分被上述式的取代基以及任意 地被曱基或乙基取代的5或6員環的環烷基部分,a是 1至3的整數,X是亞甲基或直接鍵結,Rf是碳原子數 4至9的全氟1烧基,η是1至3的整數,其中,該已為 2以上時,該X、rf、η係相互獨立地選擇。 9.如申請專利範圍第5項至第8項中任一項所述之光學積 層體,其中,該電離放射線固化型氟化丙烯酸酯是氨基 甲酸酯丙烯酸酯。 10. 如申請專利範圍第1項至第9項中任一項所述之光學積 層體,其中,該光學功能層含有π共軛系導電性高分子 和高分子摻雜劑的複合物。 11. 如申請專利範圍第丨項至第10項中任一項所述之光學 積層體,其中,專化處理後的表面電阻率為1 1〇1〇 Ω/□以下。 12. —種偏光板,其係由申請專利範圍第丨項至第u項中 任一項所述之光學積層體積層於偏光基體上而成者。 322324 82 201125732 k 13. —種顯示裝置,其係具備申請專利範圍第1項至第11 » 項中任一項所述之光學積層體而成者。 83 322324Cy — XNHC02CH2C (CH2OCOCH2CH2SCH2CH2RF)n, (CH2〇COCH=CH2)3_n (A) wherein Cy is a 5- or 6-membered ring in which a part of hydrogen is substituted by a substituent of the above formula and optionally substituted with a thiol or ethyl group. a cycloalkyl moiety, a is an integer from 1 to 3, X is a methylene group or a direct bond, Rf is a perfluorocarbon group having 4 to 9 carbon atoms, and η is an integer of 1 to 3, wherein When it is 2 or more, the X, rf, and η are selected independently of each other. The optical layered body according to any one of claims 5 to 8, wherein the ionizing radiation-curable fluorinated acrylate is a urethane acrylate. The optical layered body according to any one of claims 1 to 9, wherein the optical functional layer contains a composite of a π-conjugated conductive polymer and a polymer dopant. The optical layered body according to any one of the preceding claims, wherein the surface resistivity after the specialization treatment is 1 1 〇 1 〇 Ω / □ or less. A polarizing plate obtained by applying the optical laminated volume layer according to any one of the above claims to the polarizing substrate. 322324 82 201125732 k 13. A display device comprising the optical layered body according to any one of claims 1 to 11 above. 83 322324
TW099129620A 2009-09-03 2010-09-02 Optical layered product, polarizer and display using the optical layered product TWI490124B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009203288 2009-09-03
JP2009240799A JP5490487B2 (en) 2009-10-19 2009-10-19 Optical laminate

Publications (2)

Publication Number Publication Date
TW201125732A true TW201125732A (en) 2011-08-01
TWI490124B TWI490124B (en) 2015-07-01

Family

ID=43842761

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099129620A TWI490124B (en) 2009-09-03 2010-09-02 Optical layered product, polarizer and display using the optical layered product

Country Status (3)

Country Link
KR (1) KR101559186B1 (en)
CN (1) CN102012532B (en)
TW (1) TWI490124B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668117B (en) * 2014-12-24 2019-08-11 日商住友金屬鑛山股份有限公司 Laminate film, electrode substrate film, and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099658A1 (en) 2011-12-28 2013-07-04 大日本印刷株式会社 Optical stack and image display device
KR101443845B1 (en) 2012-09-03 2014-09-23 주식회사 엘지화학 Polarizing plate comprising hard coating film
KR102458383B1 (en) * 2014-10-20 2022-10-24 린텍 가부시키가이샤 Substrate for surface protective sheet and surface protective sheet
CN105824142A (en) * 2016-03-08 2016-08-03 展群科技(深圳)有限公司 Novel construction method for preventing liquid crystal panel from electromagnetic interference
KR101653808B1 (en) * 2016-05-02 2016-09-05 주식회사 유상 Self-adhesive protection film for rabrication process of polarizing plate
TW201743083A (en) * 2016-06-01 2017-12-16 住華科技股份有限公司 Optical film and application thereof
CN106896427B (en) * 2016-11-17 2018-12-25 住华科技股份有限公司 Anti-static optical film layer and its manufacturing method
JP2018103534A (en) * 2016-12-27 2018-07-05 綜研化学株式会社 Hard coat film and method for producing the same
CN110383110B (en) * 2017-03-30 2021-05-11 日本瑞翁株式会社 Antistatic film, polarizing plate, touch panel, and liquid crystal display device
JP7121479B2 (en) * 2017-11-14 2022-08-18 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate and display device
KR101941649B1 (en) * 2017-11-24 2019-01-23 주식회사 엘지화학 Polarizing plate and image display apparatus comprising the same
CN113736122A (en) * 2021-07-28 2021-12-03 宁波惠之星新材料科技有限公司 Super-smooth film with antistatic effect

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118074B1 (en) * 2003-11-21 2012-04-13 디아이씨 가부시끼가이샤 Fluorine-containing photocuring composition
JP4725840B2 (en) * 2004-06-15 2011-07-13 大日本印刷株式会社 Antistatic laminate and polarizing plate using the same
JP2006178276A (en) * 2004-12-24 2006-07-06 Toppan Printing Co Ltd Antireflection layered film
JP4924425B2 (en) * 2005-07-19 2012-04-25 東洋インキScホールディングス株式会社 Curable composition, cured film and laminate
JP4820716B2 (en) * 2005-08-30 2011-11-24 富士フイルム株式会社 Antiglare film, antireflection film, polarizing plate and image display device
JP5049542B2 (en) * 2005-09-26 2012-10-17 富士フイルム株式会社 Antireflection film, polarizing plate, and image display device using the same
WO2007114179A1 (en) * 2006-03-28 2007-10-11 Dai Nippon Printing Co., Ltd. Optical laminated body
JP5000933B2 (en) * 2006-06-16 2012-08-15 リケンテクノス株式会社 Antireflection film
JP2008181120A (en) * 2006-12-28 2008-08-07 Dainippon Printing Co Ltd Optical laminated body, polarizing plate and image display device
TWI350383B (en) * 2006-12-29 2011-10-11 Eternal Chemical Co Ltd Scratch-resistant thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668117B (en) * 2014-12-24 2019-08-11 日商住友金屬鑛山股份有限公司 Laminate film, electrode substrate film, and manufacturing method thereof

Also Published As

Publication number Publication date
CN102012532A (en) 2011-04-13
KR20110025146A (en) 2011-03-09
CN102012532B (en) 2015-05-20
KR101559186B1 (en) 2015-10-12
TWI490124B (en) 2015-07-01

Similar Documents

Publication Publication Date Title
TW201125732A (en) Optical layered product, polarizer and display using the optical layered product
JP6203796B2 (en) Anti-glare film and display device using the same
TWI454753B (en) Optical laminate, polarizing plate, display device, and method for making an optical laminate
US20100196687A1 (en) Antireflection laminate
TW536639B (en) Anti-reflection material and polarized film using the same
JP4187454B2 (en) Antireflection film
JP5593125B2 (en) Optical laminate, polarizing plate and display device
CN102576095A (en) Optical film and display panel
CN102859398B (en) Optical multilayered product, polarizer, and display device
CN103299217A (en) Anti-reflective film, anti-reflective film production method, polarization plate and image display device
CN102859399A (en) Optical laminate, polarising plate and display device
TWI734223B (en) Anti-reflective film, polarizing plate, and display apparatus
TW200808927A (en) Optical article having an antistatic fluorochemical surface layer
US8617693B2 (en) Antireflection laminate
JP2021515273A (en) Anti-reflective film, polarizing plate, and display device
JP5753285B2 (en) Optical laminate
JP2011084048A (en) Optical laminated body
JP5979423B2 (en) Antireflection coating composition and antireflection film
JP5873237B2 (en) Optical laminated body, polarizing plate and display device using the same
TW201128239A (en) Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same
JP5426329B2 (en) Optical laminate
JP6002965B2 (en) Antireflection coating composition and antireflection film
JP2011253092A (en) Optical laminate, polarizer and display device