TW201125722A - Antireflective laminate and manufavturing method thereof, and curable composition - Google Patents

Antireflective laminate and manufavturing method thereof, and curable composition Download PDF

Info

Publication number
TW201125722A
TW201125722A TW099141018A TW99141018A TW201125722A TW 201125722 A TW201125722 A TW 201125722A TW 099141018 A TW099141018 A TW 099141018A TW 99141018 A TW99141018 A TW 99141018A TW 201125722 A TW201125722 A TW 201125722A
Authority
TW
Taiwan
Prior art keywords
substrate
cellulose resin
mass
polymerizable compound
acrylate
Prior art date
Application number
TW099141018A
Other languages
Chinese (zh)
Other versions
TWI547370B (en
Inventor
Takahiro Kawai
Eiichiro Urushihara
Taro Kanamori
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW201125722A publication Critical patent/TW201125722A/en
Application granted granted Critical
Publication of TWI547370B publication Critical patent/TWI547370B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Abstract

This invention provides a curable composition capable of forming hardened film with low refractivity and excellent scratch resistance with single coating step or an antireflective laminate having the hardened film and a manufacturing method thereof. The antireflective laminate of this invention is characterized in a hardened film containing a curable composition on a cellulose resin substrate. The curable composition comprises: (A1) a polymerizable compound for dissolving the cellulose resin of the substrate; and (B) particles with refractivity less than 1.40. In addition, the content of the polymerizable compound for dissolving the cellulose resin of the substrate (A1) is between 5 mass% and 75 mass%, with respect to 100 mass% of the total polymerizable compound, and the particles are partially distributed on a side of the hardened film opposite to the surface in contact with the substrate.

Description

201125722 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種抗反射用層合物及其製造方法,以 及硬化性組成物。 【先前技術】 近年來,液晶顯示裝置被使用作爲電視、個人電腦等 之顯示裝置。該液晶顯示裝置中,爲了防止外光映入並提 高畫質,故而提案使用含有低折射率層之抗反射膜。 過去之液晶顯示裝置所使用之抗反射膜係藉由多層塗 佈低折射率層與硬質塗層而具備低折射率性及耐刮傷性。 該種具有多層構造之抗反射膜雖可降低低折射率層之反射 率,但由於成爲多層構造而有生產性或成本差之問題。另 外,藉由層合低折射率層與硬質塗層而製造之抗反射膜會 有低折射率層與硬質塗層之界面處容易造成剝離之問題。 爲解決該問題,而提出以氟矽烷修飾二氧化矽粒子, 且藉由表面能使液體中之二氧化矽粒子偏在化後形成硬化 膜之抗反射膜之製造方法(參照例如專利文獻η 。 [先前技術文獻] [專利文獻1]日本國特開2001 -3 1 6604號公報 【發明內容】 [發明欲解決之課題] 然而,專利文獻1所述之方法會有二氧化矽粒子偏在 -5- 201125722 化不安定之問題。 因此,本發明之該若干樣態爲提供解決上述課題,可 形成低折射率、硬度及耐刮傷性優異之硬化膜之硬化性組 成物,以及具有該硬化膜之抗反射用層合物以及其製造方 法者。 [用以解決課題之手段] 本發明係爲了解決上述課題之至少一部份而完成者, 可藉下述樣態或適用例而實現。 [適用例1] 本發明之抗反射用層合物之一樣態之特徵爲: 在纖維素樹脂基材上具有: 使含有(A1)使基材之纖維素樹脂溶解之聚合性化合 物,及(B )折射率爲1.40以下之粒子,且前述(A1 )使 基材之纖維素樹脂溶解之聚合性化合物之含量相對於全部 聚合性化合物1 〇〇質量%爲5質量%以上7 5質量。/〇以下之硬化 性組成物硬化獲得之硬化膜,且 前述粒子偏在於前述硬化膜中與纖維素樹脂基材之相 反側上。 此處所謂(B)成分的粒子偏在於前述硬化膜中與纖 維素樹之基材相反側上意指前述硬化膜中與纖維素樹脂基 材之相反側中之(B )成分的粒子密度比硬化膜中之纖維 素樹脂基材側中之(B)成分之粒子密度高。硬化膜中之 -6- 201125722 纖維素樹脂基材側及於與纖維素樹脂基材之相反側中之粒 子密度之相對大小可藉由以電子顯微鏡觀察抗反射用層合 物之剖面而決定。較好前述硬化膜中與纖維素樹脂基材之 相反側中(B )成分之粒子以高密度存在,而前述硬化膜 中於纖維素樹脂基材側中實質上不存在(B)成分的粒子 。該抗反射用層合物可兼具高硬度、耐刮傷性及低反射率 [適用例2] 適用例1之抗反射用層合物中,前述硬化膜含有形成 前述纖維素樹脂基材之纖維素樹脂。 [適用例3] 適用例1之抗反射用層合物中,前述(A1)使基材之 纖維素樹脂溶解之聚合性化合物爲將切成18cm XI cm大小 且厚度爲80μιη之基材之纖維素樹脂薄膜在25°C下浸漬於6g 之該(A1 )成分中2小時,使取出之薄膜在8〇°C以真空乾 燥機乾燥24小時時之薄膜質量減少率爲1 %以上之聚合性化 合物。 [適用例4] 適用例1之抗反射用層合物中,前述(A1)使基材之 纖維素樹脂溶解之聚合性化合物爲由(甲基)丙烯酸2-羥 基乙酯、丙烯醯基嗎啉、γ-丁內酯丙烯酸酯、(甲基)丙 201125722 烯酸羥基丙酯' N -乙烯基吡咯烷酮、N -乙烯基甲酿胺、甲 基丙烯酸縮水甘油酯、丙烯酸四氫糠酯、丙烯酸4-經基丁 酯、二乙二醇單丙烯酸酯、甘油單甲基丙烯酸酯、乙二醇 二丙烯酸酯及二乙二醇二丙烯酸酯所選出之至少一種° [適用例5] 適用例1之抗反射用層合物中,前述(B)折射率爲 1.40以下之粒子爲中空二氧化矽粒子。 [適用例6] 本發明之抗反射用層合物之製造方法之—樣態之特徵 爲· 具有將含有(A1)使基材之纖維素樹脂溶解之聚合性 化合物及(B )折射率爲1.40以下之粒子,且前述(A1 ) 使基材之纖維素樹脂溶解之聚合性化合物含量相對於全部 聚合性化合物1〇〇質量%爲5質量%以上75質量%以下之硬化 性組成物塗佈於纖維素樹脂基材上之後,經硬化之步驟。 依據該抗反射用層合物之製造方法,藉由於成爲基材 之纖維素樹脂上塗佈前述硬化性組成物並經硬化,可形成 (B)成分之粒子偏在於前述硬化膜中與纖維素樹脂基材 相反側上之硬化膜。據此,可製造兼具高硬度、耐刮傷性 及低反射率之抗反射用層合物。 [適用例7] -8 - 201125722 適用例6之抗反射用層合物之製造方法 )使基材之纖維素樹脂溶解之聚合性化 18cmxlcm大小且厚度爲80μπι之基材之纖維 2 5°C下浸漬於6g之該(Α1 )成分中2小時, 在8 0°C以真空乾燥機乾燥24小時時之薄膜質 以上之聚合性化合物。 [適用例8] 適用例6之抗反射用層合物之製造方法 )使基材之纖維素樹脂溶解之聚合性化合杉 丙烯酸2-羥基乙酯、丙烯醯基嗎啉、γ-丁內 (甲基)丙烯酸羥基丙酯、Ν-乙烯基吡咯痕 甲醯胺、甲基丙烯酸縮水甘油酯、丙烯酸Ε 酸4-羥基丁酯、二乙二醇單丙烯酸酯、甘拍 酯 '乙二醇二丙烯酸酯及二乙二醇二丙烯麼 少一種。 [適用例9] 適用例6之抗反射用層合物之製造方法 折射率爲1.40以下之粒子爲中空二氧化矽粒 [適用例10] 本發明之硬化性組成物之一樣態之特徵 含有(A 1 )使基材之纖維素樹脂溶解5 中,前述(A1 合物爲將切成 素樹脂薄膜在 使取出之薄膜 量減少率爲1 % 中,前述(A1 爲由(甲基) 酯丙烯酸酯、 酮、N-乙烯基 氫糠酯、丙烯 單甲基丙烯酸 酯所選出之至 中,前述(B ) 子。 爲: 聚合性化合物 -9 - 201125722 ,及(B )折射率爲1.40以下之粒子,且 前述(A1)使基材之纖維素樹脂溶解之聚合性化合物 含量相對於全部聚合性化合物質量%爲5質量%以上75 質量%以下。 [適用例1 1] 適用例10之硬化性組成物中,前述(A1)成分爲由( 甲基)丙烯酸2-羥基乙酯、丙烯醯基嗎啉、γ-丁內酯丙烯 酸酯、(甲基)丙烯酸羥基丙酯、Ν-乙烯基吡咯烷酮、Ν-乙烯基甲醯胺、甲基丙烯酸縮水甘油酯、丙烯酸四氫糠酯 、丙烯酸4-羥基丁酯、二乙二醇單丙烯酸酯、甘油單甲基 丙烯酸酯、乙二醇二丙烯酸酯及二乙二醇二丙烯酸酯所選 出之至少一種。 [適用例12] 適用例1 〇之硬化性組成物中,前述(Β )折射率爲 1.4 0以下之粒子爲中空二氧化矽粒子。 [發明效果] 依據本發明之抗反射用層合物之製造方法,藉由於成 爲基材之纖維素樹脂上塗佈前述硬化性組成物並經硬化, 可形成(Β)成分之粒子偏在於前述硬化膜中與纖維素樹 脂基材相反側上之硬化膜。據此,可製造兼具高硬度、耐 刮傷性及低反射率之抗反射用層合物。 -10- 201125722 【實施方式】 以下針對本發明之較佳實施形態加以詳細說明。又, 本發明並不受限於下述之實施形態,亦包含不改變本發明 主旨之範圍內進行之各種變形例。 1 ·硬化性組成物 本實施形態之硬化性組成物含有(A 1 )使基材之纖維 素樹脂溶解之聚合性化合物及(B )折射率爲1.4以下之粒 子。以下,針對本實施形態之硬化性組成物之各成分加以 詳細說明。又,以下敘述中之(A )至(D )之各材料分 別簡化描述成(A )成分至(D )成分。 1.1. (A)聚合性化合物 本發明之硬化性組成物中使用之(A )聚合性化合物 只要是具有聚合性之化合物即無特別限制,較好爲具有乙 烯性不飽和基之化合物。(A )聚合性化合物有使基材之 纖維素樹脂溶解之聚合性化合物(A 1 )(以下亦簡稱爲「 (A 1 )成分j )與(A1 )以外之聚合性化合物(以下亦 稱爲(A2 )成分)。 本實施形態之該硬化性組成物含有(A 1 )使基材之纖 維素樹脂溶解之聚合性化合物。本發明中,所謂「使基材 之纖維素樹脂溶解」意指在室溫下將切成18cmxlcm大小 之厚度80μηι之基材之纖維素樹脂薄膜浸漬於6 g之聚合性化 -11 - 201125722 合物中2小時,將取出之薄膜在8(TC以真空乾燥機乾燥24 小時時,薄膜之質量減少率(以下稱爲「T A C溶解性」) 爲1 %以上者。 藉由使本發明之硬化性組成物含有(A1)成分,可使 後述之(B)成分偏在,獲得兼具高硬度、耐刮傷性及低 反射率之抗反射用層合物。 (A 1 )使基材之纖維素樹脂溶解之聚合性化合物列舉 爲具有一個乙烯性不飽和基等之聚合性基之化合物(以下 稱爲「單官能基化合物」)或具有兩個以上之乙烯性不飽 和基等之聚合性基之化合物(以下稱爲「多官能基化合物 J ) 。( A1 )成分的單官能基化合物列舉爲例如(甲基) 丙烯酸2-羥基乙酯、丙烯醯基嗎咻、N-乙烯基吡咯烷酮、 N-乙烯基甲醯胺等之TAC溶解性爲10%以上之聚合性化合 物,γ-丁內酯丙烯酸酯、N-乙烯基己內醯胺等之TAC溶解 性爲5 %以上未達1 0 %之聚合性化合物,(甲基)丙烯酸羥 基丙酯等之TAC溶解性爲2%以上未達5%之聚合性化合物 等。另外,列舉爲甲基丙烯酸縮水甘油酯、丙烯酸四氫糠 酯、丙烯酸4-羥基丁酯、二乙二醇單丙烯酸酯、甘油單甲 基丙烯酸酯等。(Α1)成分之多官能基化合物列舉爲二乙 二醇二丙烯酸酯等。該等成分可單獨使用一種,亦可混合 兩種以上使用。 (Α2)成分之(Α1)成分以外之聚合性化合物使用 之目的爲提高硬化性組成物之成膜性及硬化膜之硬度及耐 刮傷性。(Α2 )成分列舉爲單官能基化合物或多官能基化 -12- 201125722 合物。其中’多官能基化合物由於可藉由形成交聯構造而 形成硬度及耐刮傷性優異之硬化膜故較佳。(A2 )成分的 多官能基化合物較好爲例如多官能基之(甲基)丙烯酸酯 化合物、多官能基之乙烯基化合物、多官能基之環氧化合 物、多官能基之烷氧基甲基胺化合物,更好爲多官能基之 (甲基)丙烯酸酯化合物、多官能基之乙烯基化合物。多 官能基之(甲基)丙烯酸酯化合物列舉爲三羥甲基丙烷三 (甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季 戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯 酸酯等。多官能基之乙烯基化合物列舉爲二乙烯基苯等。 多官能基之環氧化合物列舉爲1,4-丁二醇二縮水甘油醚、 1,6-己二醇二縮水甘油醚、新戊二醇二縮水甘油醚 '三羥 甲基丙烷三縮水甘油醚、聚乙二醇二縮水甘油醚、甘油三 縮水甘油醚等。多官能基之烷氧基甲基胺化合物列舉爲六 甲氧基甲基化三聚氰胺、六丁氧基甲基化三聚氰胺、四甲 氧基甲基化甘脲、四丁氧基甲基化甘脲等。 另外,(A2 )成分在不損及本發明效果之程度下亦可 含有單官能基之(甲基)丙烯酸酯化合物、單官能基之乙 烯基化合物、單官能基之環氧化合物等。 (A2 )成分中所含之多官能基化合物之比例,以( A2)成分之總量作爲100質量%時’較好爲50~1〇〇質量% ’ 更好爲80〜100質量%,最好爲1〇〇質量%。 本實施形態之該硬化性組成物中,(A )成分之含量 以去除(D )溶劑之成分合計作爲1 00質量%時’較好爲 -13- 201125722 80~99質量%,更好爲90〜98質量%。藉由使(A)成分之含 量成爲上述範圍,可形成具有高硬度、耐刮傷性與低反射 率之硬化膜。 (A1)成分之含量相對於(A)成分之總量100質量% ,爲5質量%以上75質量%以下,更好爲10質量%以上50質 量%以下,最好爲10質量%以上40質量%以下。又,本說明 書中所謂「(A)成分」意指合計(A1)成分與(A2)成 分者。藉由以上述範圍調配(A1)成分,不只可獲得具有 高硬度及該耐刮傷性之硬化膜,且可容易地在硬化膜中使 (B)成分偏在於硬化膜中與纖維素樹脂基材相反側上。 1.2. ( B)折射率1.4〇以下之粒子 本實施形態之硬化性組成物含有折射率爲1.40以下之 粒子。藉由該粒子偏在,可賦予硬化膜作爲抗反射膜之功 能。又,藉由使該粒子偏在,可提高硬化膜表面之硬度’ 亦期待有縮小捲曲之效果。 粒子之折射率爲1.40以下,較好爲1.35以下,更好爲 1.3 0以下。藉由使折射率成爲1.40以下,可獲得抗反射性 優異之硬化膜。又,折射率爲以空氣之折射率1 ·〇〇爲下限 愈低愈好,但使用中空粒子時,由於折射率低使粒子之強 度下降,故亦使硬化膜之硬度或耐刮傷性下降。因此’中 空粒子之折射率之下限較好成爲1.20。 本說明書中所謂「折射率」係指於25°C之Na-D線(波 長589nm)之折射率。本說明書中之「粒子之折射率」意 -14- 201125722 指在同一基質中,使固體成分中之粒子含量成爲 10質量。/。、20質量%之組成物成膜,依循JIS ISCM89),在25°C下以Na-D線測定折射率,以檢 算之粒子含量100質量%之値。 至於(B)粒子只要是折射率在1.40以下者 限制,列舉爲例如中空二氧化矽粒子、氟化金屬 該等中,較好爲以二氧化矽作爲主要成分之中空 粒子。中空二氧化矽粒子由於其內部具有空洞, 實心粒子可更低折射率化。 以透過型電子顯微鏡測定之粒子之數平均粒 1〜100nm,更好爲5〜6 0nm。粒子之形狀並不限於 可爲不定形之形狀。 中空二氧化矽粒子之市售品列舉爲例如曰揮 股份有限公司製造之「JX 1 008 SIV」(以透過型 鏡求得之數平均粒徑50nm,折射率1 .29%,固體 量%,異丙醇溶劑)、「J X 1 0 0 9 S IV」(以透過 微鏡求得之數平均粒徑5 0 nm,折射率1 . 2 9 %,固 質量%,甲基異丁基嗣溶劑)等。 本實施形態所使用之中空二氧化矽粒子亦可 改質劑改質表面者。表面改質劑可例示爲具有聚 和基及水解性矽烷基之化合物(以下亦稱爲「聚 改質劑」)。聚合性表面改質劑之聚合性不飽和 乙烯基、(甲基)丙烯醯基。又,水解性矽烷基 反應生成矽烷醇基(Si-ΟΗ )者’例如,矽上鍵 1質量%、 K7 1 05 ( 量線法計 即無特別 粒子等。 二氧化矽 故相較於 徑較好爲 球狀,亦 觸媒化成 電子顯微 成分20質 型電子顯 體成分20 爲以表面 合性不飽 合性表面 基列舉爲 意指與水 結一個以 -15- 201125722 上之甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基等 烷氧基、芳基氧基、乙醯氧基、胺基、鹵素原子者。 本實施形態所使用之聚合性表面改質劑亦可使用甲基 丙烯醯氧基丙基三甲氧基矽烷等市售品,例如可使用國際 公開公報W097/l 2942號公報中所述之化合物。 但’本說明書中,所謂聚合性化合物係指(A )聚合 性化合物者,具有利用以聚合性表面改質劑改質等之聚合 性基之(B )粒子不包含於聚合性化合物中。 作爲表面改質劑亦可使用具有含氟之水解性矽烷基之 化合物(以下亦稱爲「含氟表面改質劑」。使用含氟表面 改質劑時,可使中空二氧化矽粒子效率良好地偏在。本實 施形態所使用之含氟改質劑可使用十三氟辛基三甲氧基矽 烷等市售品。 再者,具有烷基之表面改質劑或具有矽酮鏈之表面改 質劑亦與含氟表面改質劑同樣可使用。 上述各種表面改質劑可單獨使用一種,亦可組合複數 種使用》 爲了將本實施形態所使用之中空二氧化矽粒子改質, 宜混合中空二氧化矽粒子與表面改質劑,藉由水解使二者 結合。所得反應性中空二氧化矽粒子中之有機聚合物成分 ,亦即水解性矽烷之水解物與縮合物之比例通常爲使乾燥 粉體在空氣中完全燃燒時之重量減少%之恆量値,例如, 可利用在空氣中自室溫至通常8 00 °C之熱重量分析求得。 表面改質劑對反應性中空二氧化矽粒子之結合量’以 -16- 201125722 改質後之中空二氧化矽粒子作爲1 00質量%,較好爲 0.01〜40質量%,更好爲0.1〜30質量%,最好爲卜20質量% 。與中空二氧化矽粒子反應之表面改質劑之量在上述範圍 時,不僅可提高組成物中中空二氧化矽粒子之分散性,亦 可期待提高所得硬化物之透明性或耐刮傷性之效果。 本實施形態之硬化性組成物中,(B )成分之含量可 依據形成之硬化膜之膜厚適當調整。具體而言,爲使以( B)成分成爲形成後述之「低折射率層」之主成分,較好 成爲使在硬化膜中偏在之(B)成分之厚度成爲50〜200nm 般之含量。基於該種理由,以去除(D)溶劑之成分之合 計作爲1〇〇質量%時,較好爲0.2〜5質量%,更好爲0.3〜3質 量%。依據硬化膜之膜厚進一步列舉含量時,例如,硬化 膜之膜厚爲ΙΟμηι時’以去除(D)溶劑之成分之合計作爲 1 0 0質量%時,較好爲0 · 4〜1 . 2質量%,更好爲〇 · 5〜1質量% 之範圍內。例如,硬化膜之膜厚爲7μιη時,較好爲0.6〜1.8 質量% ’更好爲0.7〜1.5質量%,硬化膜之膜厚爲3μηι時, 較好爲1 ·2〜4質量%,更好爲1 .5〜3質量%之範圍內。藉由使 (Β)成分之含量在上述範圍內,可獲得反射率降低效果 優異之抗反射用層合物。 1.3. ( C)聚合起始劑 本實施形態之硬化性組成物亦可含有(C )聚合起始 劑。該種(c )聚合起始劑在例如含有(甲基)丙嫌酸醋 化合物及/或乙烯基化合物作爲(A )成分之情況下,舉例 -17- 201125722 有藉由熱產生活性自由種之化合物(熱聚合起始劑)及利 用輻射線(光)照射產生活性自由種之化合物(輻射線( 光)自由基聚合起始劑)等泛用品。另外,含有環氧化合 物及/或烷氧基甲基胺化合物作爲(A )成分時,可列舉爲 酸性化合物、及利用輻射線(光)照射產生酸之化合物( 輻射線(光)酸產生劑)等泛用品。該等中,以輻射線( 光)聚合起始劑較佳。 輻射線(光)自由基聚合起始劑只要是利用光照射分 解產生自由基而起始聚合者即無特別限制,列舉爲例如苯 乙酮、苯乙酮苄基縮酮、1-羥基環己基苯基酮、2,2-二甲 氧基-1,2-二苯基乙烷-1-酮、咕噸酮、蕗酮、苯甲醛、苐 、蒽醌、三苯基胺、咔唑、3-甲基苯乙酮、4-氯二苯甲酮 、4,4’-二甲氧基二苯甲酮、4,4’-二胺基二苯甲酮、苯偶因 丙基醚、苯偶因乙基醚、苯偶因二甲基縮酮、1-(4 -異丙 基苯基)-2 -經基-2-甲基丙-1-嗣、2 -經基-2 -甲基-1-本基 丙-1-酮、噻噸酮、二乙基噻噸酮、2-異丙基噻噸酮、2-氯 噻噸酮、2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基-丙-1-酮 、2-苄基-2-二甲胺基-1- ( 4-嗎啉基苯基)-丁酮-1,4- ( 2-羥基乙氧基)苯基- (2-羥基-2-丙基)酮、2,4,6-三甲基苯 甲醯基二苯基膦氧化物、雙-(2,6 -二甲氧基苯甲醯基)_ 2,4,4-三甲基戊基膦氧化物、寡聚(2-羥基-2-甲基-1-(4-(1-甲基乙烯基)苯基)丙酮)等。 輻射線(光)自由基聚合起始劑之市售品列舉爲例如 曰本汽巴股份有限公司製造之IRGACURE 184、3 69、651 -18- 201125722 、5 00、819、907、784、2959、CGI 1 700、CGI 1 750 ' CGI1850、CG24-61、DAROCURE 1116、1173' BASF公司 製造之 LUCIRIN ΤΡΟ、8 8 93 UCB公司製造之 UBECRYL P36 、LAMBERTI 公司製造之 EZACURE-KIP 1 50、KIP65LT、 KIP100F、KT37、KT55、KT046、KIP75/B 等。 熱自由基聚合起始劑只要是藉由加熱分解產生自由基 而起始聚合者即無特別限制,可列舉爲例如過氧化物、偶 氮化合物,具體例列舉爲苯偶因過氧化物、第三丁基過氧 基苯甲酸酯、偶氮雙異丁腈等。 輻射線(光)酸產生劑可使用三芳基锍鹽類、二芳基 碘鐵鹽類等之化合物。輻射線(光)酸產生劑之市售品列 舉爲San-Apro公司製造之CPI-100P、101A等。 本實施形態之硬化性組成物中,視需要使用之(C ) 聚合起始劑之含量’以去除溶劑之成分之合計作爲丨〇 〇質 量%時’較好爲0 · 0 1〜1 5質量%,更好爲0 . 1〜8質量%之範圍 內。藉由以上述範圍調配,可獲得硬度及耐刮傷性更高之 硬化物。再者’ (C)聚合起始劑亦可併用複數種之化合 物。 1.4. ( D )溶劑 # ® ^形態之硬化性組成物爲了調節塗佈於纖維素樹 脂基材時之塗膜(以下稱爲「硬化性組成物層」)之厚度 ’可以(D )溶劑稀釋使用。例如,使用本實施形態之硬 化性組成物I作爲抗反射膜或被覆材時之25t黏度通常爲 -19- 201125722 0.1~50,000 mPa·秒,較好爲 0.5~10,000mPa·秒。 至於(D )溶劑列舉爲例如甲醇、乙醇、異丙醇、丁 醇、辛醇等醇類;丙酮、甲基乙基酮、甲基異丁基酮、環 己酮等酮類;乙酸乙酯、乙酸丁酯、乳酸乙酯、γ -丁內酯 、丙二醇單甲基醚乙酸酯、丙二醇單乙基醚乙酸酯等酯類 :乙二醇單甲基醚、二乙二醇單丁基醚等醚類;苯、甲苯 、二甲苯等芳香族烴類;二甲基亞颯、二甲基乙醯胺、Ν-甲基吡咯烷酮等醯胺類等。 本實施形態之硬化性組成物中,視需要使用之(D ) 溶劑之含量,以去除(D)溶劑之成分之合計作爲1〇〇質量 份時,較好在50〜1 0,000質量份之範圍內。溶劑之含量可 考量塗佈膜厚、硬化性組成物之黏度等適宜決定。 1.5. 其他添加劑 本實施形態之硬化性組成物可視需要含有粒子分散劑 、抗氧化劑、紫外線吸收劑、光安定劑、矽烷偶合劑、抗 老化劑、熱聚合抑制劑、著色劑、平流劑、界面活性劑、 保存安定劑、可塑劑、滑劑、無機系塡充材、有機系塡充 材、塡料、潤濕性改良劑、塗面改良劑等。該等中,使用 含氟原子之化合物、具有矽氧烷鏈之化合物作爲粒子分散 劑時’可促進中空二氧化矽粒子之偏在,獲得反射率低之 抗反射用層合物。 1.6. 硬化性組成物之製造方法 -20- 201125722 本實施形態之硬化性組成物可藉由分別添加(A )聚 合性化合物、(B )粒子、視需要之(c )聚合起始劑、( D )溶劑、其他添加劑,在室溫或加熱條件下混合而調製 。具體而言’可使用混練機、捏合機、球磨機、三軸輥等 混合機調製。但,在加熱條件下混合時,較好在熱聚合起 始劑之分解溫度以下進行。 2.抗反射用層合物及其製造方法 2.1. 抗反射用層合物之製造方法 本實施形態之抗反射用層合物之製造方法包含(a) 製備含有(A1)使基材之纖維素樹脂溶解之聚合性化合物 、(B )折射率1.40以下之粒子,且前述(A1)使基材之 纖維素樹脂溶解之聚合性化合物之含量相對於全部聚合性 化合物100質量%爲5質量%以上75質量%以下之硬化性組成 物之步驟(以下亦稱爲「步驟(a )」),及(b )將前述 硬化性組成物塗佈於纖維素樹脂基材上之後,經硬化之步 驟(以下亦稱爲「步驟(b )」)。 依據該抗反射用層合物之製造方法,可將前述硬化性 組成物塗佈於作爲基材之纖維素樹脂上並經硬化,形成( B )成分的粒子偏在於前述硬化膜中與纖維素樹脂基材相 反側上之硬化膜。據此,可製造兼具耐刮傷性及低折射率 性二者之抗反射用層合物。以下說明每步驟。 2.1.1. 步驟(a) -21 - 201125722 步驟(a )爲製備前述硬化性組成物之步驟。該硬化 性組成物之構成及製造方法等由於如前述,故省略詳細說 明。 2.1.2.步驟(b) 步驟(b)爲將步驟(a)製備之硬化性組成物塗佈於 纖維素樹脂基材上之後經硬化之步驟。 將步驟(a )製備之硬化性組成物塗佈於纖維素樹脂 基材上之方法並無特別限制,可使用例如塗佈棒塗佈、空 氣刀塗佈·、凹版塗佈、凹版逆輥塗佈、逆輥塗佈、模唇塗 佈、模嘴塗佈、浸漬塗佈、平版印刷、軟版印刷、網版印 刷等習知方法。 將步驟(a )製備之硬化性組成物塗佈於纖維素樹脂 基材上時,該硬化性組成物中所含之(A1)成分與纖維素 樹脂基材中所含之纖維素樹脂相互作用,使纖維素樹脂混 入於硬化性組成物層中,或有使(A1)成分浸透於纖維素 樹脂中之情形》纖維素樹脂是否混入塗膜中可藉由例如以 雷曼分光測定裝置測定所得之硬化膜,利用觀測前述纖維 素樹脂具有之特定官能基之峰値而判定。 硬化組成物之硬化條件並無特別限制。具體而言,爲 可藉由將前述硬化性組成物塗佈於纖維素樹脂基材上,較 好在0~200°C下使揮發成分乾燥後,進行輻射線及/或熱硬 化處理形成抗反射用層合物。熱硬化時之較佳條件爲在 20~15 0°C於1〇秒~24小時之範圍進行。以輻射線硬化時, -22- 201125722 較好使用紫外線或電子束。紫外線之照光量較好爲 0.01〜10 J/cm2,更好爲0.1〜2J/cm2。又,電子束之照射條 件爲加壓電壓10~300kV,電子密度0.02~0.30mA/cm2’電 子束照射量1〜lOMrad。 2.2.抗反射用層合物 圖1爲模式性顯示本實施形態之抗反射用層合物之剖 面圖。如圖1所示,本實施形態之抗反射用層合物100爲在 作爲基材之纖維素樹脂基材1 0上使前述硬化性組成物硬化 形成硬化膜20,前述硬化膜20之與纖維素樹脂基材相反側 中之(B)成分之粒子密度高於硬化膜中之纖維素樹脂基 材側中(B )成分之粒子密度。硬化膜中與纖維素樹脂基 材相反側上形成粒子22以相對高之密度存在之區域26 (亦 稱爲低折射率層26 ),硬化膜中之纖維素樹脂基材側上形 成粒子22以相對低之密度存在之區域24 (亦稱爲硬質塗層 24 )。區域24與區域26之交界面雖未必必定明確,但較好 藉由使硬化膜中之(B)粒子之大部分集中在區域26中且 區域24實質上不含(B)粒子之交界面明確。22之折射率 由於爲I·4以下,故區域26之折射率比區域24之折射率低 ,可獲得反射率低之抗反射用層合物。另外,區域2 4含有 多官能基化合物作爲(A 1 )成分或(A 2 )成分時由於形 成具有交聯構造之硬化膜,故可獲得硬度及耐刮傷性優異 之抗反射用層合物。 抗反射用層合物1 0 0在不對抗反射性能造成影響之範 -23- 201125722 圍內,亦可具有鄰接於與區域26之纖維素樹脂基材10相反 側之膜厚3 Onm以下之其他層。又,本發明中所謂硬化膜意 指塗佈硬化膜20之硬化性組成物並硬化獲得之膜,塗佈及 硬化之過程中有成分加減之情況亦無妨。 (B)成分偏在之原因雖尙不明確,但推定爲由於( A1)成分使纖維素樹脂溶解,使纖維素樹脂溶出於硬化性 組成物層中,故與纖維素樹脂之親和性低之(B)成分成 爲偏在於硬化性組成物層中之纖維素樹脂濃度低側的硬化 性組成物層中與纖維素樹脂基材相反側中。藉由以該狀態 使硬化性組成物硬化,可形成(B )成分偏在於硬化膜中 與纖維素樹脂基材相反側中之硬化膜。 另一方面,僅含有不使基材之纖維素樹脂溶解之聚合 性化合物之硬化性組成物,由於未與纖維素樹脂相互作用 ,故(B)成分無法偏在於硬化膜表面,而損及硬化膜之 抗反射功能。 以下,就本實施形態之抗反射層合物之各層加以說明 2.2 . 1 .纖維素樹脂基材 本實施形態之該抗反射用層合物所用之基材爲纖維素 樹脂基材。認爲藉由使用纖維素樹脂作爲基材,使前述硬 化性組成物中所含之(A1 )成分溶解或膨潤纖維素樹脂, 藉此可形成粒子22以比較高之密度存在之低折射率層26者 。另一方面,使用纖維素樹脂以外之樹脂作爲基材時,並 -24- 201125722 無法發揮如前述之作用效果。本實施形態中,所謂纖維素 樹脂基材可爲基材本身以纖維素樹脂形成,亦可爲在聚對 苯二甲酸乙二酯或聚碳酸酯等之基材表面上具有纖維素樹 脂層之基材。此處,可作爲基材使用之纖維素樹脂列舉爲 三乙醯纖維素(以下亦稱爲「TAC」)、二乙醯纖維素、 纖維素乙酸酯丁酸酯等。 且’基材爲纖維素樹脂之抗反射用層合物利用在相機 之透鏡部 '電視(CRT )之畫面顯示部、或液晶顯示裝置 中之偏光子之保護膜等廣範圍之硬質塗層及/或抗反射膜 之領域中可獲得優異之耐刮傷性及抗反射效果。 2.2.2.硬質塗層 硬質塗層24係形成在使前述硬化性組成物硬化所得之 硬化膜20之纖維素樹脂基材1〇側上,由粒子22以相對低之 密度存在之區域所構成。 硬質塗層24之厚度並無特別限制,較好爲1〜50 μιη,更 好爲1〜ΙΟμηι。其理由爲硬質塗層24之厚度未達Ιμηι時,有 硬度不足之情況。另一方面,超過50μπι時,有難以形成均 句膜之情況,且層合物之捲曲變大會有處理上不容易之情 況。 硬質塗層之形成中,由於如前述之包含(Α1)成分之 (Α)成分使纖維素樹脂溶解,故形成之硬質塗層24成爲 含有(Α)成分以外之纖維素樹脂之層。 -25- 201125722 2.2.3.低折射率層 低折射率層26係形成於使前述硬化性組成物硬化獲得 之硬化膜20之與纖維素樹脂基材10相反側上,且由粒子22 以相對高之密度存在之區域所構成。 低折射率層26之厚度並無特別限制,較好爲50〜200nm ,更好爲60~150nm,最好爲80〜120nm。低折射率層26之 厚度在上述範圍內時,可在可見光區域之波長中獲得足夠 之抗反射效果。 本實施形態之抗反射用層合物100中之硬質塗層24與 低折射率層26之折射率差較好成爲0.05以上之値。其理由 爲硬質塗層24與低折射率層26之折射率差未達0.05之値時 ,無法獲得該等抗反射膜之相乘效果,反而有抗反射效果 降低之情況。 3.實施例 以下利用實施例更詳細說明本發明,但本發明並不受 該等實施例之任何限制。 [表面改質之中空二氧化矽粒子之調製例] 使中空二氧化矽粒子(商品名「JX-1 009SIV」,折射 率1.29,甲基異丁基酮溶膠,日揮觸媒化成股份有限公司 製造)90.9質量份(固體成分濃度;20質量份)、十三氟 辛基三甲氧基矽烷(GE東芝矽酮(股)製造)1質量份、 異丙醇0.1質量份及離子交換水〇.〇5質量份之混合液在80t -26- 201125722 攪拌3小時後,添加原甲酸甲酯〇 . 7質量份,再以相同溫度 加熱攪拌1小時,獲得無色透明之粒子分散液B-1。秤量2g 之B -1於鋁製皿上後,在! 2 0 °C之加熱板上乾燥1小時,秤 量求得固體成分含量爲2 2.5質量%。 3 · 1 ·硬化性組成物之製造例 於遮蔽紫外線之容器中,添加中空二氧化矽粒子(商 品名「JX- 1 009SIV」,折射率1 .29,甲基異丁基酮溶膠, 曰揮觸媒化成股份有限公司製造)5質量份(以固體成分 計爲1質量份)、丙烯酸2-羥基乙酯(商品名「LIGHT ESTER HOA」,共榮社化學股份有限公司製造)26質量份 、二季戊四醇五丙烯酸酯(商品名「SR399E」* Satomer 公司製造)70質量份、2-甲基-1 [4-(甲硫基)苯基]-2-嗎 啉基丙-1-酮(商品名「IRGACURE (註冊商標)907」, 日本汽巴股份有限公司製造)3質量份、SILAPLANE FM0725 (CHISSO股份有限公司製造)0.1質量份、以及適 量甲基異丁基酮,在室溫攪拌2小時,藉此獲得均勻硬化 性組成物。稱量2g之該溶液於鋁製皿中之後,在175°C之 加熱板上乾燥30分鐘,秤量後求得固成分含量爲50質量% 3.2.實施例1(抗反射用層合物之製備) 使用棒塗佈器將前述「3 . 1 .硬化性組成物之製造」 中獲得之硬化性組成物以整體之硬化膜厚成爲約7μηι之方 -27- 201125722 式塗佈於三乙醯基纖維素膜上,在80 °C乾燥2分鐘後,於 氮氣流下使用高壓水銀燈( 300mJ/cm2)使之硬化,獲得 抗反射用層合物。 3.3.實施例2〜22、比較例1〜5 除使用表2或表3中所示之成分代替「3 · 1 ·硬化性組 成物之製造」中獲得之硬化性組成物,調製硬化性組成物 以外,餘與實施例1同樣獲得抗反射用層合物。 但,實施例11、12中,代替三乙醯基纖維素膜,係使 用以塗佈棒將使纖維素乙酸酯丁酸酯樹脂(商品名「CAB-381-20」 , Eastman Chemical公司 製造) 以 20質量 %溶解 於丙酮中而成之溶液塗佈於聚對苯二甲酸乙二酯膜上(實 施例11)、聚碳酸酯膜上(實施例12),且在80°c乾燥3 分鐘,形成5μπι之纖維素樹脂膜之基材。 實施例20中使用之UN-33 20HS爲根上工業製造之胺基 甲酸酯丙烯酸酯寡聚物。 -28- 201125722 [表i] 樹脂成分之種類 商品名 對TAC之溶解性 對TAC之溶解性 丙烯酸羥基乙酯 LIGHT ESTER HOA 有 11% 丙烯醯基嗎啉 ACMO 有 20% N-乙烯基己內醯胺 V-cap 有 5.5% N-乙稀基甲醯胺 BEAMSET 770 有 13% N-乙烯基吡咯烷酮 有 11% γ-丁內酯丙烯酸酯 GBLA 有 7.0% 丙烯酸羥基丙酯 LIGHT ESTER HOP-A 有 2.3% 乙二醇二丙烯酸醋 ALDRICH製試劑 有 2.1% 二季戊四醇五丙烯酸醋 SR399E Μ / 1 \\ 0.2% 丙烯酸異冰片酯 IBXA Μ /i\\ 0.4% 丙烯酸丁酯 LIGHT ACRYLATE HOB-A Μ / t \N 0.4% 3.4.評價試驗 針對下述項目評價實施例及比較例中獲得之硬化性組 成物及抗反射用層合物之特性。其結果合倂示於表2至表4 [(A 1 )成分對於三乙醯纖維素之溶解性] 將切成18cmx lcm大小之厚度80μιη之三乙醯纖維素膜 (商品名「TDY-80UL」,富士 Film公司製造)在25 °C下浸 漬於6g之聚合性化合物中2小時,測定所取出之薄膜在 8〇°C以真空乾燥機乾燥24小時時之三乙醯纖維素膜之質量 減少率,質量減少率爲2%以上時判斷該聚合性化合物爲溶 解三乙醯纖維素者,未達2 %時判斷該聚合性化合物爲不溶 解三乙醯纖維素者。結果示於表1。又,同樣地試驗纖維 素乙酸酯丁酸酯對丙烯酸羥基乙酯之溶解性,質量減少率 -29- 201125722 爲 3 9 %。 3·4·1·反射率 以黑色噴霧塗裝所得抗反射用層合物之纖維素樹脂基 材面,且利用分光反射率測定裝置(裝設大型試料室積分 球附屬裝置150-09090之自記分光光度計U-3410’日立製 作所股份有限公司製造)’自基材側測定波長340~700nm 之範圍之反射率並經評價。具體而言,以鋁之蒸鍍膜之反 射率作爲基準(100%),測定各波長之抗反射用層合物( 抗反射膜)之反射率,該等波長55 Onm之光之反射率合倂 示於表2。若反射率未達3 %則可判斷具有低反射性。 3.4.2. 鉛筆硬度 將所得抗反射用層合物固定於玻璃基板上’依據「 JIS K5600-5-4」(ISO/DIS 15184)加以評價。 3.4.3. 耐刮傷性(鋼毛耐性試驗) 將鋼毛(BONSTAR No. 0000,日本 STEEL WOOL股 份有限公司製造)安裝於學振型摩擦堅牢度試驗機(AB-301,Tester產業股份有限公司製造),以於硬化膜表面荷 重2 00g之條件重複擦過所得抗反射用層合物10次,且以下 列基準目視確認該硬化膜表面有無產生刮傷。評價基準如 下。 A :硬化膜未出現刮傷。 -30- 201125722 B :幾乎無法確認硬化膜之剝離或刮傷’或者確認硬 化膜上有細微刮傷。 C :確認硬化膜之整面上有條狀刮傷。 D :硬化膜之一部份產生剝離。 E :硬化膜之整面產生剝離。 3.4.4.中空二氧化矽粒子之偏在 以透過型電子學顯微鏡觀察所得抗反射用層合物之剖 面’硬化膜中與纖維素樹脂基材相反側之中空二氧化矽粒 子之密度比硬化膜中之纖維素樹脂基材側之中空二氧化矽 粒子之密度高時’判定中空二氧化矽粒子偏在。 -31 - 201125722 【遂 實施例12 (Ο CM ο - ο 5 1 100.1 I CAB-381-20 PC I 100 S X < 實施例” <〇 CSi ο - CO o I 100.1 1 CAB-381-20 PET ι—ion ι S 5 X < 資施例10 Ο η ο r> d 1 100.1 I TAC 丨伽1 S <〇 S < |實施例9| Ο to esi 严 CO 5 I 100.1 1 TAC 〇 S eg X 〇 實施例8 in 产 to d 1 100.1 1 TAC 丨伽1 S S 5 < ! *施例7 η η ο - CO o’ 1 100.1 I TAC 丨⑽1 S 卜· 5 < 實施例6 <〇 CM ο - o o’ I 100.1 1 TAC 卜伽1 S 5 < 實施例5 | ο - C9 d 1 100.1 I TAC 丨1卯1 S 〇 S < |實施例4 ο - 〇 5 I 100.1 1 TAC S S m S < 實施例3 | CD ο - 〇 d 1 100.1 I TAC M〇〇 1 S S 5 < ί實施例2 ο - n d I 100.1 1 TAC 1 100 1 g 卜· 5 < 實施例1 (Ο οι ο - d 1 100.1 1 TAC ο δ Γ"· S < 丙烯酸理基乙酯 I 1丙烯醯基嗎啉 1 海 发 E: 涵 ε h' κ I丙烯酸羥基丙酯 I I Ν·乙烯基己內醢胺 | I N-乙烯基甲殖胺 I I二季戊四醇五丙烯酸醋 ι I丙烯酸異冰片酯 I I丙嫌酸丁酯 I I中空二氧化矽粒子 | I Β·1(合成例ι) 1 | IGACURE907 | I SALIPLANE FM0725 | s m S iifce <n 1 1甲基乙丁基酮 1 1固體成分濃度(%) 1 I反射率(%) | 1始筆硬度 1 1附鋼毛性 1 (Α1)成分 1 (C>聚合起始劑 1 1添加劑 1 (Α)聚合性化雜 Η ί · ί 1 (D)溶劑 評價項目 -32- 201125722 【efi 實施例22 to CM ο - 〇 〇 I 100.1 | 丨 TAC I I _ 100 Π g 00 I eg < 實施例21 in S - «〇 〇 1 99.1 | I TAC | o s <〇 5 < 贫施例20 CO C9 eo (D CM C0 〇 I 100.1 | I TAC I o g 卜· 5 < S施例19 CO CO ο 〇 S - I 100.1 | I TAC | o s <〇 S < 實施例18 CO S S - CO d I 100.1 | I TAC | o s (Ο X m 實施例17 η CO s S - C0 〇 I too.1 | I TAC | o s CO 5 < 資施例16 CO eo s - 〇 5 I 100.1 | I TAC | o s to δ < 寶施例15 η CO ο 〇 〇 I 100.1 | 丨 TAC | 1 100 I s 卜 S < 實施例14 CD CM ο <r* η Ο I 100.1 | I TAG ! I 100 1 s I CsJ < 實施例13 (O n g <*> o’ I 100.1 | I TAC | 1 100 I s 卜· I CD l丙烯酸經基乙酯 l | N-乙烯基甲醯胺 I |乙二醇二丙烯酸_ I I N·乙烯基耻略烷酮 I I二季戊四醇五丙烯酸酯 I I季戊四醇三丙烯酸酯 | I新戊二醇二丙烯酸酯 I |四乙二醇二丙烯酸酯 | I氟化金剛烷基二丙烯酸醋 | | UN-3320HS I |中空二氧化敢粒子 | | IGACURE907 I SALIPLANEFM0725 | | 合計(質量份) I |基材 I I甲基異丁基酮 I I固體成分濃度(%) I I反射率(%) I m 酵 m 丨耐鋼毛性 I (A1)成分 I⑻粒子 | | (c)聚合起始劑 | |添加劑 I 評價項目 (A)聚合性化合物 「(D)溶劑 -33- 201125722 【寸® 比較例5 | 〇 CO Ο 100.1 TAC I 100 s p L<2B I UJ 比較例4 CM CO ο 100.1 TAC o g in X CM < 比較例3 CO σ> CO d 100.1 TAC 100 g IT) X CM < 比較例2 〇 CO CM CO 5 100.1 TAG 100 s in — X CM < 比較例1 〇 co 5 100.1 TAG o s LO 5 < 丙烯酸羥基乙酯 二季戊四醇五丙烯酸酯 丙烯酸異冰片酯 丙烯酸丁酯 中空二氧化矽粒子 IGACURE 907 SALIPLANE FM0725 合計(質量份) I基材 (D)溶劑 甲基異丁基酮 固體成分濃度(%) 反射率(%) 纖硬度 耐鋼毛性 (A1)成分 (Α)聚合性化合物 Μ m (C)聚合起始劑 1添加劑 評價項目 3 . 5 .評價結果 由表2及表3之結果,可知實施例1〜22反射率未達3%具 -34- 201125722 有優異抗反射性。且,由耐剛毛性之結果可知耐刮傷性亦 優異。 相對於該等,由表4之結果,可知未含(A1)成分之 比較例1 ~ 3中,耐刮傷性雖優異,但反射率超過3 %而爲反 射率差者。全部聚合性化合物中之(A1)成分之含量過小 之比較例4中’亦爲同樣結果。全部聚合性化合物中之( A1)成分之含量爲100質量%之比較例5中,鉛筆硬度與耐 刮傷性顯著降低。 且’實施例1、2、7及比較例1之硬化膜中,切開剖面 且進行硬質塗層之雷曼分光測定(使用日本電子股份有限 公司製造,形式「JRS-SYSTEM2000」)。其結果,由實 施例1、2及7之硬質塗層檢出源自三乙醯纖維素之羰基之 1 74 OcnT1之峰,但由比較例1之硬質塗層未檢出源自三乙 醯纖維素之峰。亦即,提示實施例1、2及7之硬質塗層中 混入有基材的三乙醯纖維素。 實施例1〜22全部中,硬化膜中與纖維素樹脂基材相反 側中之中空二氧化矽粒子之密度比硬化膜中之纖維素樹脂 基材側中之中空二氧化矽粒子之密度高,硬化膜中之纖維 素樹脂基材側實質不存在中空二氧化矽粒子。相對於此, 比較例1〜5中,中空粒子之密度在硬化膜中大致均勻。 本發明並不受限於上述之實施形態者,各種變形均爲 可能。例如,本發明包含與實施形態中說明之構成實質上 相同之構成(例如,功能、方法及結果爲相同之構成,或 者目的及效果相同之構成)。又,本發明包含替代實施形 -35- 201125722 態中說明之構成之非本質部份而成之構成。又,本發明包 含達到與實施形態中說明之構成相同作用之構成或可達成 相同目的之構成。又,本發明包含於實施形態中說明之構 成附加習知技術而成之構成。 【圖式簡單說明】 圖1爲模式性顯示本實施形態之抗反射用層合物之剖 面圖" 圖2爲本實施形態之抗反射用層合物之剖面照片。 圖3爲拍攝本實施形態之抗反射用層合物之粒子偏在 之狀態之剖面照片。 【主要元件符號說明】 10:纖維素樹脂基材 20 :硬化膜 2 2 :粒子 24 :硬質塗層 26 :低折射率層 1〇〇 :抗反射用層合物 -36-201125722 VI. Description of the Invention: [Technical Field] The present invention relates to an antireflection laminate, a method for producing the same, and a curable composition. [Prior Art] In recent years, liquid crystal display devices have been used as display devices for televisions, personal computers, and the like. In the liquid crystal display device, in order to prevent external light from being reflected and to improve image quality, it is proposed to use an antireflection film containing a low refractive index layer. The antireflection film used in the conventional liquid crystal display device has low refractive index and scratch resistance by coating a low refractive index layer and a hard coat layer in multiple layers. Such an antireflection film having a multilayer structure can reduce the reflectance of the low refractive index layer, but has a problem of productivity or cost due to the multilayer structure. Further, the antireflection film produced by laminating the low refractive index layer and the hard coat layer has a problem that the interface between the low refractive index layer and the hard coat layer is liable to cause peeling. In order to solve this problem, a method for producing an antireflection film in which a cerium oxide particle is modified with a fluorononane and a sulphur dioxide particle in a liquid is biased to form a cured film is proposed (see, for example, Patent Document η. [Problems to be Solved by the Invention] However, the method described in Patent Document 1 has a cerium oxide particle biased at -5- 201125722 The problem of instability is provided. Therefore, in order to solve the above problems, the present invention can provide a curable composition of a cured film having excellent refractive index, hardness, and scratch resistance, and a cured film having the cured film. The antireflection laminate and the method for producing the same. [Means for Solving the Problems] The present invention has been made to solve at least a part of the above problems, and can be realized by the following aspects or application examples. Example 1] The antireflection laminate of the present invention is characterized in that: on the cellulose resin substrate, a polymerizable compound containing (A1) a cellulose resin for dissolving the substrate, And (B) has a refractive index of 1. In the above-mentioned (A1), the content of the polymerizable compound in which the cellulose resin of the substrate is dissolved is 5% by mass or more and 5% by mass based on 1% by mass of the total of the polymerizable compound. / The cured film obtained by hardening the hardening composition below, and the particles are biased on the opposite side of the cured film from the cellulose resin substrate. Here, the particles of the component (B) are located on the opposite side of the cured film from the substrate of the cellulose tree, meaning that the particle density of the component (B) in the opposite side of the cured resin film from the cellulose resin substrate is harder than that of the hardened film. The component (B) in the cellulose resin substrate side in the film has a high particle density. -6 - 201125722 in the cured film The relative size of the cellulose resin substrate side and the particle density on the opposite side to the cellulose resin substrate can be determined by observing the cross section of the antireflection laminate with an electron microscope. It is preferred that particles of the component (B) in the opposite side of the cellulose resin substrate in the cured film are present at a high density, and particles of the component (B) are substantially absent from the side of the cellulose resin substrate in the cured film. . The antireflection laminate can have high hardness, scratch resistance, and low reflectance. [Application Example 2] In the antireflection laminate of the first aspect, the cured film contains the cellulose resin substrate. Cellulose resin. [Application Example 3] In the antireflection laminate of the first aspect, the polymerizable compound in which the cellulose resin of the substrate is dissolved in the above (A1) is a fiber which is cut into a substrate having a size of 18 cm XI cm and a thickness of 80 μm. The resin film was immersed in 6 g of the (A1) component at 25 ° C for 2 hours, and the film obtained by drying the film at 8 ° C for 24 hours in a vacuum dryer had a film quality reduction rate of 1% or more. Compound. [Application Example 4] In the antireflection laminate of the first aspect, the polymerizable compound in which the cellulose resin of the substrate is dissolved in the above (A1) is 2-hydroxyethyl (meth)acrylate or acrylonitrile. Porphyrin, γ-butyrolactone acrylate, (meth) propyl 201125722 hydroxypropyl acrylate acrylate N-vinyl pyrrolidone, N-vinyl amide, glycidyl methacrylate, tetrahydrofurfuryl acrylate, acrylic acid At least one selected from 4-butylidene ester, diethylene glycol monoacrylate, glycerin monomethacrylate, ethylene glycol diacrylate, and diethylene glycol diacrylate [Applicable Example 5] Application Example 1 In the antireflection laminate, the aforementioned (B) refractive index is 1. The particles below 40 are hollow ceria particles. [Application Example 6] The method for producing an antireflection laminate of the present invention is characterized in that it has a polymerizable compound containing (A1) a cellulose resin for dissolving a substrate and (B) a refractive index of 1. In the above-mentioned (A1), the content of the polymerizable compound in which the cellulose resin of the substrate is dissolved is coated with a curable composition having a content of 5 mass% or more and 75% by mass or less based on 1% by mass of the total polymerizable compound. After the step on the cellulose resin substrate, the step of hardening. According to the method for producing the antireflection laminate, the curable composition is applied to the cellulose resin serving as the substrate and cured, whereby the particles of the component (B) are formed in the cured film and the cellulose. A cured film on the opposite side of the resin substrate. According to this, an antireflection laminate having high hardness, scratch resistance and low reflectance can be produced. [Application Example 7] -8 - 201125722 The method for producing the antireflection laminate of the application example 6) The cellulose resin of the substrate is dissolved and polymerized into a substrate having a thickness of 18 cm x 1 cm and a thickness of 80 μm 2 5 ° C The polymerizable compound was immersed in 6 g of the (Α1) component for 2 hours, and dried at 80 ° C for 24 hours in a vacuum dryer. [Application Example 8] The method for producing an antireflection laminate of the application example 6) The polymerizable compound of the substrate, which is obtained by dissolving the cellulose resin, 2-hydroxyethyl acrylate, acryloyl morpholine, γ-butene ( Hydroxypropyl methacrylate, hydrazine-vinylpyrrole trace meglumine, glycidyl methacrylate, 4-hydroxybutyl phthalate, diethylene glycol monoacrylate, galactyl ester ethylene glycol One of acrylate and diethylene glycol dipropylene. [Application Example 9] The method for producing an antireflection laminate of Application Example 6 has a refractive index of 1. The particles of 40 or less are hollow cerium oxide particles [Application Example 10] The same characteristic of the curable composition of the present invention contains (A 1 ) the cellulose resin of the substrate is dissolved in 5, and the above (A1 compound is The cut-off resin film is selected from the group consisting of (meth) acrylate, ketone, N-vinylhydroquinone ester, and propylene monomethacrylate in the case where the film removal rate is 1%. To the above, the above (B) is: a polymerizable compound-9 - 201125722, and (B) a refractive index of 1. In the above-mentioned (A1), the content of the polymerizable compound in which the cellulose resin of the substrate is dissolved is 5% by mass or more and 75% by mass or less based on the total mass of the polymerizable compound. [Application Example 1 1] In the curable composition of Application Example 10, the component (A1) is 2-hydroxyethyl (meth)acrylate, acryloylmorpholine, γ-butyrolactone acrylate, (A) Hydroxypropyl acrylate, hydrazine-vinyl pyrrolidone, hydrazine-vinyl carbamide, glycidyl methacrylate, tetrahydrofurfuryl acrylate, 4-hydroxybutyl acrylate, diethylene glycol monoacrylate, glycerin At least one selected from the group consisting of monomethacrylate, ethylene glycol diacrylate, and diethylene glycol diacrylate. [Application Example 12] Application Example 1 In the curable composition of ruthenium, the aforementioned (Β) refractive index is 1. The particles below 40 are hollow cerium oxide particles. [Effect of the Invention] According to the method for producing an antireflection laminate of the present invention, the curable composition is applied to the cellulose resin serving as the substrate and cured, whereby the particles which form the (Β) component are partial to the above. A cured film on the opposite side of the cellulose resin substrate in the cured film. According to this, an antireflection laminate having high hardness, scratch resistance and low reflectance can be produced. -10- 201125722 [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail. Further, the present invention is not limited to the embodiments described below, and various modifications are possible without departing from the spirit and scope of the invention. (1) Curable composition The curable composition of the present embodiment contains (A1) a polymerizable compound which dissolves the cellulose resin of the substrate, and (B) has a refractive index of 1. Particles below 4. Hereinafter, each component of the curable composition of the present embodiment will be described in detail. Further, each of the materials (A) to (D) in the following description is simplified as the components (A) to (D), respectively. 1. 1.  (A) Polymerizable compound (A) The polymerizable compound used in the curable composition of the present invention is not particularly limited as long as it is a polymerizable compound, and is preferably a compound having an ethylenically unsaturated group. (A) The polymerizable compound is a polymerizable compound (A 1 ) (hereinafter also simply referred to as "(A 1 ) component j) and a polymerizable compound other than (A1) (hereinafter also referred to as a polymerizable compound). (A2) component) The curable composition of the present embodiment contains (A1) a polymerizable compound which dissolves the cellulose resin of the substrate. In the present invention, "solving the cellulose resin of the substrate" means The cellulose resin film of the substrate having a thickness of 80 μm 1 cut into a size of 18 cm x 1 cm was immersed in 6 g of the polymerizable -11 - 201125722 for 2 hours at room temperature, and the film taken out was at 8 (TC vacuum dryer). When the drying property is 24 hours, the mass reduction rate of the film (hereinafter referred to as "TAC solubility") is 1% or more. When the curable composition of the present invention contains the component (A1), the component (B) described later can be used. The antireflection laminate having high hardness, scratch resistance, and low reflectance is obtained. (A 1 ) The polymerizable compound in which the cellulose resin of the substrate is dissolved is exemplified as having one ethylenically unsaturated group or the like. a polymerizable group of compounds (hereinafter referred to as a "monofunctional group compound" or a compound having a polymerizable group such as two or more ethylenically unsaturated groups (hereinafter referred to as "polyfunctional compound J"). The monofunctional compound of the component (A1) is exemplified as ( Methyl) 2-hydroxyethyl acrylate, acrylonitrile, N-vinylpyrrolidone, N-vinylformamide, etc., having a TAC solubility of 10% or more, a γ-butyrolactone acrylate The TAC solubility of N-vinyl caprolactam or the like is 5% or more and less than 10% of the polymerizable compound, and the TAC solubility of hydroxypropyl (meth)acrylate is 2% or more and less than 5%. Examples of the polymerizable compound, etc., are glycidyl methacrylate, tetrahydrofurfuryl acrylate, 4-hydroxybutyl acrylate, diethylene glycol monoacrylate, glycerin monomethacrylate, etc. (Α1) The polyfunctional compound is exemplified by diethylene glycol diacrylate, etc. These components may be used singly or in combination of two or more. (聚合2) The polymerizable compound other than the component (Α1) is used for the purpose of improvement. Sclerosing composition The film forming property and the hardness and scratch resistance of the cured film. The (Α2) component is exemplified by a monofunctional compound or a polyfunctionalized group of -12-201125722. Among them, the polyfunctional compound can be formed by forming a crosslinked structure. Further, a cured film excellent in hardness and scratch resistance is preferred. The polyfunctional compound of the component (A2) is preferably a polyfunctional (meth) acrylate compound, a polyfunctional vinyl compound, or the like. a functional group epoxy compound, a polyfunctional alkoxymethylamine compound, more preferably a polyfunctional (meth) acrylate compound, a polyfunctional vinyl compound, a polyfunctional group (methyl) The acrylate compound is exemplified by trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like. The polyfunctional vinyl compound is exemplified by divinylbenzene or the like. The polyfunctional epoxy compound is exemplified by 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether 'trimethylolpropane triglycidyl Ether, polyethylene glycol diglycidyl ether, glycerol triglycidyl ether, and the like. The polyfunctional alkoxymethylamine compound is exemplified by hexamethoxymethylated melamine, hexabutoxymethylated melamine, tetramethoxymethylated glycoluril, tetrabutoxymethylated glycoluril, etc. . Further, the component (A2) may contain a monofunctional (meth) acrylate compound, a monofunctional vinyl compound, a monofunctional epoxy compound, or the like, to the extent that the effects of the present invention are not impaired. When the ratio of the polyfunctional compound contained in the component (A2) is 100% by mass based on the total amount of the component (A2), it is preferably 50 to 1% by mass, more preferably 80 to 100% by mass, most preferably Good is 1% by mass. In the curable composition of the present embodiment, when the content of the component (A) is 100% by mass based on the total of the components of the solvent (D), it is preferably -13 to 201125722, 80 to 99% by mass, more preferably 90. ~ 98% by mass. By setting the content of the component (A) to the above range, a cured film having high hardness, scratch resistance and low reflectance can be formed. The content of the component (A1) is 5% by mass or more and 75% by mass or less, more preferably 10% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 40% by mass based on 100% by mass of the total amount of the component (A). %the following. Further, in the present specification, "(A) component" means a total of (A1) component and (A2) component. By formulating the component (A1) in the above range, not only a cured film having high hardness and scratch resistance can be obtained, but also the (B) component can be easily biased in the cured film with the cellulose resin base in the cured film. On the opposite side of the material. 1. 2.  (B) refractive index 1. Particles of 4 Å or less The curable composition of the present embodiment contains a refractive index of 1. Particles below 40. By the bias of the particles, the function of the cured film as an antireflection film can be imparted. Further, by biasing the particles, the hardness of the surface of the cured film can be increased. It is also expected to have an effect of reducing the curl. The refractive index of the particles is 1. 40 or less, preferably 1. 35 or less, better for 1. 3 0 or less. By making the refractive index 1. 40 or less, a cured film excellent in antireflection properties can be obtained. Further, the refractive index is preferably as low as the lower limit of the refractive index of air 1 · 〇〇, but when hollow particles are used, the strength of the particles is lowered due to the low refractive index, so that the hardness or scratch resistance of the cured film is also lowered. . Therefore, the lower limit of the refractive index of the hollow particle is preferably 1. 20. In the present specification, "refractive index" means a refractive index at a Na-D line (wavelength of 589 nm) at 25 °C. In the present specification, "refractive index of particles" means that the content of the particles in the solid component is 10 mass in the same matrix. /. 20% by mass of the composition was formed into a film, and the refractive index was measured by a Na-D line at 25 ° C according to JIS ISCM89) to determine the particle content of 100% by mass. As for (B) particles, as long as the refractive index is 1. In the case of a hollow cerium oxide particle or a fluorinated metal, for example, it is preferably a hollow particle containing cerium oxide as a main component. Hollow ceria particles have a lower refractive index due to voids in their interior. The number of particles measured by a transmission electron microscope is 1 to 100 nm, more preferably 5 to 60 nm. The shape of the particles is not limited to a shape that can be indefinite. Commercially available products of hollow ceria particles are, for example, "JX 1 008 SIV" manufactured by Kawasaki Co., Ltd. (number average particle diameter 50 nm obtained by a transmission mirror, refractive index 1). 29%, % solids, isopropanol solvent), "J X 1 0 0 9 S IV" (number average particle diameter obtained by micromirror 50 nm, refractive index 1).  2 9 %, % by mass, methyl isobutyl hydrazine solvent, etc. The hollow cerium oxide particles used in the present embodiment may also be modified by a modifier. The surface modifying agent can be exemplified by a compound having a polyhydric group and a hydrolyzable alkylene group (hereinafter also referred to as "poly modifier"). Polymerizable surface modifier is polymerizable unsaturated vinyl, (meth) acrylonitrile. Further, in the case where the hydrolyzable decyl group is reacted to form a stanol group (Si-ΟΗ), for example, the upper sputum bond is 1% by mass, and K7 195 (the amount of the ruthenium is no particular particle). It is a spherical shape, and it is also a catalytically formed electron microscopic component. The 20-type electron-expressing component 20 is listed as a surface-compatible unsaturated surface group, which means that it is combined with water to form a methoxy group on -15-201125722. An alkoxy group such as an ethoxy group, a n-propoxy group, an isopropoxy group or a n-butoxy group, an aryloxy group, an ethoxy group, an amine group or a halogen atom. The polymerizable surface used in the embodiment As the modifier, a commercially available product such as methacryloxypropyltrimethoxydecane may be used. For example, a compound described in International Publication No. WO97/12594 may be used. However, in the present specification, polymerizability is used. The compound (B) is a polymerizable compound, and the (B) particles having a polymerizable group modified by a polymerizable surface modifier are not contained in the polymerizable compound. a hydrolyzable alkylene compound of fluorine (hereinafter also It is a "fluorinated surface modifier". When a fluorine-containing surface modifier is used, the hollow cerium oxide particles can be efficiently biased. The fluorine-containing modifier used in the embodiment can be used with trifluorooctyl octyl A commercially available product such as oxoxane. Further, a surface modifying agent having an alkyl group or a surface modifying agent having an anthracene chain may be used similarly to the fluorine-containing surface modifying agent. The above various surface modifying agents may be used alone. One type may be combined with a plurality of types of use. In order to modify the hollow cerium oxide particles used in the present embodiment, it is preferred to mix the hollow cerium oxide particles and the surface modifier, and to combine the two by hydrolysis. The ratio of the organic polymer component in the cerium oxide particles, that is, the hydrolyzate and the condensate of the hydrolyzable decane is usually a constant 値 which reduces the weight of the dry powder when it is completely burned in the air, for example, it can be used in the air. The thermogravimetric analysis is carried out from room temperature to normal temperature of 800 ° C. The amount of surface modifier to the reactive hollow ceria particles is changed to -16-201125722 modified hollow ceria particles To 100% by mass, preferably 0. 01 to 40% by mass, more preferably 0. 1 to 30% by mass, preferably 20% by mass. When the amount of the surface modifier which reacts with the hollow ceria particles is in the above range, not only the dispersibility of the hollow ceria particles in the composition can be improved, but also the transparency or scratch resistance of the obtained cured product can be expected to be improved. effect. In the curable composition of the present embodiment, the content of the component (B) can be appropriately adjusted depending on the film thickness of the formed cured film. Specifically, in order to form the component (B) as a main component of the "low refractive index layer" to be described later, the thickness of the component (B) which is biased in the cured film is preferably 50 to 200 nm. For this reason, when the total of the components of the solvent (D) is removed as 1% by mass, it is preferably 0. 2 to 5 mass%, more preferably 0. 3 to 3 mass%. When the film thickness of the cured film is further exemplified, for example, when the film thickness of the cured film is ΙΟμηι, when the total amount of the component of the solvent (D) is removed as 100% by mass, it is preferably 0. 4 to 1.  2% by mass, more preferably 〇 · 5 to 1% by mass. For example, when the film thickness of the cured film is 7 μm, it is preferably 0. 6~1. 8% by mass ‘better is 0. 7~1. When the film thickness of the cured film is 3 μηι, it is preferably from 1 to 2% by mass, more preferably 1% by mass. Within the range of 5 to 3 mass%. When the content of the (Β) component is within the above range, an antireflection laminate excellent in the effect of reducing the reflectance can be obtained. 1. 3.  (C) Polymerization initiator The curable composition of the present embodiment may further contain (C) a polymerization initiator. In the case where the (c) polymerization initiator contains, for example, a (meth)acrylic acid vinegar compound and/or a vinyl compound as the component (A), for example, -17-201125722 has an active free species by heat. A compound (thermal polymerization initiator) and a general-purpose product such as a compound (radiation (photo) radical polymerization initiator) which produces a free radical by irradiation with radiation (light). Further, when an epoxy compound and/or an alkoxymethylamine compound is contained as the component (A), an acidic compound and a compound which generates an acid by irradiation with radiation (light) (radiation (photo) acid generator are exemplified. ) and other pan-products. Among these, a radiation (photo) polymerization initiator is preferred. The radiation (photo) radical polymerization initiator is not particularly limited as long as it is a radical generated by decomposition by light irradiation, and is exemplified by, for example, acetophenone, acetophenone ketal, and 1-hydroxycyclohexyl. Phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, xanthone, anthrone, benzaldehyde, hydrazine, hydrazine, triphenylamine, carbazole, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, Phenylene ethyl ether, benzoin dimethyl ketal, 1-(4-isopropylphenyl)-2-pyridyl-2-methylpropan-1-indole, 2-carbyl-2- Methyl-1-propenyl-1-one, thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2-methyl-1-[4- (methylthio)phenyl]-2-morpholinyl-propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinylphenyl)-butanone-1, 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)one, 2,4,6-trimethylbenzimidyldiphenylphosphine oxide, bis-(2, 6-dimethoxybenzimidyl) 2,4,4-trimethylpentylphosphine oxide, oligomeric (2-hydroxyl Benzyl-2-methyl-1-(4-(1-methylvinyl)phenyl)propanone) and the like. Commercial products of radiation (photo) radical polymerization initiators are listed, for example, as IRGACURE 184, 3 69, 651 -18-201125722, 500, 819, 907, 784, 2959 manufactured by Sakamoto Ciba Co., Ltd. CGI 1 700, CGI 1 750 'CGI1850, CG24-61, DAROCURE 1116, 1173' LUCIRIN BA manufactured by BASF, 8 8 93 UBECRYL P36 manufactured by UCB, EZACURE-KIP 1 50 manufactured by LAMBERTI, KIP65LT, KIP100F, KT37, KT55, KT046, KIP75/B, etc. The thermal radical polymerization initiator is not particularly limited as long as it is a radical generated by decomposition by heating, and examples thereof include a peroxide and an azo compound, and specific examples thereof include benzoin peroxide and Tributylperoxybenzoate, azobisisobutyronitrile, and the like. As the radiation (photo) acid generator, a compound such as a triarylsulfonium salt or a diaryliron iodide salt can be used. Commercial products of a radiation (photo) acid generator are listed as CPI-100P, 101A, and the like manufactured by San-Apro Corporation. In the curable composition of the present embodiment, if necessary, the content of the (C) polymerization initiator is 'when the total amount of the components of the solvent to be removed is 丨〇〇 mass%', preferably 0 · 0 1 to 1 5 %, better to 0.  Within the range of 1 to 8 mass%. By blending in the above range, a cured product having higher hardness and scratch resistance can be obtained. Further, the 'C (C) polymerization initiator may be used in combination with a plurality of compounds. 1. 4.  (D) The curable composition of the solvent # ® ^ form can be used by adjusting the thickness of the coating film (hereinafter referred to as "curable composition layer") applied to the cellulose resin substrate. For example, when the hardening composition I of the present embodiment is used as an antireflection film or a covering material, the 25t viscosity is usually -19-201125722 0. 1~50,000 mPa·s, preferably 0. 5~10,000mPa·second. The solvent (D) is exemplified by alcohols such as methanol, ethanol, isopropanol, butanol, and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; and ethyl acetate; , butyl acetate, ethyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate and other esters: ethylene glycol monomethyl ether, diethylene glycol monobutyl An ether such as an ether; an aromatic hydrocarbon such as benzene, toluene or xylene; or a guanamine such as dimethyl hydrazine, dimethyl acetamide or hydrazine-methylpyrrolidone. In the curable composition of the present embodiment, the content of the solvent (D) to be used as needed is preferably in the range of 50 to 10,000 parts by mass, based on the total of the components of the solvent (D). Inside. The content of the solvent can be appropriately determined in consideration of the thickness of the coating film and the viscosity of the curable composition. 1. 5.  Other Additives The curable composition of the present embodiment may optionally contain a particle dispersant, an antioxidant, an ultraviolet absorber, a photostabilizer, a decane coupling agent, an anti-aging agent, a thermal polymerization inhibitor, a colorant, a leveling agent, and a surfactant. And retaining stabilizers, plasticizers, slip agents, inorganic enamel fillers, organic enamel fillers, tanning materials, wettability improvers, coating surface improvers, and the like. In the case of using a fluorine atom-containing compound or a compound having a siloxane chain as a particle dispersant, the enthalpy of the hollow cerium oxide particles can be promoted, and an antireflection laminate having a low reflectance can be obtained. 1. 6.  Method for Producing Curable Composition -20- 201125722 The curable composition of the present embodiment can be obtained by separately adding (A) a polymerizable compound, (B) particles, and optionally (c) a polymerization initiator, (D). The solvent and other additives are prepared by mixing at room temperature or under heating. Specifically, it can be prepared by using a mixer such as a kneader, a kneader, a ball mill, or a triaxial roll. However, when mixed under heating, it is preferably carried out below the decomposition temperature of the thermal polymerization initiator. 2. Antireflection laminate and method for producing the same 1.  Method for Producing Antireflection Laminate The method for producing an antireflection laminate of the present embodiment comprises (a) preparing a polymerizable compound containing (A1) a cellulose resin for dissolving a substrate, and (B) a refractive index of 1 . The step of (a1) the content of the polymerizable compound in which the cellulose resin of the substrate is dissolved in the above-mentioned (A1) is 5% by mass or more and 75% by mass or less based on 100% by mass of the total of the polymerizable compound ( Hereinafter, it is also referred to as "step (a)"), and (b) a step of hardening the above-mentioned curable composition on a cellulose resin substrate (hereinafter also referred to as "step (b)"). According to the method for producing an antireflection laminate, the curable composition can be applied onto a cellulose resin as a substrate and cured, and particles forming the component (B) are biased in the cured film and cellulose. A cured film on the opposite side of the resin substrate. According to this, it is possible to produce an antireflection laminate which has both scratch resistance and low refractive index. Each step is explained below. 2. 1. 1.  Step (a) -21 - 201125722 Step (a) is a step of preparing the aforementioned curable composition. Since the constitution, manufacturing method, and the like of the curable composition are as described above, detailed descriptions thereof will be omitted. 2. 1. 2. Step (b) Step (b) is a step of hardening after applying the curable composition prepared in the step (a) to the cellulose resin substrate. The method of applying the curable composition prepared in the step (a) to the cellulose resin substrate is not particularly limited, and for example, coating bar coating, air knife coating, gravure coating, gravure reverse roll coating can be used. Conventional methods such as cloth, reverse roll coating, lip coating, die coating, dip coating, lithography, flexographic printing, screen printing, and the like. When the curable composition prepared in the step (a) is applied onto a cellulose resin substrate, the (A1) component contained in the curable composition interacts with the cellulose resin contained in the cellulose resin substrate. The cellulose resin is mixed in the curable composition layer or the (A1) component is impregnated into the cellulose resin. Whether or not the cellulose resin is incorporated into the coating film can be measured, for example, by a Lehman spectrometry apparatus. The cured film was judged by observing the peak of the specific functional group of the cellulose resin. The hardening conditions of the hardened composition are not particularly limited. Specifically, by applying the curable composition to the cellulose resin substrate, it is preferred to dry the volatile component at 0 to 200 ° C, and then perform radiation treatment and/or heat hardening treatment to form an anti- A laminate for reflection. The preferred conditions for thermal hardening are in the range of from 1 to 20 hours at 20 to 150 °C. When hardened by radiation, -22- 201125722 is better to use ultraviolet rays or electron beams. The amount of ultraviolet light is preferably 0. 01~10 J/cm2, better 0. 1~2J/cm2. Moreover, the irradiation condition of the electron beam is a pressing voltage of 10 to 300 kV and an electron density of 0. 02~0. The electron beam irradiation amount of 30 mA/cm 2 ' is 1 to 1 OMrad. 2. 2. Antireflection Laminate Fig. 1 is a cross-sectional view schematically showing the antireflection laminate of the present embodiment. As shown in FIG. 1, the antireflection laminate 100 of the present embodiment is obtained by curing the curable composition on a cellulose resin substrate 10 as a substrate to form a cured film 20, and the cured film 20 and the fiber. The particle density of the component (B) on the opposite side of the resin substrate is higher than the particle density of the component (B) in the cellulose resin substrate side in the cured film. A region 26 (also referred to as a low refractive index layer 26) in which the particles 22 are present at a relatively high density is formed on the opposite side of the cured film from the cellulose resin substrate, and the particles 22 are formed on the cellulose resin substrate side in the cured film. A relatively low density region 24 (also known as hardcoat 24). Although the interface between the region 24 and the region 26 is not necessarily clear, it is preferable to concentrate the majority of the (B) particles in the cured film in the region 26 and the region 24 is substantially free of the interface of the (B) particles. . Since the refractive index of 22 is less than or equal to 4, the refractive index of the region 26 is lower than that of the region 24, and an antireflection laminate having a low reflectance can be obtained. In addition, when the region 24 contains a polyfunctional compound as the (A 1 ) component or the (A 2 ) component, a cured film having a crosslinked structure is formed, so that an antireflection laminate excellent in hardness and scratch resistance can be obtained. . The antireflection laminate 100 may have a film thickness of 3 Onm or less adjacent to the side opposite to the cellulose resin substrate 10 of the region 26 in the range of 23-201125722 which does not affect the reflection performance. Floor. Further, the term "cured film" as used in the present invention means a film obtained by applying a curable composition of the cured film 20 and hardening it, and it is also possible to add or subtract components during coating and hardening. Although the reason why the component (B) is biased is not clear, it is presumed that the cellulose resin is dissolved in the curable composition layer due to the (A1) component, so that the affinity with the cellulose resin is low ( The component B) is in the side of the curable composition layer on the side where the concentration of the cellulose resin in the curable composition layer is on the opposite side to the cellulose resin substrate. By curing the curable composition in this state, the (B) component can be formed to be a cured film in the cured film opposite to the cellulose resin substrate. On the other hand, since the curable composition containing only the polymerizable compound which does not dissolve the cellulose resin of the substrate does not interact with the cellulose resin, the component (B) cannot be biased to the surface of the cured film, and the hardening is hardened. Anti-reflective function of the membrane. Hereinafter, each layer of the antireflection laminate of the present embodiment will be described. 2 .  1 . Cellulose resin substrate The substrate used in the antireflection laminate of the present embodiment is a cellulose resin substrate. It is considered that the (A1) component contained in the curable composition is dissolved or swollen by using a cellulose resin as a substrate, whereby a low refractive index layer in which the particles 22 are present at a relatively high density can be formed. 26 people. On the other hand, when a resin other than the cellulose resin is used as the substrate, the above-described effects are not exhibited by -24-201125722. In the present embodiment, the cellulose resin substrate may be formed of a cellulose resin as the substrate itself, or may have a cellulose resin layer on the surface of a substrate such as polyethylene terephthalate or polycarbonate. Substrate. Here, the cellulose resin which can be used as a substrate is exemplified by triethyl fluorene cellulose (hereinafter also referred to as "TAC"), diacetyl cellulose, cellulose acetate butyrate or the like. Further, the laminate for antireflection of a cellulose resin is used in a wide range of hard coat layers such as a screen display portion of a lens portion of a camera (CRT) or a protective film for a polarizer in a liquid crystal display device. / / Anti-reflective film in the field of excellent scratch resistance and anti-reflective effect. 2. 2. 2. The hard coat layer 24 is formed on the side of the cellulose resin substrate 1 on the cured film 20 obtained by curing the curable composition, and is composed of a region in which the particles 22 are present at a relatively low density. The thickness of the hard coat layer 24 is not particularly limited, and is preferably from 1 to 50 μm, more preferably from 1 to ΙΟμη. The reason for this is that when the thickness of the hard coat layer 24 is less than Ιμηι, the hardness is insufficient. On the other hand, when it exceeds 50 μm, it is difficult to form a uniform film, and the curling of the laminate is not easy to handle. In the formation of the hard coat layer, since the cellulose resin is dissolved by the (Α) component containing the component (Α1) as described above, the hard coat layer 24 formed is a layer containing a cellulose resin other than the (Α) component. -25- 201125722 2. 2. 3. The low refractive index layer low refractive index layer 26 is formed on the opposite side of the cured resin film 20 obtained by curing the curable composition from the cellulose resin substrate 10, and is composed of a region in which the particles 22 are present at a relatively high density. . The thickness of the low refractive index layer 26 is not particularly limited, but is preferably 50 to 200 nm, more preferably 60 to 150 nm, and most preferably 80 to 120 nm. When the thickness of the low refractive index layer 26 is within the above range, a sufficient antireflection effect can be obtained in the wavelength of the visible light region. The difference in refractive index between the hard coat layer 24 and the low refractive index layer 26 in the antireflection laminate 100 of the present embodiment is preferably 0. 05 or more. The reason is that the refractive index difference between the hard coat layer 24 and the low refractive index layer 26 is less than 0. At the time of 05, the multiplication effect of these anti-reflection films cannot be obtained, but the anti-reflection effect is lowered. 3. EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the invention should not be construed as limited. [Preparation example of surface-modified hollow cerium oxide particles] Hollow cerium oxide particles (trade name "JX-1 009SIV", refractive index 1. 29, methyl isobutyl ketone sol, Nippon Wave Chemicals Co., Ltd. manufactured) 90. 9 parts by mass (solid content concentration; 20 parts by mass), tridecafluorooctyltrimethoxydecane (manufactured by GE Toshiba Anthraquinone), 1 part by mass, isopropanol 0. 1 part by mass and ion exchanged water. After mixing 5 parts by mass of the mixture at 80t -26-201125722 for 3 hours, methyl orthoformate was added.  7 parts by mass, and the mixture was heated and stirred at the same temperature for 1 hour to obtain a colorless transparent particle dispersion B-1. Weigh 2g of B-1 on aluminum dish, after! Dry on a hot plate at 20 °C for 1 hour, and weigh the solid content to 2 2. 5 mass%. 3 · 1 · Production example of curable composition In the container for shielding ultraviolet rays, hollow cerium oxide particles (trade name "JX-1 009 SIV", refractive index 1 are added. 29, methyl isobutyl ketone sol, manufactured by Sigma Chemical Co., Ltd.) 5 parts by mass (1 part by mass in terms of solid content), 2-hydroxyethyl acrylate (trade name "LIGHT ESTER HOA", total 26 parts by mass of dipentaerythritol pentaacrylate (trade name "SR399E" * manufactured by Satomer Co., Ltd.), 70 parts by mass, 2-methyl-1 [4-(methylthio)phenyl]- 2-Morpholine-propan-1-one (trade name "IRGACURE (registered trademark) 907", manufactured by Nippon Ciba Co., Ltd.) 3 parts by mass, SILAPLANE FM0725 (manufactured by CHISSO Co., Ltd.) 0. 1 part by mass and an appropriate amount of methyl isobutyl ketone were stirred at room temperature for 2 hours, whereby a uniform hardenable composition was obtained. After weighing 2 g of the solution in an aluminum dish, it was dried on a hot plate at 175 ° C for 30 minutes, and the solid content was found to be 50% by mass after weighing. 2. Example 1 (Preparation of antireflection laminate) The above "3 is used using a bar coater.  1 . The curable composition obtained in the production of the curable composition is applied to a triethylenesulfonated cellulose film by a method in which the cured film thickness of the whole is about 7 μm, and is dried at 80 ° C for 2 minutes. The high-pressure mercury lamp (300 mJ/cm2) was used for hardening under a nitrogen stream to obtain an antireflection laminate. 3. 3. Examples 2 to 22 and Comparative Examples 1 to 5 In addition to the components shown in Table 2 or Table 3, in place of the curable composition obtained in the "manufacturing of the hardening composition", the curable composition was prepared. The antireflection laminate was obtained in the same manner as in Example 1. However, in Examples 11 and 12, instead of the triethylenesulfonated cellulose film, a cellulose acetate butyrate resin (trade name "CAB-381-20", manufactured by Eastman Chemical Co., Ltd.) was used as a coating bar. A solution obtained by dissolving in 20% by mass in acetone was applied onto a polyethylene terephthalate film (Example 11), a polycarbonate film (Example 12), and dried at 80 ° C. In a minute, a substrate of a cellulose resin film of 5 μm was formed. The UN-33 20HS used in Example 20 is an industrially produced urethane acrylate oligomer. -28- 201125722 [Table i] Types of Resin Components Trade Names Solubility to TAC to TAC Solubility Acrylic Hydroxyethyl Ester LIGHT ESTER HOA 11% Acrylate Mercaptoline ACMO 20% N-Vinyl Caprolactone Amine V-cap has 5. 5% N-ethylenecarbamamine BEAMSET 770 has 13% N-vinylpyrrolidone 11% γ-butyrolactone acrylate GBLA has 7. 0% hydroxypropyl acrylate LIGHT ESTER HOP-A has 2. 3% ethylene glycol diacrylate vinegar ALDRICH reagents 2. 1% dipentaerythritol vinegar vinegar SR399E Μ / 1 \\ 0. 2% isobornyl acrylate IBXA Μ /i\\ 0. 4% butyl acrylate LIGHT ACRYLATE HOB-A Μ / t \N 0. 4% 3. 4. Evaluation test The properties of the curable composition and the antireflection laminate obtained in the examples and the comparative examples were evaluated for the following items. The results are shown in Tables 2 to 4 [Solubility of (A 1 ) component for triacetonitrile cellulose] A triacetonitrile cellulose film (product name "TDY-80UL" which is cut into a thickness of 18 cm x 1 cm and a thickness of 80 μm Immersed in 6 g of the polymerizable compound at 25 ° C for 2 hours, and measured the quality of the triacetyl cellulose film when the taken film was dried at 8 ° C for 24 hours in a vacuum dryer. When the reduction rate and the mass reduction rate were 2% or more, it was judged that the polymerizable compound was dissolved in triacetyl cellulose, and when it was less than 2%, it was judged that the polymerizable compound was insoluble in triacetyl cellulose. The results are shown in Table 1. Further, the solubility of cellulose acetate butyrate to hydroxyethyl acrylate was similarly tested, and the mass reduction rate was 319-201125722, which was 39%. 3·4·1· Reflectance The surface of the cellulose resin substrate of the obtained antireflection laminate is applied by black spray, and the spectroscopic reflectance measuring device (self-recording of the large-scale sample integrating sphere attachment device 150-09090) is used. Spectrophotometer U-3410 'manufactured by Hitachi, Ltd.) 'The reflectance in the range of 340 to 700 nm was measured from the substrate side and evaluated. Specifically, the reflectance of the antireflection laminate (antireflection film) at each wavelength is measured based on the reflectance of the vapor deposited film of aluminum (100%), and the reflectances of the light having the wavelength of 55 Onm are combined. Shown in Table 2. If the reflectance is less than 3%, it can be judged to have low reflectivity. 3. 4. 2.  Pencil Hardness The obtained antireflection laminate was fixed on a glass substrate and evaluated according to "JIS K5600-5-4" (ISO/DIS 15184). 3. 4. 3.  Scratch resistance (steel wool resistance test) Steel wool (BONSTAR No.  0000, manufactured by STEEL WOOL Co., Ltd., Japan), installed in a vibration-type friction fastness tester (AB-301, manufactured by Tester Industries, Ltd.), and repeatedly rubbed the obtained anti-reflection layer under the condition that the surface hardness of the cured film was 200 g. The composition was applied 10 times, and the presence or absence of scratch on the surface of the cured film was visually confirmed on the following basis. The evaluation criteria are as follows. A: The cured film did not scratch. -30- 201125722 B : It is almost impossible to confirm the peeling or scratching of the cured film' or to confirm that there is a slight scratch on the hardened film. C : It was confirmed that there was a strip scratch on the entire surface of the cured film. D: One part of the cured film is peeled off. E: Peeling of the entire surface of the cured film. 3. 4. 4. The hollow ceria particles are observed by a transmission electron microscope to observe the obtained antireflection laminate. The density of the hollow ceria particles on the opposite side of the cured resin film from the cellulose resin substrate is higher than that of the cellulose in the cured film. When the density of the hollow cerium oxide particles on the resin substrate side is high, it is judged that the hollow cerium oxide particles are biased. -31 - 201125722 [遂 Example 12 (Ο CM ο - ο 5 1 100. 1 I CAB-381-20 PC I 100 S X <Examples&<〇 CSi ο - CO o I 100.1 1 CAB-381-20 PET ι-ion ι S 5 X < Capital Example 10 Ο η ο r> d 1 100.1 I TAC Sangha 1 S <〇 S < |Example 9| Ο to esi 严 CO 5 I 100.1 1 TAC 〇 S eg X 实施 Example 8 in Production to d 1 100.1 1 TAC Sangha 1 S S 5 < ! *Example 7 η η ο - CO o' 1 100.1 I TAC 丨(10)1 S 卜· 5 <Example 6 <〇 CM ο - o o’ I 100.1 1 TAC Buga 1 S 5 <Example 5 | ο - C9 d 1 100.1 I TAC 丨1卯1 S 〇 S < |Example 4 ο - 〇 5 I 100.1 1 TAC S S m S <Example 3 | CD ο - 〇 d 1 100.1 I TAC M〇〇 1 S S 5 < ί Embodiment 2 ο - n d I 100.1 1 TAC 1 100 1 g Bu·5 <Example 1 (Ο οι ο - d 1 100.1 1 TAC ο δ Γ"· S < Physic acid ethyl ester I 1 propylene hydrazinomorpholine 1 Sea hair E: εε h' κ I hydroxypropyl acrylate II Ν·vinyl caprolactam | I N-vinyl methamine II dipentaerythritol Pentaacrylate ι I Isobornyl acrylate II propylene butyl acrylate II hollow cerium oxide particles | I Β·1 (synthesis example ι) 1 | IGACURE907 | I SALIPLANE FM0725 | sm S iifce <n 1 1 methyl ethyl butyl ketone 1 1 solid content concentration (%) 1 I reflectance (%) | 1 initial pen hardness 1 1 attached steel hairiness 1 (Α1) component 1 (C> polymerization initiator 1 1 Additive 1 (Α) Polymerization Miscellaneous ί · ί 1 (D) Solvent Evaluation Item - 32- 201125722 [efi Example 22 to CM ο - 〇〇I 100.1 | 丨TAC II _ 100 Π g 00 I eg < Example 21 in S - «〇 〇 1 99.1 | I TAC | o s <〇 5 < Poor Example 20 CO C9 eo (D CM C0 〇 I 100.1 | I TAC I o g Bu· 5 <S. Example 19 CO CO ο 〇 S - I 100.1 | I TAC | o s <〇 S <Example 18 CO S S - CO d I 100.1 | I TAC | o s (Ο X m Example 17 η CO s S - C0 〇 I too.1 | I TAC | o s CO 5 < Example 16 CO eo s - 〇 5 I 100.1 | I TAC | o s to δ < Bao Shi Example 15 η CO ο 〇 〇 I 100.1 | 丨 TAC | 1 100 I s 卜 S <Example 14 CD CM ο <r* η Ο I 100.1 | I TAG ! I 100 1 s I CsJ <Example 13 (O n g <*> o' I 100.1 | I TAC | 1 100 I s · I CD l Acrylic acid ethyl ester l | N-vinylcarbamide I | ethylene glycol diacrylate _ IIN · vinyl shame Alkanone II dipentaerythritol pentaacrylate II pentaerythritol triacrylate | I neopentyl glycol diacrylate I | tetraethylene glycol diacrylate | I fluorinated adamantyl diacrylate vinegar | | UN-3320HS I | Oxidized Dangerous Particles | | IGACURE907 I SALIPLANEFM0725 | | Total (Parts by mass) I | Substrate II Methyl Isobutyl Ketone II Solid Concentration (%) II Reflectance (%) I m Fermentation m 丨 Steel resistance I ( A1) Component I (8) particles | | (c) Polymerization initiator | | Additive I Evaluation item (A) Polymeric compound "(D) Solvent - 33 - 201125722 [Inch® Comparative Example 5 | 〇CO Ο 100.1 TAC I 100 sp L <2B I UJ Comparative Example 4 CM CO ο 100.1 TAC o g in X CM <Comparative Example 3 CO σ> CO d 100.1 TAC 100 g IT) X CM <Comparative Example 2 〇 CO CM CO 5 100.1 TAG 100 s in — X CM <Comparative Example 1 〇 co 5 100.1 TAG o s LO 5 < Hydroxyethyl acrylate dipentaerythritol pentaacrylate isopropyl isobornyl butyl acrylate hollow cerium oxide particles IGACURE 907 SALIPLANE FM0725 total (parts by mass) I substrate (D) solvent methyl isobutyl ketone solid concentration (% Reflectance (%) Fiber hardness and steel resistance (A1) Component (Α) Polymerizable compound Μ m (C) Polymerization initiator 1 additive evaluation item 3. 5 . The evaluation results are the results of Table 2 and Table 3, It can be seen that the reflectances of Examples 1 to 22 are less than 3% and have excellent antireflection properties. Further, it was found from the results of the bristles resistance that the scratch resistance was also excellent. As a result of the above, it can be seen that in Comparative Examples 1 to 3 which do not contain the component (A1), the scratch resistance is excellent, but the reflectance is more than 3% and the reflectance is poor. The same results were obtained in Comparative Example 4 in which the content of the component (A1) in all the polymerizable compounds was too small. In Comparative Example 5 in which the content of the component (A1) in all the polymerizable compounds was 100% by mass, the pencil hardness and the scratch resistance were remarkably lowered. Further, in the cured films of Examples 1, 2, and 7 and Comparative Example 1, the cross section was cut and Rayman spectrometry of a hard coat layer (manufactured by JEOL Ltd., "JRS-SYSTEM 2000") was used. As a result, the peak of 1 74 OcnT1 derived from the carbonyl group of triacetonitrile cellulose was detected from the hard coat layers of Examples 1, 2 and 7, but the hard coat layer of Comparative Example 1 was not detected from the triethylene sulfonate. The peak of cellulose. Namely, it was suggested that the hard coat layers of Examples 1, 2 and 7 were mixed with the substrate of triacetyl cellulose. In all of Examples 1 to 22, the density of the hollow cerium oxide particles in the opposite side of the cured resin film from the cellulose resin substrate is higher than the density of the hollow cerium oxide particles in the side of the cellulose resin substrate in the cured film. The hollow cerium oxide particles are substantially absent from the side of the cellulose resin substrate in the cured film. On the other hand, in Comparative Examples 1 to 5, the density of the hollow particles was substantially uniform in the cured film. The present invention is not limited to the above embodiments, and various modifications are possible. For example, the present invention includes substantially the same configurations as those described in the embodiments (for example, the functions, methods, and results are the same, or the configurations and effects are the same). Further, the present invention includes a configuration in which a non-essential part of the configuration described in the state of the invention is incorporated. Further, the present invention includes a configuration that achieves the same function as the configuration described in the embodiment or a configuration that achieves the same object. Further, the present invention includes the configuration in which the conventional art described in the embodiment is constructed. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a laminate for antireflection of the present embodiment. Fig. 2 is a cross-sectional photograph of a laminate for antireflection of the present embodiment. Fig. 3 is a cross-sectional photograph showing a state in which the particles of the antireflection laminate of the present embodiment are biased. [Description of main component symbols] 10: Cellulose resin substrate 20: Cured film 2 2 : Particle 24 : Hard coat 26 : Low refractive index layer 1 : Antireflection laminate -36-

Claims (1)

201125722 七、申請專利範圍: 1. 一種抗反射用層合物’其特徵爲在纖維素樹脂基 材上具有: 使含有(A 1 )使基材之纖維素樹脂溶解之聚合性化合 物’及(B)折射率爲1.40以下之粒子’且前述(A1)使 基材之纖維素樹脂溶解之聚合性化合物之含量相對於全部 聚合性化合物1 0 〇質量%爲5質量%以上7 5質量%以下之硬化 性組成物硬化獲得之硬化膜’且 前述(B)粒子偏在於前述硬化膜中與纖維素樹脂基 材之相反側上。 2. 如申請專利範圍第1項之抗反射用層合物’其中前 述硬化膜含有形成前述纖維素樹脂基材之纖維素樹脂。 3. 如申請專利範圍第1項之抗反射用層合物,其中前 述(A1)使基材之纖維素樹脂溶解之聚合性化合物爲將切 成18cmxlcm大小且厚度爲80μιη之基材之纖維素樹脂薄膜 在25°C下浸漬於6g之該(Α1)成分中2小時,使取出之薄 膜在80°C以真空乾燥機乾燥24小時時之薄膜的質量減少率 爲1 %以上之聚合性化合物。 4·如申請專利範圍第1項之抗反射用層合物,其中前 述(A 1 )使基材之纖維素樹脂溶解之聚合性化合物爲由( 甲基)丙烯酸2-羥基乙酯、丙烯醯基嗎啉、γ_丁內酯丙烧 酸酯、(甲基)丙烯酸羥基丙酯、Ν-乙烯基吡咯烷酮、Ν_ 乙烯基甲醯胺、甲基丙烯酸縮水甘油酯、丙烯酸四氫糠酯 、丙烯酸4-羥基丁酯、二乙二醇單丙烯酸酯、甘油單甲基 -37- 201125722 丙烯酸酯、乙二醇二丙烯酸酯及二乙二醇二丙烯酸酯所選 出之至少一種。 5. 如申請專利範圍第1至4項中任一項之抗反射用層 合物,其中前述(B)折射率爲1.40以下之粒子爲中空二 氧化矽粒子。 6. —種如申請專利範圍第1項之抗反射用層合物之製 造方法,其具有將含有(A1)使基材之纖維素樹脂溶解之 聚合性化合物及(B)折射率爲1.40以下之粒子,且前述 (A1)使基材之纖維素樹脂溶解之聚合性化合物之含量相 對於全部聚合性化合物100質量%爲5質量%以上75質量%以 下之硬化性組成物塗佈於纖維素樹脂基材上之後,經硬化 之步驟。 7. 如申請專利範圍第6項之抗反射用層合物之製造方 法,其中前述(A1)使基材之纖維素樹脂溶解之聚合性化 合物爲將切成18 cm XI cm大小且厚度爲80μιη之基材之纖維 素樹脂薄膜在25°C下浸漬於6g之該(Α1)成分中2小時, 使取出之薄膜在80°C以真空乾燥機乾燥24小時時之薄膜的 質量減少率爲1 %以上之聚合性化合物。 B.如申請專利範圍第6項之抗反射用層合物之製造方 法,其中前述(A1)使基材之纖維素樹脂溶解之聚合性化 合物爲由(甲基)丙烯酸2-羥基乙酯、丙烯醯基嗎啉、γ-丁內酯丙烯酸酯、(甲基)丙烯酸羥基丙酯、Ν-乙烯基吡 咯烷酮、Ν -乙烯基甲醯胺、甲基丙烯酸縮水甘油酯、丙烯 酸四氫糠酯、丙烯酸4-羥基丁酯、二乙二醇單丙烯酸酯、 -38- 201125722 甘油單甲基丙烯酸酯、乙二醇二丙烯酸酯及二乙二醇二丙 烯酸酯所選出之至少一種。 9. 如申請專利範圍第6至8項中任一項之抗反射用層 合物之製造方法,其中前述(B)折射率爲1.40以下之粒 子爲中空二氧化砂粒子。 10. 一種硬化性組成物,其係用以製造如申請專利範 圍第1項之抗反射用層合物而使用,其爲 含有(A 1 )使基材之纖維素樹脂溶解之聚合性化合物 ,及(B )折射率爲1.40以下之粒子,且 前述(A 1 )使基材之纖維素樹脂溶解之聚合性化合物 含量相對於全部聚合性化合物100質量%爲5質量%以上75 質量%以下。 11. 如申請專利範圍第1 0項之硬化性組成物,其中前 述(A1)成分爲由(甲基)丙烯酸2-羥基乙酯、丙烯醯基 嗎啉、γ-丁內酯丙烯酸酯、(甲基)丙烯酸羥基丙酯、Ν-乙烯基吡咯烷酮、Ν-乙烯基甲醯胺、甲基丙烯酸縮水甘油 酯 '丙烯酸四氫糠酯、丙烯酸4-羥基丁酯、二乙二醇單丙 烯酸酯、甘油單甲基丙烯酸酯、乙二醇二丙烯酸酯及二乙 二醇二丙烯酸酯所選出之至少一種。 1 2 ·如申請專利範圍第1 〇或1 1項之硬化性組成物, 其中前述(Β)折射率爲1.40以下之粒子爲中空二氧化矽 粒子。 -39-201125722 VII. Patent application scope: 1. An antireflection laminate characterized by having a polymerizable compound containing (A1) a cellulose resin for dissolving a substrate on a cellulose resin substrate and B) The particle having a refractive index of 1.40 or less and the content of the polymerizable compound in which the cellulose resin of the substrate is dissolved in the above (A1) is 5% by mass or more and 5% by mass or less based on 100% by mass of the total of the polymerizable compound. The hardened film obtained by hardening the curable composition' and the particles of the above (B) are biased on the opposite side of the cured film from the cellulose resin substrate. 2. The antireflection laminate according to the first aspect of the invention, wherein the cured film contains a cellulose resin forming the cellulose resin substrate. 3. The antireflection laminate according to the first aspect of the invention, wherein the (A1) polymerizable compound which dissolves the cellulose resin of the substrate is cellulose which is cut into a substrate having a size of 18 cm x 1 cm and a thickness of 80 μm. The resin film is immersed in 6 g of the (Α1) component at 25 ° C for 2 hours, and the film obtained by drying the film at 80 ° C for 24 hours in a vacuum dryer has a mass reduction rate of 1% or more. . 4. The antireflection laminate according to the first aspect of the invention, wherein the (A 1 ) polymerizable compound which dissolves the cellulose resin of the substrate is 2-hydroxyethyl (meth)acrylate or propylene oxide. Basomomorpholine, γ-butyrolactone propionate, hydroxypropyl (meth)acrylate, Ν-vinylpyrrolidone, Ν_vinylformamide, glycidyl methacrylate, tetrahydrofurfuryl acrylate, acrylic acid 4-hydroxybutyl ester, diethylene glycol monoacrylate, glycerin monomethyl-37-201125722 at least one selected from the group consisting of acrylate, ethylene glycol diacrylate and diethylene glycol diacrylate. 5. The antireflection layer according to any one of claims 1 to 4, wherein the (B) particles having a refractive index of 1.40 or less are hollow cerium oxide particles. 6. The method for producing an antireflection laminate according to the first aspect of the invention, comprising a polymerizable compound containing (A1) a cellulose resin for dissolving a substrate, and (B) a refractive index of 1.40 or less In the above-mentioned (A1), the content of the polymerizable compound in which the cellulose resin of the substrate is dissolved is applied to the cellulose in an amount of 5 mass% or more and 7 mass% or less based on 100% by mass of the total polymerizable compound. After the resin substrate is subjected to a hardening step. 7. The method for producing an antireflection laminate according to claim 6, wherein the (A1) polymerizable compound which dissolves the cellulose resin of the substrate is cut into 18 cm XI cm and has a thickness of 80 μm. The cellulose resin film of the substrate was immersed in 6 g of the (Α1) component at 25 ° C for 2 hours, and the film was subjected to a mass reduction rate of 1 at 80 ° C in a vacuum dryer for 24 hours. More than 100% of the polymerizable compound. The method for producing an antireflection laminate according to the sixth aspect of the invention, wherein the (A1) polymerizable compound which dissolves the cellulose resin of the substrate is 2-hydroxyethyl (meth)acrylate, Propylene decylmorpholine, γ-butyrolactone acrylate, hydroxypropyl (meth) acrylate, hydrazine-vinyl pyrrolidone, hydrazine-vinyl carbamide, glycidyl methacrylate, tetrahydrofurfuryl acrylate, At least one selected from the group consisting of 4-hydroxybutyl acrylate, diethylene glycol monoacrylate, -38-201125722 glycerin monomethacrylate, ethylene glycol diacrylate, and diethylene glycol diacrylate. 9. The method for producing an antireflection layer according to any one of claims 6 to 8, wherein the (B) particle having a refractive index of 1.40 or less is hollow silica sand particles. A curable composition for use in the production of an antireflection laminate according to claim 1, which is a polymerizable compound containing (A1) a cellulose resin for dissolving a substrate, And (B) a particle having a refractive index of 1.40 or less, and the content of the polymerizable compound in which the cellulose resin of the substrate is dissolved in the above (A1) is 5% by mass or more and 75% by mass or less based on 100% by mass of the total of the polymerizable compound. 11. The sclerosing composition according to claim 10, wherein the component (A1) is 2-hydroxyethyl (meth)acrylate, acryloylmorpholine, γ-butyrolactone acrylate, ( Hydroxypropyl methacrylate, fluorene-vinylpyrrolidone, fluorene-vinylformamide, glycidyl methacrylate-tetrahydrofurfuryl acrylate, 4-hydroxybutyl acrylate, diethylene glycol monoacrylate, At least one selected from the group consisting of glycerin monomethacrylate, ethylene glycol diacrylate, and diethylene glycol diacrylate. 1 2 The curable composition according to the first or the eleventh aspect of the patent application, wherein the particles having a refractive index of 1.40 or less are hollow ceria particles. -39-
TW099141018A 2009-11-30 2010-11-26 Antireflective composition, a method for producing the same, and a hardening composition TWI547370B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009271393 2009-11-30
JP2010047463 2010-03-04
JP2010163072 2010-07-20

Publications (2)

Publication Number Publication Date
TW201125722A true TW201125722A (en) 2011-08-01
TWI547370B TWI547370B (en) 2016-09-01

Family

ID=44395500

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141018A TWI547370B (en) 2009-11-30 2010-11-26 Antireflective composition, a method for producing the same, and a hardening composition

Country Status (4)

Country Link
JP (2) JP5027915B2 (en)
KR (1) KR20110060811A (en)
CN (1) CN102152559B (en)
TW (1) TWI547370B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226230B1 (en) 2011-08-26 2013-01-28 주식회사 엘지화학 Anti-reflective coating film
JP6191113B2 (en) * 2012-10-03 2017-09-06 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
JP6571403B2 (en) * 2014-06-30 2019-09-04 三星電子株式会社Samsung Electronics Co.,Ltd. Silica film, optical member and polarizing member
KR20160104248A (en) * 2015-02-26 2016-09-05 동우 화인켐 주식회사 Anti-glare film, polarizing plate and display device
AU2016352274B2 (en) * 2015-11-13 2020-12-03 Tokuyama Corporation Photocurable resin composition
JP7104511B2 (en) * 2017-11-30 2022-07-21 株式会社トクヤマ Photocurable composition
WO2020059381A1 (en) * 2018-09-20 2020-03-26 富士フイルム株式会社 Light-shielding composition, cured film, color filter, light-shielding film, optical element, solid-state imaging element, and headlight unit
CN114907604A (en) * 2022-04-29 2022-08-16 深圳市华星光电半导体显示技术有限公司 Antireflection film, manufacturing method thereof and display panel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269733A1 (en) * 2003-08-28 2006-11-30 Dai Nippon Printing Co., Ltd. Antireflection laminate
JP2005157037A (en) * 2003-11-27 2005-06-16 Konica Minolta Opto Inc Antireflection film, polarizing plate and image display apparatus
JP2005181543A (en) * 2003-12-17 2005-07-07 Bridgestone Corp Antireflection film
CN100513477C (en) * 2004-03-18 2009-07-15 捷时雅股份有限公司 Curable liquid resin composition and method for producing multilayer body using same
US20070047087A1 (en) * 2005-08-25 2007-03-01 Fuji Photo Film Co., Ltd. Optical film, polarizing plate and image display device
JP2007203542A (en) * 2006-01-31 2007-08-16 Nippon Zeon Co Ltd Antireflection laminate
WO2007142142A1 (en) * 2006-06-02 2007-12-13 Dai Nippon Printing Co., Ltd. Optical laminate, polarizing plate, and image display device
JP5157162B2 (en) * 2006-12-27 2013-03-06 日本ゼオン株式会社 Antireflection laminate and method for producing the same
JP5139781B2 (en) * 2007-11-21 2013-02-06 シャープ株式会社 Functional film and display device
US8066390B2 (en) * 2008-04-22 2011-11-29 Fujifilm Corporation Antiglare film, antireflection film, polarizing plate and image display device

Also Published As

Publication number Publication date
KR20110060811A (en) 2011-06-08
JP5027915B2 (en) 2012-09-19
JP2012042911A (en) 2012-03-01
TWI547370B (en) 2016-09-01
JP2012042960A (en) 2012-03-01
CN102152559B (en) 2015-06-17
CN102152559A (en) 2011-08-17

Similar Documents

Publication Publication Date Title
TW201125722A (en) Antireflective laminate and manufavturing method thereof, and curable composition
JP5558363B2 (en) Coating composition and coating film excellent in abrasion resistance and fingerprint removal
TWI588165B (en) Plastic film and method for preparing the same
TW200934838A (en) Radiation curable coating compositions, related coatings and methods
TW200941034A (en) Antireflection material and electronic image display apparatus having the antireflection material
JP2012247606A (en) Laminate for antireflection and manufacturing method thereof, and curable composition
JP2007238897A (en) Curable resin composition and cured film comprising the same
JP5011663B2 (en) Curable resin composition, cured film and laminate comprising the same
JP2013008025A (en) Laminate for antireflection and manufacturing method thereof, and curable composition
JP5709706B2 (en) Paint for forming transparent film and substrate with transparent film
JP2012159744A (en) Laminate for antireflection and producing method thereof, and curable composition
JP2012247681A (en) Laminate for antireflection and manufacturing method thereof, and curable composition
JP4982982B2 (en) Curable resin composition, cured film and laminate comprising the same
TWI377236B (en)
JP4775603B2 (en) Antireflection laminate, method for producing the same, and curable composition
JP2008151930A (en) Antireflection film for transferring, and transferred material and display apparatus using the same
JP4831377B2 (en) Antireflection laminate, method for producing the same, and curable composition
JP5247977B2 (en) Curable resin composition and cured film comprising the same
JP2012247667A (en) Laminate for antireflection and manufacturing method thereof, and curable composition
JP2016136280A (en) Anti-reflection laminate, manufacturing method therefor, and curable composition
JP7280127B2 (en) Bell-shaped particles, coating liquid containing the particles, and substrate with transparent coating containing the particles
JP5835552B2 (en) Antistatic laminate, method for producing the same, and curable composition
JP2009025568A (en) Anti-reflection film and electronic image display device using the same
JP2017155073A (en) Coating liquid for forming transparent coated film and base material with transparent coating film
JP5444818B2 (en) Antireflection film