TW201117949A - Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold - Google Patents

Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold Download PDF

Info

Publication number
TW201117949A
TW201117949A TW98140035A TW98140035A TW201117949A TW 201117949 A TW201117949 A TW 201117949A TW 98140035 A TW98140035 A TW 98140035A TW 98140035 A TW98140035 A TW 98140035A TW 201117949 A TW201117949 A TW 201117949A
Authority
TW
Taiwan
Prior art keywords
shell mold
molding
slurry
layer
molding method
Prior art date
Application number
TW98140035A
Other languages
Chinese (zh)
Other versions
TWI395662B (en
Inventor
Fwu-Hsing Liu
Original Assignee
Univ Lunghwa Sci & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Lunghwa Sci & Technology filed Critical Univ Lunghwa Sci & Technology
Priority to TW98140035A priority Critical patent/TWI395662B/en
Publication of TW201117949A publication Critical patent/TW201117949A/en
Application granted granted Critical
Publication of TWI395662B publication Critical patent/TWI395662B/en

Links

Abstract

The invention provides a forming method of forming a shell mold and a method of forming a high strength ceramic or metal-ceramic composite prototype using such shell mold. The shell mold according to the invention is constituted by a plurality of successive solidified forming material films. The method of forming the shell mold according to the invention is first to pave a plurality of layers of forming material in sequence on or above a working platform; after paving of each layer of forming material, to proceed irradiation of a radiation beam on said layer of forming material according to a corresponding sectional pattern to form said solidified forming material film; and eventually, to remove the retained forming material on the plurality of solidified forming material films to obtain the shell mold.

Description

201117949 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用以成型一殼模(shell mold)之成型方 法(forming method) ’以及利用該殼模成型高強度陶究或金 屬陶瓷複合材原型之方法,或利用該殼模翻製成>5夕膠模的 成型方法。 【先前技術】 快速原型(rapid prototyping, RP)成型技術使用層狀加工技 術’能夠依照電腦輔助設計(CAD)所建構的立體幾何圖形, 自動製造出3D實體物件的技術。快速原型成型技術可克服 工具機加工無法完成的幾何形狀死角,做到自動化實體自由 形狀製造(solid freeform fabrication, SFF),而且成型的原型沒 有形狀的限制。所以’快速原型成型技術特別適合用來成型 輪廓複雜的工件。 快速原型可使用的材質分為感光樹酯、躐、金屬、陶究 及複合材料等。然而,陶瓷材料具有高強度、高熔點、耐腐 蝕、價格低廉等優點,所以特別值得發展。 到目前為止,可以製作陶瓷成品的快速原型技術有:(1) 立體微影成像法(stereolithography apparatus,SLA)、(2)選擇性 雷射燒結(selective laser sintering,SLS)、(3)堆疊製造 (laminated object manufacturing,LOM)、(4)三維列印(three dimensional printing,3DP)、(5)熔融沉積製造(fused deposition modeling, FDM)等,以上的方法都是直接疊層製作出陶瓷工 件。然而’不容易製造出高密度、高強度的複雜形狀陶瓷產 品0201117949 6. DISCLOSURE OF THE INVENTION: TECHNICAL FIELD The present invention relates to a forming method for forming a shell mold and forming a high-strength ceramic or cermet composite using the shell mold The method of material prototype, or the molding method of using the shell mold to make a > [Prior Art] Rapid prototyping (RP) forming technology uses layered processing technology to automatically create 3D solid objects in accordance with the three-dimensional geometry constructed by computer-aided design (CAD). Rapid prototyping technology overcomes geometric corners that cannot be machined by tooling, automating solid freeform fabrication (SFF), and molding prototypes without shape constraints. So 'rapid prototyping technology is especially suitable for forming workpieces with complex contours. The materials that can be used for rapid prototyping are divided into photosensitive resin, enamel, metal, ceramics and composite materials. However, ceramic materials are particularly worthy of development because of their high strength, high melting point, corrosion resistance, and low cost. So far, the rapid prototyping technologies that can be used to make ceramic products are: (1) stereolithography apparatus (SLA), (2) selective laser sintering (SLS), and (3) stack manufacturing. (Laminated object manufacturing, LOM), (4) three-dimensional printing (3DP), (5) fused deposition modeling (FDM), etc., all of the above methods are directly laminated to produce ceramic workpieces. However, it is not easy to manufacture high-density, high-strength, complex-shaped ceramic products.

4 6Lunghwa/200904TW 201117949 +: = 具有高硬度及_以致於不容易加工,因 用快速2型技術部 方.因1一範气提供一種用以成型-殼模之成型 型〆葬此模成型高強度陶竟或金屬陶竟複合材原 孓。错此’在本發明運用快速原型成型^ ^ 漿料加壓擠人殼模的模穴t ",L動!·生㉛可充份填滿模穴的空間與空隙,即可製造出内部 複雜形狀_£工件,不需要製作支撐結構。 構。,發明所使用的模型為採快速原型成型;支 術裝作成Μ狀的殼模,因此,可以大量 間,快速地製作出陶竟原型。 時 =卜本發明之另—㈣在於提供-種運用快速原型成 !技術製造的殼模,接續配合振動、抽真空、埶 理等技術,來製作陶竞產品的製造方法。藉此4:^ ,度(300MPa以上)、高密度(95%以上)、高精密度(特禮U 25em以下)的陶瓷工件。 此外,本發明之另一範疇在於提供一種運用快速原型 型技術製造的殼模來成型高強度金屬陶瓷複合材原型之方 法。 此外,本發明之另一範疇在於提供一種運用快速原型 型技術製造的殼模來翻製成矽膠模的成型方法。藉此,陶 瓷漿料或金屬陶瓷複合材漿料加壓射入該矽膠模的^穴中, 待乾燥後即可獲得陶瓷生坯工件或金屬陶瓷複'合材生坯工 件。此外,可以將巧克力、果汁、糖漿或可成型的菜餚等加4 6Lunghwa/200904TW 201117949 +: = It has high hardness and _ so that it is not easy to process, because it uses the fast type 2 technology department. Because of the one-fan gas, it provides a molding type for shell molding. The strength of Tao or the metal ceramics is the original composite. In this case, in the present invention, rapid prototyping is used. ^ ^ The slurry is pressed into the mold cavity of the shell mold, and the L-movement is filled with the space and the void of the cavity to create the interior. Complex shapes _£ workpieces, no need to make support structures. Structure. The model used in the invention is rapid prototyping; the branch is mounted as a shell-shaped shell mold, so that a large number of prototypes can be produced quickly and quickly. The other part of the invention is to provide a shell mold that is manufactured by rapid prototyping technology, and then cooperate with vibration, vacuum, and other techniques to make a manufacturing method of Tao Jing products. This is a ceramic workpiece with 4:^, degree (300 MPa or more), high density (95% or more), and high precision (U 25em or less). Further, another aspect of the present invention is to provide a method of molding a high strength cermet composite using a shell mold manufactured by a rapid prototyping technique. Further, another aspect of the present invention is to provide a molding method for turning a silicone mold by using a shell mold manufactured by a rapid prototyping technique. Thereby, the ceramic slurry or the cermet composite slurry is pressurized and injected into the hole of the silicone mold, and after drying, the ceramic green workpiece or the cermet composite composite material workpiece can be obtained. In addition, you can add chocolate, juice, syrup or formable dishes.

6Lunghwa/200904TW 5 201117949 ’藉此獲得複雜性較高或多層次造 壓射入該矽膠模的模穴中 型的食品造型。 【發明内容】 ^據本發明之第-難频實施_成财法,該成型 型:殼模。該殼模係由N層連續固化的成型材料 ^層所構成,其中N為—自然數。該細方法首先係製備一 巧^料。接著,該成型方法首先係塗佈第—層成型材料於 上。Ϊ著’該成型方法係根據對應該第—層固化的 成層之一截面圖案,以一輻射束照射該第一層 之部分成型材料以固化被照射的成型材料,進而形成該/一 層固化的成型材料薄層。接著,該成型方法係塗佈第/声 型材料於第(ζ·-ι)層成型材料上,其中f係範圍從2至N ;之 :整數指標。接著,該細方法係根猶賴第/層固化的 成型材料薄層之-截關案,以該輻射賴射該第/層成型 材料之成型材料以固化被照射的成型材料,進而形成^ 層固化的成型材料薄層。接著,該成型方法係重複塗佈第Z 層成型材料之步驟以及以該輻射束照射該第ζ·層成型材料之 步驟,直至完成該Ν層固化的成材料薄層為止。最後,★亥成 型方法係去除附著於該Ν 化的成型材料薄層之殘留g 材料’以獲得該殼模。 根據本發明之第二較佳具體實施例的成型方法,其用以 利用根據本發明之成型方法所成型的殼模來成型一 g瓷生 坯。該成型方法首先係將一陶瓷粉末、一黏結劑以及一縣浮 劑依一比例均勻混合且攪拌成一漿料。接著,該成型方&係 將該漿料倒入該殼模之模穴中並填滿該殼模之模穴。接著, 該成型方法係對填滿該漿料之該殼模進行一超音波振動程 序’使該漿料内之陶錄末更為密實。接著,該成型方法係6Lunghwa/200904TW 5 201117949 'This is used to obtain a medium-sized food shape that is highly complex or multi-layered and that is injected into the mold. SUMMARY OF THE INVENTION According to the first aspect of the present invention, the method of forming a product is a shell mold. The shell mold is composed of a layer of a continuously cured M material, wherein N is a natural number. This fine method first prepares a clever material. Next, the molding method first coats the first layer molding material. Next, the molding method is to irradiate a part of the molding material of the first layer with a radiation beam according to a cross-sectional pattern of the layer corresponding to the curing of the first layer to cure the irradiated molding material, thereby forming the curing layer/layer. A thin layer of material. Next, the molding method is to apply the first/acoustic material to the (ζ·-ι) layer forming material, wherein f is in the range of from 2 to N; Then, the fine method is rooted in the cut-off of the thin layer of the first/layer-cured molding material, and the radiation is applied to the molding material of the first/layer molding material to cure the irradiated molding material, thereby forming a layer A thin layer of cured molding material. Next, the molding method is a step of repeatedly coating the Z-layer molding material and irradiating the second layer molding material with the radiation beam until the thin layer of the material layer which is cured by the enamel layer is completed. Finally, the method is to remove the residual g material 'attached to the thin layer of the formed molding material to obtain the shell mold. A molding method according to a second preferred embodiment of the present invention for molding a g ceramic green body by using a shell mold formed by the molding method of the present invention. The molding method firstly uniformly mixes a ceramic powder, a binder, and a county float agent in a ratio and stirs them into a slurry. Next, the molding party & poured the slurry into the cavity of the shell mold and filled the cavity of the shell mold. Next, the molding method performs an ultrasonic vibration process on the shell mold filled with the slurry to make the end of the pottery in the slurry denser. Next, the molding method is

6Lunghwa/200904TW 6 201117949 對填滿該《”之該殼觀行—抽真线序,以移除 之氣泡。接著’該成财法鱗麟滿賴料找殼模進 -加y程序,使該漿料之該赌劑被加熱產生該化學=反 應。最後’該成型方法係移除該殼模,以獲得 ^。 根據本發明之成型方法所成型的陶£生述 強度陶瓷原型。 7冼、《成冋 根^本發明之第三較佳具體實施儀細方法,其用以 ίίΪίί發明之成型方法所成型賴模來成型—金屬-陶竟 ίί:懸浮劑依―_均勻混合且勝H料。接i、了該 ϊ 該殼模之模穴中並填滿該殼模之模 泳> 成i方法係對填滿該漿料之該殼模進行一超音 程和使該衆料内之複合材料粉末更為密實。接著, 對?滿該漿料之該殼模進行-抽真空程序,以 該泡。接著’該成型方法係對填滿該漿料之 :、程序’使該漿料之該黏結劑被加熱產生該 金=材該成型方法係移除該殼模,以獲得該 利用明之第四較佳具體實施例的成型方法,其用以 之成型方法所成型的殼模來成型成型-矽膠 —八方法百先係藉由一翻製技術利用一矽膠材料製作 合i即°最後,該成型方法係將該公模與該母模 模即儿成_膠模,該将模具有-模穴。 附圖明之優點與精神可以藉由以下的發明詳述及所 國式仵到進一步的瞭解。 【實施方式】6Lunghwa/200904TW 6 201117949 To fill the shell of the "view" - the line of the line to remove the bubble. Then 'the rich method of the scales look for the shell mold - add y program, so that The gamma of the slurry is heated to produce the chemical = reaction. Finally, the molding process removes the shell mold to obtain a prototype of the strength ceramic formed by the molding method of the present invention. "成冋根^ The third preferred embodiment of the present invention is a fine method for forming a lyophilized mold by the forming method of the invention - metal - Tao Jing ίί: suspending agent according to __ evenly mixed and wins H material Ii, the 模, the mold cavity of the shell mold and fill the mold of the shell mold > i method is to superimpose the shell mold filling the slurry and make the mass The composite powder is more dense. Then, the shell mold is filled with the slurry to perform a vacuuming process to the foam. Then the molding method is to fill the slurry: The bonding agent is heated to produce the gold material. The molding method removes the shell mold to obtain the utilization. A molding method according to a fourth preferred embodiment, which is formed by molding a shell mold formed by a molding method - a tantalum-eight method is manufactured by using a silicone material by a rewinding technique. The molding method is to form the male mold and the female mold into a mold, and the mold has a mold cavity. The advantages and spirit of the drawings can be further improved by the following detailed description of the invention and the state of the art. Understanding. [Embodiment]

6Lunghwa/200904TW 7 201117949 »月參閱圖以及圖一 A至二D,圖一传喻示根攄太路明 實施之成型方法1 ί用以成型^模28 °特別地,該殼模Μ係由N 層,續固化的成型材料薄層所構成,其中N為—自然數 示運用—快速·成魏備2來成型該殼模 _=;之财枝1首杨執行步驟 並且施=’軸型材料係一紫外光感光樹脂, i 光雷射’經紫外光雷射照射的紫外光 ί >卜域域麟為韻的成型材 產=或雜〇.5麵之厚度’才能防止在後續 於另-具體實施例中,該成型材料係一壤粉,並且該輕 射束係一雷射,經雷射照射的蠟粉即會燒結在一起。以紫外 光感光樹脂做為殼模的成型材料,殼模須具有大於或等於 lmm之厚度,蠟質的殼模可在後續澆注獲得陶瓷生坯 陶究生链後直接加熱燒除。 ,接著,如圖一及圖二A所示,根據本發明之成型方法1 係執行步驟S12 ’以-塗層裝置22塗佈第一層成型材料於一 工作台24上。該工作台24具有一平面,且被致動沿垂直該 平面之一軸(即平行圖二A中z軸之一軸)做升降。根據本發 明,該塗層裝置22可以包含盛裝漿料SL的漏斗222以及可 使成型材料SL均勻分佈於該工作台24上的刮板224(或圓柱 狀滾茼)。該漏斗222擠送適當的成型材料sl’至該工作台24 上。該刮板224將前述之成型材料SL,塗佈成均勻的薄層成型 材料SL’。每一層成型材料SL,的厚度可控制在約〇 lmm。但6Lunghwa/200904TW 7 201117949 »Month of the reference picture and Figure 1A to 2D, Figure 1 is a metaphor for the forming method of the root 摅太路明1 ί used to form the mold 28 ° in particular, the shell mold is N a layer consisting of a thin layer of a continuously solidified molding material, wherein N is - the natural number indicates the use - fast · Cheng Wei 2 to form the shell mold _ =; the fiscal branch 1 Yang performs the steps and applies the 'axis type material An ultraviolet light-sensitive resin, i-ray laser 'ultraviolet light irradiated by ultraviolet light ί > Bu domain domain lining rhyme of the molding material = or miscellaneous. 5 face thickness' can be prevented in the follow-up In a specific embodiment, the molding material is a soil powder, and the light beam is a laser, and the laser powder irradiated by the laser is sintered together. The ultraviolet light photosensitive resin is used as the molding material of the shell mold, and the shell mold must have a thickness greater than or equal to 1 mm, and the wax shell mold can be directly heated and burned after the subsequent casting of the ceramic green ceramics. Next, as shown in Fig. 1 and Fig. 2A, the molding method 1 according to the present invention performs step S12' to coat the first layer of molding material onto a table 24 by the coating device 22. The table 24 has a plane and is actuated to move up and down along one of the axes perpendicular to the plane (i.e., parallel to one of the z-axis in Figure 2A). According to the present invention, the coating device 22 may include a funnel 222 containing the slurry SL and a squeegee 224 (or a cylindrical tumbler) for uniformly distributing the molding material SL on the table 24. The funnel 222 pushes a suitable molding material sl' to the table 24. The squeegee 224 coats the aforementioned molding material SL into a uniform thin layer molding material SL'. The thickness of each layer of molding material SL can be controlled to be about 〇 lmm. but

6Lunghwa/200904TW 8 201117949 本發^以_、。並且 /接著’如®-及圖二B所示,根據本發明之 係執行步驟S14 ’根據對應該第一層固化的成型薄層sl”之一 二=化料形成裝置26所發射之4射束照射 該第-層成t材料SL’之部分成型材料SL,,其中該6Lunghwa/200904TW 8 201117949 This issue is _, _. And/or as shown in the '-- and FIG. 2B, the system according to the present invention performs step S14 'based on one of the formed thin layers sl which corresponds to the first layer of solidification, and the second shot is formed by the chemical forming device 26. Beam illuminating the portion of the forming material SL of the first layer into the t material SL', wherein the

射束照射之成型材料SL•固化,進而形^該 =、曰固化的成3L材料薄層SL”(圖二3中深色部分)。也就是 說’並黏結在一起。 如圖二B所示,該固化薄層形成裝置26包含一雷射光 ^產生裝置262、-導光機構264以及一聚焦鏡206。該雷射 “束產生裝置262用以產生-雷射光束,例如,c〇2雷射、The beam-irradiated molding material SL•cures, and then forms a thin layer SL of 3L material which is solidified by the = and 曰 (the dark part in Fig. 2). That is to say 'and stick together. As shown in Fig. 2B The cured thin layer forming device 26 includes a laser light generating device 262, a light guiding mechanism 264, and a focusing mirror 206. The laser "beam generating device 262 is configured to generate a laser beam, for example, c〇2 Laser,

Nd:YAG雷射、He-Cd雷射、Ar雷射或UV雷射。於一具體 ^施例中1雷射光束產生裝置262可以加褒溫度感測器, 田/皿度感測器債測到用來冷卻該雷射光束產生裳置262之冷 々P水溫度超過25°C時,該雷射光束產生裝置262即停止雷射 光的激發。該導光機構264與該聚焦鏡266根據對應每一層 固化的成型材料薄層SL"之截面圖案被致動平行如圖二B所 不之Χ·Υ平面移動。該導光機構264用以導引該雷射光束至 該聚焦鏡266。該聚焦鏡266用以聚焦該雷射光束至每一層 成型材料SL’。於一具體實施例中,雷射光束的掃描速率為 85mm/s、掃描間距為0.1mm ’雷射功率為i〇w。於一具體實 ,例中,於該聚焦鏡266處可以加裝一喷氣管。噴氣管用以 導入低壓空氣並經由其喷嘴快速噴出,能夠防止進行雷射光 束掃描時成型材料濺散附著於聚焦鏡片上,影響雷射光束掃 描的精確度。 ί 5;Nd: YAG laser, He-Cd laser, Ar laser or UV laser. In a specific embodiment, a laser beam generating device 262 can be used to add a temperature sensor, and the field/drain sensor is used to cool the laser beam to generate a skirt 262. At ° C, the laser beam generating means 262 stops the excitation of the laser light. The light guiding mechanism 264 and the focusing mirror 266 are actuated in parallel according to the cross-sectional pattern of the thin layer SL" of the solidified layer corresponding to each layer, as shown in Fig. 2B. The light guiding mechanism 264 is configured to guide the laser beam to the focusing mirror 266. The focusing mirror 266 is used to focus the laser beam to each of the layer forming materials SL'. In one embodiment, the laser beam has a scan rate of 85 mm/s and a scan pitch of 0.1 mm. The laser power is i〇w. In a specific embodiment, a jet tube can be attached to the focusing mirror 266. The ejector tube is used to introduce low-pressure air and is quickly ejected through its nozzle, which prevents the molding material from splashing and attaching to the focusing lens during laser beam scanning, which affects the accuracy of laser beam scanning. 5 5;

6Lunghwa/200904TW 201117949 同樣示於圖二B,根據本發明之導光機構264包含多個 固定的反機以及能概料行如圖二B所示之χ_γ平面移 動的反射鏡。例如,圖二Β中標示264a及264b標號代表固 定的反射鏡,標示264c標號代表能被致動沿平行圖二B所示 之X軸之一軸移動的反射鏡’標示264d號代表能跟隨反射 鏡264c被致動並能沿平行圖二B所示之γ軸之一軸移動的 反射鏡。該聚焦鏡266則伴隨該反射鏡264d 一起移動。 於一具體實施例中,根據本發明之固化薄層形成裝置26 其雷射光束掃描的工作範圍為45〇 mm x 25〇 mm,最高速度 為3000 rmn/min以上,且其χ_γ軸重複精度設計為± 〇 = mm ° 另一不同做法,本發明也可以利用振鏡式掃描讓雷射光 束聚焦在每一層成型材料SL,。 /接著,如圖一及圖二C所示,根據本發明之成型方法1 係執行步驟S16,致動該工作台24沿平行圖二c中z軸之一 軸下降一距離(一個薄層的厚度),使得在後續塗佈完新的一 層成型材料後,不必重行調整該固化薄層形成裝置26的聚焦 ,準。此外需強調的是,於實際應用中,每一層成型材料g 層不以相同厚度為必要。 接著,如圖一所示,根據本發明之成型方法1係執行步 驟S18,以該塗層裝置22塗佈第z•層成型材料於第 ,材料上,“系範圍從2至N中之一整數指標。隨後,根據 本發明之成型方法1係執行步驟S20,根據對應該第層固化 的成型料薄層SL”之-截面圖案,以該固化薄層形成裝置26 所發射之雷射光束照射該第z•層成型材料SL,之部分成型材料 。同樣地,該第z•層成型材料SL,被該雷射光束照射之部 分成型材料SL,被加減使產生硬彳b反應錢結,進而形成該6Lunghwa/200904TW 201117949 Also shown in Fig. 2B, the light guiding mechanism 264 according to the present invention includes a plurality of fixed counter-machines and a mirror that can move the χγ plane as shown in Fig. 2B. For example, reference numerals 264a and 264b in FIG. 2 denote fixed mirrors, and reference numeral 264c denotes a mirror that can be actuated to move along an axis of the X-axis shown in parallel with FIG. 2B, indicating that the 264d symbol can follow the mirror. 264c is actuated and is movable along a mirror that is parallel to one of the gamma axes shown in Figure 2B. The focusing mirror 266 moves with the mirror 264d. In a specific embodiment, the cured thin layer forming device 26 according to the present invention has a laser beam scanning operation range of 45 〇mm x 25 〇mm, a maximum speed of 3000 rmn/min or more, and a χγ axis repeatability design. Another method of ± 〇 = mm °, the present invention can also use galvanometer scanning to focus the laser beam on each layer of molding material SL. / Next, as shown in FIG. 1 and FIG. 2C, the molding method 1 according to the present invention performs step S16, and the table 24 is actuated to descend a distance along the axis of the z-axis in parallel with the second axis (a thickness of a thin layer). Therefore, it is not necessary to re-adjust the focus of the cured thin layer forming device 26 after the subsequent application of a new layer of the molding material. In addition, it should be emphasized that in practical applications, each layer of the forming material g layer is not necessary to have the same thickness. Next, as shown in FIG. 1, the molding method 1 according to the present invention performs step S18, and the coating device 22 applies the z-layer molding material to the material, "the system ranges from 2 to N. Integral index. Subsequently, the molding method 1 according to the present invention performs step S20, and irradiates with a laser beam emitted from the solidified layer forming device 26 according to the cross-sectional pattern of the thin layer SL of the molding material corresponding to the first layer. The z-th layer molding material SL, a part of the molding material. Similarly, the z-th layer molding material SL, which is partially irradiated by the laser beam, is added and subtracted to generate a hard 彳b reaction knot, thereby forming the

10 6Lunghwa/200904TW 201117949 二二ί)Π該Γ匕薄層形成裝置26對每一層成型材 枓SL加熱,並進一步達成自動化製造。 X土珂 所古ΪΪ#根據本發明之成型方法1係執行步驟S22,判斷 戶:有特疋截關案是否已據以掃描gj化塗佈在該卫作台241 ίίΐϊ成型材料層SL’。若步驟S22的判斷結果為否定者, =本發明之成型方法丨係執行步驟S16,致動該I作台者2410 6Lunghwa/200904TW 201117949 22) The tantalum sheet forming device 26 heats each layer of the forming material 枓SL and further automates manufacturing. X 珂 珂 ΪΪ ΪΪ 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据 根据If the result of the determination in step S22 is negative, the molding method of the present invention is executed in step S16, and the player is activated.

L 離(一個薄層的厚度),接續執行步驟S18及步驟 若步驟S22的判斷結果為肯定者,根據本發明之成型方 法1係執打步驟S24 ’以一去除裝置(未繪示於圖二A、圖二 B、及圖一 C中)去除附著於該n層固化的成型材料薄層sl”之 殘留成型材料SL',以獲得如圖二D所示的殼模28。於一具 ,實施例巾’該去除裝置得以噴霧液體(例如,水)來去除附 著於該N層固化的成型材料薄層SL,,之殘留成型材料SL/。、 請參閱圖三以及圖四,圖三係繪示根據本發明之第二佳 具體實施例之成型方法3的流程圖。根據本發明之第二較佳 具體實施例的成型方法3係用以利用根據本發明之成型方法 所成型的殼模28來成型一陶瓷生坯。圖四係繪示利用該殼模 28來成型該陶瓷生述的成型示意圖。 如圖三所示,根據本發明之成型方法3首先係執行步驟 S30,將一陶瓷粉末、一黏結劑以及一懸浮劑依一比例均勻混 合且攪拌成一漿料。 於一具體實施例中,該陶瓷粉末可以是碳化矽(Sic)、碳 化鈦(TiC)、氮化石夕(Si3N4)、氧化鈦(Ti02)、氧化紹(A1203)、L is separated (thickness of a thin layer), and step S18 is followed: if the result of the determination in step S22 is affirmative, the molding method 1 according to the present invention performs step S24' with a removal device (not shown in FIG. A, FIG. 2B, and FIG. 1C) removing the residual molding material SL' attached to the n-layer cured molding material thin layer sl" to obtain the shell mold 28 as shown in FIG. 2D. The wiper of the embodiment is capable of spraying a liquid (for example, water) to remove the thin layer SL of the molding material adhered to the N layer, and the residual molding material SL/., see FIG. 3 and FIG. 4, FIG. A flow chart of a molding method 3 according to a second preferred embodiment of the present invention is shown. The molding method 3 according to the second preferred embodiment of the present invention is used to form a shell mold formed by the molding method according to the present invention. 28 is used to form a ceramic green body. Figure 4 is a schematic view showing the molding of the ceramic mold by using the shell mold 28. As shown in Fig. 3, the molding method 3 according to the present invention first performs step S30 to form a ceramic. Powder, a binder and a suspending agent The ratio is uniformly mixed and stirred into a slurry. In one embodiment, the ceramic powder may be bismuth carbide (Sic), titanium carbide (TiC), nitriding cerium (Si3N4), titanium oxide (Ti02), and oxidized smelting (A1203). ),

6Lunghwa/200904TW 201117949 碳酸鈉、碳酸鈣、錯鈦酸鉛(ΡΖΤ)、石墨、氧化矽粉末、氧化 鈦粉末、氧化鍅、碳酸鋇、鈦酸锶鋇、雲母粉、氧化鉛、氧 化鐵、氧化鉀、氧化鋅粉末、三鈣磷酸鹽、氫氧基磷灰石、 甲殼素、Na20、CaO、p205、Si〇2、MgO,等粉末,或上述 材料的混合組合之粉末。 於一具體實施例中,該黏結劑可以是氧化矽溶膠(silica sol)、氧化鈦溶膠(titania sol)、氧化銘溶膠(alumina sol)、氧化 錯溶膠、聚乙稀醇(polyvinyl alcohol,PVA),或上述陶究溶膠 的混合組合。 於一具體實施例中,該懸浮劑可以是微粒雲母粉、聚丙 烯酸(PAA)、聚甲基丙烯酸(PMAA)、聚乙烯亞胺(PEI)和聚甲 基丙烯酸鹽(PMAA-Na,ΡΜΑΑ-ΝΉ4)、氧化矽、氧化鈦、氧 化錯、黃酸鈉鹽或黏土,等。 於一具體實施例中’該衆料之成份為65〜55wt%陶竟粉 末、40〜30wt%黏結劑以及3〜5wt%懸浮劑。把陶曼粉末、黏 結劑與懸浮劑依照比例混合,使用均質機攪拌成為均勻微粒 化的陶瓷漿料。漿料的黏度約為1500〜6000mPa · s具有適當 流動性與高比例陶竟成份。 接者’如圖三及圖四所示’根據本發明之成型方法3係 執行步驟S32,將該漿料30倒入該殼模28之模穴中並填滿 該设核28之模穴。如圖四所不’該聚料30盛裝在一容5|%29 内,再倒入該殼模28之模穴中。該殼模28並且具有輔助澆 注口 282。同樣示於圖四,該殼模28外侧利用一填充材料 32(例如’發泡樹脂)加以補強,保持殼模不變形。 接著’如圖三所示,根據本發明之成型方法3係執行步 驟S34,對填滿該漿料之該殼模進行一超音波振動程序,使6Lunghwa/200904TW 201117949 Sodium carbonate, calcium carbonate, lead stannous acid (strontium), graphite, cerium oxide powder, titanium oxide powder, cerium oxide, cerium carbonate, barium titanate, mica powder, lead oxide, iron oxide, potassium oxide A powder of zinc oxide powder, tricalcium phosphate, hydroxyapatite, chitin, Na20, CaO, p205, Si〇2, MgO, or the like, or a mixed combination of the above materials. In one embodiment, the binder may be silica sol, titania sol, alumina sol, oxidized sol, and polyvinyl alcohol (PVA). , or a combination of the above ceramics sol. In one embodiment, the suspending agent may be particulate mica powder, polyacrylic acid (PAA), polymethacrylic acid (PMAA), polyethyleneimine (PEI), and polymethacrylate (PMAA-Na, ΡΜΑΑ- ΝΉ 4), cerium oxide, titanium oxide, oxidized wrong, sodium citrate or clay, and the like. In one embodiment, the composition of the material is 65 to 55 wt% of the powder, 40 to 30 wt% of the binder, and 3 to 5 wt% of the suspending agent. The Tauman powder, the binder and the suspending agent are mixed in proportion and stirred by a homogenizer to form a uniformly micronized ceramic slurry. The viscosity of the slurry is about 1500~6000mPa · s with proper fluidity and high proportion of ceramic components. The picker' is shown in Fig. 3 and Fig. 4'. The molding method 3 according to the present invention performs step S32, and the slurry 30 is poured into the cavity of the shell mold 28 and fills the cavity of the core 28. As shown in Fig. 4, the aggregate 30 is contained in a volume of 5|%29 and poured into the cavity of the shell mold 28. The shell mold 28 also has an auxiliary spout 282. Also shown in Fig. 4, the outside of the shell mold 28 is reinforced with a filler material 32 (e.g., 'foam resin) to keep the shell mold from deforming. Next, as shown in FIG. 3, the molding method 3 according to the present invention performs step S34 to perform an ultrasonic vibration program on the shell mold filling the slurry.

6Lunghwa/200904TW 12 201117949 該漿料内之陶瓷粉末更為密實’陶瓷漿料的密度可以提高到 95%。 接著,如圖三所示’根據本發明之成型方法3係執行步 驟S36,對填滿該聚料之該殼模進行一抽真空程序,以移除 該聚料内之氣泡。 ” 接著,如圖三所示,根據本發明之成型方法3係執行步 驟S38 ’對填滿該漿料之該殼模進行一加熱程序,使該毅料 之該黏結劑被加熱產生該化學凝膠反應。陶瓷漿料中所添加6Lunghwa/200904TW 12 201117949 The ceramic powder in the slurry is more dense. The density of the ceramic slurry can be increased to 95%. Next, as shown in Fig. 3, the molding method 3 according to the present invention performs step S36 to perform a vacuuming process on the shell mold filling the material to remove bubbles in the polymer. Next, as shown in FIG. 3, the molding method 3 according to the present invention performs step S38' to perform a heating process on the shell mold filling the slurry, so that the adhesive of the material is heated to generate the chemical condensation. Glue reaction. Added in ceramic slurry

的黏結劑為氧化物溶膠,其黏結的原理為凝膠反應,利用氧 化物溶膠受熱後,其水分子蒸發後所形成的原子鍵結,使氧 化物浴膠早體將其它陶究顆粒膠結在一起。所以把漿料慢慢 加熱(升溫速度l°C/min)使水分子蒸發,就能使陶瓷漿料凝固 成型。加熱速度較快會使得漿料快速凝固成陶瓷生坯,造成 漿料中的水分無法完全蒸發,凝固效果不佳會造成燒結後的 陶瓷產品強度降低。此外,加熱溫度不可直接升溫至1〇〇£>c 以利水分蒸發,因為感光樹脂所製的模型在5〇t以上時合開 始變形,所以加熱溫度應鱗坑以下,使其漸漸凝固&陶 瓷生链。 最後,如圖三所示,根據本發明之成型方法3係執行步 驟S39 ’移除該殼模,以獲得_£生&。轉料完全凝固 ^後,先,模型外側的填充補強材料錄再把樹脂模 ^ ”獲得高密度的喊生链。喊“在熱處理前^ 件強度 熱均壓處理以增加生_密度,燒結後可提高喊工 於-具體實施例中’為避免喊生 峨碑燒結在-起,可以把陶输放 上,乳化純下方墊-塊石墨底板(也相採用氧化紹底The bonding agent is an oxide sol. The principle of bonding is a gel reaction. After the oxide sol is heated, the atomic bonds formed by the evaporation of the water molecules cause the oxide bath gel to bond the other ceramic particles in the early stage. together. Therefore, the slurry is slowly heated (heating rate l ° C / min) to evaporate water molecules, so that the ceramic slurry can be solidified. The faster heating rate causes the slurry to solidify rapidly into a ceramic green body, which causes the moisture in the slurry to not completely evaporate. The poor solidification effect will result in a decrease in the strength of the sintered ceramic product. In addition, the heating temperature cannot be directly raised to 1〇〇>c to facilitate evaporation of water, because the model made of the photosensitive resin starts to deform at 5 〇t or more, so the heating temperature should be below the scale pit, so that it gradually solidifies &; ceramic raw chain. Finally, as shown in Fig. 3, the molding method 3 according to the present invention performs the step S39' to remove the shell mold to obtain _£生&. After the transfer material is completely solidified, first, the filling reinforcement material on the outside of the model is recorded and the resin is molded to obtain a high-density shouting chain. Shouting "Before heat treatment, the strength of the part is increased by heat equalization to increase the density of the raw material, after sintering. It can be improved in the specific embodiment - in order to avoid squeezing the sputum in the sintering, you can put the pottery on the emulsified pure underlying pad - the graphite floor (also used in the oxidation base)

6Lunghwa/200904TW 13 201117949 板),再置於高溫爐内先加熱至1UTC(升溫速度5t:/min)去除 陶瓷生坯中的殘餘水份。再以升溫速度HTC/min升溫至16〇〇 °C以上保持2小時,使陶瓷顆粒之間發生固態燒結作用,接 著進行爐中冷卻至室溫’即可獲得高強度、高密度的陶曼產 品(強度達到300MPa以上)。 於一具體實施例_,該陶瓷生坯具有一微小的特徵尺 寸,該殼模對應該微小特徵尺寸之一部位具有一微細的排氣 小縫隙以排出該陶瓷生坯之微小的特徵尺寸處之氣體。於實 際應用中,若採用樹脂殼模,其最小薄層厚度可達1〇vm , 並且配合”微細結構排氣設計,,能夠把模穴内微細尺寸處的殘 留氣體排除。所以當陶瓷漿料(漿料中的微細陶瓷粉末顆粒度 可達以下)凝固成型後,陶瓷生坯的微小特徵尺寸可達 20 // m以下。 具體實施财’絲結舰環氧翻(ep呵)粉。該 π,在2〇0〜3〇〇<5(:溫度下將其内陶瓷粉末黏結成 埶空ιίην、、、至1〇〇〇t>C進行瑕燒結並去除該環氧樹脂,再加 & ^^做燒結成一陶瓷成品,接著把液態矽熔滲進 品;該環氧樹脂所留下的孔隙中以提升該陶竟成 究生ί採模,根據本發明之成型方法3所成型之陶 孔結構。 °後也可以製作成具有内部複雜形狀或内連通 纖唯射’該祕並且可以加入碳纖維絲、鶴 纖维、糸被纖維絲,使_產生纖_化效果提高韋刃性。 例之二®五係繪示根據本發明之第三佳具體實施 ' 的流程圖。根據本發明之第三較佳具體實施6Lunghwa/200904TW 13 201117949 board), and then placed in a high temperature furnace to first heat to 1UTC (heating rate 5t: / min) to remove residual moisture in the ceramic green body. Then, the temperature is raised to a temperature of HTC/min to maintain a temperature of 16 ° C or more for 2 hours to cause solid sintering between the ceramic particles, followed by cooling to room temperature in the furnace to obtain a high strength, high density Tauman product. (Strength reaches 300 MPa or more). In a specific embodiment, the ceramic green body has a minute feature size, and the shell mold has a fine exhaust slit corresponding to one of the minute feature sizes to discharge the minute feature size of the ceramic green body. gas. In practical applications, if the resin shell mold is used, the minimum thin layer thickness can reach 1〇vm, and with the “fine structure exhaust design, the residual gas at the fine size in the cavity can be excluded. So when the ceramic slurry ( The fineness of the fine ceramic powder in the slurry can be as follows: After the solidification molding, the micro-feature size of the ceramic green body can reach 20 // m or less. The specific implementation of the 'silk knot ship epoxy turning (ep) powder. , in 2〇0~3〇〇<5(:temperature, the inner ceramic powder is bonded into a hollow ιίην,,, to 1〇〇〇t> C for sintering and removing the epoxy resin, plus & ^^ is sintered into a ceramic finished product, and then the liquid mash is melted into the product; the pores left by the epoxy resin are used to enhance the ceramics, and the molding method is formed according to the molding method 3 of the present invention. The structure of the ceramic hole. After the ° can also be made to have a complex internal shape or internal fiber fiber can be attached to the secret and can be added carbon fiber wire, crane fiber, enamel fiber, so that the production of fiber _ effect to improve the edge Example 2® Five Series shows the third best example according to the present invention 'Is a flowchart according to a third specific preferred embodiment of the present invention

6Lunghwa/200904TW 14 201117949 例的成型方法5係用以利用根據本發明之成型方法所成型的 殼模來成型一金屬·陶瓷複合材料生坯。 如圖五所示,根據本發明之成型方法5首先係執行步驟 S50 ,將一金屬粉末、一黏結劑以及一懸浮劑依一比例均勻混 合且攪拌成一漿料。 於一具體實施例中,該漿料之成份為87〜75wt%金屬粉 末、20〜10wt%黏結劑以及3〜5wt%懸浮劑。 於另一具體實施例中’該漿料之成份為85wt%的 鲁 不鑛鋼粉末、l〇wt%氧化碎凝膠的黏結劑以及5wt%微粒雲母 粉的懸浮劑。上述漿料製作成生述後,置於燒結爐中加熱至 1200°C以上高溫進行燒結處理,經拋光處理後其抗拉強度可 達700MPa以上。 接著,如圖五所示,根據本發明之成型方法5係執行步 驟S52,將該漿料倒入該殼模之模穴中並填滿該殼模之模 穴。 接著’如圖五所示,根據本發明之成型方法5係執行步 驟S54 ’對填滿該漿料之該殼模進行一超音波振動程序,使 W 該漿料内之複合材料粉末更為密實。 接著’如圖五所示,根據本發明之成型方法5係執行步 驟S56,對填滿該槳料之該殼模進行一抽真空程序,以移除 該漿料内之氣泡。 接著’如圖五所示,根據本發明之成型方法5係執行步 驟S58,對填滿該漿料之該殼模進行一加熱程序,使該漿料 之該黏結劑被加熱產生該化學凝膠反應。6Lunghwa/200904TW 14 201117949 The molding method 5 of the example is for molding a metal/ceramic composite green body by using a shell mold formed by the molding method according to the present invention. As shown in Fig. 5, the molding method 5 according to the present invention first performs step S50 to uniformly mix a metal powder, a binder and a suspending agent in a ratio and stir into a slurry. In one embodiment, the slurry is comprised of 87 to 75 wt% metal powder, 20 to 10 wt% binder, and 3 to 5 wt% suspension. In another embodiment, the composition of the slurry is 85 wt% of Lugang steel powder, 10% by weight of oxidized crushed gel binder, and 5 wt% of particulate cloud mastic suspension. After the slurry is prepared, it is placed in a sintering furnace and heated to a high temperature of 1200 ° C or higher for sintering treatment, and the tensile strength after the polishing treatment can reach 700 MPa or more. Next, as shown in Fig. 5, the molding method 5 according to the present invention performs the step S52, pouring the slurry into the cavity of the shell mold and filling the cavity of the shell mold. Next, as shown in FIG. 5, the molding method 5 according to the present invention performs step S54' to perform an ultrasonic vibration process on the shell mold filled with the slurry to make the composite powder in the slurry more dense. . Next, as shown in Fig. 5, the molding method 5 according to the present invention performs step S56 to perform a vacuuming process on the shell mold filling the slurry to remove bubbles in the slurry. Then, as shown in FIG. 5, the molding method 5 according to the present invention performs step S58, and performs a heating process on the shell mold filling the slurry, so that the binder of the slurry is heated to produce the chemical gel. reaction.

6Lunghwa/200904TW 15 201117949 最後,如圖五所示,根據本發明之成型方法5係執行步 驟S59,移除該殼模’以獲得該金屬_陶瓷複合材料生坯。等 漿料完全凝固之後,先將殼模移除,即可獲得高密度的金屬-陶瓷複合材料生坯。金屬-陶瓷複合材料生坯在熱處理前亦可 先經過熱均壓處理以增加生坯的密度,燒結後可提高金屬_陶 瓷複合材料工件強度。金屬-陶瓷複合材料生坯也可以可置於 真空爐或保護氣體(例如,氮氣)環境之中進行燒結處理,可 防止金屬產生氧化反應,提高製品機械性能。 一根據本發明之另一較佳具體實施例,金屬粉末包覆一層 ,分子材料(例如,PE、PP)取代黏結劑。置入根據本發明丄 殼模成型後,再預熱並加入淬取劑把高分子材料去除,置於 真空燒結爐中加熱至12〇〇。(:以上高溫進行燒結處理,即 得金屬陶瓷複合材料製品。 又 -月參閱圖/、,圖六係繪示根據本發明之第四佳具體實施 例之成型方法6的流程圖。根據本發明之第四較佳具體 法6 ’係用以_根據本發明之成型方法所成型 的威模來成型一石夕膠模。 S60 if:所根縣㈣之成财法6魏係執行步驟 L Λ 製技術鄉材鄕作—公模以及一母 i。二收如圖六所示,根據本發明之成型方法6係執行步 ΙΠΐ該,與該母模合模即完成神膠模,該石夕膠模 喊漿,金屬陶纽合材漿料加壓射 模的模-,藉‘6Lunghwa/200904TW 15 201117949 Finally, as shown in Fig. 5, the molding method 5 according to the present invention performs step S59 to remove the shell mold 'to obtain the metal-ceramic composite green body. After the slurry is completely solidified, the shell mold is removed to obtain a high-density metal-ceramic composite green body. The metal-ceramic composite green body may also be subjected to thermal pressure equalization before heat treatment to increase the density of the green body, and the strength of the metal-ceramic composite material may be improved after sintering. The metal-ceramic composite green body can also be sintered in a vacuum furnace or a protective gas (e.g., nitrogen) environment to prevent oxidation of the metal and improve the mechanical properties of the product. According to another preferred embodiment of the invention, the metal powder is coated with a layer and the molecular material (e.g., PE, PP) is substituted for the binder. After the shell molding was carried out according to the present invention, the polymer material was removed by preheating and adding a quenching agent, and heated in a vacuum sintering furnace to 12 Torr. (: The above high temperature is subjected to sintering treatment, that is, a cermet composite product is obtained. Further, see the figure/, and Fig. 6 is a flow chart showing a molding method 6 according to a fourth preferred embodiment of the present invention. The fourth preferred embodiment 6' is used to form a diamond mold according to the shape mold formed by the molding method of the present invention. S60 if: Shougen County (4) is a financial method 6 Wei system execution step L Λ The technical household material is made into a public mold and a female i. The second receiving is shown in Fig. 6. According to the molding method 6 of the present invention, the step is performed, and the mold is completed by clamping the mold. Moulding the mold, the mold of the metal pottery new material slurry pressure injection mold, borrowing '

练上所述’本發明採用的陶究漿料及金屬陶究複合材料 6Lunghwa/200904TW 16 201117949 漿料流動性佳,能夠流到殼模模型的各部份(包含複雜形狀以 及微小特徵尺寸處)。陶瓷漿料及金屬陶瓷複合材料漿料凝固 後,可以複製出與模穴相同形狀的陶瓷生坯或金屬陶瓷複合 材料生坯,並且達到與模具表面相同的表面粗糖度。可在室 溫環境下進行批量生產。此外,一般模型均為實體結構。本 發明所使用賴型為採快速原型成型技術製作成薄殼狀,因 此可以大量縮減模具製造時間,快速地製作出陶瓷原型。The above-mentioned ceramics and metal ceramic composite materials used in the present invention 6Lunghwa/200904TW 16 201117949 The slurry has good fluidity and can flow to various parts of the shell mold model (including complex shapes and small feature sizes) . After the ceramic slurry and the cermet composite slurry are solidified, the ceramic green or cermet composite green body having the same shape as the cavity can be reproduced and the same surface roughness as the mold surface can be achieved. It can be mass produced in a room temperature environment. In addition, the general model is a solid structure. The Lai type used in the present invention is made into a thin shell shape by rapid prototyping technology, so that the mold manufacturing time can be greatly reduced and the ceramic prototype can be quickly produced.

^由以上較佳具體實施例之詳述,係希望能更加 變所安 的解釋;====^ From the above detailed description of the preferred embodiment, it is desirable to be able to change the interpretation; ====

6Lunghwa/200904TW 17 201117949 【圖式簡單說明】 圖一係根據本發明之第一較佳具體實施例之成型方法的 流程圖。 圖二A係運用快速原型成型設備來成型殼模其在塗 型材料製程階段之示意圖。 圖二B係運用快速原型成型設備來成型殼模其在輻射 掃描固化製程階段之示意圖。 圖二C係運用快速原型成型設備來成型殼模其在堆疊多 層固化的成型材料薄層後之示意圖。 圖二D根據本發明之第一較佳具體實施例之成型方法 完成殼模之示意圖。 圖二係根據本發明之第二較佳具體實施例之成型方法 流程圖。 一圖四係繪示利用根據本發明之殼模來成型陶瓷生坯的成 型示意圖。 。圖五係根據本發明之第三較佳具體實施例之成型方法的 流程圖。 係根據本發明之第四較佳具體實施例之成型方法的 流程圖。 【主要元件符號說明】 卜3、5、6 :成型方法 S10〜S24 :方法步驟6Lunghwa/200904TW 17 201117949 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart showing a molding method according to a first preferred embodiment of the present invention. Figure 2A is a schematic diagram of the use of rapid prototyping equipment to form a shell mold during the manufacturing process of the coating material. Figure 2B is a schematic diagram of the formation of a shell mold using a rapid prototyping apparatus during the radiation scanning curing process. Figure 2C is a schematic diagram of the use of rapid prototyping equipment to form a shell mold after laminating a multi-layer cured layer of formed material. Figure 2D is a schematic view of a shell mold in accordance with a molding method of a first preferred embodiment of the present invention. Figure 2 is a flow chart of a molding method in accordance with a second preferred embodiment of the present invention. Figure 4 is a schematic view showing the formation of a ceramic green body by using a shell mold according to the present invention. . Figure 5 is a flow chart showing a molding method in accordance with a third preferred embodiment of the present invention. A flow chart of a molding method according to a fourth preferred embodiment of the present invention. [Description of main component symbols] Bu 3, 5, 6: Molding method S10~S24: Method steps

18 6Lunghwa/2009〇4TW 20111794918 6Lunghwa/2009〇4TW 201117949

2:成型設備 222 :漏斗 24 :工作台 262 :雷射光束產生裝置 264a、264b、264c、264d : 266 :聚焦鏡 SL :成型材料 SL” :固化的成型材料薄層 282 :輔助洗注口 30 :陶瓷漿料 S30〜S39 :方法步驟 S60〜S62 :方法步驟 22 :塗層裝置 224 :刮板 26 :固化薄層形成裝置 264 :導光機構 反射鏡 SL’ :成型材料層 28 :殼模 29 :容器 32 :填充材料 S50〜S59 :方法步驟2: molding apparatus 222: funnel 24: table 262: laser beam generating device 264a, 264b, 264c, 264d: 266: focusing mirror SL: molding material SL": cured molding material thin layer 282: auxiliary rinsing port 30 : Ceramic slurry S30 to S39: Method steps S60 to S62: Method step 22: Coating device 224: Scraper 26: Curing thin layer forming device 264: Light guiding mechanism mirror SL': Molding material layer 28: Shell mold 29 : Container 32: Filling material S50~S59: Method steps

19 6Lunghwa/200904TW19 6Lunghwa/200904TW

Claims (1)

201117949 七、申請專利範圍: 1、 一種用以成型一殼模之成型方法,該殼模係由N層連續固化 的成型材料薄層所構成,N為一自然數,該成型方法包含下 列步驟: (a) 塗佈第一層成型材料於一工作台上; (b) 根據對應該第一層固化的成型薄層之一截面圖案,以 一輻射束照射該第一層成型材料之部分成型材料以固化 被照射的成型材料,進而形成該第一層固化的成型材料 薄層; (c) 塗佈第z層成型材料於第(η)層成型材料上,z.係範圍從2 至N中之一整數指標; (d) 根據對應§亥第/層固化的成型材料薄層之一截面圖案, 以該輻射束照射該第/層成型材料之成型材料以固化被 照射的成型材料,進而形成該第^層固化的成型材 層; (e) 重複步驟(d)以及步驟(e),直至完成該]^層固化的成材料 薄層為止;以及 (f) 去除附著於該N層固化的成型材料薄層之殘留成型材 料’以獲得該殼模。 、如申請專概圍第丨柄狀成型方法,其巾該成型材料係 一紫外光感光樹脂,並且該輻射束係一紫外光雷射。 、如申請專利範圍第2項所述之成型方法,其中該殼模具有大 於或等於0.5mm之厚度。 、 、如申請專利範圍第1項所述之成型方法,其中該成型材料係 一蠟粉,並且該輻射束係一雷射。 6Lunghwa/200904TW 20 201117949 5、 如申請專利範圍第4項所述之成型方法,其中該殼模具有大 於或等於1mm之厚度。 6、 了種利用如申請專利範圍第1項所述之成型方法所成型之殼 模來成型一陶瓷生坯之成型方法,該成型方法包含下列步 將一陶瓷粉末、一黏結劑以及一懸浮劑依一比例均勻混人 且攪拌成一漿料; ° 將該漿料倒入該殼模之模穴中並填滿該殼模之模穴; 對填滿该漿料之該殼模進行一超音波振動程序,使該漿料 内之陶瓷粉末更為密實; 對填滿該漿料之該殼模進行一抽真空程序,以移除該漿 内之氣泡; 對應填滿該漿料之該殼模進行一加熱程序,使該聚料之該 黏結劑被加熱產生該化學凝膠反應;以及 移除該殼模,以獲得該陶瓷生述。 7、 ϊΓίΐ職’6項所述之·方法,其中觸鎌末係 石反化=(S1C)、碳化鈦(Tic)、氮化石夕(§麵)、氧化欽 、Λ气(A1203)、碳酸納、碳酸辦、錯欽酸錯 ^ζτ)、石墨、氧切粉末、氧化雜末、氧化錯、碳酸 p rT c.r 乳基碟灰石、甲殼素、Na2〇、CaO、 PA、SA、Mgo以及其混合組合之粉末所組成之群組中之 —〇 項所述之成型方法,其中該黏結劑係選 溶膠Γ丨.’合〜二T S〇1)、氧化鈦溶卵tania sol)、氧化銘 / / umma s。)、減錯溶膠 '聚乙烯醇㈣㈣&論〇!,201117949 VII. Patent application scope: 1. A molding method for forming a shell mold, which is composed of a thin layer of a continuously solidified N-layer molding material, N is a natural number, and the molding method comprises the following steps: (a) applying a first layer of molding material on a work surface; (b) illuminating a portion of the molding material of the first layer molding material with a radiation beam according to a cross-sectional pattern of the formed thin layer corresponding to the curing of the first layer To cure the irradiated molding material to form a thin layer of the first layer of the cured molding material; (c) coating the z-th layer molding material on the (n) layer molding material, the z. system ranges from 2 to N An integer index; (d) irradiating the molding material of the first layer molding material with the radiation beam according to a cross-sectional pattern of the layer of the molding material corresponding to the § hai/layer curing to cure the irradiated molding material, thereby forming The layer of the cured layer of the cured layer; (e) repeating the steps (d) and (e) until the thin layer of the cured material is completed; and (f) removing the adhesion to the layer of N Residual molding of a thin layer of molding material Material 'to obtain the shell mold. For example, the application is directed to a shank-like forming method, wherein the forming material is an ultraviolet photosensitive resin, and the radiation beam is an ultraviolet laser. The molding method of claim 2, wherein the shell mold has a thickness greater than or equal to 0.5 mm. The molding method of claim 1, wherein the molding material is a wax powder, and the radiation beam is a laser. The method of forming the invention of claim 4, wherein the shell mold has a thickness greater than or equal to 1 mm. 6. A molding method for molding a ceramic green body by using a shell mold formed by the molding method according to claim 1 of the patent application, the molding method comprising the following steps: a ceramic powder, a binder, and a suspending agent Mixing uniformly in a ratio and stirring into a slurry; ° pouring the slurry into the cavity of the shell mold and filling the cavity of the shell mold; performing an ultrasonic wave on the shell mold filling the slurry a vibration process to make the ceramic powder in the slurry more dense; a vacuuming process is performed on the shell mold filling the slurry to remove bubbles in the slurry; corresponding to the shell mold filling the slurry A heating process is performed to cause the binder of the polymer to be heated to produce the chemical gel reaction; and the shell mold is removed to obtain the ceramic body. 7. 方法ίΐ's method described in the 6th item, in which the end of the scorpion calculus is reversed = (S1C), titanium carbide (Tic), nitriding stone (§ surface), oxidized chin, helium (A1203), carbonic acid Nano, carbonate, mischin, 石墨τ), graphite, oxygen-cut powder, oxidized heterocycle, oxidized error, carbonic acid p rT cr milk-based discite, chitin, Na2〇, CaO, PA, SA, Mgo and a molding method according to the group of the powders of the mixed combination, wherein the binder is selected from the group consisting of a sol '. '合~二 TS〇1), a titanium oxide lysing tania sol), an oxidation / / umma s. ), the error-reducing sol 'polyvinyl alcohol (four) (four) & 〇! 6Lunghwa/200904TW 21 8、 201117949 PVA)以及魏合組合之減撕喊之群組中之… 9、 所述之成型方法’其中該懸浮劑係選 ==粒雲母粉、聚丙稀酸(ΡΑΑ)、聚甲基丙稀酸(ρμαα)、 =>烯严胺卿)和聚甲基丙烯酸鹽(pMAA_Na,ρμαα_ 成之群夕、氧化欽、氧化錯、黃酸納鹽以及黏土所組 10、 利範圍第6項所述之成型方法,其中該漿料之成份 " 加/°陶瓷粉末、40〜30wt%黏結劑以及3〜5wt%懸浮 劑06Lunghwa/200904TW 21 8, 201117949 PVA) and the combination of the Wei and the combination of the shattering group... 9. The molding method described therein, wherein the suspending agent is selected == granule mica powder, polyacrylic acid (ΡΑΑ), Polymethyl methacrylate (ρμαα), => olefinic amines and polymethacrylates (pMAA_Na, ρμαα_ into the group, oxidized chin, oxidized, sodium sulphate and clay) The molding method according to the item 6, wherein the composition of the slurry " plus / ° ceramic powder, 40 to 30 wt% of the binder and 3 to 5 wt% of the suspending agent 0 12、 13、 H專她圍第6項所述之成型方法,其中雜結劑係環 軋樹恥(ep〇xy)粉,該陶瓷生坯接續在200〜30(TC溫度下將其 末黏結成型,接著加熱至麵^:進行瑕燒結並去除 ,哀乳,”旨’再加熱至㈣。。以上做燒結成—喊成品,接 ^规渗進人該陶甍成品巾該環氧樹脂所留下的孔隙 中以提升該陶瓷成品硬度與強度。 如^請專利範㈣6顧述之成财法,其中該漿料並且加 入碳纖維絲、鎢纖維絲或硼纖維絲。 如申請專利範圍第6項所述之成型方法,其中該陶瓷生坯具 有一微小的特徵尺寸,該殼模對應該微小特徵尺寸之一部^ 具有微細的排氣小缝隙以排出該陶瓷生达之微小的特徵尺 寸處之氣體。 14、 如申請專利範圍第6項所述之成型方法,其中該殼模外側利 用一填充材料加以補強。 15、 一種利用如申請專利範圍第1項所述之成型方法所成型之殼 模來成型一金屬-陶瓷複合材料生坯之成型方法,該成型方 6Lunghwa/200904TW 22 201117949 法包含下列步驟: 將一金屬粉末、一黏結劑以及一懸浮劑依一比例均 合 且擾拌成一漿料; 將該漿料倒入該殼模之模穴中並填滿該殼模之模穴; 對填滿該漿料之該殼模進行一超音波振動程序,使該漿料 内之複合材料粉末更為密實; 對填滿該漿料之該殼模進行一抽真空程序,以移除該漿料 内之氣泡; 對應填滿該漿料之該殼模進行一加熱程序,使該漿料之該 # 黏結劑被加熱產生該化學凝膠反應;以及 移除该设模,以獲得該金屬-陶竞複合材料生述。 16、 如申請專利範圍第15項所述之成型方法,其中該漿料之成份 為87〜75wt%金屬粉末、20〜l〇wt%黏結劑以及3〜5加%懸浮 劑。 17、 如申請專利範圍第15項所述之成型方法,其中該漿料之成份 為85wt%的10/zm不鏽鋼粉末、lOwt%氧化石夕凝膠的黏結劑 以及5wt%微粒雲母粉的懸浮劑。 18、 一種利用如申請專利範圍第1項所述之成型方法所成型之殼 模來成型一金屬_陶瓷複合材料生链之成型方法,該成型方 法包含下列步驟: 將一外層包覆一層高分子材料的金屬粉末與一懸浮劑依一 比例均勻混合且攪拌成一漿料; 〜〜 將該漿料倒入該殼模之模穴中並填滿該殼模之模穴; 對填滿該漿料之該殼模進行一超音波振動程序,使該漿料 内之複合材料粉末更為密實; 23 6Lunghwa/200904TW 201117949 對SS料之該殼模進行一抽真空程序,以移除該漿料 對f填3祕之該贿進行—加熱料,使該聚料凝 移除該殼模’以獲得該金屬-陶£複合材料生述。 19、 ΐΓϊίΐί圍第18項所述之成型方法,其中包覆該金屬粉 末之间刀子材料係聚乙烯(ΡΕ)或聚丙烯(ρρ)。 20、 如申請專利範圍第1項所述之成型方法所成型之殼 模膠模之成型方法,該成财法包含下列步驟·· 藉由-翻製技術利用-石夕膠材料製作一公模以及一母模; 以及 ,該矽膠模具有一 將該公模與該母模合模即完成該矽膠模 模穴。 、 24 6Lunghwa/200904TW12, 13, H specifically her around the molding method described in Item 6, wherein the hybrid agent is ep〇xy powder, and the ceramic green body is bonded at 200~30 (TC temperature) Molding, and then heating to the surface ^: 瑕 sintering and removal, wailing, "remediation" and then heating to (four). The above is done into sintering - shouting the finished product, the stipulation into the person, the ceramic enamel finished towel The remaining pores are used to enhance the hardness and strength of the finished ceramic product. For example, please refer to the patent formula (4) 6 for the method of making money, wherein the slurry is added with carbon fiber wire, tungsten fiber wire or boron fiber wire. The molding method according to the item, wherein the ceramic green body has a minute feature size, and the shell mold has a fine exhaust slit corresponding to one of the minute feature sizes to discharge the minute feature size of the ceramic 14. The molding method according to claim 6, wherein the outer side of the shell mold is reinforced by a filler material. 15. A shell formed by the molding method according to claim 1 of the patent application. Molding a metal - The method for molding a green composite material, the molding method 6Lunghwa/200904TW 22 201117949 comprises the following steps: uniformly mixing a metal powder, a binder and a suspending agent into a slurry; Pour into the cavity of the shell mold and fill the cavity of the shell mold; perform an ultrasonic vibration program on the shell mold filled with the slurry to make the composite powder in the slurry more dense; Filling the shell mold of the slurry to perform a vacuuming process to remove bubbles in the slurry; and performing a heating process corresponding to the shell mold filling the slurry, so that the #-bonding agent of the slurry is Heating to produce the chemical gel reaction; and removing the mold to obtain the metal-ceramic composite material. The molding method according to claim 15, wherein the composition of the slurry is 87. 〜75wt% metal powder, 20~l% by weight of a binder, and 3~5% by weight of a suspending agent. The molding method according to claim 15, wherein the composition of the slurry is 85 wt% of 10/ Zm stainless steel powder, lOwt% oxidized stone a binder and a suspending agent of 5 wt% of the particulate mica powder. 18. A molding method for molding a metal-ceramic composite raw material by using a shell mold formed by the molding method according to claim 1 of the patent application, the molding The method comprises the following steps: uniformly mixing a metal powder coated with a polymer material with a suspension agent in a ratio and stirring into a slurry; ~~ pour the slurry into the cavity of the shell mold and fill it up a cavity of the shell mold; performing an ultrasonic vibration process on the shell mold filled with the slurry to make the composite material powder in the slurry more dense; 23 6 Lunghwa/200904TW 201117949 A vacuuming procedure is performed to remove the slurry and heat the material to remove the material from the shell mold to obtain the metal-ceramic composite material. 19. The molding method according to Item 18, wherein the knife material between the metal powder is polyethylene (ΡΕ) or polypropylene (ρρ). 20. The method for molding a shell mold plastic mold formed by the molding method according to the first aspect of the patent application, the method comprising the following steps: · using a refining technology to make a male mold And a master mold; and the silicone mold has a mold cavity formed by clamping the male mold with the master mold. , 24 6Lunghwa/200904TW
TW98140035A 2009-11-25 2009-11-25 Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold TWI395662B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98140035A TWI395662B (en) 2009-11-25 2009-11-25 Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98140035A TWI395662B (en) 2009-11-25 2009-11-25 Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold

Publications (2)

Publication Number Publication Date
TW201117949A true TW201117949A (en) 2011-06-01
TWI395662B TWI395662B (en) 2013-05-11

Family

ID=44935429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98140035A TWI395662B (en) 2009-11-25 2009-11-25 Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold

Country Status (1)

Country Link
TW (1) TWI395662B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668064B (en) * 2017-01-27 2019-08-11 荷蘭商耐克創新有限合夥公司 Mold and method of forming the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI531486B (en) 2014-10-01 2016-05-01 國立臺灣科技大學 Colored three-dimensional printing apparatus and colored three-dimensional printing method
US9533375B2 (en) 2014-10-02 2017-01-03 Industrial Technology Research Institute Temperature sensing apparatus, laser processing system, and temperature measuring method
TWI569940B (en) * 2015-06-05 2017-02-11 優克材料科技股份有限公司 Method of manufacturing gradient color slurry and method of molding three dimensional object

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050500A (en) * 1976-03-15 1977-09-27 Eaton Corporation Method of making a shell mold
US6431255B1 (en) * 1998-07-21 2002-08-13 General Electric Company Ceramic shell mold provided with reinforcement, and related processes
US6352101B1 (en) * 1998-07-21 2002-03-05 General Electric Company Reinforced ceramic shell mold and related processes
TWI239283B (en) * 2003-05-07 2005-09-11 Semiconductor Industry Consult Blank body forming device and forming process thereof
TWI277506B (en) * 2004-06-11 2007-04-01 Univ Nat Cheng Kung Method for rapid prototyping by using linear light as sources
TWI256328B (en) * 2005-05-20 2006-06-11 Chung Shan Inst Of Science Method for thickening electroformed shell mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668064B (en) * 2017-01-27 2019-08-11 荷蘭商耐克創新有限合夥公司 Mold and method of forming the same

Also Published As

Publication number Publication date
TWI395662B (en) 2013-05-11

Similar Documents

Publication Publication Date Title
Jandyal et al. 3D printing–A review of processes, materials and applications in industry 4.0
JP6676245B2 (en) Method for additive manufacturing of 3D printed matter
Kumar et al. Composites by rapid prototyping technology
CN107750200B (en) Additive manufacturing method for making transparent 3D parts from inorganic material
JP7443397B2 (en) Formulations containing easily sinterable materials for additive manufacturing of three-dimensional objects
Wang A novel fabrication method of high strength alumina ceramic parts based on solvent-based slurry stereolithography and sintering
CN108101519A (en) A kind of ceramic-mould preparation method for the shaping of parts with complex structures directional solidification
TW201117949A (en) Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold
Gawel Review of additive manufacturing methods
JPH0760844A (en) Manufacture of three-dimensional structure
Cao et al. Investigation on urea-formaldehyde resin as an in-powder adhesive for the fabrication of Al2O3/borosilicate–glass composite parts by three dimensional printing (3DP)
TW201219343A (en) Method of fabricating article of metal-ceramic composite with gradient composition
Lu Preliminary mechanical characterization of the low-cost metal 3D printing
JP2003305777A (en) Three-dimensionally shaping method and device
TW201350094A (en) Method of manufacturing bio-ceramic bone
Hussain et al. Digital light processing 3D printing of ceramic materials: a review on basic concept, challenges, and applications
TW201114415A (en) Method and equipment of forming porous bio-ceramic bone scaffold
JP3398026B2 (en) Manufacturing method of sintered body
TWI399225B (en) Modeling method and forming method of bio-ceramic bone scaffold
Terner Innovative 3D-manufacturing of complex ceramic parts by means of commercial digital light processing apparatus
Mummareddy Additive Manufacturing Processes for High-Performance Ceramics: Manufacturing-Mechanical and Thermal property Relationship
Wang et al. 3D printing technology and the adaptability of printing material
JP2018122571A (en) Method for producing ceramic molded body
TW200914396A (en) Forming method and forming apparatus for manufacturing ceramic workpiece
TW200951096A (en) Forming method, forming apparatus, and metal-ceramic composite structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees