JP3398026B2 - Manufacturing method of sintered body - Google Patents

Manufacturing method of sintered body

Info

Publication number
JP3398026B2
JP3398026B2 JP29631297A JP29631297A JP3398026B2 JP 3398026 B2 JP3398026 B2 JP 3398026B2 JP 29631297 A JP29631297 A JP 29631297A JP 29631297 A JP29631297 A JP 29631297A JP 3398026 B2 JP3398026 B2 JP 3398026B2
Authority
JP
Japan
Prior art keywords
resin container
sintered body
porous resin
producing
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29631297A
Other languages
Japanese (ja)
Other versions
JPH11117003A (en
Inventor
博和 高山
俊之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29631297A priority Critical patent/JP3398026B2/en
Publication of JPH11117003A publication Critical patent/JPH11117003A/en
Application granted granted Critical
Publication of JP3398026B2 publication Critical patent/JP3398026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属やセラミック
スの焼結体を製作するための焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body for producing a sintered body of metal or ceramics.

【0002】[0002]

【従来の技術】微細金属粉末を圧縮成形して焼結させる
金属焼結体は、一般的な鋳造品に比べて、 粉末を合金化することで均一な組成が得られる。 温度管理が容易で結晶粒度の管理が可能となり、強
度等の物性の予測が正確にできる。 高い寸法精度が得られる。 製品に近い形状が得られ、加工量が少ない。 MA(メカトロニカルアロイ材料)を粉末原料とす
ることで、微細組織として高い強度を確保できる。等の
利点がある。
2. Description of the Related Art A metal sintered body obtained by compacting and sintering fine metal powder can obtain a uniform composition by alloying the powder, as compared with a general cast product. The temperature can be controlled easily, the grain size can be controlled, and the physical properties such as strength can be predicted accurately. High dimensional accuracy can be obtained. A shape close to a product is obtained, and the amount of processing is small. By using MA (mechatronic alloy material) as the powder raw material, high strength can be secured as a fine structure. And so on.

【0003】一方、粉末セラミックスを圧縮成形して焼
結したセラミックス焼結体においては、一般のセラミッ
クス成形品に比べて、 安価で、短い工期で生産できる。 複雑な形状を製作できる。等の利点がある。
On the other hand, a ceramic sintered body obtained by compressing and sintering powder ceramics can be produced at a lower cost and in a shorter construction period than a general ceramic molded product. Complex shapes can be manufactured. And so on.

【0004】このため、例えば回転機械の羽根車等、複
雑な形状で、高い寸法精度が要求される機械部品におい
ては、鋳造品に代えて金属焼結体で構成することが広く
行われている。このことは、セラミックス焼結体におい
ても同様である。
For this reason, in machine parts such as impellers of rotary machines, which have complicated shapes and require high dimensional accuracy, it is widely practiced to use metal sintered bodies instead of cast products. . This also applies to the ceramic sintered body.

【0005】このような焼結体を製造する工程は、通
常、原料粉と種々の添加材とを混合する混合工程と、混
合後の粉末を成形する工程と、これを焼結する工程とか
らなる。成形工程としては、プレス成形法や、成形粉末
をゴム型内に入れて液体中で加圧する冷間静圧成形法
(CIP法)、あるいは、高温高圧雰囲気中で成形と焼
結を同時に行う熱間静圧成形法(HIP法)がある。
The process for producing such a sintered body is usually composed of a mixing process of mixing the raw material powder and various additives, a process of molding the powder after mixing, and a process of sintering the powder. Become. The molding process includes a press molding method, a cold static pressure molding method (CIP method) in which molding powder is put in a rubber mold and pressurized in a liquid, or a heat for simultaneously performing molding and sintering in a high temperature and high pressure atmosphere. There is a static pressure forming method (HIP method).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような従来法においては、いずれも、成形工程におい
て、高価な金型やゴム型を作成する必要があり、このた
め製品としての単価が高価になってしまう。また、複雑
な形状の製品の場合、このような金型やゴム型自体を製
品に近い形状までに成形するのが困難であり、従って、
成形後に後加工を施す必要があるといった問題があっ
た。
However, in any of the above conventional methods, it is necessary to make an expensive mold or rubber mold in the molding process, which makes the unit price as a product expensive. turn into. Further, in the case of a product having a complicated shape, it is difficult to mold such a mold or rubber mold itself into a shape close to the product, and therefore,
There is a problem that post-processing needs to be performed after molding.

【0007】本発明は上記に鑑み、高価な金型やゴム型
を作成することなく、しかも、複雑な形状であっても簡
単な工程で焼結体製品を製造することができる焼結体の
製造方法を提供することを目的とする。
In view of the above, the present invention provides a sintered body which can be manufactured by a simple process without forming an expensive die or rubber die and having a complicated shape. It is intended to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、熱可塑性樹脂の粒体又は粉末から多孔質樹脂容器を
作成する工程と、この多孔質樹脂容器の内部に粉末焼結
材料を充填する工程と、内部に粉末焼結材料を充填した
多孔質樹脂容器を無酸化雰囲気中で加熱し、熱可塑性樹
脂の粒体又は粉末どうしを融合させて気液密性の樹脂容
器とする工程と、前記気液密性の樹脂容器を静圧成形処
理を施して内部の粉末焼結材料の密度を高める工程と、
前記圧縮された粉末焼結材料を焼結させて焼結体を製造
する工程とを有することを特徴とする焼結体の製造方法
である。
The invention according to claim 1 comprises the step of producing a porous resin container from particles or powder of a thermoplastic resin, and a powder sintering material inside the porous resin container. The step of filling and the step of heating the porous resin container filled with the powder sintering material in an non-oxidizing atmosphere to fuse the particles or powders of the thermoplastic resin into a gas-liquid tight resin container And a step of increasing the density of the powder sintered material inside by subjecting the gas-liquid-tight resin container to a hydrostatic molding process,
And a step of producing the sintered body by sintering the compressed powdery sintered material.

【0009】これにより、例えば光造形法等によって多
孔質樹脂容器を比較的容易にかつ正確な形状寸法で作成
し、これの内部に粉末焼結材料を充填した後に、無酸化
雰囲気中で加熱して樹脂どうしを融合させることによ
り、内部に粉末焼結材料を収容した気液密性の樹脂容器
が形成される。これを静圧成形処理によって高密度化し
た後、焼結させて焼結体が製造される。静圧成形処理に
おいては、場合に応じて液体又は気体を用い、樹脂容器
もそれに合わせて気密又は液密に構成する。
As a result, for example, a porous resin container can be prepared with a relatively easy and accurate shape and dimension by a stereolithography method, the inside of which is filled with the powdered sintered material, and then heated in a non-oxidizing atmosphere. By fusing the resins together, a gas-liquid-tight resin container containing the powder sintered material inside is formed. This is densified by a static pressure molding process and then sintered to produce a sintered body. In the static pressure molding process, liquid or gas is used depending on the case, and the resin container is also made airtight or liquidtight according to it.

【0010】請求項2に記載の発明は、多孔質樹脂容器
を作成する工程において、迅速模型製造方法を用いるこ
とを特徴とする請求項1に記載の焼結体の製造方法であ
る。迅速模型製造方法としては、選択レーザー焼結方
法、液滴噴射法、溶融堆積法、光造型法、薄板積層法、
固体下地硬化法等がある。これにより、予め記憶させた
形状データに基づいて多孔質樹脂容器が比較的容易にか
つ正確な形状寸法で作成される。
The invention according to claim 2 is the method for producing a sintered body according to claim 1, characterized in that a rapid model producing method is used in the step of producing the porous resin container. As a rapid model manufacturing method, a selective laser sintering method, a droplet injection method, a melt deposition method, an optical molding method, a thin plate laminating method,
There are solid foundation curing methods and the like. Thereby, the porous resin container is relatively easily and accurately formed based on the shape data stored in advance.

【0011】請求項3に記載の発明は、無酸化雰囲気中
で加熱する工程を、真空雰囲気中で行なうことを特徴と
する請求項1に記載の焼結体の製造方法。これにより、
粉末焼結材料中の気体が多孔質樹脂容器を通して除去さ
れるので、この過程でも圧縮されて密度が高められる。
According to a third aspect of the present invention, the method for producing a sintered body according to the first aspect is characterized in that the step of heating in a non-oxidizing atmosphere is performed in a vacuum atmosphere. This allows
Since the gas in the powder sintered material is removed through the porous resin container, it is compressed in this process and the density is increased.

【0012】請求項4に記載の発明は、多孔質樹脂容器
を複数に分割して作成し、分割部分の開口部から粉末焼
結材料を充填し、該開口部を接合してから無酸化雰囲気
中で加熱することを特徴とする請求項1に記載の焼結体
の製造方法である。これにより、多孔質樹脂容器を作成
するための装置を小型化することができ、また、精密な
形状のものも作りやすくなる。
According to a fourth aspect of the present invention, a porous resin container is divided into a plurality of pieces, the powder sintered material is filled through the openings of the divided portions, and the openings are joined to each other before a non-oxidizing atmosphere. The method for producing a sintered body according to claim 1, wherein heating is performed in the inside. As a result, the device for producing the porous resin container can be downsized, and a precise shape can be easily produced.

【0013】[0013]

【発明の実施の形態】以下、回転機械の一体型インペラ
を金属焼結体で製造するようにした本発明の実施の形態
を図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention in which an integrated impeller of a rotary machine is manufactured from a metal sintered body will be described below with reference to the drawings.

【0014】先ず、図1に示すように、例えばポリカー
ボネイト等の熱可塑性樹脂により、結合することにより
成形品の形状に沿った内部空間10a,12aを形成す
る多孔質樹脂容器10,12を作成する。この多孔質樹
脂容器10,12は肉厚tが例えば1mm程度の薄肉に
形成され、その内部に粉末焼結材料を充填するととも
に、互いに結合される粉末充填口10b,12bが設け
られている。
First, as shown in FIG. 1, porous resin containers 10 and 12 for forming internal spaces 10a and 12a along the shape of a molded product by joining with a thermoplastic resin such as polycarbonate are prepared. . The porous resin containers 10 and 12 are formed to have a thin wall thickness t of, for example, about 1 mm, and the inside thereof is filled with a powdered sintered material and provided with powder filling ports 10b and 12b which are connected to each other.

【0015】なお、この実施の形態においては、2つの
多孔質樹脂容器10,12により、1つの成形品のため
の樹脂容器を構成しているが、製品の形状に応じて適宜
に分割した樹脂容器を構成すればよいことは言うまでも
ない。
In this embodiment, the two porous resin containers 10 and 12 form a resin container for one molded product, but the resin is divided appropriately according to the shape of the product. It goes without saying that the container may be configured.

【0016】多孔質樹脂容器10,12は、図2に示す
ような、光造形法を利用したレーザ選択焼結装置20の
チャンバ22内に、ポリカーボネイト等の熱可塑性樹脂
の粒子を所定の厚さ、例えば0.1mmの厚さで均一に
充填して原料粒子層24を形成し、これにレーザ光を照
射することによって製作される。このレーザ選択焼結装
置20は、チャンバ22の上方に配置したレーザ照射装
置21と、図示していない制御装置を備えており、制御
装置の記憶部には、あらかじめ製造すべき樹脂容器1
0,12の形状が例えば数値データとして記憶されてい
る。
As shown in FIG. 2, the porous resin containers 10 and 12 have particles of a thermoplastic resin such as polycarbonate in a chamber 22 of a laser selective sintering apparatus 20 using a stereolithography method and having a predetermined thickness. For example, it is manufactured by forming a raw material particle layer 24 by uniformly filling it with a thickness of 0.1 mm and irradiating it with a laser beam. The laser selective sintering device 20 includes a laser irradiation device 21 arranged above the chamber 22 and a control device (not shown), and the storage unit of the control device has a resin container 1 to be manufactured in advance.
Shapes 0 and 12 are stored as numerical data, for example.

【0017】制御装置は、原料粒子層24の厚さと対応
する厚さに輪切りした形状を算出し、この形状を平面視
したパターンに沿ってレーザ光スキャンを行なうよう
に、レーザ照射装置21に対して制御信号を送る。レー
ザ照射装置21は、例えば、炭酸ガスレーザ発生装置等
のレーザ光源26からレーザ光をミラー28を介して原
料粒子層24に照射する。すると、この原料粒子層24
のレーザ光が照射された部分が選択的に溶融して、隣接
する樹脂24の粒子の表層どうしが融着して、多孔質な
樹脂薄片30が形成される。この工程を繰り返すことに
より、樹脂薄片30が順次積層して多孔質樹脂容器1
0,12が製作される。
The control device calculates a shape obtained by cutting into a thickness corresponding to the thickness of the raw material particle layer 24, and instructs the laser irradiation device 21 to perform laser light scanning along a pattern in which this shape is viewed in plan. Send a control signal. The laser irradiation device 21 irradiates the raw material particle layer 24 with laser light from a laser light source 26 such as a carbon dioxide gas laser generator through a mirror 28. Then, the raw material particle layer 24
The portion irradiated with the laser light is selectively melted, and the surface layers of the particles of the resin 24 adjacent to each other are fused to each other to form the porous resin thin piece 30. By repeating this process, the resin thin pieces 30 are sequentially laminated to form the porous resin container 1
0, 12 are produced.

【0018】次に、各多孔質樹脂容器10,12内に、
粉末焼結材料である金属粉末32を振動を与えながら所
定の密度に充填した後、一方の粉末充填口10b内に他
方の粉末充填口12bを嵌合させることにより、図3に
示すように、両多孔質樹脂容器10,12を一体化す
る。
Next, in each of the porous resin containers 10 and 12,
After filling the metal powder 32, which is a powder sintering material, to a predetermined density while applying vibration, by fitting the other powder filling port 12b into the one powder filling port 10b, as shown in FIG. Both porous resin containers 10 and 12 are integrated.

【0019】そして、これを気液密容器内に入れ、減圧
状態で熱可塑性樹脂24の軟化温度以上に加熱すると、
該多孔質樹脂容器10,12中の気体が除去されながら
樹脂粒子が融合し、無孔質の緻密な表面層を有する樹脂
容器40,42となる。この過程において、金属粉末3
2の内部に存在した気体も、真空吸引により多孔質樹脂
容器10,12の周壁を通過して外部に排気され、従っ
て、金属粉末32は樹脂容器40,42に圧縮されて、
原形を止めたままその充填密度が高められる。
Then, when this is placed in a gas-liquid tight container and heated to a temperature above the softening temperature of the thermoplastic resin 24 under reduced pressure,
While the gas in the porous resin containers 10 and 12 is being removed, the resin particles are fused to form resin containers 40 and 42 having a non-porous dense surface layer. In this process, metal powder 3
The gas existing inside 2 also passes through the peripheral walls of the porous resin containers 10 and 12 by vacuum suction and is exhausted to the outside, so that the metal powder 32 is compressed into the resin containers 40 and 42,
The packing density is increased while the original shape is stopped.

【0020】次に、金属粉末32を充填した樹脂容器4
0,42を一旦冷却した後、CIP処理を施す。すなわ
ち、金属粉末32を無孔質の樹脂容器40,42で包囲
したまま、例えば、液中に入れ、静圧を加えて均一に圧
縮する。これによって、金属粉末32は、その形状を保
ったままで充填密度が更に高められて、金属粉末32の
成形体となる。
Next, the resin container 4 filled with the metal powder 32
After cooling 0 and 42 once, CIP processing is performed. That is, the metal powder 32 is, for example, placed in a liquid while being surrounded by the non-porous resin containers 40 and 42, and static pressure is applied to uniformly compress the metal powder 32. As a result, the packing density of the metal powder 32 is further increased while maintaining its shape, and a molded body of the metal powder 32 is obtained.

【0021】次に、この成形体を加熱炉中で所定温度で
焼結し、金属粒子どうしを結合させることによって、多
孔質樹脂容器10,12の内部空間10a,12aの形
状に沿った形状の金属焼結体(一体型インペラ)が製造
される。
Next, the molded body is sintered at a predetermined temperature in a heating furnace and metal particles are bonded to each other to form a shape in conformity with the shape of the internal spaces 10a, 12a of the porous resin containers 10, 12. A metal sintered body (integrated impeller) is manufactured.

【0022】上記のような工程においては、樹脂容器を
レーザ選択焼結装置20を用いて作成することにより、
複雑な形状を有する製品を焼結する場合でも、樹脂容器
の成形が容易であり、容器の作成コストも安い。しか
も、容器形状が精密であるので、焼結された製品に施す
仕上げ加工の量も少なくて済み、製品の成形工程自体も
簡単になるので、この点からもコストが安い。
In the above process, the resin container is produced by using the laser selective sintering device 20,
Even when a product having a complicated shape is sintered, the resin container can be easily molded, and the cost for manufacturing the container is low. Moreover, since the shape of the container is precise, the amount of finishing processing to be performed on the sintered product is small, and the molding process of the product itself is simple, so that the cost is also low in this respect.

【0023】なお、この実施の形態においては、金属焼
結体を製造した例を示しているが、金属粉末の代わりに
粉末セラミックスを使用することによって、セラミック
ス焼結体もほぼ同様に製造することができる。また、樹
脂素材として耐熱性を有するものを用いれば、焼結工程
で熱間静圧成形法を用いることもできる。
In this embodiment, an example in which a metal sintered body is manufactured is shown, but a ceramic sintered body can be manufactured in substantially the same manner by using powdered ceramics instead of metal powder. You can If a resin material having heat resistance is used, the hot isostatic pressing method can be used in the sintering step.

【0024】[0024]

【実施例】図2に示すレーザ選択焼結装置20を用い
て、図1に示すようなポリカーボネイト製の多孔質樹脂
容器10,12を作成し、この内部に粒度1〜100μ
mのNi−Cr−Mo合金の金属粉末32を振動を与え
つつ充填した。この時の粉末密度は、アルキメデス法で
計測したところ、57%であった。
EXAMPLE Using the laser selective sintering apparatus 20 shown in FIG. 2, polycarbonate resin porous containers 10 and 12 as shown in FIG.
m of Ni-Cr-Mo alloy metal powder 32 was filled while vibrating. The powder density at this time was 57% as measured by the Archimedes method.

【0025】次に、金属粉末32を充填した2つの多孔
質樹脂容器10,12を一体化した後、1torrの減圧容
器中で200℃で2時間加熱し、金属粉末32の表面に
ポリカーボネイト層を融着させた。冷却後、圧力容器中
で水を媒体として800Mpaで加圧するCIP処理を
施した。この時の粉末密度は、アルキメデス法で計測し
たところ、80%であった。
Next, the two porous resin containers 10 and 12 filled with the metal powder 32 are integrated and then heated at 200 ° C. for 2 hours in a reduced pressure container of 1 torr to form a polycarbonate layer on the surface of the metal powder 32. Fused. After cooling, a CIP treatment was performed in which water was used as a medium in the pressure vessel and the pressure was 800 Mpa. The powder density at this time was 80% when measured by the Archimedes method.

【0026】その後、アルゴンガス雰囲気中で140M
paに加圧し、1000℃で1時間加熱して焼結させ
た。これにより、引張り強さ700Mpaで気孔率が0
%の焼結体(一体型インペラ)を製造することができ
た。なお、同じ形状を同じ材質で鋳造したものの引張り
強さは、600Mpa程度であった。
Then, 140 M in an argon gas atmosphere
It was pressurized to pa and heated at 1000 ° C. for 1 hour to be sintered. This gives a tensile strength of 700 MPa and a porosity of 0.
% Sintered body (integrated impeller) could be produced. The tensile strength of the same shape cast with the same material was about 600 MPa.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
例えば光造形法等によって比較的容易にかつ正確な形状
寸法で作成した多孔質樹脂容器をもとに気液密性の樹脂
容器が形成し、これによって静圧成形処理を行うので、
高価な金型やゴム型を作成することなく、しかも、複雑
な形状であっても仕上げ工程を少なくして簡単な工程で
焼結体製品を製造することができる。
As described above, according to the present invention,
For example, a gas-liquid-tight resin container is formed based on a porous resin container that is relatively easily and accurately formed by a stereolithography method, etc.
It is possible to manufacture a sintered body product in a simple process without forming an expensive mold or a rubber mold and reducing the finishing process even with a complicated shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の多孔質樹脂容器の一例を
示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a porous resin container according to an embodiment of the present invention.

【図2】多孔質樹脂容器の作成工程を示す概略図であ
る。
FIG. 2 is a schematic diagram showing a process of producing a porous resin container.

【図3】多孔質樹脂容器内に金属粉末を充填した状態の
断面図である。
FIG. 3 is a cross-sectional view of a porous resin container filled with metal powder.

【符号の説明】[Explanation of symbols]

10,12 多孔質樹脂容器 10a,12a 内部空間 20 レーザ選択焼結装置 24 熱可塑性樹脂 32 金属粉末(粉末焼結材料) 40,42 無孔質の樹脂容器 10,12 Porous resin container 10a, 12a internal space 20 Laser selective sintering equipment 24 Thermoplastic resin 32 metal powder (sintered powder material) 40,42 Non-porous resin container

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱可塑性樹脂の粒体又は粉末から多孔質
樹脂容器を作成する工程と、 この多孔質樹脂容器の内部に粉末焼結材料を充填する工
程と、 内部に粉末焼結材料を充填した多孔質樹脂容器を無酸化
雰囲気中で加熱し、熱可塑性樹脂の粒体又は粉末どうし
を融合させて気液密性の樹脂容器とする工程と、 前記気液密性の樹脂容器を静圧成形処理を施して内部の
粉末焼結材料の密度を高める工程と、 前記圧縮された粉末焼結材料を焼結させて焼結体を製造
する工程とを有することを特徴とする焼結体の製造方
法。
1. A step of forming a porous resin container from granules or powders of a thermoplastic resin, a step of filling the inside of the porous resin container with a powdered sintering material, and a filling of the inside thereof with a powdered sintering material. The porous resin container is heated in a non-oxidizing atmosphere, and the thermoplastic resin particles or powders are fused together to form a gas-liquid tight resin container, and the gas-liquid tight resin container is subjected to static pressure. And a step of increasing the density of the powdery sintered material inside by performing a molding process, and a step of sintering the compressed powdery sintered material to produce a sintered body. Production method.
【請求項2】 多孔質樹脂容器を作成する工程におい
て、迅速模型製造方法を用いることを特徴とする請求項
1に記載の焼結体の製造方法。
2. The method for producing a sintered body according to claim 1, wherein a rapid model production method is used in the step of producing the porous resin container.
【請求項3】 無酸化雰囲気中で加熱する工程を、真空
雰囲気中で行なうことを特徴とする請求項1に記載の焼
結体の製造方法。
3. The method for producing a sintered body according to claim 1, wherein the step of heating in a non-oxidizing atmosphere is performed in a vacuum atmosphere.
【請求項4】 多孔質樹脂容器を複数に分割して作成
し、分割部分の開口部から粉末焼結材料を充填し、該開
口部を接合してから無酸化雰囲気中で加熱することを特
徴とする請求項1に記載の焼結体の製造方法。
4. A porous resin container is divided into a plurality of pieces, which are filled with a powdered sintered material through the openings of the divided parts, and the openings are joined together before heating in a non-oxidizing atmosphere. The method for producing a sintered body according to claim 1.
JP29631297A 1997-10-14 1997-10-14 Manufacturing method of sintered body Expired - Lifetime JP3398026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29631297A JP3398026B2 (en) 1997-10-14 1997-10-14 Manufacturing method of sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29631297A JP3398026B2 (en) 1997-10-14 1997-10-14 Manufacturing method of sintered body

Publications (2)

Publication Number Publication Date
JPH11117003A JPH11117003A (en) 1999-04-27
JP3398026B2 true JP3398026B2 (en) 2003-04-21

Family

ID=17831926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29631297A Expired - Lifetime JP3398026B2 (en) 1997-10-14 1997-10-14 Manufacturing method of sintered body

Country Status (1)

Country Link
JP (1) JP3398026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236953A (en) * 2014-01-23 2014-12-18 株式会社Mole’S Act Golf club head

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857103B2 (en) * 2006-12-25 2012-01-18 株式会社アスペクト Powder sintering additive manufacturing apparatus and powder sintering additive manufacturing method
JP5425309B2 (en) 2009-09-21 2014-02-26 サン−ゴバン パフォーマンス プラスティックス コーポレイション Method of forming an article from a non-melt processable polymer and article formed thereby
JP6912586B2 (en) * 2017-09-14 2021-08-04 東邦チタニウム株式会社 Manufacturing method of titanium or titanium alloy green compact
JP6987718B2 (en) * 2018-08-23 2022-01-05 東邦チタニウム株式会社 Method for producing green compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236953A (en) * 2014-01-23 2014-12-18 株式会社Mole’S Act Golf club head

Also Published As

Publication number Publication date
JPH11117003A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
Jandyal et al. 3D printing–A review of processes, materials and applications in industry 4.0
US6827988B2 (en) Process and a device for producing ceramic molds
Shellabear et al. DMLS-Development history and state of the art
US20200338818A1 (en) Method and apparatus for additive manufacturing
JP2010515829A (en) Ceramic composite molded body and / or powder metallurgy composite molded body and method for producing the same
CN112789130B (en) Method for producing a counterform and method for producing a component with a complex shape using such a counterform
WO2019191299A1 (en) In situ partially degradable separation interface for fabrication of complex near net shape objects by pressure assisted sintering
JP3398026B2 (en) Manufacturing method of sintered body
CN101391896A (en) Quick-speed manufacturing method of complicated ceramic
CA2250955C (en) Net shaped dies and molds and method for producing the same
JP2006257463A (en) Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor
JPH09324202A (en) Sintered die for forming and forming thereof
TWI395662B (en) Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold
JPH08134504A (en) Production of precision parts by powder curing
RU2641683C1 (en) Method of producing ceramic products of complex volume form
Lu Preliminary mechanical characterization of the low-cost metal 3D printing
US20220203454A1 (en) Manufacturing method with additive component production and post-processing
JPH10193036A (en) Manufacture of mold
JP2000072556A (en) Powder sintered compact by injection molding and its production
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
CN113573865B (en) Resin molding method
JP2000144207A (en) Centrifugally forming body, centrifugally formed sintered body, and their manufacture
CN113560578A (en) Forming method of temporary metal mold
JPH08117247A (en) Manufacture of powder-sintered dental inlay
JPH08127802A (en) Production of precision parts by powder hardening

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term