JPH10193036A - Manufacture of mold - Google Patents

Manufacture of mold

Info

Publication number
JPH10193036A
JPH10193036A JP8358241A JP35824196A JPH10193036A JP H10193036 A JPH10193036 A JP H10193036A JP 8358241 A JP8358241 A JP 8358241A JP 35824196 A JP35824196 A JP 35824196A JP H10193036 A JPH10193036 A JP H10193036A
Authority
JP
Japan
Prior art keywords
mold
raw material
layer
material grain
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8358241A
Other languages
Japanese (ja)
Other versions
JP3499390B2 (en
Inventor
Hirokazu Takayama
博和 高山
Toshiyuki Ogawa
俊之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP35824196A priority Critical patent/JP3499390B2/en
Publication of JPH10193036A publication Critical patent/JPH10193036A/en
Application granted granted Critical
Publication of JP3499390B2 publication Critical patent/JP3499390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber

Abstract

PROBLEM TO BE SOLVED: To precisely manufacture a mold having complicate shape without using a pattern by forming raw material grain coating resin on the surface of a core as laminated state, irradiating this formed material with a beam having a prescribed pattern, melt-sticking the coated layer of the raw material grain, forming mold thin piece and laminating these mold thin pieces. SOLUTION: The coating layer composed of a thermal plastic resin is arranged on the peripheral by using the molding sand as a core. This raw material grain is filled to a prescribed thickness in a chamber 5 of an optical molding device 4 to form the raw material grain layer 6. A controller calculates a shape sliced to the thickness corresponding to the thickness of the raw material grain layer 6 and control signal is transmitted to a laser between irradiation device 7 so as to execute the laser beam scanning along a pattern observing this shape as the plane state. The raw material grain layer 6 is irradiated with the laser beam from a laser beam source 7a in a laser irradiation device 7 through a mirror 7b. The coated layer of the raw material grain layer 6 is melted to form the melt-sticking part and the mold thin piece 7 is formed. On this layer, the raw material grain layer 6 is laminated and irradiated with the laser beam. This process is repeated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ポンプの
羽根等の比較的複雑な形状の鋳造品を鋳造する場合に使
用して最適な鋳型の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a mold most suitable for casting a casting having a relatively complicated shape such as a pump blade.

【0002】[0002]

【従来の技術】回転機械の羽根車のような複雑な形状を
有する物品を鋳造する場合は、中子と主型を複雑に組み
合わせることが必要となる。このような鋳型の製造方法
としては、(1)造形すべき形状に形成した木型から主
型、中子を作成する、という従来の方法に加え、(2)
発泡性ポリウレタン等を製品形状に併せて成形し、これ
を鋳物砂中に埋め込んで、直接ポリウレタン上に注湯す
る(ロストフォーム法)、(3)消失性模型を作成し
て、これの周囲にシェルを付け、その後模型を消失させ
て鋳型とする方法が開発されている。
2. Description of the Related Art When casting an article having a complicated shape such as an impeller of a rotary machine, it is necessary to combine a core and a main mold in a complicated manner. As a method of manufacturing such a mold, in addition to the conventional method of (1) creating a main mold and a core from a wooden mold formed into a shape to be formed, (2)
A foamable polyurethane or the like is molded according to the product shape, embedded in molding sand, and poured directly onto the polyurethane (lost foam method). A method has been developed in which a shell is attached, and then the model is erased and used as a mold.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来例にあっては、 (1)木型を作成する手間がかかる (2)模型消失時の鋳型割れを考慮する必要があり、鋳
造方案の作成及び消失そのものに手間がかかる (3)シェル作成時の砂付け作業及び砂付け後の乾燥に
手間がかかり、相当の時間を要するといった問題があっ
た。
However, in the conventional example described above, (1) it takes time and effort to create a wooden mold; (2) it is necessary to consider a mold crack when the model disappears, so that a casting method is created. (3) Sanding work at the time of shell making and drying after sanding are time-consuming and require considerable time.

【0004】本発明は上記事情に鑑みて為されたもの
で、造形すべき形状に沿ったキャビティを有する従来の
鋳型を使用することなく、寸法精度の高い鋳造品を得る
ことができる鋳型の製造方法を提供することを目的とす
る。
[0004] The present invention has been made in view of the above circumstances, and is a method of manufacturing a mold capable of obtaining a cast product having high dimensional accuracy without using a conventional mold having a cavity along a shape to be formed. The aim is to provide a method.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、請求項1に記載の発明
は、コアの表面に樹脂の被覆層を有する原料粒子を用意
する工程と、該原料粒子を層状にし、これに所定のパタ
ーンで光を照射して少なくとも一部の原料粒子の被覆層
どうしを融着させて鋳型薄片を形成する工程と、上記鋳
型薄片を積層した積層鋳型を構成する工程とを有するこ
とを特徴とする鋳型の製造方法である。
Means for Solving the Problems The present invention has been made to solve the above problems, and the invention according to claim 1 is a method for preparing raw material particles having a resin coating layer on the surface of a core. A step of forming the mold particles by laminating the material particles, irradiating the material particles with light in a predetermined pattern, and fusing the coating layers of at least some of the material particles to form a mold flake; And a step of forming a mold.

【0006】これにより、まず二次元的な鋳型薄片(鋳
型要素)を作成し、これを積層することで、粉末状の原
料から直接的に三次元的な鋳型が作成される。光の照射
は、光の走査(スキャンニング)により任意のパターン
で、例えば、コンピュータによる制御で行なうことがで
きるので、複雑なパターンを有する鋳型を手間をかけず
に製造することができる。その際のデータの入力も、C
AD(computer aideddesign)やCAM(computer aid
ed manufacturing)のデータをそのまま用いることがで
きる。
[0006] Thus, first, a two-dimensional mold flake (mold element) is prepared and laminated, whereby a three-dimensional mold is prepared directly from a powdery raw material. Light irradiation can be performed in an arbitrary pattern by light scanning (scanning), for example, by control by a computer, so that a mold having a complicated pattern can be manufactured without trouble. The data input at that time is also C
AD (computer aided design) or CAM (computer aided design)
ed manufacturing) data can be used as it is.

【0007】この発明では、鋳型の構成材料に樹脂がバ
インダーとして含まれており、これは鋳造の際の熱によ
って分解するが、鋳型表面が鋳造金属の表面のシェル層
ができるまで維持されればよく、それは原料の素材の選
択や密度の調整で可能である。逆に、このような反応に
よる鋳型の剥離性の良さを有効に利用することもでき
る。光としては、指向性の強いレーザ光が好適である。
In the present invention, a resin is contained as a binder in the constituent material of the mold, which is decomposed by heat during casting. However, if the mold surface is maintained until a shell layer on the surface of the cast metal is formed. Often, this can be done by selecting the raw material and adjusting the density. Conversely, the good removability of the mold due to such a reaction can also be used effectively. As the light, laser light having strong directivity is preferable.

【0008】請求項2に記載の発明は、下層の上記鋳型
薄片の上に原料粒子層を供給し、光を照射して上層の鋳
型薄片を形成し、この工程を順次繰り返して上記積層鋳
型を形成することを特徴とする請求項1に記載の鋳型の
製造方法である。これは、例えば、従来用いられている
光造形装置によって行なうことができる。鋳型薄片作成
工程と積層工程とは別に行ってもよいが、このようにす
ることにより、工程が簡単になり、手間を大幅に省くこ
とができる。
According to a second aspect of the present invention, a raw material particle layer is supplied onto the lower mold flake, and the layer is irradiated with light to form an upper mold flake. The method for producing a mold according to claim 1, wherein the mold is formed. This can be performed by, for example, a conventionally used stereolithography apparatus. The mold flake production step and the lamination step may be performed separately, but this makes the process simpler and can save a lot of time and effort.

【0009】請求項3に記載の発明は、さらに、上記積
層鋳型を補強する補強工程を行なうことを特徴とする請
求項1に記載の鋳型の製造方法である。これにより、大
型物品の鋳造が可能となり、また、安全性が高められ
る。逆に、積層鋳型自体には強度を負担させる必要がな
いので、この部分の厚さを小さくして光照射工程の簡単
化をはかることもできる。補強方法としては、積層鋳型
の外側に補強層や補強枠を設ける、積層鋳型に補強剤を
含浸させる方法等がある。
According to a third aspect of the present invention, there is provided the method of manufacturing a mold according to the first aspect, further comprising a step of reinforcing the laminated mold. Thereby, casting of a large-sized article is attained and safety is improved. Conversely, since it is not necessary to bear the strength on the laminated mold itself, the thickness of this portion can be reduced to simplify the light irradiation step. Examples of the reinforcing method include a method of providing a reinforcing layer and a reinforcing frame outside the multilayer mold, a method of impregnating the multilayer mold with a reinforcing agent, and the like.

【0010】請求項4に記載の発明は、中子と主型とを
同一の工程で形成することを特徴とする請求項1に記載
の鋳型の製造方法である。中子も照射工程で鋳型薄片に
直接パターニングして形成することができる。中子を支
持する支持部をやはり光照射によるパターニングで形成
してもよい。
According to a fourth aspect of the present invention, there is provided the method of manufacturing a mold according to the first aspect, wherein the core and the main mold are formed in the same step. The core can also be formed by directly patterning the mold flakes in the irradiation step. The support for supporting the core may also be formed by patterning by light irradiation.

【0011】請求項5に記載の発明は、コアの表面に樹
脂の被覆層を有する原料粒子を素材とし、互いに隣接す
る原料粒子の上記被覆層どうしを融着させて形状を維持
するように構成されていることを特徴とする鋳型であ
る。
According to a fifth aspect of the present invention, raw material particles having a resin coating layer on the surface of a core are used as a raw material, and the coating layers of adjacent raw material particles are fused together to maintain the shape. It is a mold characterized by being performed.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。先ず、図2(a)に示す
ように、鋳物砂1をコアとなし、この周囲に、例えば1
00〜150℃で互いに融着する熱可塑性樹脂からなる
被覆層2を被覆した原料粒子3を用意する。鋳物砂1の
素材としては、シリカ、ジルコンサンド、クロマイト等
が用いられ、平均粒子径は30〜40μm程度、被覆層
2の素材としては、ポリカーボネート、ナイロン、ポリ
ウレタン等が用いられ、被覆厚さは1〜10μm程度が
好適である。
Embodiments of the present invention will be described below with reference to the drawings. First, as shown in FIG. 2 (a), casting sand 1 is used as a core,
Raw material particles 3 coated with a coating layer 2 made of a thermoplastic resin fused to each other at 00 to 150 ° C. are prepared. As a material of the casting sand 1, silica, zircon sand, chromite, or the like is used. The average particle diameter is about 30 to 40 μm. As a material of the coating layer 2, polycarbonate, nylon, polyurethane, or the like is used. About 1 to 10 μm is preferable.

【0013】このように用意した原料を、図1(a)に
示すように、光造形装置4のチャンバ5内に所定の厚
さ、例えば0.1mmの厚さで均一に充填して、原料粒
子層6を形成する。この光造型装置4は、チャンバ5の
上方に配置したレーザ照射装置7と、図示していない制
御装置を備えており、制御装置の記憶部には、あらかじ
め製造すべき鋳型の形状が例えば数値データとして記憶
されている。
As shown in FIG. 1A, the raw material thus prepared is uniformly filled into a chamber 5 of a stereolithography apparatus 4 with a predetermined thickness, for example, a thickness of 0.1 mm. The particle layer 6 is formed. The optical molding device 4 includes a laser irradiation device 7 disposed above the chamber 5 and a control device (not shown). The storage unit of the control device stores the shape of the mold to be manufactured in advance, for example, by numerical data. It is stored as

【0014】制御装置は、上記原料粒子層6の厚さと対
応する厚さに輪切りした形状を算出し、この形状を平面
視したパターンに沿ってレーザ光スキャンを行なうよう
に、レーザ照射装置7に対して制御信号を送る。レーザ
照射装置7は、例えば、炭酸ガスレーザ発生装置等のレ
ーザ光源7aからレーザ光をミラー7bを介して原料粒
子層6に照射する。レーザ照射を受けた箇所の原料粒子
層6の被覆層2は昇温して可塑性樹脂が部分的に溶融
し、融着部8を形成し、鋳型薄片9が形成される。
The controller calculates the shape of the material particle layer 6 in a circle corresponding to the thickness of the material particle layer 6, and instructs the laser irradiation device 7 to scan the shape with a laser beam along a pattern viewed in plan. Send a control signal to it. The laser irradiation device 7 irradiates a laser beam from a laser light source 7a such as a carbon dioxide laser generator to the raw material particle layer 6 via a mirror 7b. The temperature of the coating layer 2 of the raw material particle layer 6 at the location where the laser irradiation has been performed is raised, and the plastic resin is partially melted to form a fused portion 8, thereby forming a mold flake 9.

【0015】次に、この鋳型薄片9の上に原料を供給し
て同じ厚さの原料粒子層6を形成し、これに上記鋳型薄
片9に続く部分の形状になるようにレーザ照射を行う。
必要に応じてレーザ照射装置7と原料粒子層6の距離を
調整してレーザ光の焦点を調整する。この工程を順次繰
り返すことにより、同図(b)に示すような積層鋳型1
0が作成される。
Next, a raw material is supplied onto the mold flake 9 to form a raw material particle layer 6 having the same thickness, and a laser irradiation is performed on the raw material particle layer 6 so as to have a shape following the mold flake 9.
The focal point of the laser beam is adjusted by adjusting the distance between the laser irradiation device 7 and the raw material particle layer 6 as necessary. By repeating this step sequentially, the laminated mold 1 as shown in FIG.
0 is created.

【0016】このようにして製造された積層鋳型10を
そのまま用いて鋳造を行なうことができる。すなわち、
図3に示すように、その湯口11から溶融金属を注入し
て凝固させ、鋳型10を剥離して、同図(b)に示すよ
うな鋳造品12を製造する。
Casting can be performed using the thus-produced laminated mold 10 as it is. That is,
As shown in FIG. 3, a molten metal is poured from the gate 11 to solidify, the mold 10 is peeled off, and a casting 12 as shown in FIG.

【0017】積層鋳型10は、前述のように、レーザ光
の当たった部位に位置する熱硬化性樹脂の融着部8を介
して原料粒子3どうしを結合して構成されているため、
図2(b)に示すように、互いに隣接する原料粒子3,
3間には空隙Sが存在し、即ち多孔質であり、かつ鋳物
砂1は、被覆層2を介して互いに離間している。しかし
ながら、被覆層2を充分薄く形成することにより、鋳造
の瞬間にはその形状を維持して金属の表面の固化層(シ
ェル)を形成するのに充分な強度を持つような密度とす
ることができる。
As described above, since the laminated mold 10 is formed by bonding the raw material particles 3 through the fusion portion 8 of the thermosetting resin located at the portion irradiated with the laser beam,
As shown in FIG. 2B, the raw material particles 3 adjacent to each other
A gap S is present between 3, that is, porous, and the molding sand 1 is separated from each other via a coating layer 2. However, by forming the coating layer 2 sufficiently thin, it is possible to maintain the shape at the moment of casting and to obtain a density having sufficient strength to form a solidified layer (shell) on the surface of the metal. it can.

【0018】逆に、鋳造の後に、鋳型を結合していた被
覆層2が燃焼又は分解して消失し、形状を維持できなく
なる程度に密度を調整して、鋳造品と鋳型の剥離を容易
にしたり、中子の除去を容易にすることができる。ま
た、このような鋳型の機械的特性や剥離性を調整するた
めに、適当な物質を含浸させるようにしてもよい。ま
た、積層鋳型10の補強のために、周囲に枠や適当な素
材の「たが」を嵌めるようにしてもよい。
Conversely, after casting, the density is adjusted to such an extent that the coating layer 2 bonded to the mold is burned or decomposed and disappears, and the shape cannot be maintained, thereby facilitating separation of the casting from the mold. Or the core can be easily removed. Further, in order to adjust the mechanical properties and releasability of such a mold, an appropriate substance may be impregnated. In addition, a frame or an appropriate material “haga” may be fitted around the multilayer mold 10 for reinforcement.

【0019】図4は、この発明の方法の他の実施の形態
を示すもので、光造形装置4によって製造される積層鋳
型10をキャビティを取り囲む表層のみとし、その周囲
にバックアップ層13を形成して補強するようにしたも
のである。この実施の形態では、バックアップ層13
は、容器14の内面と積層鋳型10の間の空間を砂や耐
火性のキャスタブル等で充填して形成されているが、素
材や形成方法は任意である。
FIG. 4 shows another embodiment of the method of the present invention, in which the laminated mold 10 manufactured by the stereolithography apparatus 4 has only a surface layer surrounding a cavity, and a backup layer 13 is formed around the surface layer. It is intended to reinforce. In this embodiment, the backup layer 13
Is formed by filling the space between the inner surface of the container 14 and the laminated mold 10 with sand, a fire-resistant castable, or the like, but the material and the forming method are arbitrary.

【0020】この方法においては、鋳型強度の向上によ
る安全性の向上のほかに、積層鋳型10を形成する際の
レーザ照射の工程の手間の軽減、鋳型の均質性の向上等
の効果を得ることができる。積層鋳型10の厚さはシェ
ル形状を維持できる程度に薄くすることができる。
In this method, in addition to the improvement of the safety due to the improvement of the strength of the mold, it is possible to obtain the effects of reducing the time and labor for laser irradiation when forming the laminated mold 10 and improving the homogeneity of the mold. Can be. The thickness of the multilayer mold 10 can be made thin enough to maintain the shell shape.

【0021】図5は、この発明のさらに他の実施例を示
すもので、内部に中子15が、図1に示す方法で、すな
わち、鋳型薄片9に中子部とこれを支持する支持部16
を形成することによって配置されている。また、積層鋳
型10には、下注のための湯道17が形成されている。
このように、本発明の方法では、複雑な形状の鋳型を容
易に形成することができるだけでなく、中子や湯道のよ
うな部分の形成も鋳型の形成と同じ工程で形成できる。
FIG. 5 shows still another embodiment of the present invention, in which a core 15 is provided in a manner shown in FIG. 16
Are arranged. Further, a runner 17 for sub-casting is formed in the laminated mold 10.
As described above, according to the method of the present invention, not only a mold having a complicated shape can be easily formed, but also a portion such as a core or a runner can be formed in the same step as the formation of the mold.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
造形すべき形状の模型を使用することなく、複雑な形状
の鋳型を精度良く、しかも容易に製造することができ、
これによって、加工工数の低減と形状の設計自由度を増
すことができ、精密物品の鋳造や、多品種少量生産の場
合にその品質の向上と製造コストの低下などの優れた効
果を奏する。
As described above, according to the present invention,
Without using a model of the shape to be molded, it is possible to accurately and easily manufacture molds of complicated shapes,
As a result, the number of processing steps can be reduced and the degree of freedom in shape design can be increased, and excellent effects such as improved quality and reduced manufacturing cost can be achieved in the casting of precision articles or in the case of small-lot production of many kinds.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の1つの実施の工程を示す模式図であ
る。
FIG. 1 is a schematic view showing a step of one embodiment of the present invention.

【図2】原料粒子の構造と、その結合工程を示す断面図
である。
FIG. 2 is a cross-sectional view showing a structure of raw material particles and a bonding step thereof.

【図3】積層鋳型の構造と鋳造製品を示す図である。FIG. 3 is a view showing a structure of a laminated mold and a cast product.

【図4】他の実施の形態の鋳型を示す断面図である。FIG. 4 is a cross-sectional view illustrating a mold according to another embodiment.

【図5】さらに他の実施の形態の鋳型を示す断面図であ
る。
FIG. 5 is a sectional view showing a mold according to still another embodiment.

【符号の説明】[Explanation of symbols]

1 鋳物砂(コア) 2 被覆層 3 原料粒子 4 光造形装置 6 原料粒子層 7 レーザ照射装置 8 融着部 9 鋳型薄片 10 積層鋳型 13 バックアップ層 15 中子 16 支持部 DESCRIPTION OF SYMBOLS 1 Foundry sand (core) 2 Coating layer 3 Raw material particle 4 Stereolithography device 6 Raw material particle layer 7 Laser irradiation device 8 Fusion part 9 Mold flake 10 Laminated mold 13 Backup layer 15 Core 16 Support part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 コアの表面に樹脂の被覆層を有する原料
粒子を用意する工程と、 該原料粒子を層状にし、これに所定のパターンで光を照
射して少なくとも一部の原料粒子の被覆層どうしを融着
させて鋳型薄片を形成する工程と、 上記鋳型薄片を積層した積層鋳型を構成する工程とを有
することを特徴とする鋳型の製造方法。
1. A step of preparing raw material particles having a resin coating layer on the surface of a core, forming the raw material particles into a layer, and irradiating the layer with light in a predetermined pattern to form a coating layer of at least a part of the raw material particles. A method for producing a mold, comprising: a step of forming a mold flake by fusing them together; and a step of forming a laminated mold in which the mold flakes are laminated.
【請求項2】 下層の上記鋳型薄片の上に原料粒子層を
供給し、光を照射して上層の鋳型薄片を形成し、この工
程を順次繰り返して上記積層鋳型を形成することを特徴
とする請求項1に記載の鋳型の製造方法。
2. A method of supplying a raw material particle layer onto the lower mold flake, irradiating light to form an upper mold flake, and sequentially repeating this process to form the laminated mold. A method for producing a mold according to claim 1.
【請求項3】 さらに、上記積層鋳型を補強する補強工
程を行なうことを特徴とする請求項1に記載の鋳型の製
造方法。
3. The method according to claim 1, further comprising performing a reinforcing step of reinforcing the laminated mold.
【請求項4】 中子と主型とを同一の工程で形成するこ
とを特徴とする請求項1に記載の鋳型の製造方法。
4. The method according to claim 1, wherein the core and the main mold are formed in the same step.
【請求項5】 コアの表面に樹脂の被覆層を有する原料
粒子を素材とし、互いに隣接する原料粒子の上記被覆層
どうしを融着させて形状を維持するように構成されてい
ることを特徴とする鋳型。
5. A method in which raw material particles having a resin coating layer on the surface of a core are used as a raw material, and the coating layers of adjacent raw material particles are fused together to maintain a shape. Mold.
JP35824196A 1996-12-27 1996-12-27 Mold production method Expired - Fee Related JP3499390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35824196A JP3499390B2 (en) 1996-12-27 1996-12-27 Mold production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35824196A JP3499390B2 (en) 1996-12-27 1996-12-27 Mold production method

Publications (2)

Publication Number Publication Date
JPH10193036A true JPH10193036A (en) 1998-07-28
JP3499390B2 JP3499390B2 (en) 2004-02-23

Family

ID=18458270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35824196A Expired - Fee Related JP3499390B2 (en) 1996-12-27 1996-12-27 Mold production method

Country Status (1)

Country Link
JP (1) JP3499390B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1292408A1 (en) * 2000-05-24 2003-03-19 Massachusetts Institute Of Technology Molds for casting with customized internal structure to collapse upon cooling and to facilitate control of heat transfer
JP2009050917A (en) * 2008-11-04 2009-03-12 Komatsu Igata Seisakusho:Kk Gypsum mold
JP2011104657A (en) * 1998-11-20 2011-06-02 Rolls-Royce Corp Apparatus for casting mold
GB2485848A (en) * 2010-11-29 2012-05-30 Halliburton Energy Serv Inc Making moulds by 3d printing and making bodies in moulds
GB2515773A (en) * 2013-07-03 2015-01-07 Kevin Smith An improved casting system
EP2947184A1 (en) * 2014-05-09 2015-11-25 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
US9718127B2 (en) 2014-05-09 2017-08-01 United Technologies Corporation Method for forming components using additive manufacturing and re-melt

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104657A (en) * 1998-11-20 2011-06-02 Rolls-Royce Corp Apparatus for casting mold
JP2011140068A (en) * 1998-11-20 2011-07-21 Rolls-Royce Corp Method for production of cast component
JP2011148003A (en) * 1998-11-20 2011-08-04 Rolls-Royce Corp Method for manufacturing apparatus for casting mold
EP1292408A1 (en) * 2000-05-24 2003-03-19 Massachusetts Institute Of Technology Molds for casting with customized internal structure to collapse upon cooling and to facilitate control of heat transfer
EP1292408A4 (en) * 2000-05-24 2008-04-02 Massachusetts Inst Technology Molds for casting with customized internal structure to collapse upon cooling and to facilitate control of heat transfer
JP2009050917A (en) * 2008-11-04 2009-03-12 Komatsu Igata Seisakusho:Kk Gypsum mold
GB2485848A (en) * 2010-11-29 2012-05-30 Halliburton Energy Serv Inc Making moulds by 3d printing and making bodies in moulds
GB2485848B (en) * 2010-11-29 2018-07-11 Halliburton Energy Services Inc Improvements in heat flow control for molding downhole equipment
GB2515773A (en) * 2013-07-03 2015-01-07 Kevin Smith An improved casting system
EP2947184A1 (en) * 2014-05-09 2015-11-25 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
US9435211B2 (en) 2014-05-09 2016-09-06 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
US9718127B2 (en) 2014-05-09 2017-08-01 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
US10570744B2 (en) 2014-05-09 2020-02-25 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
EP2947184B1 (en) 2014-05-09 2020-07-15 United Technologies Corporation Method for forming components using additive manufacturing and re-melt

Also Published As

Publication number Publication date
JP3499390B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
US5824250A (en) Gel cast molding with fugitive molds
US7384252B2 (en) Method for producing tire vulcanizing mold and tire vulcanizing mold
US5641448A (en) Method of producing plastic injection molds for prototype parts
EP0555896B1 (en) Method of making a core/pattern combination for producing a gas-turbine blade or component
JP3619191B2 (en) Method for manufacturing stereolithographic articles having regions of different density
CN105121135A (en) Method for casting a construction element
KR20050058404A (en) Casting process and articles for performing the same
JP2010121187A (en) Three-dimensional shaped article and method for producing the same
JPH10193036A (en) Manufacture of mold
JPH0747443A (en) Lost wax casting method
US20060119017A1 (en) Method for making ceramic work piece and cermet work piece
JP2000301289A (en) Production of lost form pattern
TWI595945B (en) Using 3D printing shell mold sand molding method
JP2930354B2 (en) Casting method using photocurable resin prototype
JPH09136139A (en) Laminating and forming method of sand mold, and manufacture of casting using it
US20060231975A1 (en) Method of producing metal mould cavities be means of ceramic and metal power sintering
JPH11262657A (en) Laser microlaminated layer molding method using fine powder tape and apparatus therefor
JP2821518B2 (en) Casting method using outer resin mold
GB2319205A (en) Process for the manufacture of a mould tool
JPH1177238A (en) Lost foam pattern for casting
JP2000234103A (en) Manufacture of mold by optical molding
JPH0976046A (en) Method for molding shell mold
JP3556091B2 (en) Mold manufacturing method
JPH10323862A (en) Mold for injection molding
CN116372113B (en) Sand mould printing interlayer enhanced magnetic induction balanced load heating method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees