TW201219343A - Method of fabricating article of metal-ceramic composite with gradient composition - Google Patents

Method of fabricating article of metal-ceramic composite with gradient composition Download PDF

Info

Publication number
TW201219343A
TW201219343A TW99138092A TW99138092A TW201219343A TW 201219343 A TW201219343 A TW 201219343A TW 99138092 A TW99138092 A TW 99138092A TW 99138092 A TW99138092 A TW 99138092A TW 201219343 A TW201219343 A TW 201219343A
Authority
TW
Taiwan
Prior art keywords
powder
layer
alloy
slurry
solid
Prior art date
Application number
TW99138092A
Other languages
Chinese (zh)
Inventor
Fwu-Hsing Liu
Original Assignee
Univ Lunghwa Sci & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Lunghwa Sci & Technology filed Critical Univ Lunghwa Sci & Technology
Priority to TW99138092A priority Critical patent/TW201219343A/en
Publication of TW201219343A publication Critical patent/TW201219343A/en

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

The invention provides a method of fabricating an article which is particularly formed of metal-ceramic composite with gradient composition. A green body of the article is constituted by a plurality of successive solid films. Each solid film has uniform composition. Moreover, composition of the solid films is from pure ceramic, gradually with addition of metal or alloy, and finally transited to metal or alloy matrix.

Description

201219343 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種製造一工件之方法,特別地,該工件 具有梯度成份金屬陶瓷複合材料(metal-ceramic comP〇site with gradient composition)。 【先前技術】201219343 VI. Description of the Invention: [Technical Field] The present invention relates to a method of manufacturing a workpiece, in particular, the workpiece has a metal-ceramic comPsite with a gradient composition. [Prior Art]

金屬或合金材料有較高的強度、韌性與延展性,並且具 有較佳的機械切削加工性。利用金屬或合金材料能夠製造成 具複雜形狀的工件。此外,陶竟材料有高硬度與較佳的化學 性質,能夠财磨耗、财面溫、耐腐钱,等。但是,利用陶究 材料製程的工件容易脆裂,切削加工性不良。所以,結合金 屬(或合金材料)與陶瓷材料的優點之功能梯度材料 Cfimetionally graded material,FGM)被研發、提出。例如,内 4為金屬成份的工件,讓其有較佳的加工性能夠製造 狀’並且工件外層表面附著喊材料,可以财磨耗、 劑、腐韻等惡劣環境。功能梯度材料是指由兩種 材Ϊ結構、性能與組成的連續變化,來達到 ΙΐίΪΓίΐ ’其材料性質分佈為某-空間座標的函數。 溫性,了材料本身的強度、恤及耐高 類似具有功能梯度材料特性或 一成份片狀材料,利用= 往是將兩片以上的單 以達到某些特殊功能。稞次黏、4專方法使其結合在一起, 傳統製造金屬_陶賴合材料的方財:滲透法、散佈 201219343 法、粉末冶金法、擴散結合法,等。運用快速原型(Rapid Prototyping,RP)成型技術也可以製作複合材料工件,其中可 以製作金屬-陶瓷複合材料工件的製程略述如下。 八 例如’ Austin大學的Beaman教授運用選擇性雷射燒仕 (selective laser sintering,SLS)技術來製作金屬_陶瓷複合ϋ 件’他利用熱塑性的無機材料包覆金屬或喊粉末以製 屬-陶瓷複合材料工件。 此外,有先前技術運用熔解沉積法(fijsed d modeling,FDM)技術來製作金屬_陶瓷複合材料工 Π技術先f ί作具有_的喊工件,馳姆滲法^ ,金屬,喊多!S(mumte_aluminum)金屬·喊複合材料工 件。 此外,财先前技術運用三維印刷( 印刷技術將黏結劑喷於陶莞或金屬 ::件如此黏結即可製作成金屬、陶曼、或金= 術’適合將低炫點的金屬(例如,紹透^ ^ ,中。三維印刷技術係利用黏結 == :起,所使用的黏結劑需具有良好的流動性, 結性差,卿成。$的強麵。 U雜度低黏 特性ϋίί 合㈣且具有魏梯度材料 工件之方 因此,本發明之-料在於提供—種製造 4 201219343 法’特別地’該工件具有梯度成份金屬陶瓷複合材料。並 且’根據本發明知製造方法可以避免上述問題發生。 此外’一般工件大多因外觀的複雜,在初次成型後,還 需要後續的加工。對於用金屬陶瓷複合材料所製造的工件而 言,其在加工上仍有其困難。 快速原型(Rapid pr〇t〇typing,RP)成型技術使用層狀加工 技術’能夠依照CAD所建構的立體幾何圖形,自動製造出 3Ε>+實體物件的技術。快速原型成型技術可克服工具機加工無Metal or alloy materials have higher strength, toughness and ductility, and have better mechanical machinability. Metal or alloy materials can be used to produce workpieces with complex shapes. In addition, Tao Jing materials have high hardness and better chemical properties, which can save money, financial surface, and resist money. However, the workpiece using the ceramic material process is susceptible to brittle fracture and poor machinability. Therefore, Cfimetionally graded material (FGM), which combines the advantages of metal (or alloy material) and ceramic materials, was developed and proposed. For example, the inner 4 is a metal component workpiece, so that it has better processability to manufacture the shape and the surface of the outer surface of the workpiece is attached with shouting materials, which can be used for harsh environments such as wear, agent, and rot. Functionally graded materials are continuous changes in the structure, properties, and composition of two materials to achieve a function of the distribution of material properties to a space-space coordinate. Temperament, the strength of the material itself, the shirt and the high resistance are similar to those of functionally graded materials or a sheet of material. With = more than two sheets to achieve some special functions.稞 黏 、, 4 special methods to make them together, the traditional manufacture of metal _ Tao Lai materials of the wealth: penetration method, dissemination 201219343 method, powder metallurgy method, diffusion bonding method, and so on. Composite workpieces can also be fabricated using Rapid Prototyping (RP) forming techniques. The process for making metal-ceramic composite parts is outlined below. For example, Professor Beaman of Austin University uses selective laser sintering (SLS) technology to make metal-ceramic composites. He uses thermoplastic inorganic materials to coat metal or shout powder to make a ceramic-ceramic composite. Material workpiece. In addition, there are prior techniques using the fissed d modeling (FDM) technique to produce metal-ceramic composites. The first technique is to use the shouting artifacts with the _ shouting method, the chim osmosis method ^, the metal, shouting more! S (mumte_aluminum) metal shouting composite parts. In addition, the financial prior art uses three-dimensional printing (printing technology to spray the adhesive on the pottery or metal:: the piece can be glued to make metal, taman, or gold = technology 'suitable for low-focus metal (for example, Through the ^ ^, medium. Three-dimensional printing technology using the bonding ==: from the use of the adhesive needs to have good fluidity, poor knot, Qing Cheng. $ strong surface. U-hetero-viscosity characteristics ϋ ίί (4) and The invention has the principle of a WE-gradient material workpiece. Therefore, the present invention is to provide a manufacturing method. 4 201219343 The method 'specially' has a gradient composition cermet composite material. And the manufacturing method according to the present invention can avoid the above problems. In addition, most of the general workpieces are complicated by the appearance. After the initial molding, subsequent processing is required. For the workpieces made of cermet composites, it still has difficulty in processing. Rapid Prototyping (Rapid pr〇t 〇typing, RP) forming technology uses layered processing technology to automatically create 3Ε>+ physical objects in accordance with CAD's solid geometry. Rapid prototyping Molding technology can overcome tool machining

法完成的幾何形狀死角,做到自動化實體自由形狀製造(SolidThe geometric shape of the dead angle is completed, and the automated solid shape manufacturing is done (Solid

Freef_ Fabrication,SFF),而且成型的原型沒有形狀的限 制。所以’快速原型成型技術特別適合用來成型形狀複雜的 工件。 快速原型成型設備所使用的成型工具分為兩大系統:雷 射系統以及噴嘴系統。一般利用喷嘴系統的快速原型成型設 備會有加工速度慢、材料容易阻塞,等缺點。舉例說明,屬 於,嘴系統之溶解沉積法(Fuse(j Deposition Modeling, FDM)裝 置ί將ΐ條狀的原料加熱成半熔化的狀態,再經由喷嘴擠出 豐成型’其製程所需的時間較長、效率差。同樣屬於 噴,系1之多噴嘴模型堆疊(Multi-Jet Modeling,MJM)裝置利 =多喷嘴把騎娜城⑽覆於粉絲的材料上,黏結劑能 ^把顆粒狀粉輕結起來,但絲結劑容易阻塞。由於雷射 5能2?整的範圍較大,一般而言,只要是粉末狀的原 速原②成型設備都可關用雷射光將其純燒結或熔 結烕型。 型技=優另:於提供一種利用快速原型成 杜造—外觀複雜讀之方法,特別地,該工 件具有梯度紅金屬喊複合材料。 201219343 【發明内容】 根據本發明之一較佳具體實施例製造一工件的製造方 法’特別地’其所製造的工件具有梯度成份金屬陶瓷複合材 料。該工件之一生链(green body)係由N層連續的固態薄層 (solid film)所構成,其中N為一大於}的整數。根據本發明 之製造方法首先將一陶竟粉末(ceramic p0Wder)與一黏結劑依 一比例均勻混合且攪拌成一漿料(sluny)。接著,該製造方法 係塗佈第一層漿料於一工作台上。接著,該製造方法係根據 對應該第一層固態薄層之一截面圖案,以一雷射光束照射該 第一層漿料之部分漿料,其中該第一層漿料被該雷射光束照 射之部分漿料被加熱使該黏結劑產生一化學凝膠反應 (chemical gelation reaction)進而形成該第一層固態薄層。接 著,該製造方法係根據第/層固態薄層之一成分,加入一金 屬粉末(metal powder)或一合金粉末(alloy powder)至該漿料 内,其中ί係範圍從2至N中之一整數指標。接著,該製造 方法係塗佈第/層漿料於第(/―丨)層漿料及固態薄層上。接著, 3玄製造方法係根據對應該第z•層固態薄層之一戴面圖案,以 s亥雷射光束照射該第/層漿料之部分漿料,其中該第/層漿料 被該雷射光束照射之部分漿料被加熱使該黏結劑產生該化學 凝膠反應進而形成該第/層固態薄層,接著,該製造方法係 重複加入S亥金屬粉末或該合金粉末至該聚料内之步驟、塗佈 第Z層漿料之步驟以及以該雷射光束照射該第z•層漿料之步 驟,ΐ至完成該N層固態薄層為止。接著,該製造方法係去 除附著於該N層固態薄層之殘留漿料,以獲得該生坯。最 後,該製造方法係烘乾該生坯,並對進行該生坯燒結,即完 成具有梯度成份金屬陶瓷複合材料之該工件。 根據本發明之另一較佳具體實施例製造一工件的製造方 法,特別地,其所製造的工件具有梯度成份金屬陶瓷複合材 201219343 3為的生N層連續的固態薄層所構成,其中 ,或-合金粉末與i結舰— 屬 =。:該製造方法係塗佈第-層紐於—丄=士: ,造=健佈第_料於第㈣層賴及固ί薄ft ΐ者以應該第z•層固態薄層之一截面圖 層=被該魏光束闕之部錄料被加熱錢黏第 ^化學凝膠反應進而形成該第ζ·層_騎。接著,該製造 =法係重複加人制錄末至該賴内之轉、塗佈第 漿,之步驟以及以難射光束該第z.層祕之步驟,直 ^完成該N層_薄層為止。接著,該製造方_去除附著 =該N層固態薄層之殘留漿料,以獲得該生坯。最後,該製 f法係魏該纽’並對蹄魅域結,即完成具有梯 度成份金屬陶瓷複合材料之該工件。 =一具體實施例中,該陶瓷粉末可以是碳化矽(Sic)粉 f HfcJ太(Tie)粉末、氮化石夕(Si3N4)粉末、氧化紹(Al2〇3)粉 =、二氧化矽(Si〇2)粉末、二氧化鈦(Ti〇2)粉末、氧化銼(Zr〇2) 粉末、碳酸鈉粉末、碳酸鈣粉末、锆鈦酸鉛(ρζτ)粉末、石 墨粉,、碳酸鋇粉末、鈦酸锶鋇粉末、雲母粉末、氧化鉛粉 t、,化鐵粉末、氧化鉀粉末、氧化鋅粉末、三鈣磷酸鹽粉 氫氧基磷灰石粉末、曱殼素粉末、Na2〇粉末、CaO粉 末、?2〇5粉末、Si〇2粉末、MgO粉末’等粉末,或上述材料 201219343 的混合組合之粉末。 於一具體實施例中’該黏結劑可以是氧化矽溶膠(silica sol)、氧化鈦溶膠(titania sol)、氧化鋁溶膠(aiumina s〇1)、氧化 锆溶膠、聚乙烯醇(polyvinyl alcohol,PVA) ’等,或上述黏結 劑的混合組合。 於一具體實施例中,該金屬粉末或該合金粉末可以是鐵 (iron)、銅(copper)、鋁(aluminum)、辞(zinc)、錫(tin)、鉛 (lead)、鈦(titanium)、鈷(cobalt)、鎳(nickel)、鈦(titanium)、銀 (silver)、金(gold)、鎢(tungsten)、鉑(platinum)、鈀 (palladium)、鍅(zirconium)、组(tantalum)、鈦合金系列 (titanium alloys)、鎳鉻合金(nichrome)、鎳鉻鉬鎢合金(Ni-Cr-Mo-W alloy)、錯合金系列(zirconium alloys)、銅錄合金(CuNi alloy)、銅鎳矽合金(CuNiSi alloy)、銅鎳鋅合金(CuNiZn alloy)、銅鎳錫合金(CuNiSn alloy)、銅鉻合金(CuCr alloy)、銅 銀合金(CuAg alloy)、銅鎢合金(CuW alloy)、銅鎳合金(CuNi alloy)、銅錄石夕合金(CuNiSi alloy)、銅鐮鋅合金(CuNiZn alloy)、銅鎳錫合金(CuNiSn alloy)、銅鉻合金(CuCr alloy)、銅 銀合金(CuAg alloy)、黃銅(brass)、—青銅(phosphor bronze)、 鈹銅合金(beryllium copper)、鎳鉻合金(nichrome)、銅鎢合金 (CuW alloy)、不錄鋼系列(stainless steels)等材料所製成的粉 末’或其他商用的金屬或合金所製成的粉末。 與先前技術相較,根據本發明之製造方法可以製造具有 梯度成份金屬陶瓷複合材料之工件。並且,根據本發明所製 造的工件其多層連續的固態薄層可以從純陶瓷成份,逐漸增 加金屬或合金成份的比例以降低陶瓷的比例,最終過渡成為 金屬或合金基底;或是其多層連續的固態薄層可以從金屬或 合金基底,逐漸增加陶瓷成份的比例以降低陶瓷的比例,最 201219343 終過渡成為純陶瓷成份。 關^騎^㈣柯㈣詳述及所 【實施方式】 睛參閱圖一以及圖二A至二D,m ^ - 4θ 4* α- 製造方法1雜造-王件28。社件28具有梯度成$= =複合材^制地,社件28之—生祕由N成層連^Freef_ Fabrication, SFF), and molded prototypes have no shape limitations. So 'rapid prototyping technology is especially suitable for forming complex shapes. The forming tools used in rapid prototyping equipment are divided into two major systems: the laser system and the nozzle system. Rapid prototyping equipment that typically utilizes a nozzle system has disadvantages such as slow processing speeds and easy material blockage. For example, the Fuse (j Deposition Modeling, FDM) device of the nozzle system heats the raw material of the strip into a semi-melted state, and then extrudes through the nozzle to form a molding process. Long, low efficiency. Also belongs to the spray, the multi-Jet Modeling (MJM) device is a multi-jet nozzle. The multi-nozzle is used to cover the material of the fan. The adhesive can light the granular powder. It is easy to block, but the silking agent is easy to block. Because the laser 5 can cover a large range, in general, as long as the powdered original speed original 2 molding equipment can use laser light to purely sinter or melt it. Crust type. Model: Excellent: In addition to providing a method of rapid prototyping, complex appearance reading, in particular, the workpiece has a gradient red metal shouting composite material. 201219343 [Abstract] According to one of the present invention DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a workpiece 'in particular' has a workpiece having a gradient composition cermet composite. One of the green bodies of the workpiece is made of a continuous solid film of N layers. In the manufacturing method according to the present invention, a ceramic p0Wder is uniformly mixed with a binder in a ratio and stirred into a slurry (sluny). Next, the manufacturing method Coating a first layer of slurry on a workbench. The manufacturing method then irradiates a portion of the slurry of the first layer of slurry with a laser beam according to a cross-sectional pattern corresponding to the first layer of the solid layer. And a portion of the slurry irradiated by the laser beam of the first layer of slurry is heated to cause a chemical gelation reaction of the binder to form the first layer of solid thin layer. Then, the manufacturing method According to one component of the first layer of the solid layer, a metal powder or an alloy powder is added to the slurry, wherein the range is from an integer index from 2 to N. Then, The manufacturing method is to apply a first layer slurry to the first (/-) layer slurry and a solid thin layer. Then, the 3 Xuan manufacturing method is based on a wearing pattern corresponding to one of the z-th layer solid layers. Irradiating the first layer with a s-ray laser beam a portion of the slurry of the slurry, wherein a portion of the slurry irradiated by the laser beam is heated to cause the bonding agent to produce the chemical gel reaction to form the first/solid layer, and then the manufacturing The method is the step of repeatedly adding the S-Me metal powder or the alloy powder into the polymer, the step of coating the Z-th layer slurry, and the step of irradiating the z-th layer slurry with the laser beam, to complete the Next, the manufacturing method removes the residual slurry attached to the N-layer solid layer to obtain the green body. Finally, the manufacturing method is to dry the green body and perform the raw The billet is sintered, that is, the workpiece having the gradient composition cermet composite material is completed. According to another preferred embodiment of the present invention, a method of manufacturing a workpiece is constructed, and in particular, the workpiece is formed by a continuous layer of solid N layers of a gradient component cermet composite 201219343 3, wherein Or - alloy powder and i knot ship - genus =. : The manufacturing method is to apply the first layer of the layer to the layer of the solid layer of the z-th layer. = The material recorded by the Wei beam is heated and the second chemical gel reacts to form the third layer. Then, the manufacturing=method repeats the steps of adding the end of the recording to the rotation of the inside, coating the slurry, and the step of forming the n layer with the difficult beam. until. Next, the manufacturer removes the residual slurry of the N-layer solid layer to obtain the green body. Finally, the f-method is Wei's New Zealand's and the hoof charm, that is, the workpiece with the gradient component cermet composite. In a specific embodiment, the ceramic powder may be bismuth carbide (Sic) powder f HfcJ too (Tie) powder, nitrite (Si3N4) powder, oxidized (Al2〇3) powder=, cerium oxide (Si〇) 2) powder, titanium dioxide (Ti〇2) powder, strontium oxide (Zr〇2) powder, sodium carbonate powder, calcium carbonate powder, lead zirconate titanate (ρζτ) powder, graphite powder, barium carbonate powder, barium titanate Powder, mica powder, lead oxide powder t, iron powder, potassium oxide powder, zinc oxide powder, tricalcium phosphate powder, hydroxyapatite powder, chitin powder, Na2 tantalum powder, CaO powder, ? A powder of 2〇5 powder, Si〇2 powder, MgO powder' or the like, or a mixed combination of the above materials 201219343. In one embodiment, the binder may be silica sol, titania sol, alumina sol (aiumina s〇1), zirconia sol, polyvinyl alcohol (PVA). ) 'etc., or a combination of the above binders. In a specific embodiment, the metal powder or the alloy powder may be iron, copper, aluminum, zinc, tin, lead, titanium. , cobalt, nickel, titanium, silver, gold, tungsten, platinum, palladium, zirconium, tantalum Titanium alloys, nichrome, Ni-Cr-Mo-W alloy, zirconium alloys, CuNi alloy, copper nickel CuNiSi alloy, CuNiZn alloy, CuNiSn alloy, CuCr alloy, CuAg alloy, CuW alloy, copper CuNi alloy, CuNiSi alloy, CuNiZn alloy, CuNiSn alloy, CuCr alloy, CuAg alloy Brass, phosphor bronze, beryllium copper, nichrome, copper alloy (CuW alloy), non-recorded steel series (stai Nless steels) powders made from materials such as powders or other commercially available metals or alloys. The manufacturing method according to the present invention can produce a workpiece having a gradient composition cermet composite as compared with the prior art. Moreover, the multilayer continuous solid layer of the workpiece manufactured according to the present invention can gradually increase the proportion of the metal or alloy composition from the pure ceramic component to reduce the proportion of the ceramic, and finally transition to a metal or alloy substrate; or its multilayer continuous The solid thin layer can gradually increase the proportion of ceramic components from the metal or alloy substrate to reduce the proportion of ceramics. The most transitional to 201219343 is pure ceramic composition. [^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The social component 28 has a gradient of $==composite material, and the social component 28 is made up of N layers.

的_薄層所構成,其中N為—自紐。圖二A至二D 繪不運用-快速成型設備2來成型該工件28之生达的成 型不意圖。 如圖一所示,根據本發明之製造方法丨首先係執行步驟 將一陶瓷粉末與一黏結劑依一比例均勻混合且攪拌成一 如圖一所示,根據本發明之製造方法i首先係執行步驟 S10,製備一陶瓷粉末以及一黏結劑。 於一具體實施例中,該陶瓷粉末可以是碳化矽(Sic)粉 末、碳化鈦(TiC)粉末、氮化矽⑶办4)粉末、氧化銘(Ai2〇3)粉 末、二氧化矽(Si〇2)粉末、二氧化鈦(Ti02)粉末、氧化鍅(zrg) 粉末、碳酸納粉末、碳酸鈣粉末、锆鈦酸鉛(PZT)粉末、石 墨粉末、碳酸頻粉末、鈦酸銀鎖粉末、雲母粉末、氧化錯粉 末、氧化鐵粉末、氧化鉀粉末、氧化鋅粉末、三約璘酸鹽粉 末、氫氧基磷灰石粉末、曱殼素粉末、Na20粉末、Ca〇 ^ 末、P2〇5粉末、Si〇2粉末、MgO粉末,等粉末,或上述材& 的混合組合之粉末。陶究粉末的粒徑可視成型工件的尺寸而 201219343 定,例如5/im至45ym。 於一具體實施例中’該黏結劑可以是氧化石夕溶膠(silica sol)、氧化鈦溶膠(titania sol)、氧化銘溶膠(alumina sol)、氧化 锆溶膠、聚乙烯醇(polyvinyl alcohol,PVA)等,或上述黏結劑 的混合組合。 接著,根據本發明之製造方法1係執行步驟S12,將該 陶究粉末與該黏結劑依一比例均勻混合,且授摔成一聚料。 於具體實施例中’陶究粉末與該黏結劑之重量百分比 為 60wt%:40wt% 〜30wt%:70wt%。 於一具體實施例中’該聚料之成份為65〜55wt%陶竟粉 末、40〜30wt%黏結劑以及3〜5wt%懸浮劑。把陶究粉末、黏 結劑與懸浮劑依照比例混合,使用均質機攪拌成為均勻微粒 化的陶究漿料。漿料的黏度約為1500〜6000mPa · s具有適當 流動性與高比例陶瓷成份。該懸浮劑可以是六偏填酸鈉 [(NaP〇3)6]、三聚磷酸鈉(NasPsC^)、微粒雲母粉、聚丙烯酸 (PAA)、聚甲基丙稀酸(PMAA)、聚乙稀亞胺(Pei)和聚甲其雨 烯酸鹽(PMAA-Na,PMAA_NH4)、氧化矽、氧化鈦、&化 錯、黃酸納鹽或黏土,等。 接著,如圖一及圖二A所示,根據本發明之製造方法J 係執行步驟S14,以一塗層裝置22塗佈第一層漿料於一工作 台24上。該工作台24具有一平面,且被致動沿垂直該平面 ^一軸(即平行圖二A中Z軸之一軸)做升降。根據本發明, ^亥塗層裝置22可以包含盛裝毁料SL的漏斗222以及可使漿 料SL均勻分佈於該工作台24上的刮板224(或圓柱狀滾筒 該漏斗222擠送適當的漿料SL,至該工作台24上。該刮板 124將前述之漿料SL·塗佈成均勻的薄層漿料SL·。每一層漿 201219343 料SL的厚度可控制在約〇 lmm。但本發明不以此為限,所需 的塗層厚度可依照工件截面曲線的曲率以及漿料特性而定, 亦即塗層厚度係可變者。例如,當工件截面曲線的曲率愈大 時,塗層厚度則變小。並且本發明亦不以水平或等厚 浆料為限。 ,接著,如圖一及圖二B所示,根據本發明之製造方法夏 係執行步驟S16,根據對應該第一層固態薄層SL,,之一截面 圖案,以一固態薄膜形成裝置26所發射之一雷射光束照射該 第一層漿料SL,之部分漿料SL',其中該第一層漿料被^ 雷射光束照射之部分漿料SL,被加熱使該黏結劑產生一化學^ 膠反應,進而形成該第一層固態薄層SL”(圖二B中深色部 分)。也就是說,黏結劑脫水而形成鏈狀分子結構(例如,% 〇_Si、A1-0-A1),再進一步發展為網狀分子結構,當其成長觸 及陶究粉末時’即將陶瓷粉末緊密包覆並黏結在一起。而相 鄰層間亦以該黏結劑產生化學凝膠反應而黏結在一起。於化 學凝膠反應完成後,即形成三維多孔性的生坯。由於未使用 有機黏結劑,因此在去除餘料和後續的燒結製程中不會產生 有害氣體。由於使該黏結劑產生化學凝膠反應所需能量遠小 於燒結陶瓷粉末所需能量,因此可大幅降低工件收縮及變 的影響。 .、 如圖二B所示,該固態薄膜形成裝置26包含一雷射光 ^產生裝置262、一導光機構264以及一聚焦鏡266。該雷射 光束產生裝置262用以產生一雷射光束,例如,c〇2雷射、 Nd:YAG雷射、He-Cd雷射、Ar雷射或UV雷射。於一具體 實施例中,該雷射光束產生裝置262可以加裝溫度感測/器, 當溫度感測器偵測到用來冷卻該雷射光束產生裝置262之冷 卻水溫度超過25°C時,該雷射光束產生裝置262即停止雷射 光的激發。 201219343 與先前技術利用振鏡式掃描讓雷射光束聚焦在每一層漿 料SL’方法不同,該導光機構264與該聚焦鏡266根據對應每 一層固態薄層SL”之截面圖案被致動平行如圖二B所示之χ_ Υ平面移動。該導光機構264用以導引該雷射光束至該聚焦 鏡266。該聚焦鏡266用以聚焦該雷射光束至每一層漿料 su。於一具體實施例中,雷射光束的掃描速率為85mm/s、 掃描間距為0.1mm,雷射功率為1〇w。於一具體實施例中, 於,聚焦鏡266處可以加裝一喷氣管。喷氣管用以導入低壓 空氣並經由其喷嘴快速喷出,能夠防止進行#射光束掃描時 陶瓷漿料濺散附著於聚焦鏡片上,影響雷射光束掃描的精確 度。 —同樣示於圖二B,根據本發明之導光機構264包含多個 固定的反射鏡以及能被致動平行如圖二B所示之χ_γ平面移 動的反射鏡。例如,圖二中標示264a及264b標號代表固定 的反射鏡,標示264c標號代表能被致動沿平行圖二B所示之 X軸之一軸移動的反射鏡,標示264d號代表能跟隨反射鏡 264c被致動並能沿平行圖二B所示之γ軸之一轴移動的反射 鏡。該聚焦鏡266則伴隨該反射鏡264d—起移動。 於一具體實施例中’根據本發明之固態薄膜形成裝置26 其雷射光束掃描的工作範圍為45〇 mm x 25〇 mm,最高速度 為3000 mm/min以上’且其χ_γ軸重複精度設計為士 〇〇2 mm °明顯地’與糊振鏡式掃描讓雷射光束糕的先前技術 =同根據本發明之固態薄膜形成裝置26,其設計即可改善先 前技術其工作範圍小與雷射光束聚焦能量不足的缺點。 接著’如圖一所示’根據本發明之製造方法1係執行步 驟S17,根據第/層固態薄層之一成分,加入一金屬粉末或一 合金粉末至該漿料内,其中z•係範圍從2至N中之一整數指 12 201219343 標。 接著,如圖一及圖二C所示,根據本發明之製造方法1 係執行步驟S18,致動該工作台24沿平行圖二C中Z軸之一 軸下降一距離(一個薄層的厚度),使得在後續塗佈完新的一 層漿料後,不必重行調整該固態薄膜形成裝置26的聚焦基 準。此外需強調的是,於實際應用中,每一層固態薄層不以 相同厚度為必要。The thin layer is composed of N, which is - from New Zealand. Figures 2A through 2D depict the formation of the workpiece 28 without the use of the rapid prototyping apparatus 2. As shown in FIG. 1, the manufacturing method according to the present invention first performs a step of uniformly mixing a ceramic powder and a binder in a ratio and stirring it as shown in FIG. 1. The manufacturing method i according to the present invention first performs steps. S10, preparing a ceramic powder and a binder. In one embodiment, the ceramic powder may be strontium carbide (Sic) powder, titanium carbide (TiC) powder, tantalum nitride (3), 4) powder, oxidized (Ai2〇3) powder, cerium oxide (Si〇). 2) powder, titanium dioxide (Ti02) powder, cerium oxide (zrg) powder, sodium carbonate powder, calcium carbonate powder, lead zirconate titanate (PZT) powder, graphite powder, carbonic acid powder, silver titanate lock powder, mica powder, Oxidized powder, iron oxide powder, potassium oxide powder, zinc oxide powder, trisodium citrate powder, hydroxyapatite powder, chitin powder, Na20 powder, Ca〇^, P2〇5 powder, Si A powder of 〇2 powder, MgO powder, or the like, or a mixed combination of the above materials & The particle size of the ceramic powder can be determined by the size of the formed workpiece and is determined by 201219343, for example, 5/im to 45ym. In one embodiment, the binder may be silica sol, titania sol, alumina sol, zirconia sol, polyvinyl alcohol (PVA). Etc., or a combination of the above binders. Next, according to the manufacturing method 1 of the present invention, the step S12 is performed, and the ceramic powder is uniformly mixed with the binder in a ratio, and is dropped into a polymer. In a specific embodiment, the weight percentage of the powder and the binder is 60% by weight: 40% by weight to 30% by weight: 70% by weight. In one embodiment, the composition of the composition is 65 to 55 wt% of the powder, 40 to 30 wt% of the binder, and 3 to 5 wt% of the suspending agent. The ceramic powder, the binder and the suspending agent are mixed in proportion, and the homogenizer is used to stir into a uniformly micronized ceramic slurry. The viscosity of the slurry is about 1500~6000mPa · s with proper fluidity and high proportion of ceramic components. The suspending agent may be sodium hexamelate [(NaP〇3)6], sodium tripolyphosphate (NasPsC^), particulate mica powder, polyacrylic acid (PAA), polymethyl methic acid (PMAA), polyethyl b. Thin imine (Pei) and polymethionate (PMAA-Na, PMAA_NH4), cerium oxide, titanium oxide, & error, sodium nitrate or clay, and the like. Next, as shown in Fig. 1 and Fig. 2A, the manufacturing method J according to the present invention performs step S14, and the first layer of the slurry is applied to a table 24 by a coating device 22. The table 24 has a plane and is actuated to move up and down along the plane perpendicular to the plane (i.e., parallel to one of the Z axes in Fig. 2A). According to the present invention, the coating device 22 may include a funnel 222 containing the sacrificial SL and a squeegee 224 that allows the slurry SL to be evenly distributed on the table 24 (or a cylindrical drum. The funnel 222 squeezes the appropriate slurry. The material SL is applied to the work table 24. The squeegee 124 applies the aforementioned slurry SL· to a uniform thin layer slurry SL. The thickness of each layer of the slurry 201219343 SL can be controlled to be about 〇lmm. The invention is not limited thereto, and the required coating thickness may be determined according to the curvature of the cross-section curve of the workpiece and the characteristics of the slurry, that is, the thickness of the coating is variable. For example, when the curvature of the cross-section curve of the workpiece is larger, the coating is applied. The thickness of the layer is reduced, and the present invention is not limited to the horizontal or equal-thickness slurry. Next, as shown in FIG. 1 and FIG. 2B, the manufacturing method according to the present invention performs step S16 in the summer, according to the corresponding a solid-state thin layer SL, a cross-sectional pattern, irradiated with a laser beam emitted by a solid film forming device 26 to irradiate the first layer of slurry SL, a portion of the slurry SL', wherein the first layer of slurry a portion of the slurry SL irradiated by the laser beam is heated to cause the binder to be produced A chemical reaction is carried out to form the first layer of the solid thin layer SL" (the dark portion in Fig. 2B). That is, the binder is dehydrated to form a chain-like molecular structure (for example, % 〇_Si, A1- 0-A1), further developed into a network structure, when its growth touches the ceramic powder, 'the ceramic powder is tightly coated and bonded together. The adjacent layer also bonds with the binder to produce a chemical gel reaction. Together, after the completion of the chemical gel reaction, a three-dimensional porous green body is formed. Since the organic binder is not used, no harmful gas is generated in the removal of the residual material and the subsequent sintering process. The energy required for the chemical gel reaction is much smaller than the energy required for the sintered ceramic powder, so that the effect of shrinkage and deformation of the workpiece can be greatly reduced. As shown in Fig. 2B, the solid film forming device 26 includes a laser light generating device 262. a light guiding mechanism 264 and a focusing mirror 266. The laser beam generating device 262 is configured to generate a laser beam, for example, c〇2 laser, Nd:YAG laser, He-Cd laser, Ar laser Or UV laser. In a specific embodiment, the laser beam generating device 262 can be equipped with a temperature sensor, and when the temperature sensor detects that the temperature of the cooling water used to cool the laser beam generating device 262 exceeds 25 ° C, the temperature sensor The laser beam generating device 262 stops the excitation of the laser light. 201219343 Unlike the prior art, which uses a galvanometer scanning to focus the laser beam on each layer of the slurry SL', the light guiding mechanism 264 and the focusing mirror 266 are correspondingly The cross-sectional pattern of a layer of solid thin layer SL" is actuated parallel to the plane of the χ_Υ as shown in Fig. 2B. The light guiding mechanism 264 is used to guide the laser beam to the focusing mirror 266. The focusing mirror 266 is used for The laser beam is focused to each layer of slurry su. In one embodiment, the laser beam has a scan rate of 85 mm/s, a scan pitch of 0.1 mm, and a laser power of 1 〇w. In a specific embodiment, a jet tube can be attached to the focusing mirror 266. The ejector tube is used to introduce low-pressure air and is quickly ejected through its nozzle, which prevents the ceramic slurry from splashing and attaching to the focusing lens during the #beam scanning, which affects the accuracy of laser beam scanning. - Also shown in Figure 2B, the light directing mechanism 264 in accordance with the present invention includes a plurality of fixed mirrors and mirrors that can be actuated in parallel with the χ γ plane as shown in Figure 2B. For example, reference numerals 264a and 264b in FIG. 2 denote fixed mirrors, and reference numeral 264c denotes a mirror that can be actuated to move along an axis of the X-axis shown in parallel with FIG. 2B, and numeral 264d denotes a follow-up mirror 264c. A mirror that is actuated and movable along one of the axes of the gamma axis shown in Figure 2B. The focusing mirror 266 moves along with the mirror 264d. In a specific embodiment, the solid-state film forming device 26 according to the present invention has a laser beam scanning operating range of 45 mm x 25 mm and a maximum speed of 3000 mm/min or more and the χ-γ axis repeatability is designed as Gentry 2 mm ° clearly 'with prior art of paste mirror scanning to make laser beam cakes = with the solid film forming device 26 according to the present invention, the design of which can improve the prior art and its working range is small and the laser beam Focus on the shortcomings of insufficient energy. Then, as shown in FIG. 1 , the manufacturing method 1 according to the present invention performs step S17 to add a metal powder or an alloy powder to the slurry according to one component of the first layer of the solid layer, wherein the z• range An integer from 2 to N refers to 12 201219343. Next, as shown in FIG. 1 and FIG. 2C, the manufacturing method 1 according to the present invention performs step S18 to actuate the table 24 to descend a distance (the thickness of a thin layer) along one of the axes of the Z axis in FIG. Therefore, it is not necessary to re-adjust the focus reference of the solid film forming device 26 after the subsequent application of a new layer of the slurry. In addition, it should be emphasized that in practical applications, each layer of solid thin layer is not necessary to have the same thickness.

接著’如圖一所示,根據本發明之製造方法1係執行步 驟S20,以該塗層裝置22塗佈第/層漿料SL’於第(ζ·-ΐ)層漿料 SL'及固態薄層SL”上。隨後,根據本發明之製造方法1係執 行步驟S22,根據對應該第/層固態薄層SL”之一截面圖案, 以該固態薄膜形成裝置26所發射之雷射光束照射該第ζ•層漿 料SL’之部分漿料SL,。同樣地’該第/層漿料SL,被該雷射光 束照射之部分漿料SL,被加熱使該黏結劑產生該化學凝膠反 ,,進而形成該第?·層固態薄層SL"。實務上,經由CAM技 術,可將電腦與將該成型設備2連線,依據該等特定截面圖 案(可能由CAD產生)控制該固態薄膜形成裝置%對每一層 漿料SL’加熱,並進一步達成自動化製造。 所右根^發明之製造方法1係執行步驟S24,判斷 ,有特疋截面圖案是否已據以掃描加熱塗 步驟S20及步驟 合金粉末线編,接金屬粉末或一 S22 〇 201219343 SL ’以獲彳于如圖二c所示的該 力,=用工=用3陶=本身黏度所產生的懸浮 之生迷3。 π以支撐具有凸騎構或喊通孔的工件 驟S2最6後供’㈣本發明之製造方法1係執行步 S :完件之生"3,並對進行該工件之生-3二 據本侧之製造方法1賴造的工件衫層連續的固 I、溥層可峨_纽份,逐漸增 比 以降低陶_列,最終過渡成為金屬 m造謝所製造之-工件Next, as shown in FIG. 1, the manufacturing method 1 according to the present invention performs step S20, and the coating device 22 applies the first layer slurry SL' to the (ζ·-ΐ) layer slurry SL' and the solid state. The thin layer SL". Subsequently, the manufacturing method 1 according to the present invention performs step S22, irradiating the laser beam emitted by the solid film forming device 26 according to a cross-sectional pattern corresponding to the first/solid thin layer SL". Part of the slurry SL of the second layer slurry SL'. Similarly, the first layer slurry SL, a portion of the slurry SL irradiated with the laser beam, is heated to cause the binder to generate the chemical gel, thereby forming the first layer. · Layer solid layer SL". In practice, via the CAM technology, the computer can be connected to the molding device 2, and the solid film forming device % is controlled to heat each layer of the slurry SL' according to the specific sectional pattern (possibly generated by CAD), and further achieved. Automated manufacturing. The manufacturing method 1 of the invention of the right root is performed in step S24, and it is judged whether or not the characteristic cross-sectional pattern has been subjected to the scanning and heating coating step S20 and the step of the alloy powder line, and the metal powder or a S22 〇201219343 SL' is obtained. In the force shown in Figure 2c, = labor = 3 terracotta = the viscosity of the suspension produced by the crevice 3 . π to support the workpiece having the convex ride or the punching hole S2 is the last 6 for '(4) The manufacturing method 1 of the present invention performs step S: the life of the finished piece " 3, and the life of the workpiece - 2 According to the manufacturing method of this side, the workpiece layer of the workpiece is continuously solid I and the layer of enamel can be 峨 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

顯微鏡_參_ C U種不同原子鍵結結構的材料黏結在—起時, ^服係數不同,不同鍵結結構材料職結成的讀 間的界硫容㈣離分開。根據本發明之製造方法, ΐ、^成份比纖多而金屬較少的_區域,_顆粒經高 乂結後軸連續的金屬相基_含有分散的喊相。在金 201219343 較少的薄層區域,經高溫燒結後金屬 產燒現象。形成連續的金屬相基地内含有 目’可使喊與金屬材料之間的界面能夠相互戾 接緊被地、纟σ 5成-體’金屬_㈣面料易讎。 根據本發明之另-触具體實施織H件的製 ί 製,工件具有梯度紐金伽^•複合材 ? 2件之-生坯係由N層連續的固態薄層所構成,其中 於整f。根縣發明之製造方法錢將一金屬 ^ 3 s 末與一黏結劑依一比例均勻混合且攪拌成一 漿料。接著,該製造方法係塗佈第—層襞料於—I作H ,者、,該製造方法係根據對應該第—層固態薄層之一截面圖 案,以一雷射光束照射該第一層漿料之部分漿料並 :層”該雷射光束照射之部分_被加熱使該產 生-化學凝膠反應進而形成該第—層固態薄層。接著, 造方法係根據第ζ·層固態薄層之—成分,加人—喊粉末| 内’其中/係範圍從2至N中之一整數指標。接著, =化方法係塗佈第Z層賴於第㈣料料及關薄層上。 ^者’該製造方法係根據對應該第m薄層之一截面圖 案,以該雷射光束照射該第/層漿料之部分漿料,1中嗲 層談料被㈣縣束騎之部分祕被加級娜結^生 親學凝膠反應進而形成該u_薄層。接著,該製造 方法係重複加人:£粉末至錄料内之步驟、塗佈H 漿料之步卿及以該雷射光束照射該第z•層祕之步驟,1 至完成該N層_薄層為止。接著,該製造方法係去除附著 於該N層固態薄層之殘留轉,以獲得該生链。最後,該 ^方法係烘乾該找’賴進行該生喊結,即完成具有梯 度成份金屬陶究複合材料之該工件。 陶竟粉末的材料、金屬粉末的材料以及祕的成份已於 15 201219343 上文中詳述過,在此不再贅述。但是此製造方法所製造的工 件其多層連續的固態薄層可以從金屬或合金基底,逐漸增加 陶究成份的比例以降低陶究的比例,最終過渡成為純陶竞成 份。 金屬•陶瓷複合材料生坯在熱處理前亦可先經過熱均壓處 理以增加生坯的密度,燒結後可提高金屬_陶瓷複合材料工件 強度。金屬-陶瓷複合材料生坯也可以置於真空爐或保護氣體 (例如,氮氣)環境之中進行燒結處理,可防止金屬產生氧化 反應,提高製品機械性能。 、綜上所述,可以清楚了解根據本發明之製造方法可以製 造具有梯度成份金屬陶瓷複合材料之工件,更可以製造外觀 複,,工件。並且,根據本發明所製造的工件其多層連續的 固態薄層可以從純陶瓷成份,逐漸增加金屬或合金成份的比 例以降低喊的比例,最終過渡成為金屬或合金基底 其多層連續的固態騎可以從金屬或合金基底,逐漸 ,成份的比例崎低喊㈣例,最終過渡成為純陶'是成 ,十.太t以ΐ較佳具體實施例之詳述,係希望能更加清楚描 施,對本發明之範嘴加以限制。相反地 據上述的說明作最寬廣的解釋,該根 變以及具相紐的鶴。使〃起所有可施的改 201219343 【圖式簡單說明】 程圖 圖—係根據本發明之-較佳紐實齡!之製造方法的流 塗佈係獅快速顧細設備來細工狀生述其在 金佈漿枓製程階段之示意圖。 絲】Γ·^係運職速原型成型設備來成型功之生述其在 、先束知描加熱製程階段之示意圖。 堆疊型設備來成型功之生«在 一㈣之雜本個之製紗法所製造之 電子:片圖f A中之工件的白色純嘯料層的掃描式 式電子顯;+之工件的黑色金屬基底材料層的掃描 【主要元件符號說明】 1 :製造方法 2.快速原型成型設備 222 :漏斗 24 :工作台 S10〜S28 :方法步驟 22 :塗層裝置 224 :刮板 26 :固態薄膜形成裝置 17 201219343 262:雷射光束產生裝置 264: 264a、264b、264c、264d :反射鏡 266 :聚焦鏡 SL :漿料 SL': SL” :固態薄層 導光機構 漿料層 3:陶瓷生坯 32 :支撐結構Microscopy _ _ _ C U kinds of different atomic bonding structure of the material bonding at the beginning, the ^ service coefficient is different, the different bonding structure materials formed by the reading of the boundary between the sulfur capacity (four) separation. According to the production method of the present invention, the y- and _--------------------------------------------------- In the thin layer area where gold 201219343 is less, the metal is burnt after high temperature sintering. The formation of a continuous metal phase base contains a mesh that allows the interface between the shouting and the metal material to be bonded to each other, and the metal ( (4) fabric is easy to smash. According to another embodiment of the present invention, the workpiece is provided with a gradient nucleus gamma composite material, and the green body is composed of a continuous solid layer of N layers, wherein . The manufacturing method of the invention of the root county uniformly mixes a metal ^ 3 s end with a binder in a ratio and stirs it into a slurry. Next, the manufacturing method is to apply a first layer of the coating material to the first layer, and the manufacturing method is to irradiate the first layer with a laser beam according to a cross-sectional pattern corresponding to the solid layer of the first layer. Part of the slurry of the slurry and the layer "the portion irradiated by the laser beam" is heated to cause the production-chemical gel reaction to form the first layer of the solid layer. Next, the method is based on the second layer of the solid layer The layer-component, plus----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The manufacturing method is based on a cross-sectional pattern corresponding to one of the mth thin layers, and the laser beam is used to illuminate a portion of the slurry of the first layer of the slurry, and the middle layer of the layer is discussed by the (four) county The graded Na's knot is used to form the u_thin layer. Then, the manufacturing method is repeated: the step of powdering into the recording, the step of coating the H slurry, and the The beam is irradiated to the step of the z-layer, 1 to the completion of the N-layer, and then the manufacturing method is removed. The residue of the N-layer solid layer is transferred to obtain the raw chain. Finally, the method is to dry the find-up to perform the raw shouting, that is, to complete the workpiece with the gradient component metal ceramic composite material. The material of the powder, the material of the metal powder, and the secret component have been detailed above in 15 201219343, and will not be described again here. However, the workpiece produced by the manufacturing method has a plurality of continuous solid thin layers from the metal or alloy substrate. Gradually increase the proportion of ceramics components to reduce the proportion of ceramics, and finally transition into pure Tao competition ingredients. Metal/ceramic composite green bodies can also be subjected to thermal pressure equalization before heat treatment to increase the density of green bodies. The strength of the metal-ceramic composite workpiece can be improved. The metal-ceramic composite green body can also be sintered in a vacuum furnace or a protective gas (for example, nitrogen) environment to prevent oxidation reaction of the metal and improve the mechanical properties of the product. In summary, it can be clearly understood that the manufacturing method according to the present invention can manufacture a workpiece having a gradient composition cermet composite. It is also possible to manufacture a composite, a workpiece, and a multilayer continuous solid layer of a workpiece manufactured according to the present invention can gradually increase the proportion of metal or alloy composition from a pure ceramic component to reduce the proportion of shouting, and finally transition to metal or The alloy substrate can be multi-layered continuous solid-state riding from the metal or alloy substrate, gradually, the proportion of the composition is low (4), and finally the transition to pure ceramics is a good, and the details of the preferred embodiment are It is hoped that the description of the invention can be more clearly described, and the scope of the invention is limited. On the contrary, according to the above explanation, the root explanation and the crane with the opposite phase make it possible to pick up all the applicable changes 201219343 [Picture] Brief Description of the Drawings: A schematic diagram of a flow-coating lion quick-drying apparatus according to the manufacturing method of the present invention, which is a method of manufacturing a brilliance, is described in detail. Silk] Γ·^ is a schematic diagram of the prosthetic forming equipment for the formation of the work. Stacked equipment to form the work of the work «Electronics produced by the one-by-fourth method of the yarn making method: the scanning type electronic display of the white pure whistling layer of the workpiece in the sheet f A; the black of the workpiece Scanning of metal base material layer [Main component symbol description] 1 : Manufacturing method 2. Rapid prototyping apparatus 222 : Funnel 24 : Workbench S10 to S28 : Method step 22 : Coating device 224 : Scraper 26 : Solid film forming device 17 201219343 262: Laser beam generating device 264: 264a, 264b, 264c, 264d: mirror 266: focusing mirror SL: slurry SL': SL": solid thin layer light guiding mechanism slurry layer 3: ceramic green body 32 :supporting structure

Claims (1)

201219343 七、申請專利範圍: 1、 二種製造-工件之方法,該X件具有梯度成份金制曼複合 材料(metal-ceramic composite),該工件之一生坯係由^^層連 續的固態薄層所構成,N為一大於1的整數,該方法包含下 列步驟: (a) 將一陶瓷粉末與一黏結劑依一比例均勻混合且擾拌 漿料; (b) 塗佈第一層漿料於一工作台上; 鲁 (c)根據對應該第一層固態薄層之一戴面圖案,以一雷射光 束照射該第-層聚料之部分聚料,其中該第一層聚料被 該雷射光束照射之部分漿料被加熱使該黏結劑產生一化 學凝膠反應進而形成該第一層固態薄層; (d) 根據第/層固態薄層之一成分,加入一金屬粉末或一合 金粉末至該漿料内,/係範圍從2至]^中之一整數指標; (e) 塗佈第/層漿料於第屮丨)層漿料及固態薄層上; (〇根據對應該第/層固態薄層之一截面圖案,以該雷射光 束照射該第z層漿料之部分漿料,其中該第z•層漿料被該 # 雷射光束照射之部分漿料被加熱使該黏結劑產生該化學 凝膠反應進而形成該第/層固態薄層; (g) 重複步驟(d)至步驟(f),直至完成該N層固態薄層為止; (h) 去除附著於該N層固態薄層之殘留漿料,以獲得該生 坯;以及 ⑴烘乾該纽’並對進行該生&燒結,即完成具有梯度成 份金屬陶瓷複合材料之該工件。 2、 如申請專利範圍第1項所述之方法,其中該陶瓷粉末係選自 由碳化邦iQ粉末、碳化鈦(TiQ粉末、氮化邦调粉 19 201219343 末、氧化紹(Ai2〇3)粉末、二氧化石夕(別〇2)粉末、二氧化鈦 (Ti〇2)粉末、氧化錯(Zr〇2)粉末、碳酸鈉粉末、碳酸約粉 末、錯鈦酸錯(PZT)粉末、石墨粉末、碳酸鋇粉末、欽酸錄 鋇粉末、雲母粉末、氧化錯粉末、氧化鐵粉末、氧化奸粉 末、氧化鋅粉末、三鈣磷酸鹽粉末、氫氧基磷灰石粉末、甲 殼素粉末、Na2〇粉末、CaO粉末、p2〇5粉末、別〇2粉末、 MgO粉末以及其混合組合之粉末所組成之群組中之一 ^ 3、 如申請專利範圍第1項所述之方法’其中該黏結劑係選自由 氧化矽溶膠(silica sol)、氧化鈦溶膠(titania sol)、氧化鋁溶膠 (alumina sol)、氧化锆溶膠、聚乙稀醇(p〇lyvinyl alc〇h〇1,pVA) 以及其混合組合之黏結劑所組成之群組中之一。 4、 如申請專利範圍第1項所述之方法,其中該金屬粉末或該合 金粉末係選自由鐵(iron)、銅(copper)、鋁(aluminum)、鋅 (zinc)、錫(tin)、錯(lead)、鈦(titanium)、銘(cobalt)、鎳 (nickel)、鈦(titanium)、銀(silver)、金(gold)、鎢(tungsten)、 舶(platinum)、纪(palladium)、錯(zirconium)、组(tantalum)、 鈦合金系列(titanium alloys)、鎳鉻合金(nichrome)、鎳鉻鉬鎢 合金(Ni-Cr-Mo-W alloy)、結合金系列(zirconium alloys)、銅 鎳合金(CuNi alloy)、銅鎳矽合金(CuNiSi alloy)、銅鎳鋅合金 (CuNiZn alloy)、銅鎳錫合金(CuNiSn alloy)、銅鉻合金(CuCr alloy)、銅銀合金(CuAg alloy)、銅鶴合金(CuW alloy)、銅錄 合金(CuNi alloy)、銅鎳矽合金(CuNiSi alloy)、銅鎳鋅合金 (CuNiZn alloy)、銅鎳錫合金(CuNiSn alloy)、銅鉻合金(CuCr alloy)、銅銀合金(CuAg alloy)、黃銅(brass)、鱗青銅 (phosphor bronze)、鈹銅合金(beryllium copper)、鎳鉻合金 (nichrome)、銅鶴合金(CuW alloy)、不錄鋼系列(stainless steels)所組成之群組中之其一所製成的粉末。 201219343 5、 如申請專利範圍第1項所述之方法,其中該雷射光束係選自 由一C〇2雷射、一Nd:YAG雷射、一He-Cd雷射、一Ar雷射以 及一 UV雷射所組成之群組申之一。 6、 一種製造一工件之方法’該工件具有梯度成份金屬陶瓷複合 材料(metal-ceramic composite),該工件之一生链係由N層連 續的固態薄層所構成,N為一大於1的整數,該方法包含下 列步驟: ' (a)將一金屬粉末或一合金粉末與一黏結劑依一比例均勻混 合且攪拌成一漿料; • (b)塗佈第一層聚料於一工作台上; (c) 根據對應該第一層固態薄層之一截面圖案,以一雷射光 束照射該第一層槳料之部分漿料,其中該第一層漿料被 該雷射光束照射之部分聚料被加熱使該黏結劑產生一化 學凝膠反應進而形成該第一層固態薄層; (d) 根據第ζ·層固態薄層之一成分,加入一陶究粉末至該激 料内,ί係範圍從2至N中之一整數指標; (e) 塗佈第/·層漿料於第(/-”層漿料及固態薄層上; • (Q根據對應該第層固態薄層之一截面厨案,以該雷射光 束照射該第ζ·層漿料之部分漿料,其中該第z♦層漿料被該 雷射光束照射之部分漿料被加熱使該黏結劑產生該化學 凝膠反應進而形成該第〗·層固態薄層; (g) 重複步驟(d)至步驟①,直至完成該N層固態薄層為止; (h) 去除附著於該N層固態薄層之殘留漿料,以獲得該生 坯;以及 (i) 烘乾該生坯,並對進行該生坯燒結,即完成具有 份金屬陶瓷複合材料之該工件。 又 21 201219343 7、 如申請專利範圍第6項所述之方法,其中該陶瓷粉末係選自 由碳化矽(SiC)粉末、碳化鈦(TiC)粉末、氮化矽(Si3N4)粉 末、氧化鋁(ai2o3)粉末、二氧化矽(Si02)粉末、二氧化鈦 (Ti〇2)粉末、氧化#(Zr02)粉末、碳酸鈉粉末、碳酸妈粉 末、鍅鈦酸鉛(PZT)粉末、石墨粉末、碳酸鋇粉末、鈦酸锶 鋇粉末、雲母粉末、氧化鉛粉末、氧化鐵粉末、氧化鉀粉 末、氧化鋅粉末、三鈣磷酸鹽粉末、氫氧基磷灰石粉末、甲 殼素粉末、Na20粉末、CaO粉末、P2〇5粉末、Si02粉末、 MgO粉末以及其混合組合之粉末所組成之群組中之一。 8、 如申請專利範圍第6項所述之方法,其中該黏結劑係選自由 氧化碎溶膠(silica sol) '氧化鈦溶膠(titania sol)、氧化铭溶膠 (alumina sol)、氧化锆溶膠、聚乙嫦醇(polyvinyl alcohol,PVA) 以及其混合組合之黏結劑所組成之群組中之一。 9、 如申請專利範圍第6項所述之方法,其中該金屬粉末或該合 金粉末係選自由鐵(iron)、銅(copper)、銘(aluminum)、鋅 (zinc)、錫、船(lead)、鈦(titanium)、始(cobalt)、鎳(nickel)、 鈦(titanium)、銀(silver)、金(gold)、鶴(tungsten)、舶 (platinum)、Isipalladium)、錯(zirconium)、组(tantalum)、鈦 合金系列(titanium alloys)、鎳鉻合金(nichrome)、鎳鉻鉬鶴合 金(Ni-Cr-Mo-W alloy)、錯合金系列(zirconium alloys)、銅錄 合金(CuNi alloy)、銅鎳矽合金(CuNiSi alloy)、銅鎳鋅合金 (CuNiZn alloy)、銅鎳錫合金(CuNiSn alloy)、銅鉻合金(CuCr alloy)、銅銀合金(CuAg alloy)、銅鎢合金(CuW alloy)、銅鎳 合金(CuNi alloy)、銅鎳矽合金(CuNiSi alloy)、銅鎳辞合金 (CuNiZn alloy)、銅錄錫合金(CuNiSn alloy)、銅鉻合金(CuCr alloy)、銅銀合金(CuAg alloy)、黃銅(brass)、鱗青銅 (phosphor bronze)、破銅合金(beryllium copper)、鎳鉻合金 (nichrome)、銅鶴合金(CuW alloy)、不錄鋼系列(stainless 22 201219343 steels)所組成之群組中之其一所製成的粉末。 10、如申請專利範圍第6項所述之方法,其中該雷射光束係選自 由一C02雷射、一Nd:YAG雷射、一He-Cd雷射、一Ar雷射以 及一 UV雷射所組成之群組中之一。201219343 VII. Patent application scope: 1. Two methods of manufacturing-workpieces, the X-piece has a gradient component of a metal-ceramic composite, and one of the workpieces is a solid thin layer of continuous layers. Composition, N is an integer greater than 1, the method comprises the following steps: (a) uniformly mixing a ceramic powder with a binder and scrambling the slurry; (b) coating the first layer of the slurry On a workbench; Lu (c) irradiates a portion of the aggregate of the first layer of the aggregate with a laser beam according to a wear pattern corresponding to one of the first solid layers of the layer, wherein the first layer of the aggregate is a portion of the slurry irradiated by the laser beam is heated to cause a chemical gel reaction of the binder to form the first solid layer; (d) adding a metal powder or a component according to a component of the first layer of the solid layer The alloy powder is into the slurry, and the system ranges from 2 to 1 in an integer index; (e) coating the layer/layer slurry on the layer 浆料 slurry and the solid layer; a cross-sectional pattern of the first/layer solid layer should be irradiated with the laser beam to illuminate the z-th layer a portion of the slurry, wherein the slurry of the z-th layer slurry irradiated by the #laser beam is heated to cause the binder to generate the chemical gel reaction to form the first/solid layer; (g) Repeating steps (d) through (f) until the N-layer solid layer is completed; (h) removing residual slurry adhering to the N-layer solid layer to obtain the green body; and (1) drying the button And performing the sintering of the raw material and the sinter, that is, the method of the cermet composition having the gradient component. The method of claim 1, wherein the ceramic powder is selected from carbonized state iQ powder, carbonized. Titanium (TiQ powder, nitriding powder 19 201219343, Axis 2 (Ai2〇3) powder, TiO2 powder, Titanium dioxide (Ti〇2) powder, Oxidation (Zr〇2) powder , sodium carbonate powder, carbonic acid powder, strontium titanate (PZT) powder, graphite powder, strontium carbonate powder, citric acid powder, mica powder, oxidized powder, iron oxide powder, oxidized powder, zinc oxide powder, Tricalcium phosphate powder, hydroxyapatite powder One of the group consisting of chitin powder, Na2 tantalum powder, CaO powder, p2〇5 powder, other 2 powder, MgO powder, and a mixed combination thereof, 3, as described in claim 1 Method 'wherein the binder is selected from the group consisting of silica sol, titania sol, alumina sol, zirconia sol, polyethylene glycol (p〇lyvinyl alc〇h〇1) The method of claim 1, wherein the metal powder or the alloy powder is selected from the group consisting of iron, copper, and the like. (copper), aluminum, zinc, tin, lead, titanium, cobalt, nickel, titanium, silver, gold (gold), tungsten (tungsten), platinum, palladium, zirconium, tantalum, titanium alloys, nichrome, nickel-chromium-molybdenum-tungsten alloy Ni-Cr-Mo-W alloy), zirconium alloys, CuNi alloy, CuNiSi alloy, CuNiZn alloy, CuNiSn alloy, CuCr alloy, CuAg alloy, CuW alloy, CuNi alloy, copper CuNiSi alloy, CuNiZn alloy, CuNiSn alloy, CuCr alloy, CuAg alloy, brass, squam bronze a powder made of one of a group consisting of phosphor bronze, beryllium copper, nichrome, CuW alloy, and stainless steels. . The method of claim 1, wherein the laser beam is selected from the group consisting of a C〇2 laser, an Nd:YAG laser, a He-Cd laser, an Ar laser, and a One of the groups of UV lasers. 6. A method of manufacturing a workpiece having a gradient metal ceramic composite, the one of the workpieces being composed of a continuous solid layer of N layers, N being an integer greater than one. The method comprises the following steps: ' (a) uniformly mixing a metal powder or an alloy powder with a binder in a ratio and stirring into a slurry; (b) coating the first layer of the polymer on a workbench; (c) illuminating a portion of the slurry of the first layer of slurry with a laser beam according to a cross-sectional pattern of the first layer of the solid layer, wherein the first layer of slurry is partially illuminated by the laser beam The material is heated to cause the bonding agent to generate a chemical gel reaction to form the first solid layer; (d) adding a ceramic powder to the stimulating material according to a component of the ζ· layer solid layer, ί The range is from one of the integer indices from 2 to N; (e) coating the / / layer of the slurry on the (--" layer of the slurry and the solid layer; (Q according to the corresponding layer of the solid layer a cross-section kitchen in which a portion of the slurry of the second layer of slurry is irradiated with the laser beam Wherein the slurry of the zxxx layer slurry irradiated by the laser beam is heated to cause the binder to generate the chemical gel reaction to form the solid layer of the layer; (g) repeating step (d) Going to step 1 until the N-layer solid layer is completed; (h) removing the residual slurry attached to the N-layer solid layer to obtain the green body; and (i) drying the green body, and performing The green body is sintered, that is, the workpiece having a part of the cermet composite material. The method of claim 6, wherein the ceramic powder is selected from the group consisting of tantalum carbide (SiC) powder and titanium carbide. (TiC) powder, cerium nitride (Si3N4) powder, alumina (ai2o3) powder, cerium oxide (SiO2) powder, titanium dioxide (Ti〇2) powder, oxidized #(Zr02) powder, sodium carbonate powder, carbonic acid mother powder Lead magnesium titanate (PZT) powder, graphite powder, barium carbonate powder, barium titanate powder, mica powder, lead oxide powder, iron oxide powder, potassium oxide powder, zinc oxide powder, tricalcium phosphate powder, hydrogen and oxygen Apatite powder, chitin powder, Na20 One of the group consisting of a powder, a CaO powder, a P2〇5 powder, a SiO2 powder, a MgO powder, and a mixed combination thereof. 8. The method of claim 6, wherein the binder is selected a group of silica sol 'titania sol, alumina sol, zirconia sol, polyvinyl alcohol (PVA) and a combination thereof 9. The method of claim 6, wherein the metal powder or the alloy powder is selected from the group consisting of iron, copper, aluminum, zinc, Tin, lead, titanium, cobalt, nickel, titanium, silver, gold, tungsten, platinum, Isipalladium, Zirconium, tantalum, titanium alloys, nichrome, Ni-Cr-Mo-W alloy, zirconium alloys, copper CuNi alloy, CuNiSi alloy, CuNiZn alloy, CuNiSn alloy, CuCr alloy, CuAg alloy, CuW alloy, CuNi alloy, CuNiSi alloy, copper CuNiZn alloy, CuNiSn alloy, CuCr alloy, CuAg alloy, brass, phosphor bronze, copper-killing alloy A powder made of one of a group consisting of beryllium copper), nichrome, CuW alloy, and stainless steel series (stainless 22 201219343 steels). 10. The method of claim 6, wherein the laser beam is selected from the group consisting of a C02 laser, a Nd:YAG laser, a He-Cd laser, an Ar laser, and a UV laser. One of the groups formed. 23twenty three
TW99138092A 2010-11-05 2010-11-05 Method of fabricating article of metal-ceramic composite with gradient composition TW201219343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99138092A TW201219343A (en) 2010-11-05 2010-11-05 Method of fabricating article of metal-ceramic composite with gradient composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99138092A TW201219343A (en) 2010-11-05 2010-11-05 Method of fabricating article of metal-ceramic composite with gradient composition

Publications (1)

Publication Number Publication Date
TW201219343A true TW201219343A (en) 2012-05-16

Family

ID=46552819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99138092A TW201219343A (en) 2010-11-05 2010-11-05 Method of fabricating article of metal-ceramic composite with gradient composition

Country Status (1)

Country Link
TW (1) TW201219343A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157136B2 (en) 2012-12-05 2015-10-13 Industrial Technology Research Institute Multi-element alloy material and method of manufacturing the same
TWI562831B (en) * 2015-08-21 2016-12-21 Microjet Technology Co Ltd Liquid ejecting device
CN113228209A (en) * 2018-11-14 2021-08-06 西门子股份公司 Electrical steel sheet with a structured surface for domain refinement
CN113458387A (en) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 3D printing gradient ceramic metal material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157136B2 (en) 2012-12-05 2015-10-13 Industrial Technology Research Institute Multi-element alloy material and method of manufacturing the same
TWI562831B (en) * 2015-08-21 2016-12-21 Microjet Technology Co Ltd Liquid ejecting device
CN113228209A (en) * 2018-11-14 2021-08-06 西门子股份公司 Electrical steel sheet with a structured surface for domain refinement
CN113458387A (en) * 2021-07-02 2021-10-01 中国科学院宁波材料技术与工程研究所 3D printing gradient ceramic metal material and preparation method thereof

Similar Documents

Publication Publication Date Title
Zocca et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities
Ahmed Direct metal fabrication in rapid prototyping: A review
Chen et al. 3D printing of ceramics: A review
Ferrage et al. A review of the additive manufacturing (3DP) of bioceramics: Alumina, zirconia (PSZ) and hydroxyapatite
Moritz et al. Additive manufacturing of ceramic components
Chueh et al. Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion
Hagedorn Laser additive manufacturing of ceramic components: materials, processes, and mechanisms
JP4977710B2 (en) Denture manufacturing method
Wang et al. Partially stabilized zirconia moulds fabricated by stereolithographic additive manufacturing via digital light processing
Deckers et al. Shaping ceramics through indirect selective laser sintering
Gahler et al. Direct laser sintering of Al2O3–SiO2 dental ceramic components by layer‐wise slurry deposition
US20140349132A1 (en) Method for manufacturing a compact component, and component that can be produced by means of the method
US20190375014A1 (en) Shrinking interface layers
Dong et al. Additive manufacturing of silicon nitride ceramics: A review of advances and perspectives
JP2011052289A (en) Method for producing implant made of titanium alloy
Saha et al. Additive manufacturing of ceramics and cermets: present status and future perspectives
KR20190090692A (en) Titanium Zirconium Alloy and Its Manufacturing Method by Lamination Processing
Zhang et al. Processing parameters for selective laser sintering or melting of oxide ceramics
CN105256160B (en) A kind of 3D printing method of ceramic base nickel alloy composite
TW201219343A (en) Method of fabricating article of metal-ceramic composite with gradient composition
TWI395662B (en) Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold
Liu Manufacturing porous multi-channel ceramics by laser gelling
Bala et al. A review on binder jetting fabrication: Materials, characterizations and challenges
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article
Stepien et al. Pure copper: Advanced additive manufacturing