TW201114415A - Method and equipment of forming porous bio-ceramic bone scaffold - Google Patents

Method and equipment of forming porous bio-ceramic bone scaffold Download PDF

Info

Publication number
TW201114415A
TW201114415A TW98135507A TW98135507A TW201114415A TW 201114415 A TW201114415 A TW 201114415A TW 98135507 A TW98135507 A TW 98135507A TW 98135507 A TW98135507 A TW 98135507A TW 201114415 A TW201114415 A TW 201114415A
Authority
TW
Taiwan
Prior art keywords
layer
ceramic
slurry
laser
sol
Prior art date
Application number
TW98135507A
Other languages
Chinese (zh)
Other versions
TWI421062B (en
Inventor
Fwu-Hsing Liu
Original Assignee
Univ Lunghwa Sci & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Lunghwa Sci & Technology filed Critical Univ Lunghwa Sci & Technology
Priority to TW98135507A priority Critical patent/TWI421062B/en
Publication of TW201114415A publication Critical patent/TW201114415A/en
Application granted granted Critical
Publication of TWI421062B publication Critical patent/TWI421062B/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

The invention provides a forming method and a forming apparatus of forming a porous bio-ceramic bone scaffold. A ceramic green body of the porous bio-ceramic bone scaffold is constituted by a plurality of successive ceramic solid films. The invention is to uniformly mix one kind of bio-compatible ceramic powders with a ceramic sol in a ratio, and to stir the mixture into a slurry; next, to pave a plurality of layers of slurry in sequence on or above a working platform; after paving of each layer of slurry, to proceed irradiation of a laser beam on said layer of slurry according to a corresponding sectional pattern to form said ceramic solid film where the ceramic sol in said layer of slurry generates a chemical gelation reaction when irradiated by the laser beam; and eventually, to remove the retained slurry on the plurality of ceramic solid films to obtain the ceramic green body.

Description

201114415 六、發明說明: 【發明所屬之技術領域】 丨 rous 本發明係關於一種用以多孔性生醫陶瓷骨骼支架❻〇 bioceramic bone scaffold)之成型方法(f〇nning meth〇d^^ 設備(forming equipment)。 【先前技術】 快速原型(Rapid Prototyping,rp)成型技術使用層狀加工 技術,能夠依照CAD所建構的立體幾何圖形,自動製造出 3D實體物件的技術。快速原型成型技術可克服工具機加工無 法完成的幾何形狀死角,做到自動化實體自由形狀製造(s〇nd Freeform Fabrication,SFF) ’而且成型的原型沒有形狀的限 制。所以,快速原型成型技術特別適合用來成型多孔性 陶瓷骨骼支架。 /快速原型成型設備所使用的成型工具分為兩大系統:雷 射系統以及喷嘴系統。一般利用噴嘴系統的快速原型成型設 備會有^7工速度慢、材料容易阻塞,等缺點。舉例說明,屬 於^嘴系統之熔解沉積法(Fused Dep〇siti〇n M〇deling,FDM)裝 置^將Ϋ條狀的原料加熱成半熔化的狀態,再經由喷嘴擠出 t料,疊成型’其製程所需的時間較長、效率差。同樣屬於 嗔f系統之多噴嘴模型堆疊(Multi_Jet M〇dding,MJM)裝置利 =多喷嘴把黏結劑(binder)噴覆於粉末狀的材料上,黏結劑能 粒狀粉末黏結起來,但是黏結劑容易阻塞。由於雷射 $能量可調整的範圍較大’一般而言’只要是粉末狀的原 二:快速原型成型設備都可以利用雷射光將其加以燒結或熔 結成型。201114415 VI. Description of the invention: [Technical field to which the invention pertains] 丨rous The present invention relates to a method for forming a porous biomedical ceramic skeleton scaffold (f〇nning meth〇d^^ device (forming Equipment) Rapid Prototyping (RP) forming technology uses layered processing technology to automatically create 3D solid objects in accordance with CAD geometry. Rapid prototyping technology can overcome tooling The unfinished geometric corners of the machine can be automated, and the prototypes are shaped without the shape constraints. Therefore, the rapid prototyping technology is particularly suitable for forming porous ceramic skeleton supports. The molding tools used in the rapid prototyping equipment are divided into two major systems: the laser system and the nozzle system. The rapid prototyping equipment that uses the nozzle system generally has the disadvantages of slow speed, easy material blockage, etc. , is a melting deposition method of the ^ nozzle system (Fused Dep〇siti n M〇deling, FDM) device ^ heats the strand-shaped raw material into a semi-melted state, and then extrudes the material through the nozzle. The stacking process requires a longer time and less efficiency. The same is true for the system. Multi-Jet M〇dding, MJM device. Multi-nozzle sprays the binder on the powdered material. The binder can bond the granular powder, but the binder is easy to block. Shot energy can be adjusted in a larger range 'generally' as long as it is a powdery original two: rapid prototyping equipment can be sintered or sintered using laser light.

4 6Lunghwa/200903TW 201114415 到目刚為止,使用生醫材料與雷射光為加熱工具來製作 生醫組織工程支架的疊層加工技術可分為三大^: 〇')立體微 影成像法(Stereolithography Apparatus,SLA):將生醫材料與紫 外光感光樹酯(UV resin)混合,經由紫外光雷射(υγ 描固化後成型;(2)選擇性雷射燒結(Selective Laser sintefing, SLS):使用雷射光為熱源對粉末狀態的生醫材料進行選擇性’ 掃描,讓粉末顆粒之間產生燒結作用成型;以及(3)熔熔沉積 製造(Fused Deposition Molding, FDM):利用噴嘴把生醫材料 擠出依照特定路徑堆疊,可以製作出具有孔隙的結構。 在上述技術中,SLA採用紫外光感光樹酯做為黏結 在做燒結後處理去除感光樹酯時會產生有害人體的氣體。 SLS使用雷射光對生醫材料進行燒結或直接熔結形成陶 件,因此,材料所受的雷射能量密度較大,容易造 ,縮及變形。FDM雖然能夠製作出交錯型式的網狀結 疋圓柱狀的組織結構其上下層之間的接觸面積很小,造成強 度不佳。 用f射光之快速原型成型贿的先前技術係利 =微鏡式抑描(galVan〇meter mirror scan)讓雷射光束 ,i 高且卫作範圍小,僅能在雷射光束可掃描“ 。當工作範_大時,上述設備之f射光束經 …、鏡折射角度大,於欲燒結處產生離焦現象,造成+射 不足,降低燒結效果。 ‘射此里 因此,本發明之一範疇在於提供一種用以成型— ^相t*雜支架之成型方法以及細設備,以避免上述問 【發明内容】 5 6LunghWa/20〇9〇3TW [ 201114415 根據本發明之一較佳具體實施例的成型方法,該成型方 =用以成型一多孔性生醫陶瓷骨骼支架。該多孔性生醫陶瓷 月骼支架之一陶瓷生坯(ceramic green body)係由:N[層連續的 陶瓷固態薄層(ceramic solid fllm)所構成,其中N為一自然 數。該成型方法首先係將一生物相容陶瓷粉末(bi〇_c〇mpatibl’e ceramic powder)與一陶莞溶膠(ceramic sol)依一比例均勻混 合,且攪拌成一漿料(slurry)。接著,該成型方法係塗佈第一 ^漿料於作台上。接著,該成型方法係根據對應該第一 =究固態薄層之-截面圖案,以一雷射光束照射該第一層 ,料之部分漿料,其中該第一層漿料被該雷射光束照射之部 分漿料被加熱使該陶瓷溶膠產生一化學凝膠反應(chemicai geation reaction),進而形成該第一層陶瓷固態薄層。接著, 該成型方法係塗佈第/層漿料於第…丨)層漿料上,/係範圍從 2ΛΝ中之—紐舖。接著,該·方法係根據對應該第/ 二陶竟固態薄層之-截面圖案,以該雷射光束照射該第/層 ^之部分漿料,其中該第ζ·層漿料被該雷射光束照射之^ 为漿料被加熱使該陶瓷溶膠產生該化學凝膠反應,進而形成 ,^層陶究固恶薄層。接著,該成型方法係重複塗佈第,層 漿料之步驟以及以該雷射光束照射該第f層漿料之步驟,直 至完成該N層陶瓷固態薄層為止。接著,該成型方法係去除 附著於該N層陶瓷固態薄層之殘留漿料,以獲得該陶瓷生 坯。最後,該成型方法係烘乾該陶瓷生坯,並對進行該陶瓷 生坯燒結即完成該多孔性生醫陶瓷骨骼支架。 根據本發明之-較佳具體實施例的成型設備,該成型設 ,用以成型生生醫喊倾支架。歸孔性生醫陶堯 :、路$架之—陶莞生垃係由N層連續的陶賴態薄層所構 成,其中N為一自然數。該成型設備包含一工作台、一塗層 裝置、層形成裝置以及—去除裝置。該工作台且有 一平面且被致動沿垂直該平面之一軸做升降。該塗層裝^盛4 6Lunghwa/200903TW 201114415 Up to now, the lamination processing technology using biomedical materials and laser light as heating tools to make biomedical tissue engineering scaffolds can be divided into three major ^: 〇 ') stereo lithography methods (Stereolithography Apparatus) , SLA): mixing biomedical materials with UV resin, UV laser (formed by υγ ray curing; (2) Selective Laser sintefing (SLS): using thunder The light is a heat source for selective 'scanning of the powdered state of the biomedical material to cause sintering between the powder particles; and (3) Fused Deposition Molding (FDM): using a nozzle to extrude the biomedical material According to the specific path stacking, a structure having pores can be produced. In the above technique, the SLA uses ultraviolet light-sensitive resin as a bond to generate a gas harmful to the human body when it is subjected to post-sintering treatment to remove the photosensitive resin. SLS uses a laser light pair. The biomedical materials are sintered or directly sintered to form pottery pieces. Therefore, the material is subjected to a large density of laser energy, which is easy to be formed, shrunk and deformed. The staggered type of mesh-like crust-like cylindrical structure has a small contact area between the upper and lower layers, resulting in poor strength. The prior art technique of forming a bribe with f-lighting is a micro-mirror (galVan) 〇meter mirror scan) Let the laser beam, i high and small in the range of the laser, can only be scanned in the laser beam. When the working mode is large, the f-beam of the above device has a large angle of refraction. Defocusing occurs at the sintering site, causing insufficient + shot and reducing the sintering effect. Therefore, one of the aspects of the present invention is to provide a molding method and a fine device for forming a ^^ phase t* bracket to avoid The above-mentioned problem [Summary of the Invention] 5 6LunghWa/20〇9〇3TW [201114415] According to a preferred embodiment of the present invention, the molding method is used to form a porous biomedical ceramic skeleton scaffold. One of the ceramic green body of the biomedical ceramic skeletal support is composed of: N [layer continuous ceramic solid fllm, wherein N is a natural number. The forming method is first Biological phase The ceramic powder (bi〇_c〇mpatibl'e ceramic powder) is uniformly mixed with a ceramic sol in a ratio and stirred into a slurry. Then, the molding method is applied to the first slurry. The forming method is followed by irradiating the first layer with a laser beam according to a cross-sectional pattern corresponding to the first solid layer of the solid layer, wherein the first layer of pulp A portion of the slurry that is irradiated with the laser beam is heated to cause a chemicai geation reaction to form the first layer of ceramic solid layer. Next, the molding method is to apply the first layer of the slurry to the first layer of the slurry, and the / system ranges from 2 to 纽. Next, the method irradiates a portion of the slurry of the first layer with the laser beam according to a cross-sectional pattern corresponding to the solid/thin layer of the second/second ceramic layer, wherein the cerium layer slurry is subjected to the laser When the beam is irradiated, the slurry is heated to cause the ceramic sol to generate the chemical gel reaction, thereby forming a layer of ceramics. Next, the molding method is a step of repeatedly coating the first layer of the slurry and irradiating the f-th layer slurry with the laser beam until the N-layer ceramic solid layer is completed. Next, the molding method removes the residual slurry attached to the N-layer ceramic solid layer to obtain the ceramic green body. Finally, the molding method is to dry the ceramic green body and complete the porous biomedical ceramic skeleton support by sintering the ceramic green body. According to the molding apparatus of the preferred embodiment of the present invention, the molding apparatus is used for molding a biomedical shouting bracket. The porpoise of the medicinal medicinal genus: 路 架 — 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶 陶The molding apparatus includes a work table, a coating device, a layer forming device, and a removing device. The table has a plane and is actuated to move up and down along one of the axes perpendicular to the plane. The coating is loaded

6Lunghwa/200903TW 6 201114415 漿料。該漿料係依―_之—陶粉末與—H容膠均 ^混^且祕喊。該㈣裝置其結構雜合且被控制配合 該工作台的升降依序塗佈N層漿料於該工作台上 層形成裝置包含—#射光束產生裝置、—導光機構以 。該雷射光束產生I置用以產生—雷射光束。該 導先機構與該聚焦鏡根據對應該第/層陶瓷固態薄層之一截 面圖案被致動平行該平面移動,其中7.係範圍從丨至Ν中之 二ίΪΪ標。該導賴構用以導⑽雷射光束至該聚焦鏡。 ~…’見用以聚焦該雷射光束至該第i層漿料,其中該第7.層 ^料被該雷射枝照射之部分雜被加熱使_、纽勝產生 凝膠反應,進而形賴m細態薄層。該去除 =其結獅配合以去除附著於該N層__薄層之殘留 聚料’以獲得該陶曼生链。 關於本發明之優點與精神可以藉由以下的發明詳述及所 附圖式得到進一步的瞭解。 【實施方式】 =參閱圖-以及圖二A至二c,圖—餘示根據本發明 ,-佳具财施例之細方法丨的流糊。根齡發明之成 ,方法1用以成型-多孔性生醫陶究骨路支架。特別地,該 夕^^生生醫陶瓷骨骼支架之一陶瓷生坯係由N層連續的陶瓷 固態薄層所構成,其中N為-自然數1二a至二c係繪示 ,用根據本發明之_較佳具體實關之成型設備2來成型該 夕孔性生醫陶瓷骨骼支架之陶瓷生坯的成型示意圖。 如圖—所示,根據本發明之成型方法丨首先係執行步驟 S10,製備一生物相容陶瓷粉末以及一陶瓷溶膠。6Lunghwa/200903TW 6 201114415 Slurry. The slurry is mixed with __---Tao powder and -H-capacity. The (4) device is heterozygous and is controlled to cooperate with the lifting of the table to sequentially apply the N layer slurry to the upper layer forming device of the table, including a light beam generating device and a light guiding mechanism. The laser beam produces an I-set to produce a laser beam. The guiding mechanism and the focusing mirror are actuated in parallel with the plane according to a cross-sectional pattern corresponding to one of the solid layers of the ceramic layer, wherein the system ranges from 丨 to Ν. The guide is configured to direct (10) a laser beam to the focusing mirror. ~...' See the focus of the laser beam to the i-th layer of the slurry, wherein the portion of the seventh layer of the material irradiated by the laser beam is heated to cause a gel reaction, and then a shape Lai m fine thin layer. This removal = its lion fit cooperates to remove the residual polymer attached to the N layer __ thin layer to obtain the Taman chain. The advantages and spirit of the present invention will be further understood from the following detailed description of the invention. [Embodiment] = Referring to the drawings - and Figs. 2A to 2c, the drawings show the flow of the fine method according to the present invention. The invention of root age, method 1 is used for forming-porous biomedical research and bone support. In particular, the ceramic green body of one of the ceramic bio-skeleton scaffolds is composed of a continuous ceramic solid layer of N layers, wherein N is a natural number 1 a to 2 c, and is used according to the present invention. The molding device 2 of the preferred embodiment is used to form a ceramic green body of the porphyritic ceramic skeleton support. As shown in the figure, the molding method according to the present invention first performs step S10 to prepare a biocompatible ceramic powder and a ceramic sol.

於具體實施例中,该生物相容陶瓷粉末可以是三妈填 6Lunghwa/200903TW 7 201114415 r〇:™i^:r;ca〇'P2〇5'si〇- 徑可視成型工:尺;=物二容; 於-具體實施例中,該陶竟溶膠可以 或上述 的=膠、氧储轉,等喊溶^ 接者根據本發明之成型方法1係 生物相容陶£粉末與該陶総 、广驟S12將該 成-漿料。 调^膠依-比例均勻混合,且攪拌 重量ΐ八中’生物相容陶竟粉末與該陶兗溶膠之 重里百刀比為 60wt/o:40wt% 〜30wt%:70wt% 〇 中’該漿料之成份為30〜減生物相容 陶£叔末、10〜15wt%溶劑、35〜55wt% 為水。該懸浮劑為六偏磷酸鈉^03)6],三0 〇 ^ % 3 1())。該漿料的黏稠性約為1200 cP至3000 俜執驟=一及圖二A所示’根據本發明之成型方法1 以一塗層裝置22塗佈第一層漿料於一工作 I-24具有一平面,且被致動沿垂直該平面 5塗?二ί 中ζ轴之—軸)做升降。根據本發明’ =可以包含盛褒聚料SL的漏斗222以及可使漿 該漏斗=擠224(或圓柱狀滾筒)。 sl’塗佈成均句的薄層聚料化,。每一層衆 ’、又可控制在約〇.imm。但本發明不以此為限,所需In a specific embodiment, the biocompatible ceramic powder may be a Sanma fill 6Lunghwa/200903TW 7 201114415 r〇:TMi^:r; ca〇'P2〇5'si〇-diameter visible forming work: ruler; In a specific embodiment, the ceramic sol can be stored in the same manner as the above-mentioned rubber or oxygen, and the like. The molding method according to the present invention is a biocompatible ceramic powder and the ceramic pot. The slurry is formed into a slurry. Adjust the glue to the ratio - evenly mixed, and the stirring weight of the 中 中 ' 'bio-compatible ceramic powder and the pottery sol granules ratio of 60wt / o: 40wt% ~ 30wt%: 70wt% 〇中' the pulp The composition of the material is 30~ biocompatible ceramics, 10~15wt% solvent, and 35~55wt% water. The suspending agent is sodium hexametaphosphate (03) 6], 30 〇 ^ % 3 1 ()). The viscosity of the slurry is about 1200 cP to 3000 俜 = = = = = ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' It has a plane and is actuated along the plane perpendicular to the plane 5 to raise and lower the axis of the shaft. According to the present invention, the funnel 222 containing the granules SL can be contained and the funnel = 224 (or cylindrical drum) can be used. Sl' is coated into a thin layer of homogenous particles. Each layer can be controlled at about 〇.imm. However, the invention is not limited thereto, and is required

6Lunghwa/200903TW 8 201114415 的塗層厚度可依照製品截面曲線的曲相及漿㈣性 f即塗層厚度係可變者。例如,當製品截面曲_曲率愈大 ^料t厚制變小。並且本發财不以水平或等厚度塗佈 接著’如圖-及圖三B所示,根據本發明之成型方法丨 係執行步驟S16,根據對應該第—層陶:細態薄層%,,之一截 面圖案卩固態薄膜形成裝置%戶斤發射之一雷射光束 該第-層紐SL,之部分祕SL,,其找第—賴料SI^ 該,射光束麟之科祕SL’被加熱使該喊轉產生一化 學凝膠反應,進而形成該第—層陶制態薄層SL,,(圖二B中 深色部分)。也就是說,陶瓷溶膠脫水而形成鏈狀分子結構 (ϋ、’ Si_0_Si、A1-0-A1),再進一步發展為網狀分子結構, 虽二成長觸及生物相容陶瓷粉末時,即將生物相容陶瓷粉末 緊,,覆絲結在H相鄰制亦以軸纽膠產生化 ,凝膠反應而黏結在-起。於化學凝膠反應完成後,即形成 二維多孔性的陶瓷生坯。由於未使用有機黏結劑,因此在去 除餘料和後續的燒結製程中不會產生有害氣體。由於使該陶 瓷溶膠產生化學凝膠反應所需能量遠小於燒結陶瓷粉末所需 能量,因此可大幅降低陶瓷工件收縮及變形的影響。 如圖二B所示,該固態薄膜形成裝置26包含一雷射光 束產生裝置262、一導光機構264以及一聚焦鏡266。該雷射 光束產生裝置262用以產生一雷射光束,例如,c〇2雷射、 Nd:YAG雷射、He-Cd雷射、Ar雷射或UV雷射。於一具體 實施例中,巧雷射光束產生裝置262可以加襞溫度感測^器, 當溫度感測器偵測到用來冷卻該雷射光束產生裝置262之冷 卻水溫度超過25°C時,該雷射光束產生裝置262即停止雷^ 光的激發。 t6Lunghwa/200903TW 8 201114415 The coating thickness can be varied according to the curve and the grain (four) of the product section curve. For example, when the cross-section curvature of the product is larger, the thickness of the material becomes smaller. And the present invention is not coated with a horizontal or equal thickness, and then as shown in FIG. 3 and FIG. 3B, the molding method according to the present invention performs step S16 according to the corresponding layer-layer ceramic: thin layer %, One section of the pattern 卩 solid film forming device% of the kilon emission of the laser beam of the first layer of the SL, the part of the secret SL, the first to find the first SI SI ^, the beam of the light of the Secretary SL' The heating is caused to cause a chemical gel reaction to form the first layer of the ceramic layer SL, (the dark portion in Fig. 2B). That is to say, the ceramic sol is dehydrated to form a chain-like molecular structure (ϋ, 'Si_0_Si, A1-0-A1), and further developed into a network structure, although the growth touches the biocompatible ceramic powder, it is about to be biocompatible. The ceramic powder is tight, and the wire-bonded knot is also produced by the X-ray glue in the adjacent state of H, and the gel reacts and sticks. After the completion of the chemical gel reaction, a two-dimensional porous ceramic green body is formed. Since no organic binder is used, no harmful gases are generated during the removal of the remainder and subsequent sintering processes. Since the energy required to cause the chemical sol reaction of the ceramic sol is much smaller than that required for sintering the ceramic powder, the influence of shrinkage and deformation of the ceramic workpiece can be greatly reduced. As shown in Fig. 2B, the solid film forming device 26 includes a laser beam generating device 262, a light guiding mechanism 264, and a focusing mirror 266. The laser beam generating means 262 is for generating a laser beam, for example, a c〇2 laser, an Nd:YAG laser, a He-Cd laser, an Ar laser or a UV laser. In a specific embodiment, the smart laser beam generating device 262 can add a temperature sensing device. When the temperature sensor detects that the cooling water temperature for cooling the laser beam generating device 262 exceeds 25 ° C. The laser beam generating means 262 stops the excitation of the light. t

6Lunghwa/200903TW 201114415 與先前技術利用振鏡式掃描讓雷射光束聚焦在每一層漿 料SL’方法不同,該導光機構264與該聚焦鏡266根據對應每 一層陶瓷固態薄層SL"之截面圖案被致動平行如圖二B所示 之X-Y平面移動。該導光機構264用以導引該雷射光束至該 聚焦鏡266。該聚焦鏡266用以聚焦該雷射光束至每一層漿 料SL’。於一具體實施例中,雷射光束的掃描速率為 85mm/s、掃描間距為〇.imm,雷射功率為i〇w。於一具體實 施例中,於該聚焦鏡266處可以加裝一喷氣管。喷氣管用以 導入低壓空氣並經由其喷嘴快速喷出,能夠防止進行雷射光 束掃描時陶瓷漿料濺散附著於聚焦鏡片上,影響雷射光束掃 描的精確度。 —同樣示於圖二B,根據本發明之導光機構264包含多個 固定的反射鏡以及能被致動平行如圖二B所示之Χ_γ平面移 動的反射鏡。例如,圖二中標示264a及264b標號代表固定 的反射鏡,標示264c標號代表能被致動沿平行圖二B所示之 X軸之一軸移動的反射鏡,標示264d號代表能跟隨反射鏡 264c被致動並能沿平行圖二B所示之γ軸之一軸移動的反射 鏡。該聚焦鏡266則伴隨該反射鏡264d —起移動。 於一具體實施例中,根據本發明之固態薄膜形成裝置26 ^雷射光束掃描紅作酬為45G麵χ 25G腕,最高速度 ^ 3000 mm/min以上,且其X-Y軸重複精度設計為土 0.02 地’與利贿鏡式掃描讓雷射光束聚_先前技術 前本f 2固態薄膜形成裝置26,其設計即可改善先 工作圍小與雷射光絲f、能量不足的缺點。 係執?ί驟工V::,根據本發明之成型方法1 轴下隊:碰/ 作台24沿平行圖二C+Z軸之一 轴下降一距離(一個薄層的厚度),使得在後續塗佈完新的-6Lunghwa/200903TW 201114415 Unlike the prior art, which uses galvanometer scanning to focus the laser beam on each layer of the slurry SL', the light guiding mechanism 264 and the focusing mirror 266 are in accordance with the cross-sectional pattern of each layer of ceramic solid thin layer SL" The XY plane is moved parallel as shown in Figure 2B. The light guiding mechanism 264 is configured to guide the laser beam to the focusing mirror 266. The focusing mirror 266 is used to focus the laser beam to each layer of slurry SL'. In one embodiment, the scanning rate of the laser beam is 85 mm/s, the scanning pitch is 〇.imm, and the laser power is i〇w. In a specific embodiment, a jet tube can be added to the focusing mirror 266. The ejector tube is used to introduce low-pressure air and is quickly ejected through its nozzle, which prevents the ceramic slurry from splashing and attaching to the focusing lens during laser beam scanning, which affects the accuracy of laser beam scanning. - Also shown in Figure 2B, the light directing mechanism 264 in accordance with the present invention includes a plurality of fixed mirrors and mirrors that can be actuated in parallel with the Χ γ plane as shown in Figure 2B. For example, reference numerals 264a and 264b in FIG. 2 denote fixed mirrors, and reference numeral 264c denotes a mirror that can be actuated to move along an axis of the X-axis shown in parallel with FIG. 2B, and numeral 264d denotes a follow-up mirror 264c. A mirror that is actuated and movable along one of the axes of the gamma axis shown in Figure 2B. The focusing mirror 266 moves along with the mirror 264d. In a specific embodiment, the solid-state film forming apparatus 26 according to the present invention has a laser beam scanning red for a 45G surface χ 25G wrist, a maximum speed of more than 3000 mm/min, and an XY-axis repeatability design of the soil 0.02. The ground's and the bristle mirror scan allow the laser beam to be concentrated. The prior art f 2 solid film forming device 26 is designed to improve the shortcomings of the first working small and the laser light f, and the energy is insufficient. The system is in accordance with the present invention. Subsequent coating of new -

6Lunghwa/200903TW 201114415 層漿料後,不必重行調整該__ 準。此外需強調的是,於魏應用中,每 不以相同厚度為必要。 接著,如圖-所示,根據本發明之成型方法 'z ^ 中之一整數指標。隨後,根據本發明 步驟S22 ’根據對應該第ζ·層陶紙態薄 二ί艰Γΐ固態薄卿成裝置26所發射之雷 層漿料SL,被該雷射光束照射 株 f 溶膠產生該化學凝膠反應,進加熱使該陶竞 SL,,。實務上,經由CAM^ =形成5亥弟7層陶究固態薄層 連線,依攄哕算牯—哉&固t術,可將電腦與將該成型設備2 薄臈形成ft可能由⑽產生)控制該固態 Si成裝置26對母—層漿料犯加熱,並進,成自動 所有以截1 =二步驟S24,判斷 或之上的槳料層SL,。加熱塗佈在該工作台14上 本發明之成型方法丨传勃〜24的判斷結果為否定者,根據 -距離(一個薄層的厚产巧竭S18,致動該工作台24下降 又’接續執行步驟S20及步驟S22。 法 B及6Lunghwa/200903TW 201114415 After the layer of slurry, it is not necessary to re-adjust the __ standard. In addition, it should be emphasized that in Wei application, it is necessary to not use the same thickness. Next, as shown in the figure, an integer index in the molding method 'z ^ according to the present invention. Subsequently, according to the step S22' of the present invention, the laser is irradiated by the laser beam by the laser beam irradiated by the laser beam, which is emitted by the laser beam, which is emitted by the laser beam. The gel reaction, heating into the pottery SL,,. In practice, through the CAM ^ = formation of 5 Haidi 7-layer ceramic solid-state thin layer connection, according to the calculation of 牯-哉 &;; solid t surgery, the computer and the molding equipment 2 thin 臈 may be formed by (10) The solid-state Si-forming device 26 is controlled to heat the mother-layer slurry, and then enters the slurry layer SL which is automatically judged by the cut-off 1 = two-step S24. Heating and coating on the table 14 of the present invention, the result of the determination of the method of 丨 勃 〜 〜 24 is negative, according to the distance (a thin layer of production exquisite S18, actuating the table 24 down and 'continuously Step S20 and step S22 are performed.

6Lunghwa/200903TW 11 1 係肯定者,根據本發明之成型方 之圖二C中)去除 去除裝置(未繪示於圖二A、圖二 料SL,,以獲得如圖層陶竟固態薄層SL”之殘留漿 述3具有内連通孔3^二的陶变生链3。圖三所示之陶究生 噴霧液體(例如,水)爽队一具體實施例中,該去除裝置得以 之殘留漿科SL,。水古除附著於該N層陶瓷固態薄層SL,, 201114415 於實際應用中’因為使用陶:光漿料本身做為支撐結構 ’利用陶究浆料本身黏度所產生的懸浮力作 i=irif(rerhanging)部份的支樓力。因此,不需要 ί ίΐίϊ構就能製作出具有凸懸結構助連通孔的生 醫陶瓷骨骼支架的陶瓷生坯。 最後’根據本發明之成型方法丨係執行步驟S26,供乾 =3 ’並對進行該喊生堪3燒結,即完成該多孔 —瓷骨骼支架。根據本發明之多孔性生醫陶瓷骨骼支 二為夕孔性組織結構,其可以依照不同的3D模型圖,製作 ^有特疋孔隙形狀與尺寸大小的骨路支架。一般適合細胞 寸f、成長之生醫組織的孔隙尺寸為刪叫〜刚㈣之間。 ^康本發明之多孔性生她支架可以製作出孔隙度達 100/rni的生醫組織,以利細胞附著、成長。 於一具體實施例中,該生物相容陶瓷粉末係三鈣磷酸鹽 (例如,磷酸舞)或|>2〇5,於燒結製程中,該陶瓷生坯3可以 被加熱至1200〇C以上,利用熔滲方式進行燒結。藉此,可以 提升該多孔性生醫陶瓷骨骼支架的機械性質,其抗彎強度可 由3MPa提升至16MPa以上,同時增加生物活性 (bioactivity) 〇 於另一具體實施例中,該生物相容陶瓷粉末可以採用 Ai2^粉末,該多孔性生醫陶瓷骨骼支架完成後,可以將氫氧 基磷灰石加熱熔滲至該多孔性生醫陶瓷骨骼支架的表面,利 細胞附著與增生。 —综上所述’本發明採用的材料狀態為漿料狀態,具有一 疋的流動性,兼具固態材料和液態材料的優點,可均勻混合 陶瓷溶膠與生物相容陶瓷粉末,並利於均勻鋪設出厚度較薄 的衆料層。並且’本發明所應用的材料黏結原理為凝膠原6Lunghwa/200903TW 11 1 is a confirmer, according to the molding method of the present invention, FIG. 2C) removal removal device (not shown in FIG. 2A, FIG. 2, SL, to obtain a solid layer SL of the layer of ceramics) The residual slurry 3 has a ceramic transformation chain 3 having an inner communication hole 3^2. In the specific embodiment of the ceramic spray liquid (for example, water) shown in Fig. 3, the removal device can be left with the residue SL. The water is removed from the N-layer ceramic solid-state thin layer SL, 201114415. In practical applications, 'because of the use of ceramics: the light paste itself as a supporting structure' uses the suspension force generated by the viscosity of the ceramic slurry itself as i=irif (rerhanging) part of the building power. Therefore, the ceramic green body of the biomedical ceramic skeleton scaffold having the convex suspension structure supporting hole can be produced without the need of ί ΐ 。 。. Finally, the molding method according to the present invention is performed. Step S26, supplying dry = 3 ' and performing the shouting, and completing the porous-porcelain skeleton scaffold. The porous biomedical ceramic skeleton branch according to the present invention has a sinusoidal structure, which can be different 3D model map, made ^ special The shape and size of the bone path support. Generally suitable for cell size f, the growth of the biomedical tissue pore size is between the deletion ~ just (four). ^ Kang Ben invention of the porous her stent can make a porosity of 100 /rni biomedical tissue to facilitate cell attachment and growth. In one embodiment, the biocompatible ceramic powder is a tricalcium phosphate (eg, phosphoric acid dance) or |>2〇5, in a sintering process The ceramic green body 3 can be heated to 1200 〇C or higher and sintered by infiltration. Thereby, the mechanical properties of the porous biomedical ceramic skeleton support can be improved, and the bending strength can be increased from 3 MPa to 16 MPa or more. At the same time, the bioactivity is increased. In another embodiment, the biocompatible ceramic powder can be made of Ai2^ powder, and the porous biomedical ceramic skeleton scaffold can be heated and infiltrated after the hydroxyapatite is completed. To the surface of the porous biomedical ceramic skeleton scaffold, the cells adhere and proliferate. - In summary, the material used in the present invention is in a slurry state, has a turbulent fluidity, and has a solid material. The advantages of the material and the liquid material can uniformly mix the ceramic sol and the biocompatible ceramic powder, and facilitate the uniform laying of the thin layer of the mass. The material bonding principle applied by the invention is the gel original.

12 6Lunghwa/200903TW 201114415 理’其可聽於_清洗過财產 量即能引發的化學凝膠反應 且使用較小能 發明之成型設備,其雷射掃福衝擊。根據本 園小與雷射光束聚焦能量不足的缺點。。先則技街其工作範 ^由以上較佳具體實施例之 述本發明之特徵與精神,而 ^ 加清楚描 施!刺本發明之範噚加以限制。相3揭12 6Lunghwa/200903TW 201114415 The chemical gel reaction that can be triggered by the cleaning of the property is used, and the molding equipment of the smaller invention can be used, and the laser sweeps the impact. According to the shortcomings of the small and the laser beam focusing energy is insufficient. . The function and spirit of the present invention will be apparent from the above-described preferred embodiments, and the invention will be limited. Phase 3

GiJS變等性a的安排ϊ本發明,申 請之專利範 據上述的二ft本㈣所中請之專利範圍的範轉應該根 變以及具鱗=的轉,以致使其涵蓋财可能的改Arrangement of GiJS variational a. According to the present invention, the patent application scope of the above-mentioned two ft (four) should be rooted and scaled, so that it covers the possible change of the financial

13 6Lunghwa/200903TW 201114415 【圖式簡單說明】 程圖圖#根據本發明之一較佳具體實施例之成型方法的流 在塗細設備來輸咖其 力愈係運用根據本發明之細設備來成型喊生述其 、先束掃描加熱製程階段之示意圖。 了 C係運用根據本發明之成型設備來成型陶瓷生埋其 在堆豐多層陶㈣Μ之示意圖。 充 圖二係根據本發明之成型方法所完成陶瓷生坯之示意 圖0 【主要元件符號說明】 1 :成型方法 2:成型設備 222 :漏斗 24 :工作台 262 :雷射光束產生裝置 264a、264b、264c、264d : 266 =聚焦鏡 S10〜S28 :方法步驟 22 :塗層裝置 224 :刮板 26 :固態薄膜形成裝置 264 :導光機構 反射鏡 264 :導光機構 SL :漿料 SL':漿料層13 6Lunghwa/200903TW 201114415 [Simplified illustration of the drawings] The flow chart of the molding method according to a preferred embodiment of the present invention is used in the application of the thinning device to form the finer device according to the present invention. Shouting a sketch of the process of scanning and heating the process. The C system uses the molding apparatus according to the present invention to form a schematic diagram of a ceramic buried in a pile of multi-layer ceramics (four). Fig. 2 is a schematic view of a ceramic green body completed according to the molding method of the present invention. [Main component symbol description] 1: molding method 2: molding apparatus 222: funnel 24: table 262: laser beam generating devices 264a, 264b, 264c, 264d: 266 = focusing mirrors S10 to S28: method step 22: coating device 224: squeegee 26: solid film forming device 264: light guiding mechanism mirror 264: light guiding mechanism SL: slurry SL': slurry Floor

14 6Lunghwa/200903TW 201114415 3:陶瓷生坯 SL’’ :陶瓷固態薄層 32 :内連通孔14 6Lunghwa/200903TW 201114415 3: Ceramic green body SL’': ceramic solid layer 32: inner communication hole

15 6Lunghwa/200903TW15 6Lunghwa/200903TW

Claims (1)

201114415 七、申請專利範圍: 1、 孔絡支架之成型方法,該多 自職,軸® ⑻;纽末與,溶膠依-比例均勻混合 (b) 塗佈第一層漿料於一工作台上; (c) =應該第一層陶瓷固態薄層之一截面圖案,以一恭 f光5照射該第-層漿料之部分漿料,其中該第—声^ ί 2之科料被加紐_纽^ 生化子凝膠反應進而形成該第一層陶£固態薄層; (d) 塗漿料於第㈣層漿料上,淮範圍從2至 一整數指標; ⑷根據對應該第/層陶竟固態薄層之—截面圖案,以該帝 t光束照_第/層轉之部分漿料,其中該第/層聚料 h亥田射光束照射之部分|料被加熱使該陶竟溶膠產生 該化學滅膠反應進而形成該第/層陶兗固態薄層; (f)重複步驟⑹以及步驟⑻,直至完成該珊陶究固態薄層 τ» .L · (g) 去除附著於該N層陶瓷固態薄層之殘留漿料,以 陶瓷生坯;以及 (h) 烘乾該陶瓷生坯,並對進行該陶瓷生坯燒結即完成該 多孔性生醫陶瓷骨骼支架。 2、如申請專利範圍第1項所述之成型方法,其中該生物相容陶 瓷粉末係選自由三鈣磷酸鹽、氫氧基磷灰石、甲殼素、 %0、Ca0、ί>2〇5、Si〇2、Mg0以及其混合組合之粉^本所組 6Lunghwa/200903TW 16 201114415 成之群組t之一。 3、 如申請專利範圍第2項所述之成型方法,其中該生物相容陶 究泰末係二弓麟酸鹽或P2〇5 ’於步驟(h)中,該陶曼生述被加 熱至1200°C以上利用熔滲方式進行燒結。 4、 如申請專利範圍第1項所述之成型方法,其中該陶瓷溶膠係 選自由氧化矽溶膠、氧化鈦溶膠、氧化鋁溶膠、氧化鍅溶膠 以及其混合組合之溶耀所組成之群組中之一。 5、 如申請專利範圍第1項所述之成型方法,其中該生物相容陶 攀 瓷粉末與該陶瓷溶膠之重量百分比為60wt%:40wt%〜 30wto/〇:70wt%。 如申請專利範圍第1項所述之成型方法,其中該漿料之成份 為30〜50wt°/〇生物相容陶瓷粉末、i〇〜15wt%溶劑、35〜55wt% 陶竟溶膠以及2〜5wt%懸浮劑。 7、如申請專利範圍第6項所述之成型方法,其中該溶劑為水, 該懸浮劑為六偏磷酸鈉[(NaP03)6],三聚磷酸鈉(Na5P3O10)。 φ 8、如申請專利範圍第1項所述之成型方法,其中該雷射光束係 選自由一C02雷射、一Nd..YAG雷射、一He-Cd雷射 、一 Ar 雷 射以及一 UV雷射所組成之群組中之一。 9、 如申請專利範圍第1項所述之成型方法,其中該生物相容陶 £粉末係Al2〇3粉末,該多孔性生醫陶瓷骨骼支架完成後, 將氫氧基磷灰石加熱熔滲至該多孔性生醫陶瓷骨骼支架的表 面。 10、 一種用以成型一多孔性生醫陶瓷骨骼支架之成型設備,該多 孔性生醫陶瓷骨骼支架之一陶瓷生坯係由N層連續的陶瓷固 17 6Lunghwa/200903TW 201114415 態薄層所構成’ N為-自然數,該成型設備包含: 工作σ,該工作台具有一平面且被致動沿垂直該平面之 一軸做升降; 一塗層袭置,該塗層|置盛裝—漿料,該賴係依一比例 與—陶£溶膠均勻混合且響而成,該塗 曰裝置,、、,Ό構係配合且被控制配合該工作台的升降依 塗佈Ν層漿料於該工作台上或之上; -,態薄層形成裝置’該鳴騎形成裝置包含—雷射光 ^生裝置、一導光機構以及一聚焦鏡,該雷射光束產 ίϊί用,生—雷射光束’該導光機構與該聚焦鏡根 據對應該第y.制_細_層之—截面_被致動平行 該平面移動,該導光機構用以導引該雷射光束至該聚焦 ,,該聚焦鏡用以聚焦該雷射光束至該第7•層漿料,)係 ,圍從1至N中之-整數指標,其中該第層毅料被該雷 ,光束照射之部分漿料被加熱使該陶瓷溶膠產生該化學 凝膠反應進而形成該第y層陶瓷固態薄層;以及 一去除裝置,該去除裝置其結構係配合以去除附著於該^^ 層陶瓷固態薄層之殘留漿料,以獲得該陶瓷生坯。 11、 如申請專利範圍第1〇項所述之成型設備,其中該雷射光束係 選自由一C02雷射、一Nd:YAG雷射、一He-Cd雷射、一Ar雷 射以及一 UV雷射所組成之群組中之一。 12、 如申請專利範圍第1〇項所述之成型設備,其中該導光機構包 含多個固定的反射鏡以及能被致動平行該平面移動的反射 鏡。 13、 如申請專利範圍第1〇項所述之成型設備,其中該去除裝置係 喷霧一液體以去除附著於該N層陶瓷固態薄層之殘留漿^。 6Lunghwa/200903TW 18201114415 VII. Patent application scope: 1. The molding method of the hole-supporting bracket, the self-employed, the shaft® (8); the New Zealand and the sol-proportional mixing (b) coating the first layer of slurry on a workbench (c) = should be a cross-sectional pattern of the first layer of ceramic solid layer, a part of the slurry of the first layer of slurry is irradiated with a light, and the material of the first sound is added New ^ biochemical gel reaction to form the first layer of solid layer; (d) coating slurry on the (four) layer of slurry, Huai range from 2 to an integer index; (4) according to the corresponding layer / layer of pottery a solid-state thin layer-section pattern, the part of the slurry is irradiated by the ti-t beam, wherein the portion of the layer/polymer is irradiated with a beam of light, and the material is heated to produce the sol The chemical rubberization reaction further forms the solid layer of the first layer of ceramics; (f) repeating the step (6) and the step (8) until the completion of the solid layer τ».L · (g) removal of the layer a residual slurry of a ceramic solid layer, a ceramic green body; and (h) drying the ceramic green body, and performing the ceramic green body The porous biomedical ceramic skeleton scaffold is completed by sintering. 2. The molding method according to claim 1, wherein the biocompatible ceramic powder is selected from the group consisting of tricalcium phosphate, hydroxyapatite, chitin, %0, Ca0, ί> , Si〇2, Mg0, and a combination of the powders of the group 6 Lunghwa/200903TW 16 201114415 into one of the groups t. 3. The molding method according to claim 2, wherein the biocompatible ceramics is a catechin or a P2〇5' in the step (h), the Tauman is heated to 1200°. C or more is sintered by infiltration. 4. The molding method according to claim 1, wherein the ceramic sol is selected from the group consisting of cerium oxide sol, titanium oxide sol, alumina sol, cerium oxide sol, and a mixture thereof. one. 5. The molding method according to claim 1, wherein the weight ratio of the biocompatible ceramic powder to the ceramic sol is 60 wt%: 40 wt% to 30 wto/〇: 70 wt%. The molding method according to claim 1, wherein the composition of the slurry is 30 to 50 wt / 〇 biocompatible ceramic powder, i 〜 15 wt% solvent, 35 to 55 wt% terracotta sol and 2 to 5 wt. % suspending agent. 7. The molding method according to claim 6, wherein the solvent is water, and the suspension is sodium hexametaphosphate [(NaP03)6], sodium tripolyphosphate (Na5P3O10). Φ 8. The molding method of claim 1, wherein the laser beam is selected from the group consisting of a C02 laser, a Nd..YAG laser, a He-Cd laser, an Ar laser, and a One of the groups consisting of UV lasers. 9. The molding method according to claim 1, wherein the biocompatible ceramic powder is Al2〇3 powder, and after the porous biomedical ceramic skeleton support is completed, the hydrogen oxyapatite is heated and infiltrated. To the surface of the porous biomedical ceramic skeleton scaffold. 10. A molding apparatus for forming a porous biomedical ceramic skeleton support, wherein the ceramic green body of the porous biomedical ceramic skeleton support is composed of a N-layer continuous ceramic solid 17 6Lunghwa/200903TW 201114415 thin layer. 'N is a natural number, the molding apparatus comprises: a work σ, the workbench has a plane and is actuated to move up and down along an axis perpendicular to the plane; a coating is applied, the coating is placed in a slurry, The Lai system is uniformly mixed with and rang, and the coating device is matched and controlled to match the lifting and lowering of the working table to the working table. Above or above; - state thin layer forming device 'the sound riding forming device comprises - a laser light generating device, a light guiding mechanism and a focusing mirror, the laser beam is used for producing a laser beam The light guiding mechanism and the focusing mirror are moved parallel to the plane according to the section corresponding to the yth layer, the light guiding mechanism is configured to guide the laser beam to the focusing, the focusing mirror For focusing the laser beam to the 7th layer Material, the system, from the 1 to N - integer index, wherein the first layer of material is affected by the lightning, part of the slurry irradiated by the beam is heated to cause the ceramic sol to generate the chemical gel reaction to form the yth layer a ceramic solid layer; and a removal device configured to cooperate to remove residual slurry adhering to the ceramic solid layer to obtain the ceramic green body. 11. The molding apparatus of claim 1, wherein the laser beam is selected from the group consisting of a C02 laser, a Nd:YAG laser, a He-Cd laser, an Ar laser, and a UV. One of the groups consisting of lasers. 12. The molding apparatus of claim 1, wherein the light guiding mechanism comprises a plurality of fixed mirrors and a mirror that can be actuated to move parallel to the plane. 13. The molding apparatus of claim 1, wherein the removing device sprays a liquid to remove residual pulp adhering to the N-layer ceramic solid layer. 6Lunghwa/200903TW 18
TW98135507A 2009-10-21 2009-10-21 Method and equipment of forming porous bio-ceramic bone scaffold TWI421062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98135507A TWI421062B (en) 2009-10-21 2009-10-21 Method and equipment of forming porous bio-ceramic bone scaffold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98135507A TWI421062B (en) 2009-10-21 2009-10-21 Method and equipment of forming porous bio-ceramic bone scaffold

Publications (2)

Publication Number Publication Date
TW201114415A true TW201114415A (en) 2011-05-01
TWI421062B TWI421062B (en) 2014-01-01

Family

ID=44934079

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135507A TWI421062B (en) 2009-10-21 2009-10-21 Method and equipment of forming porous bio-ceramic bone scaffold

Country Status (1)

Country Link
TW (1) TWI421062B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582885B (en) * 2015-12-30 2017-05-11 國立中央大學 Platform structure for low temperature manufacturing tissue engineering bracket and method for manufacturing low temperature manufacturing tissue engineering bracket

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220072070A1 (en) 2019-06-25 2022-03-10 Synbio Tech Inc. Method for improving walking capacity of elderly subjects

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2121974T3 (en) * 1993-07-21 1998-12-16 Kao Corp Sa COMPOSITION OF RAW MATERIAL FOR CERAMIC MATERIALS AND PROCEDURE FOR ITS PREPARATION.
US5639402A (en) * 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US5697043A (en) * 1996-05-23 1997-12-09 Battelle Memorial Institute Method of freeform fabrication by selective gelation of powder suspensions
TWI228114B (en) * 1999-12-24 2005-02-21 Nat Science Council Method and equipment for making ceramic work piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582885B (en) * 2015-12-30 2017-05-11 國立中央大學 Platform structure for low temperature manufacturing tissue engineering bracket and method for manufacturing low temperature manufacturing tissue engineering bracket

Also Published As

Publication number Publication date
TWI421062B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
Chaudhary et al. Additive manufacturing by digital light processing: a review
Kessler et al. 3D printing in dentistry—State of the art
Mitteramskogler et al. Light curing strategies for lithography-based additive manufacturing of customized ceramics
CN107750200B (en) Additive manufacturing method for making transparent 3D parts from inorganic material
Deckers et al. Additive manufacturing of ceramics: A review
Zhou et al. A novel aqueous ceramic suspension for ceramic stereolithography
JP5714552B2 (en) How to produce tertiary elemental goods
Miyanaji et al. Optimal process parameters for 3D printing of porcelain structures
JP5452072B2 (en) Electron beam shaping method
Riveiro et al. Laser additive manufacturing processes for near net shape components
KR20160071014A (en) Methods for manufacturing of ceramic restorarion using three dimensions printer
CN109396433A (en) The method and machine of at least one blank made of at least one ceramics and/or metal material are manufactured increases material manufacturing technology
TWI673250B (en) Water-based ceramic three-dimensional laminated material and method for manufacturing ceramic parts using the same
Gawel Review of additive manufacturing methods
JP2020533261A (en) High-density glass-ceramic article by additional manufacturing of glass frit
JP2018141224A (en) Composition for producing three-dimensional molded article, method for producing three-dimensional molded article, and apparatus for producing three-dimensional molded article
TW201114415A (en) Method and equipment of forming porous bio-ceramic bone scaffold
JP2003321704A (en) Lamination shaping method and lamination shaping apparatus used in the same
TWI395662B (en) Method of forming shell mold and high strength ceramic or metal-ceramic composite prototype using such shell mold
JP2013233806A (en) Method for laminated production of three-dimensional object
Wang et al. Photopolymerization-based three-dimensional ceramic printing technology
CN110711040B (en) Method for manufacturing ceramic tooth by three-dimensional lamination
Baumgartner et al. Comparison of dynamic mask‐and vector‐based ceramic stereolithography
TW201350094A (en) Method of manufacturing bio-ceramic bone
TWI399225B (en) Modeling method and forming method of bio-ceramic bone scaffold

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees