JPH0760844A - Manufacture of three-dimensional structure - Google Patents

Manufacture of three-dimensional structure

Info

Publication number
JPH0760844A
JPH0760844A JP5212974A JP21297493A JPH0760844A JP H0760844 A JPH0760844 A JP H0760844A JP 5212974 A JP5212974 A JP 5212974A JP 21297493 A JP21297493 A JP 21297493A JP H0760844 A JPH0760844 A JP H0760844A
Authority
JP
Japan
Prior art keywords
resin
sacrificial layer
dimensional structure
tank
photocurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5212974A
Other languages
Japanese (ja)
Other versions
JP3537161B2 (en
Inventor
Masaki Yokohama
正毅 横浜
Gakuden Tan
学伝 単
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP21297493A priority Critical patent/JP3537161B2/en
Publication of JPH0760844A publication Critical patent/JPH0760844A/en
Application granted granted Critical
Publication of JP3537161B2 publication Critical patent/JP3537161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Micromachines (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To obtain a three-dimensional structure containing a relatively movable resin material and a ceramic material and having high accuracy by providing the steps of molding an optically curable fluidized resin, curing a sacrificial layer of optically curable resin containing a sacrificial layer component or made of the component, and removing the layer. CONSTITUTION:A optically curable fluidized resin 24 is contained in an optically curable fluidized resin tank 21, and formed with an ultraviolet beam 23 from below a glass plate 22. Then, a table 31 is moved by a vertical actuator 32 and a horizontal actuator 33, filled in a cleaning tank 26 filled with cleanser 25, and cleaned by an ultrasonic generator 40. Thereafter, after an ultraviolet ray source 28 is disposed, the table 31 is introduced into an exposure tank 27, and the cured optically curable fluidized resin 34 is completely cured by the ultraviolet beam. Further, an optically curable fluidized resin 30 of a sacrificial layer component is contained in an optically curable fluidized resin tank 29, the table 31 is moved thereto, and a sacrificial layer is optically formed at a resin molded form. Then, after it is cleaned with the tank 26, it is applied by an ultrasonic vibration and only the sacrificial layer component is dissolved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光硬化性流動樹脂を用
いた光造形技術により、相対的可動部分を有する3次元
構造体、特に微細三次元構造体を、高分子樹脂質又はセ
タミックス材質にて、3次元構造体を製造する方法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a three-dimensional structure having relatively movable parts, particularly a fine three-dimensional structure, by means of a stereolithography technique using a photocurable fluid resin, a polymer resin or a setamix. The present invention relates to a method of manufacturing a three-dimensional structure with a material.

【0002】[0002]

【従来の技術】近年、マイクロマシーンの研究が盛んで
あり、特に3次元部品加工及び組立技術のニーズは大き
く、多種の微細加工技術が研究されている。これらの微
細加工技術の1つとして、金属の射出成形法、即ちMI
M(Metal Injection Molding)があり、盛んに研
究開発されている。例えば(奥村 裕幸、金属粉末射出
成形プロセス、プレス スクール、第291 号、1992、P
1〜14)(三浦 立、金属粉末射出成形法、工業材料、
第39号No.12、1991 9月号、P18〜23)に詳しく記
載されている。
2. Description of the Related Art In recent years, research on micromachines has been actively conducted, and in particular, there is a great need for three-dimensional component processing and assembling technology, and various fine processing technologies are being researched. As one of these fine processing techniques, a metal injection molding method, that is, MI
There is M (Metal Injection Molding), which is being actively researched and developed. For example (Hiroyuki Okumura, Metal Powder Injection Molding Process, Press School, No. 291, 1992, p.
1-14) (Ritsu Miura, metal powder injection molding method, industrial materials,
No. 39 No. 12, September 1991, P18-23).

【0003】この加工工程図を図1に示す。まず加熱混
練工程は一般に金属の微粉末たとえば粒径は1μm〜1
0μmで平均5μmのFeやNiなど、水アトマイズや
ガスアトマイズ等による微粉末製造技術により製造され
た金属粉末に、有機材料、(以後はバインダ−という)
たとえばポリエチレン、ポリスチレン、ポリプロピレ
ン、EVA(エチレンと酢酸ビニルの共重合体)を一定
比率で混合し、熱を加えて混練することで粘土状の軟ら
かい混合物をつくる。造粒工程は該混合物を射出成形機
に供給できるようにペレット状にする。射出成形工程で
はペレット状にした材料を射出成形機により、閉じられ
た金型の内部に材料を完全に満たし、そのままの形で取
り出し最終の目的形状を得ようとする方法で材料を溶か
す、流す、固めるという工程の繰り返しで成形される。
脱脂工程では成形体の中のバインダーを分解除去するた
め加熱する。一般に脱脂時間は15〜100時間が必要
で最高温度はバインダー成分にもよるが300〜500
℃ほどである。焼結工程では金属粉末だけになった成形
体を高温で焼結する。例えばFe、Niでは水素雰囲気
中で1100〜1200℃にて焼結を行い本来の密度の
金属体とする方法である。この様な工程で切削無しにあ
る程度の3次元微細構造体を製造することができる。
FIG. 1 shows this machining process diagram. First, in the heating and kneading step, fine powder of metal, for example, a particle size of 1 μm to 1 is generally used.
An organic material (hereinafter referred to as a binder) is added to a metal powder manufactured by a fine powder manufacturing technique such as water atomization or gas atomization such as Fe or Ni having an average diameter of 0 μm and a thickness of 5 μm.
For example, polyethylene, polystyrene, polypropylene and EVA (copolymer of ethylene and vinyl acetate) are mixed at a constant ratio and heated to knead to form a clay-like soft mixture. The granulation step pelletizes the mixture so that it can be fed to an injection molding machine. In the injection molding process, the pelletized material is completely filled by the injection molding machine into the closed mold, and the material is taken out as it is and the material is melted and poured by the method of obtaining the final target shape. Molded by repeating the process of hardening.
In the degreasing step, heating is performed to decompose and remove the binder in the molded body. Generally, the degreasing time is 15 to 100 hours, and the maximum temperature is 300 to 500 depending on the binder component.
It is about ℃. In the sintering step, a compact made of only metal powder is sintered at high temperature. For example, in the case of Fe and Ni, it is a method of sintering at 1100 to 1200 ° C. in a hydrogen atmosphere to obtain a metal body having an original density. Through such a process, a certain degree of three-dimensional microstructure can be manufactured without cutting.

【0004】しかし、この場合、粘性の高い流体材料を
使用するので、微小金型に完全に流体材料を流し込むの
は困難であり、以下に列挙する欠点を有する。 (1) 高精度の成形体が得られにくい。 (2) 粘性の高い流体材料を使用しているため金型の摩毛
が大きく金型の寿命が短い。 (3) 射出成形で部品を成形するため粉体密度が均一にな
りにくくバインダの脱脂工程において不均一な寸法収縮
がおこる。 (4) 金型が不均一な寸法収縮率を考慮し設計しなければ
ないので金型における製作コストが高い。 (5) 特に微小な構成体を製造する場合に於ては、それに
必要な金型を加工することは極めて困難である。 (6) 微細構造体に相対的に可動する機構部を持たせて製
造することは、極めて困難である。
However, in this case, since a highly viscous fluid material is used, it is difficult to completely pour the fluid material into the fine mold, and there are drawbacks listed below. (1) It is difficult to obtain a highly accurate molded body. (2) Since a highly viscous fluid material is used, the mold wear is large and the mold life is short. (3) Since the parts are molded by injection molding, it is difficult to make the powder density uniform, and uneven dimension shrinkage occurs in the binder degreasing process. (4) Since the mold has to be designed in consideration of the non-uniform dimensional shrinkage, the manufacturing cost of the mold is high. (5) Particularly in the case of manufacturing a minute structure, it is extremely difficult to process the mold required for it. (6) It is extremely difficult to manufacture a fine structure with a mechanism that is relatively movable.

【0005】従来、この他に切削工程を必要としない3
次元構造物の製造技術として近年注目されている光造形
技術がある(CADデータから立体モデルを製作するポ
イント、省力と自動化、1992年9月号、P38〜63)(永
森 茂、紫外線硬化樹脂を用いた加工法によるマイクロ
マシンの設計・製作、機械設計、1992、P50〜55)(生
田 幸時士、光創3次元マイクロファブリケーション、
第5回マイクロマシン・シンポジウム資料、P79、P7
8)。
Conventionally, no other cutting process is required. 3
There is a stereolithography technology that has been attracting attention in recent years as a manufacturing technology for three-dimensional structures (Points for producing three-dimensional models from CAD data, labor saving and automation, September 1992 issue, P38-63) (Shigeru Nagamori, UV curable resin Micromachine design / fabrication by the processing method used, mechanical design, 1992, P50-55) (Koji Ikuta, Optical wound 3D microfabrication,
Material of the 5th Micromachine Symposium, P79, P7
8).

【0006】光造形法により3次元構造を造形する具体
的な方法を、図2の工程フローチャートに示した。 (1) まず、3次元CADに3次元構造物の図面を入力す
る。 (2) 次に、該3次元構造物から一定の積層の厚みごとに
水平方向のスライス図形データ群を作成する。 (3) つづいて、光硬化流動樹脂、例えばオリゴマー(エ
ポキシアクリレート、ウレタンアクリレートなど)反応
性希釈剤(モノマー)、光重合開始剤(ベンゾイン系、
アセトフェノン系など)の3要素からなる光硬化性流動
樹脂内に上下方向に移動するエレベータを設置し、光硬
化性流動樹脂が一定の積層厚みになる様に位置させる。
A specific method of forming a three-dimensional structure by the optical forming method is shown in the process flow chart of FIG. (1) First, input the drawing of the three-dimensional structure into the three-dimensional CAD. (2) Next, a horizontal slice graphic data group is created for each fixed stack thickness from the three-dimensional structure. (3) Next, a photocurable fluid resin, for example, an oligomer (epoxy acrylate, urethane acrylate, etc.) reactive diluent (monomer), a photopolymerization initiator (benzoin-based,
An elevator that moves in the vertical direction is installed in a photocurable fluid resin consisting of three elements (acetophenone-based, etc.), and the photocurable fluid resin is positioned so as to have a constant laminated thickness.

【0007】(4) 更に、レーザビーム例えば紫外線の波
長領域を持つエキシマレーザ(308nm)、HeCdレー
ザ(325nm )、Arレーザ(351 〜346 nm)を目的形状
の水平断面になぞって走査させ、光硬化性流動樹脂を硬
化させる。 (5) この後、再度エレベータを一定の積層厚みになる様
に位置させて、未硬化の光硬化性流動樹脂を流入させ
る。 (6) 次いで、目的形状の3次元構造物が完成するまで上
記(4) と(5) を繰り返す。 (7) ひきつづき、3次元構造物を取り出し、表面に付着
している未硬化の光硬化性流動樹脂を洗浄する。 (8) 最後に、後露光を行う。
(4) Further, a laser beam, for example, an excimer laser (308 nm) having a wavelength range of ultraviolet rays, a HeCd laser (325 nm), an Ar laser (351 to 346 nm) is traced on the horizontal cross section of the target shape to scan light. The curable fluid resin is cured. (5) After that, the elevator is again positioned so as to have a constant laminated thickness, and the uncured photocurable fluid resin is flowed in. (6) Next, the above (4) and (5) are repeated until the three-dimensional structure having the target shape is completed. (7) Subsequently, the three-dimensional structure is taken out and the uncured photocurable fluid resin adhering to the surface is washed. (8) Finally, post exposure is performed.

【0008】これらの、光造形工程の詳細を図3(A)
〜(D)に示す。図3は、光硬化性流動樹脂の下面より
光を照射して造形する規制液面法による光造形の造形状
態図である。まず、図3(A)の各部材について説明す
る。図中の1は、光硬化性流動樹脂タンクを示す。この
タンク1の底部の一部開口されており、この開口部には
光を透過するガラス板2が設けられている。このガラス
板2上には、テーブル3が配置されている。前記ガラス
板2には、矢印に示す如く集光された紫外線レーザビー
ム4が下から上に向かうようになっている。前記紫外線
レーザビーム4としては、例えば波長330 〜364 nmのA
rレーザや、波長325 nmのHeCdレーザを使用する。
なお、図中の5は光硬化性流動樹脂であり、具体的には
例えばX線、紫外線、あるいは可視光等によって硬化す
る光硬化性流動樹脂、例えばオリゴマー(エポキシアク
リレート、ウレタンアクリレートなど)反応性希釈剤
(モノマー)、光重合開始剤(ベンゾイン系、アセトフ
ェノン系など)の3要素からなっている。また、6は硬
化した光硬化性流動樹脂である。
The details of these stereolithography steps are shown in FIG.
~ (D). FIG. 3 is a modeling state diagram of optical molding by a regulated liquid surface method in which light is irradiated from the lower surface of the photocurable fluidized resin to perform modeling. First, each member in FIG. 3A will be described. Reference numeral 1 in the figure denotes a photocurable fluid resin tank. A part of the bottom of the tank 1 is opened, and a glass plate 2 that transmits light is provided in this opening. A table 3 is arranged on the glass plate 2. The ultraviolet laser beam 4 focused on the glass plate 2 is directed from the bottom to the top as shown by the arrow. The ultraviolet laser beam 4 is, for example, A having a wavelength of 330 to 364 nm.
An r laser or a HeCd laser with a wavelength of 325 nm is used.
Reference numeral 5 in the figure denotes a photocurable fluid resin, specifically, a photocurable fluid resin that is cured by, for example, X-rays, ultraviolet rays, or visible light, such as an oligomer (epoxy acrylate, urethane acrylate, etc.) reactive It consists of three elements: a diluent (monomer) and a photopolymerization initiator (benzoin-based, acetophenone-based, etc.). Further, 6 is a cured photocurable fluid resin.

【0009】即ち、テーブル3とガラス板2が一定の間
隔になるようにテーブル3を上昇させ、紫外線レーザビ
ーム4を照射してガラス板2を透過させ、硬化した光硬
化性流動樹脂6を製造する(図3(A)参照)。図3
(B)は1層目の光硬化性流動樹脂の硬化を終了した
図、図3(C)は2層目の光硬化性流動樹脂を硬化する
為にレーザビームの照射を止め,前記テーブル3を一定
の間隔上昇させた図、図3(D)は2層目の光硬化性流
動樹脂をレーザビーム4により硬化している図である。
これらの図3(A)〜(D)の手順を繰り返し、光硬化
性流動樹脂を硬化させ積層させながら構造体を造形す
る。
That is, the table 3 is raised so that the table 3 and the glass plate 2 are spaced at a constant distance, and an ultraviolet laser beam 4 is irradiated to allow the glass plate 2 to pass therethrough to produce a cured photocurable fluid resin 6. (See FIG. 3A). Figure 3
FIG. 3B is a diagram in which the curing of the first layer of the photocurable fluid resin has been completed, and FIG. 3C is a diagram in which the irradiation of the laser beam is stopped in order to cure the photocurable fluid resin of the second layer, and the table 3 is used. FIG. 3D is a view in which the second layer of photocurable fluid resin is cured by the laser beam 4.
These procedures of FIGS. 3 (A) to 3 (D) are repeated to mold the structure while curing the photocurable fluid resin and stacking it.

【0010】また、他の方法による光造形工程の詳細を
図4に示す。図4は、光硬化性流動樹脂の上面より光を
照射して造形する自由液面法による光造形の造形形状体
図であり、上面方向からの紫外線等により硬化させる方
法である。この方法では、テーブル3が一定間隔で下降
して光硬化性流動樹脂を硬化させ、積層させながら構造
体を造形する。以上の工程で3次元構造物が製造され
る。この様な方法によって3次元構造体を切削無しに製
造することができる。
The details of the stereolithography process by another method are shown in FIG. FIG. 4 is a figure of a stereolithography shaped body by the free liquid surface method in which light is irradiated from the upper surface of the photocurable fluidized resin, and is a method of curing by ultraviolet rays or the like from the upper surface direction. In this method, the table 3 descends at a constant interval to cure the photocurable fluid resin, and the structure is formed while being laminated. A three-dimensional structure is manufactured by the above process. By such a method, a three-dimensional structure can be manufactured without cutting.

【0011】しかし、光造形法に関しては、形状が複雑
な3次元構造体を連続した工程で一挙に作ることができ
るものの、単一の樹脂材料による造形体しか造形できな
いので、相対的に可動する構造体を製造する場合は複数
の部品を造形し組立なければならない。特に、マイクロ
マシーンの部品として1ミリ以下の部品組立を行うレベ
ルには達していない、更に光造形体が樹脂材質のみであ
り、金属等の機械的強度に優れた材質にて加工すること
はできない。また、光成形法を応用した金属やセラミッ
クの構造体の成形に関する提案が、公開特許公報平4−
99203に図示されている。これは、以下に記載する
内容である。
However, regarding the stereolithography method, although a three-dimensional structure having a complicated shape can be manufactured at once in a continuous process, only a molding body made of a single resin material can be molded, so that it is relatively movable. When manufacturing a structure, it is necessary to form and assemble a plurality of parts. In particular, it has not reached the level of assembling parts of 1 mm or less as parts of micromachines. Furthermore, the stereolithography body is made only of resin material, and it cannot be processed with a material having excellent mechanical strength such as metal. . Further, a proposal regarding molding of a metal or ceramic structure to which an optical molding method is applied is disclosed in Japanese Laid-Open Patent Publication No.
Illustrated at 99203. This is the content described below.

【0012】この工程は、図5に示したフローチャート
の様に、まず、液状の光硬化性流動樹脂中に無機粉末材
料を混入し、混練した後、光を照射することにより樹脂
を硬化し光造形させる。次に、樹脂成形体中の樹脂成分
を燃焼除去する。更に、樹脂成分を燃焼除去した粉末混
合成形体を高温焼結することにより、金属やセラミック
材質の構造物、あるいは両者の混合材の構造物を成形す
る。また、金属とセラミックの成分配合比を塗布層ごと
に変化させた粉末混合樹脂層の積層体よりなる所定形状
の樹脂成形体を形成し、該樹脂成形体を高温の雰囲気で
加熱して樹脂成分を燃焼除去すると共に、含有する粉末
を焼結して所望形状の機能傾斜材料を形成する。しか
し、この方法では、単に樹脂材質で造形した構造体をセ
ラミック材質に変えるだけであり、三次元構造体を相対
的に動かすことが可能な犠牲層や仮固定部を含む構造体
についての提案はされていない。
In this step, as shown in the flow chart of FIG. 5, first, an inorganic powder material is mixed into a liquid photocurable liquid resin, and the mixture is kneaded, and then the resin is cured by irradiating light to cure the resin. Make it shaped. Next, the resin component in the resin molding is burned and removed. Further, the powder mixture molded body from which the resin component has been burned and removed is sintered at a high temperature to mold a structure made of metal or ceramic material, or a structure made of a mixed material of both. Further, a resin molded body having a predetermined shape is formed of a laminated body of powder mixed resin layers in which the composition ratio of metal and ceramic components is changed for each coating layer, and the resin molded body is heated in a high temperature atmosphere to form a resin component. Is burned away and the powder contained is sintered to form a functionally graded material in the desired shape. However, in this method, a structure formed of a resin material is simply changed to a ceramic material, and there is no proposal for a structure including a sacrificial layer or a temporary fixing portion that can relatively move a three-dimensional structure. It has not been.

【0013】また、他の加工法として、相対的可動部分
を有する微小構造体を加工する方法として、半導体犠牲
層エッチングがある(江刺正喜、マイクロマシン、応用
物理、Vol.60、No.3(1991)、p.230 )。この
加工法を図6に示す。まず、Si基板11上に、SiO2
膜12及び多結晶Si層13を順次形成する(図6
(A))。次に、熱処理を施して前記多結晶Si層13の
周囲にSiO2 膜14を形成した後、前記SiO2 膜12の
一部を選択的にエッチング除去する(図6(B))。つ
づいて、全面に多結晶Si層15を形成した後、前記多結
晶Si層13上に位置する多結晶Si層15を選択的にエッ
チング除去する(図6(C))。更に、前記SiO2
12,14をエッチング除去し、多結晶Si層13,15のみを
残存させる(図6(D))。このような一連の工程によ
り、多結晶Si層13は、Si基板11と多結晶Si層15と
直接接触していないため回転ができる。このような技術
により、歯車や静電マイクロモーターなどをSi基板上
に製作することが可能になった。
As another processing method, there is semiconductor sacrifice layer etching as a method for processing a microstructure having a relatively movable portion (Masaki Esashi, Micromachine, Applied Physics, Vol. 60, No. 3 (1991). ), P. 230). This processing method is shown in FIG. First, on the Si substrate 11, SiO 2
The film 12 and the polycrystalline Si layer 13 are sequentially formed (FIG. 6).
(A)). Next, heat treatment is performed to form a SiO 2 film 14 around the polycrystalline Si layer 13, and then a part of the SiO 2 film 12 is selectively removed by etching (FIG. 6B). Subsequently, after the polycrystalline Si layer 15 is formed on the entire surface, the polycrystalline Si layer 15 located on the polycrystalline Si layer 13 is selectively removed by etching (FIG. 6C). Further, the SiO 2 film
12 and 14 are removed by etching, leaving only the polycrystalline Si layers 13 and 15 (FIG. 6D). Through such a series of steps, the polycrystalline Si layer 13 can rotate because it is not in direct contact with the Si substrate 11 and the polycrystalline Si layer 15. With such a technique, it has become possible to manufacture gears, electrostatic micromotors, etc. on a Si substrate.

【0014】しかし、上述の半導体犠牲層エッチング法
に関しては、(1) 加工できる材料が半導体材料に制限さ
れているため耐強度等の物性的な限界がある、(2) アス
ペクト比が小さいため、2次元の平面的な構造体しか作
れない為、マイクロマシンに必要な三次元の構造体には
適さない、という問題点がある。
However, regarding the above-mentioned semiconductor sacrifice layer etching method, (1) there is a physical limit such as strength because the material that can be processed is limited to the semiconductor material, and (2) because the aspect ratio is small, Since only a two-dimensional planar structure can be made, it is not suitable for a three-dimensional structure required for a micromachine.

【0015】即ち、以上記載した従来の光造形による三
次元構造体の製造方法では、相対的に動かすことが可能
な機構部を持つ、微細な三次元構造体のは製造できない
という問題点があった。
That is, in the above-described conventional method for manufacturing a three-dimensional structure by stereolithography, there is a problem that it is not possible to manufacture a fine three-dimensional structure having a mechanism portion that can be relatively moved. It was

【0016】本発明は上記事情を鑑みてなされたもの
で、上記の問題点を解決し、光造形法と焼結技術の少な
くともいずれか一方を用いるとともに、犠牲層除去と仮
固定部除去の少なくといずれか一方を用いることによ
り、高分子材質またはセラミック材質、金属材質にて、
相対的に動かすことが可能な機構部を持つ、微細な三次
元構造体の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, solves the above problems, uses at least one of a stereolithography method and a sintering technique, and reduces removal of a sacrificial layer and removal of a temporary fixing portion. By using either one of the above, with polymer material, ceramic material, metal material,
It is an object of the present invention to provide a method for manufacturing a fine three-dimensional structure having a mechanism that can be moved relatively.

【0017】[0017]

【課題を解決するための手段】本願発明は、相対的に可
動できる部分を有する三次元構造体の製造方法におい
て、光により硬化する光硬化性流動樹脂に光を照射し所
定形状の樹脂成形体とする樹脂成形工程と、犠牲層成分
を含む、または犠牲層成分となる光硬化性樹脂に光を照
射し所定の形状に犠牲層を硬化させる犠牲層硬化工程
と、前記犠牲層を除去する犠牲層除去工程とを具備する
ことを特徴とする三次元構造体の製造方法である。
SUMMARY OF THE INVENTION The present invention is a method of manufacturing a three-dimensional structure having a relatively movable portion, wherein a photocurable fluid resin that is cured by light is irradiated with light and a resin molding having a predetermined shape is formed. And a sacrificial layer curing step of irradiating a photocurable resin containing a sacrificial layer component or serving as a sacrificial layer component with light to cure the sacrificial layer into a predetermined shape, and a sacrifice for removing the sacrificial layer. A method for manufacturing a three-dimensional structure, comprising: a layer removing step.

【0018】[0018]

【作用】本発明では、緻密な三次元構造体に相対的に動
かすことが可能な機構部を持つ三次元構造体を製造させ
るために、以下に示す手段を用いている。 1)光造形法を用い構造体を造形する製造法において、
該構造体となる光硬化性流動樹脂と異なる特性の光硬化
性流動樹脂により犠牲層を造形するか、または該構造体
となる光硬化性流動樹脂にて仮固定部を造形することに
より構造体を造形する工程と、その後該犠牲層を除去す
るか、または該仮固定部を除去するか、のいずれか、又
は双方を用いる、除去工程により高分子材質またはセラ
ミック材質、金属材質にて、相対的に動かすことが可能
な機構部を持つ、微細な三次元構造体の製造法を提供す
ることである。
In the present invention, the following means are used to manufacture a three-dimensional structure having a mechanism that can be moved relative to a dense three-dimensional structure. 1) In a manufacturing method of forming a structure using a stereolithography method,
The structure is formed by molding the sacrificial layer with a photocurable liquid resin having a property different from that of the photocurable liquid resin which is the structure, or by forming a temporary fixing part with the photocurable liquid resin which is the structure. Either the step of shaping the object, and then removing the sacrificial layer or removing the temporary fixing portion, or both are used. It is to provide a method for manufacturing a fine three-dimensional structure having a mechanical section that can be moved manually.

【0019】[0019]

【実施例】以下、本発明の実施例を示し図面を用いて詳
細に説明する。 (実施例1)数種類の光硬化性流動樹脂を任意の箇所に
造形して部品を制作する光造形装置についての実施例
を、図7及び図8により説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. (Embodiment 1) An embodiment of a stereolithography apparatus that sculpts several kinds of photocurable fluid resins at arbitrary places to fabricate parts will be described with reference to FIGS. 7 and 8.

【0020】図7は、光硬化性流動樹脂を降下させ積層
させながら、任意の箇所に種類の異なる光硬化性流動樹
脂を積層する光造形装置構成を示す。図中の21は、底部
が開口された光硬化性流動樹脂タンク(以下、第1タン
クと呼ぶ)である。この第1タンク21の底部には光を透
過するガラス板22が設けられ、このガラス板22に下方か
ら上方に向かって紫外線ビーム23が透過するようになっ
ている。前記第1タンク21内には、光硬化性流動樹脂24
(商品名:光硬化樹脂3042、スリーボンド製)が収容さ
れている。前記第1タンク21の近くには、内部に洗浄液
25(例えば、アセトンやアルコール)を収容した洗浄用
タンク26が配置されている。前記洗浄用タンク26の底部
外側には、超音波発生装置40が配置されている。前記洗
浄用タンク26の近くには後露光用タンク27が配置され、
更にこの後露光用タンク27の内壁に多数の後露光用の紫
外線光源28が配置されている。前記後露光用タンク27の
近くには、底部が開口された光硬化性流動樹脂タンク
(以下、第2タンクと呼ぶ)29が配置されている。この
第2タンク29の底部には前記第1タンク21と同様に光を
透過するガラス板22が設けられ、このガラス板22に下方
から上方に向かって紫外線ビーム23が透過するようにな
っている。前記第2タンク29内には、光硬化性流動樹脂
30(商品名:光硬化樹脂3046、スリーボンド製)が収容
されている。
FIG. 7 shows an optical molding apparatus configuration in which different types of photocurable fluid resins are laminated at arbitrary positions while the photocurable fluid resins are dropped and laminated. Reference numeral 21 in the figure denotes a photocurable fluid resin tank (hereinafter referred to as a first tank) having an open bottom. A glass plate 22 that transmits light is provided at the bottom of the first tank 21, and an ultraviolet beam 23 is transmitted from the lower side to the upper side of the glass plate 22. In the first tank 21, a photocurable liquid resin 24
(Product name: photocurable resin 3042, made by ThreeBond) is stored. Near the first tank 21, a cleaning solution is provided inside.
A cleaning tank 26 containing 25 (for example, acetone or alcohol) is arranged. An ultrasonic generator 40 is arranged outside the bottom of the cleaning tank 26. A post-exposure tank 27 is arranged near the cleaning tank 26,
Further, a large number of ultraviolet light sources 28 for post-exposure are arranged on the inner wall of the post-exposure tank 27. A photocurable fluidized resin tank (hereinafter referred to as a second tank) 29 having an open bottom is arranged near the post-exposure tank 27. A glass plate 22 that transmits light is provided at the bottom of the second tank 29 as with the first tank 21, and an ultraviolet beam 23 is transmitted through the glass plate 22 from below to above. . In the second tank 29, a photocurable liquid resin
30 (trade name: photo-curing resin 3046, made by ThreeBond) is stored.

【0021】前記第1タンク21の上方には、上下水平方
向(XYZ方向に)移動可能なテーブル31が配置されて
いる。このテーブル31には該テーブル31を上下に移動さ
せる上下アクチュエータ32が連結され、このアクチュエ
ータ32には前記テーブル31を水平方向に移動させる水平
アクチュエータ33が連結されている。なお、図中の34
は、硬化した光硬化性流動樹脂(商品名:光硬化樹脂30
42、スリーボンド製である。
Above the first tank 21, a table 31 which is movable in the vertical and horizontal directions (XYZ directions) is arranged. A vertical actuator 32 for vertically moving the table 31 is connected to the table 31, and a horizontal actuator 33 for horizontally moving the table 31 is connected to the actuator 32. 34 in the figure
Is a cured photocurable fluid resin (Product name: photocurable resin 30
42, made by ThreeBond.

【0022】次に、上記構成の光造形装置を用いて、異
なる材料の構造体を造形することにより、異なる材料部
分を有する三次元構造体を製造する場合について説明す
る。まず、光硬化性樹脂24により、図3で示した規制液
面法による工程にて光硬化性流動樹脂を硬化させ任意の
形状になるまで積層させて造形する。次に、テーブル31
を上下アクチュエータ32,水平アクチュエータ33により
移動させ、洗浄用タンク26に入れて超音波洗浄を行う。
つづいて、後露光タンク27にテーブル31を入れ、硬化し
た光硬化性流動樹脂34を紫外線により完全硬化させる。
樹脂の種類によっては加熱器により加熱させて硬化して
もよい。次に、光硬化性流動樹脂30に前記テーブル31を
入れ、紫外線ビーム23により異なった光硬化性流動樹脂
30にて、さらに積層造形させる。ここで、装置の構成と
して光を照射する光学系が大型化する場合は、XYZ方
向に移動可能なテーブル31だけではなく、第1タンク2
1,洗浄用タンク26,後露光用タンク27及び第2タンク2
9をXYZ方向に移動させることで位置制御を行い構造
体を形成させる。これらの工程を繰り返すことで、光硬
化性流動樹脂24,30を任意の箇所に造形して構造体を製
作する光造形装置が得られる。また光硬化性流動樹脂タ
ンクを複数設置することで数種類の光硬化性流動樹脂を
任意の箇所に造形することができる装置が得られる。
Next, a case will be described in which a three-dimensional structure having different material parts is manufactured by forming structures of different materials by using the optical modeling apparatus having the above structure. First, the photocurable resin 24 is cured by the photocurable resin 24 in the step of the regulated liquid level method shown in FIG. Then table 31
Is moved by the vertical actuator 32 and the horizontal actuator 33, and is put in the cleaning tank 26 for ultrasonic cleaning.
Subsequently, the table 31 is placed in the post-exposure tank 27, and the cured photocurable fluid resin 34 is completely cured by ultraviolet rays.
Depending on the type of resin, it may be heated by a heater to be cured. Next, the table 31 is put in the photo-curable flow resin 30, and the photo-curable flow resin is changed depending on the ultraviolet beam 23.
At 30, further additive manufacturing is performed. Here, when the size of the optical system for irradiating light is increased as the configuration of the device, not only the table 31 movable in the XYZ directions but also the first tank 2
1, cleaning tank 26, post-exposure tank 27 and second tank 2
By moving 9 in the XYZ directions, position control is performed to form a structure. By repeating these steps, it is possible to obtain an optical modeling apparatus that molds the photocurable fluid resins 24 and 30 at arbitrary places to manufacture a structure. Further, by installing a plurality of photocurable fluid resin tanks, it is possible to obtain an apparatus capable of molding several kinds of photocurable fluid resins at arbitrary locations.

【0023】また、別な装置構成として図8の装置を説
明する。ここで、図7と同部材は同符号を付して説明を
省略する。図中の41は、はテーブル31と同様に移動可能
で任意の平面に紫外線ビームを照射するビーム照射装置
(又は、一定の箇所に設置され、任意の平面に紫外線ビ
ームを照射するビーム照射装置)である。
The apparatus of FIG. 8 will be described as another apparatus configuration. Here, the same members as those in FIG. 7 are designated by the same reference numerals and the description thereof will be omitted. Reference numeral 41 in the figure denotes a beam irradiation device that is movable like the table 31 and that irradiates an ultraviolet beam on an arbitrary plane (or a beam irradiation device that is installed at a certain position and irradiates an ultraviolet beam on an arbitrary plane). Is.

【0024】図5の装置の操作は、次のようにして行
う。即ち、光硬化性流動樹脂24にて図4で示した自由液
面法による工程にて光硬化性流動樹脂を硬化させ任意の
形状になるまで積層させて造形する。その他は図7にて
説明した工程と同様な工程により、光硬化性流動樹脂2
4,30を任意の箇所に造形して構造体を製作する光造形
装置である。また、光硬化性流動樹脂タンクを複数設置
することで数種類の光硬化性流動樹脂を任意の箇所に造
形することができる。
The operation of the apparatus shown in FIG. 5 is performed as follows. That is, the photocurable liquid resin 24 is cured in the step of the free liquid surface method shown in FIG. Other steps are the same as those described with reference to FIG.
This is an optical modeling device that manufactures structures by molding 4 and 30 at any location. Further, by installing a plurality of photocurable fluid resin tanks, several kinds of photocurable fluid resins can be molded at arbitrary places.

【0025】更に、図7と図8を組み合わせ一つの装置
で光硬化性流動樹脂の上面から紫外線を照射させて造形
する自由液面法と、光硬化性流動樹脂の下面から紫外線
を照射させて造形する規制液面法ができる装置もでき
る。
Further, by combining FIG. 7 and FIG. 8, one apparatus is used to irradiate ultraviolet rays from the upper surface of the photocurable resin to form a model, and the free liquid surface method is used to irradiate ultraviolet rays from the lower surface of the photocurable resin. It is also possible to use a device that can perform the regulated liquid level method for modeling.

【0026】これらの装置を使用して犠牲層を製作した
例を、実施例2〜4で説明する。 (実施例2)高分子樹脂を主材質とし、相対的に動かす
ことが可能な機構部を持つ三次元構造体を犠牲層により
製造する場合のフローチャートを図9に示す。
Examples in which a sacrificial layer is manufactured by using these devices will be described in Examples 2 to 4. (Embodiment 2) FIG. 9 shows a flow chart in the case of manufacturing a three-dimensional structure with a sacrificial layer, which is mainly composed of a polymer resin and has a mechanism part that can be relatively moved.

【0027】まず、光により硬化する光硬化性流動樹
脂、例えばオリゴマー(エポキシアクリレート、ウレタ
ンアクリレートなど)反応性希釈剤(モノマー)、光重
合開始剤(ベンゾイン系、アセトン系など)の3要素か
らなっている樹脂、例えばスリーボンド製の非水溶性で
ある商品名:光硬化性樹脂3042を使用する。
First, a photocurable fluid resin that is cured by light, for example, an oligomer (epoxy acrylate, urethane acrylate, etc.) reactive diluent (monomer), and a photopolymerization initiator (benzoin-based, acetone-based, etc.) are used. , A non-water-soluble trade name: photocurable resin 3042 manufactured by ThreeBond is used.

【0028】次に、行う光造形工程は構造体の材質とな
る光硬化性流動樹脂を硬化させる樹脂造形工程と、硬化
した光硬化性流動樹脂の表面に付着している、未硬化の
樹脂を洗浄する洗浄工程がある。次に、犠牲層を造形す
る犠牲層造形工程と硬化した犠牲層の表面に付着してい
る未硬化の犠牲層成分を含んだまたは犠牲層成分となる
光硬化性流動樹脂を洗浄する洗浄工程とから構成されて
いる。所望する箇所に犠牲層を造形するまで、この工程
を繰り返す、この樹脂造形工程は図4にて説明した自由
液面法により、硬化した光硬化性流動樹脂を積層形成し
ながら三次元形状の硬化した光硬化性流動樹脂を造形す
る。
Next, in the stereolithography process to be carried out, a resin modeling process for curing the photocurable fluid resin as the material of the structure and an uncured resin adhering to the surface of the cured photocurable fluid resin are conducted. There is a cleaning step for cleaning. Next, a sacrifice layer forming step of forming a sacrifice layer, and a washing step of washing a photocurable fluid resin containing an uncured sacrifice layer component adhering to the surface of the cured sacrifice layer or becoming a sacrifice layer component. It consists of This process is repeated until the sacrifice layer is formed at a desired position. This resin modeling process is a three-dimensional curing process while the cured photocurable liquid resin is laminated by the free liquid level method described in FIG. The photocurable fluid resin is molded.

【0029】次の洗浄工程では、図8に示したようにテ
ーブルを31の洗浄用タンク21に移動させ、テーブル31に
付着造形されている硬化した光硬化性流動樹脂34ごと超
音波洗浄にて未硬化部の光硬化性流動樹脂を洗浄する。
樹脂の条件によっては、その後、後露光用タンク27によ
り紫外線を照射させ、完全硬化させる。次に行う犠牲層
造形工程では、テーブル31を、犠牲層成分からなる光硬
化性流動樹脂タンク29に移動させる、犠牲層成分はスリ
ーボンド製の光硬化性樹脂3046、3046B、3046C、3046
D、3046E等の水溶性タイプを使用して該樹脂成形体に
犠牲層成分からなる光硬化性流動樹脂を図4に示した工
程により光造形する。その後、洗浄用タンク26に移動さ
せ洗浄を行う。これらの樹脂造形、犠牲層造形工程を繰
り返すことにより、硬化した光硬化性流動樹脂の任意の
箇所に犠牲層を造形した樹脂成形体を造形する。
In the next cleaning step, the table is moved to the cleaning tank 21 of 31 as shown in FIG. 8 and ultrasonically cleaned together with the cured photocurable fluid resin 34 adhered and molded on the table 31. The photocurable fluid resin in the uncured portion is washed.
Depending on the resin conditions, the post-exposure tank 27 is then irradiated with ultraviolet rays to completely cure the resin. In the sacrifice layer forming step to be performed next, the table 31 is moved to the photocurable fluid resin tank 29 including the sacrifice layer components. The sacrifice layer components are three bond photocurable resins 3046, 3046B, 3046C, 3046.
Using a water-soluble type such as D or 3046E, a photocurable fluid resin composed of a sacrificial layer component is stereolithographically formed on the resin molded body by the process shown in FIG. Then, the cleaning tank 26 is moved to the cleaning tank 26 for cleaning. By repeating these resin molding and sacrifice layer molding steps, a resin molded body in which a sacrifice layer is molded at an arbitrary position of the cured photocurable fluid resin is molded.

【0030】次の犠牲層除去工程では、任意の箇所に犠
牲層を造形した樹脂成形体を水の中に入れ超音波の振動
を加え犠牲層成分のみ溶解する。溶解時間は形状により
異なるが、図12に示した、直径5ミリの回転軸で、犠牲
層の厚さ1ミリの構造体は46時間で犠牲層成分が完全
に溶解した。次の検査工程では寸法及び可動する箇所の
検査を行い、相対的に可動する三次元構造体を製造す
る。
In the next sacrifice layer removing step, a resin molding having a sacrifice layer formed at an arbitrary position is placed in water and ultrasonic vibration is applied to dissolve only the sacrifice layer component. Although the dissolution time depends on the shape, the sacrificial layer components were completely dissolved in 46 hours in the structure shown in FIG. 12 in which the rotating shaft having a diameter of 5 mm and the thickness of the sacrificial layer was 1 mm. In the next inspection step, the dimensions and movable parts are inspected to manufacture a relatively movable three-dimensional structure.

【0031】犠牲層により、相対的に可動する三次元構
造体を製造した構造例の断面図を図11に、立体図を図12
に、光造形工程における製造工程を図10(A)〜(E)
に示している。図10(A)〜(E)は光造形工程の製造
工程順序であり、図中の41は硬化した光硬化性流動樹
脂、42は犠牲層を示している。このような工程により、
犠牲層成分を含んで硬化した光硬化性流動樹脂を加工
し、犠牲層除去工程にて犠牲層を除去することで、図1
1、図12に示すような相対的に動かすことが可能な回転
軸機構を製造することがでいる。次の検査工程では、寸
法及び可動する箇所の検査を行い、相対的に可動する三
次元構造体を製造する。
FIG. 11 is a sectional view of a structural example in which a relatively movable three-dimensional structure is manufactured by the sacrificial layer, and FIG.
The manufacturing process in the stereolithography process is shown in FIGS.
Is shown in. 10A to 10E show the manufacturing process sequence of the stereolithography process. In FIG. 10, 41 indicates a cured photocurable fluid resin, and 42 indicates a sacrifice layer. By such a process,
By processing the photocurable fluid resin that has been cured with the sacrificial layer component and removing the sacrificial layer in the sacrificial layer removal step,
1, it is possible to manufacture a rotating shaft mechanism that can be moved relatively as shown in FIG. In the next inspection step, the dimensions and movable parts are inspected to manufacture a relatively movable three-dimensional structure.

【0032】(実施例3)セラミックを成分とした無機
粉末材質にて、相対的に動かすことが可能な機構部を持
つ三次元構造体を犠牲層により製造し、焼結構造体とす
る場合のフローチャート図13に示す。
(Embodiment 3) In the case where a three-dimensional structure having a mechanism that can be relatively moved is manufactured from a sacrificial layer by using an inorganic powder material containing ceramic as a sintered structure. The flowchart is shown in FIG.

【0033】まず、光硬化性流動樹脂物質と無機粉末材
質を準備する。光硬化性流動樹脂は光、例えばX線、紫
外線、あるいは可視光等によって硬化する光硬化性流動
樹脂、例えばオリゴマー(エポキシアクリレート、ウレ
タンアクリレートなど)反応性希釈剤(モノマー)、光
重合開始剤(ベンゾイン系、アセトフェノン系など)の
3要素からなっている樹脂を準備する。更に、無機粉末
材質を粉末にする手段として水アトマイズ法またはガス
アトマイズ法などにより粉体加工した。また、他に実施
した粉体や繊維の加工方法として金属アルコキシドを常
温で加水分解してゾルを作り、この反応を進めてゲル化
した後、低温で焼成して繊維や粉体を得る、ゾルゲル法
がある。これらの加工方法により粉体とした材質はSU
S316L、SUS304 、FeCoV系(Fe49%.Co49
%.V2%)、Cu−Sn合金、Cu−Ni合金、Si
2 、TiO2 、ZrO2 、Al23 、BaTiO3
等である。他にソーダガラス、鉛ガラス、パイレックス
ガラス、エポキシ系、ポリエチレン系、ポリプロピレン
系、アルミナ(Al23 )、チタン酸カリウム(K2
O・nTiO2 )、グラファイト、ピリオキシメチレン
等を使用する。
First, a photocurable fluid resin material and an inorganic powder material are prepared. The photocurable fluid resin is a photocurable fluid resin that is cured by light such as X-rays, ultraviolet rays, or visible light. For example, an oligomer (epoxy acrylate, urethane acrylate, etc.) reactive diluent (monomer), photopolymerization initiator ( A resin consisting of three elements (benzoin-based, acetophenone-based, etc.) is prepared. Further, powder processing was performed by a water atomizing method, a gas atomizing method, or the like as a means for converting the inorganic powder material into powder. In addition, as another method of processing powders and fibers, sol-gel in which metal alkoxides are hydrolyzed at room temperature to form a sol, and this reaction is allowed to proceed to gel and then fired at low temperature to obtain fibers or powders. There is a law. The material made into powder by these processing methods is SU
S316L, SUS304, FeCoV type (Fe49% .Co49
%. V2%), Cu-Sn alloy, Cu-Ni alloy, Si
O 2 , TiO 2 , ZrO 2 , Al 2 O 3 , BaTiO 3
Etc. In addition, soda glass, lead glass, Pyrex glass, epoxy type, polyethylene type, polypropylene type, alumina (Al 2 O 3 ), potassium titanate (K 2
O.nTiO 2 ), graphite, pyroxymethylene, etc. are used.

【0034】次の混練工程では、光硬化性流動樹脂物質
に1種類または数種の単独または混合無機粉末材料等を
加圧ニーダーにより混練し、その後真空ポンプ等により
脱泡を行い、粉対と光硬化性流動樹脂を混合し、粉末混
合光硬化性流動樹脂を作る。次の光造形工程は、実施例
2で記載した工程と同様に、前記粉末混合光硬化性流動
樹脂を硬化させた粉末混合樹脂成形体を作る。次に、こ
の犠牲層成分となる粉対は、後工程での焼結工程に於い
て、1200℃〜1400℃の高温中でも該粉対が焼結
されない、タングステン粉体に光硬化性流動樹脂を混合
して、犠牲層成分となる粉対が混合された光硬化性流動
樹脂により紫外線ビームを照射させて犠牲層を作る。そ
の後、洗浄工程、樹脂造形工程、洗浄工程を行い、犠牲
層が含まれた樹脂成形体を作る。次の樹脂除去工程で
は、300〜500℃で10〜100時間ほど加熱し樹
脂成形体に含まれる、樹脂成分を除去する。次の焼結工
程にて、焼結する粉対の材質がFe、Niの場合では1
100〜1200℃にて焼結を行う。次の犠牲層除去工
程では、焼結していないタングステン粉体を超音波洗浄
機により取り除く。次の検査工程では、寸法及び可動す
る箇所の検査を行い、相対的に可動する三次元構造体を
製造する。
In the next kneading step, the photocurable fluid resin material is kneaded with one or several kinds of single or mixed inorganic powder materials by a pressure kneader, and then defoamed by a vacuum pump or the like to obtain a powder pair. A photocurable fluid resin is mixed to make a powder-mixed photocurable fluid resin. In the next stereolithography step, the powder-mixed resin molded product obtained by curing the powder-mixed photocurable fluid resin is produced in the same manner as the step described in Example 2. Next, the powder pair serving as the component of the sacrificial layer is formed by adding the photocurable fluid resin to the tungsten powder, which is not sintered even at a high temperature of 1200 ° C to 1400 ° C in the subsequent sintering process. After mixing, a sacrificial layer is formed by irradiating an ultraviolet beam with the photocurable fluidized resin in which the powder pair serving as the sacrificial layer component is mixed. After that, a washing step, a resin modeling step, and a washing step are performed to make a resin molded body including a sacrificial layer. In the next resin removing step, the resin component contained in the resin molded body is removed by heating at 300 to 500 ° C. for 10 to 100 hours. In the next sintering step, if the material of the powder pair to be sintered is Fe or Ni, 1
Sintering is performed at 100 to 1200 ° C. In the next sacrifice layer removing step, the unsintered tungsten powder is removed by an ultrasonic cleaner. In the next inspection step, the dimensions and movable parts are inspected to manufacture a relatively movable three-dimensional structure.

【0035】(実施例4)セラミックを成分とした無機
粉末材質にて、相対的に動かすことが可能な機構部を持
つ三次元構造体を犠牲層により製造し、焼結構造体とす
る場合のフローチャートを図14に示す。
(Embodiment 4) In the case where a three-dimensional structure having a mechanism part which can be relatively moved is manufactured from a sacrificial layer by using an inorganic powder material containing ceramic as a sintered structure. The flowchart is shown in FIG.

【0036】この加工は、実施例3で説明した光造形工
程の犠牲層成分の光硬化性流動樹脂が樹脂除去工程にて
除去される材質、例えばスリーボンド製の商品名:光硬
化性樹脂3042を使用し犠牲層を加工し光造形工程を行
う。次の樹脂除去工程、焼結工程にて犠牲層が除去され
る。この場合、焼結工程にて部品同士が一体化しないよ
うに、高温加熱する前に、予め犠牲層が含まれる樹脂成
形体の固定方法を図15に示す。
This processing is carried out by using a material from which the photocurable fluid resin as the sacrificial layer component in the stereolithography process described in Example 3 is removed in the resin removal process, for example, a product name of ThreeBond: photocurable resin 3042. The sacrificial layer is processed and the stereolithography process is performed. The sacrificial layer is removed in the subsequent resin removing step and sintering step. In this case, FIG. 15 shows a method of fixing the resin molded body including the sacrificial layer in advance before heating at a high temperature so that the parts are not integrated with each other in the sintering step.

【0037】図中の51は、平面プレート52に載置された
例えばタングステンからなる位置決め台である。この位
置決め台51間の前記前記平面プレート52上には、一部が
位置決め台51上に位置するように粉末混合樹脂成形体53
が設けられている。この粉末混合樹脂成形体53の一部に
は、犠牲層54が埋め込まれている。なお、図中の55は、
犠牲層54が含まれる前記樹脂成形体53と位置決め台51と
の隙間を示す。このように固定してから高温加熱を行っ
て、樹脂除去工程、焼結工程を行うことで、セラミック
を成分とした、相対的に可動する三次元構造体を製造す
る。
Reference numeral 51 in the figure denotes a positioning base mounted on the flat plate 52 and made of, for example, tungsten. On the flat plate 52 between the positioning bases 51, the powder-mixed resin molded body 53 is partially located on the positioning bases 51.
Is provided. A sacrificial layer 54 is embedded in a part of the powder mixed resin molded body 53. In addition, 55 in the figure is
A gap between the resin molded body 53 including the sacrificial layer 54 and the positioning base 51 is shown. After fixing in this way, high temperature heating is performed, and a resin removing step and a sintering step are performed to manufacture a relatively movable three-dimensional structure containing ceramic as a component.

【0038】(実施例5)樹脂成分にて、相対的に動か
すことが可能な機構部を持つ三次元構造体を、仮固定部
を造形することより製造する場合のフローチャートを図
16に示す。
(Embodiment 5) A flow chart in the case of manufacturing a three-dimensional structure having a mechanism part that can be relatively moved by a resin component by molding a temporary fixing part
Shown in 16.

【0039】まず、光硬化性流動樹脂に紫外線光を照射
させ、微細な三次元構造体を造形する光造形工程にて仮
固定部を有する三次元構造体を造形する。次の洗浄工程
にて未硬化部の光硬化性流動樹脂を洗浄する。次の仮固
定部除去工程にて仮固定部に応力を加えて除去する。次
の検査工程では、寸法及び可動する箇所の検査を行い、
相対的に可動する三次元構造体を製造する。
First, the photocurable fluid resin is irradiated with ultraviolet light to form a three-dimensional structure having a temporary fixing portion in a stereolithography process for forming a fine three-dimensional structure. In the next washing step, the uncured portion of the photocurable fluid resin is washed. In the next temporary fixing portion removing step, stress is applied to the temporary fixing portion to remove it. In the next inspection process, we will inspect the dimensions and moving parts,
A relatively movable three-dimensional structure is manufactured.

【0040】ここで、仮固定部を有する構造体の形状に
ついて断面図を図17(A),(B)に示す。但し、図17
(A)は構造体全体の断面図、図17(B)は図17(A)
の部分拡大図を示す。図中の61は仮固定部62を有する構
造体であり、63はひんじ部である。前記仮固定部62は、
図17(B)に示すように、後工程にて除去しやすい様に
「切りかき形状」になっている。
Here, sectional views of the shape of the structure having the temporary fixing portion are shown in FIGS. 17 (A) and 17 (B). However, Figure 17
17A is a cross-sectional view of the entire structure, and FIG. 17B is FIG. 17A.
A partially enlarged view of FIG. In the figure, 61 is a structure having a temporary fixing portion 62, and 63 is a hinge portion. The temporary fixing portion 62 is
As shown in FIG. 17 (B), it has a "cut shape" so that it can be easily removed in a later step.

【0041】この仮固定部62を除去することにより、ひ
んじ部63を中心として、相対的に可動する構造対にな
る。また、仮固定部62を除去した斜視図は、図18に示す
通りである。この図18が示すように、光造形にて製作し
た1つの部品の仮固定部を除去することで相対的に可動
する、三次元構造体が製造できる。
By removing the temporary fixing portion 62, a structural pair is formed which is relatively movable around the hinge portion 63. Further, a perspective view in which the temporary fixing portion 62 is removed is as shown in FIG. As shown in FIG. 18, a three-dimensional structure that is relatively movable can be manufactured by removing the temporary fixing portion of one component manufactured by stereolithography.

【0042】(実施例6)セラミックを成分とした無機
粉末材質例えばSUS316Lにて、相対的に動かすこ
とが可能な機構部を持つ三次元構造体を、仮固定部を造
形することにより製造し、焼結構造対とする場合のフロ
ーチャートを図19に示す。
(Embodiment 6) A three-dimensional structure having an inorganic powder material containing ceramics, for example, SUS316L, having a mechanism portion that can be relatively moved is manufactured by forming a temporary fixing portion, FIG. 19 shows a flowchart for the case of using a sintered structure pair.

【0043】まず、セラミックを成分とした無機粉末材
質と光硬化性流動樹脂を混練工程にて混入、攪拌、脱泡
し、粉末混合光硬化性流動樹脂をつくる。次に、粉末混
合光硬化性流動樹脂に紫外線光を照射させ、微細な三次
元構造体を造形する光造形工程にて仮固定部を有する三
次元構造体を造形する。この構造は実施例6で説明した
図17や図18の構造と同様である。次の洗浄工程にて未硬
化部の粉末混合光硬化性流動樹脂を洗浄し、粉末混合樹
脂成形体とする。
First, an inorganic powder material containing ceramic as a component and a photocurable fluid resin are mixed in a kneading step, stirred and defoamed to prepare a powder-mixed photocurable fluid resin. Next, the powder-mixed photo-curable resin is irradiated with ultraviolet light, and a three-dimensional structure having a temporary fixing portion is formed in a stereolithography process for forming a fine three-dimensional structure. This structure is similar to the structure of FIGS. 17 and 18 described in the sixth embodiment. In the next washing step, the uncured portion of the powder-mixed photocurable fluid resin is washed to obtain a powder-mixed resin molded body.

【0044】次の樹脂除去工程にて、粉末混合樹脂成形
体に含まれる樹脂成分を300℃〜500℃で燃焼除去
させる。更に次の焼結工程にて、セラミックを成分とし
た無機粉末材質を1300℃〜1440℃の高御中にて
焼結させる。次の仮固定部除去工程にて、仮固定部に応
力を加えて仮固定部を切断除去する。例えば切断除去の
方法として、図17の上部と下部をそれぞれ保持し、ひん
じ部63を中心とした、曲げ応力を加えることで、仮固定
部62の切りかき形状を有した箇所から切断される。よっ
てひんじ部63を中心とし、上部と下部が可動するように
なる。切断部は凹凸があるので、可動が滑らかでないた
め凹凸を少なくする方法として、ひんじ部を中心とし何
度も繰り返すことで凹凸部が削れて滑らかになる。
In the next resin removing step, the resin components contained in the powder-mixed resin molded product are burned and removed at 300 ° C to 500 ° C. Further, in the next sintering step, an inorganic powder material containing ceramic as a component is sintered at a temperature of 1300 ° C to 1440 ° C. In the next temporary fixing portion removing step, stress is applied to the temporary fixing portion to cut and remove the temporary fixing portion. For example, as a method of cutting and removing, by holding the upper portion and the lower portion of FIG. 17 respectively, and applying bending stress centering around the elbow portion 63, the temporary fixing portion 62 is cut from a portion having a cut shape. . Therefore, the upper part and the lower part are movable around the hinge portion 63. Since the cut portion has unevenness, the movement is not smooth, so as a method of reducing unevenness, the uneven portion is shaved and smoothed by repeating the fin portion many times.

【0045】また、切断部の凹凸を少なくする、別の方
法として三次元構造体の仮固定部切断後に溶液に入れ凹
凸部を溶解することにより滑らかにする。例えば三次元
構造体の材質がSUS316Lの場合には希塩酸を使用
し38分浸漬することで凹凸部の35%が溶け、ひんじ
部の可動が滑らかになる。次の検査工程では、寸法及び
可動する箇所の検査を行い、相対的に可動する三次元構
造対を製造する。
As another method for reducing the unevenness of the cut portion, the temporary fixing portion of the three-dimensional structure is cut and then put into a solution to dissolve the uneven portion, thereby smoothing. For example, in the case where the material of the three-dimensional structure is SUS316L, dilute hydrochloric acid is used and immersed for 38 minutes to melt 35% of the uneven portion, so that the hinge portion can be moved smoothly. In the next inspection step, the dimensions and movable parts are inspected to manufacture a relatively movable pair of three-dimensional structures.

【0046】また、図20(A),(B)の様に、仮固定
部62に切りかき部を二箇所作り、造形後に図20(B)の
除去部を除去することにより、除去部の凹凸を少なくす
ることができる。
Further, as shown in FIGS. 20 (A) and 20 (B), two cut portions are formed in the temporary fixing portion 62, and the removing portion of FIG. Unevenness can be reduced.

【0047】[0047]

【発明の効果】上述のように本発明の光造形法により構
造体に犠牲層または仮固定部を作ることにより、部品の
組立および接合を行わずに、相対的に可動する樹脂材
質、或いはセラミック材質により三次元構造対を製造で
きる。特に高い位置決め精度を要求される微細部品の組
立において、高精度で優れた構造体を得られるという効
果がある。
As described above, by forming the sacrificial layer or the temporary fixing portion in the structure by the stereolithography method of the present invention, the resin material or the ceramic which is relatively movable without assembling and joining the parts. Depending on the material, three-dimensional structure pairs can be manufactured. In particular, in the assembly of fine parts that require high positioning accuracy, it is possible to obtain an excellent structure with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術であるMIMによる製造プロセスを示
したフローチャート。
FIG. 1 is a flowchart showing a manufacturing process by MIM which is a conventional technique.

【図2】光造形法により3次元構造体を造形する具体的
な方法のフローチャート。
FIG. 2 is a flowchart of a specific method for forming a three-dimensional structure by a stereolithography method.

【図3】規制液面法による光造形工程図。FIG. 3 is a stereolithography process chart by a regulated liquid level method.

【図4】自由液面法による光造形工程図。FIG. 4 is a stereolithography process diagram by a free liquid surface method.

【図5】光造形法を応用してセラミック構造体を製造す
る提案の加工フローチャート。
FIG. 5 is a proposed processing flowchart for manufacturing a ceramic structure by applying a stereolithography method.

【図6】半導体犠牲層をエッチングにより加工する場合
の工程断面図。
FIG. 6 is a process cross-sectional view when a semiconductor sacrificial layer is processed by etching.

【図7】規制液面法による異種類の光硬化性流動樹脂を
任意の箇所に積層する製造装置の説明図。
FIG. 7 is an explanatory view of a manufacturing apparatus for laminating different kinds of photocurable fluid resins by a regulated liquid level method at arbitrary places.

【図8】自由液面法による異種類の光硬化性流動樹脂を
任意の箇所に積層する製造装置の説明図。
FIG. 8 is an explanatory view of a manufacturing apparatus for laminating different kinds of photocurable fluid resins by a free liquid surface method at arbitrary places.

【図9】犠牲層により、相対的に可動する三次元構造体
を製造するフローチャート。
FIG. 9 is a flowchart for manufacturing a relatively movable three-dimensional structure using a sacrificial layer.

【図10】犠牲層を形成する工程断面図。FIG. 10 is a process cross-sectional view of forming a sacrificial layer.

【図11】相対的に動かすことが可能な回転軸機構を示
し、同図(A)は断面図、同図11(B)は斜視図。
11A and 11B show a rotating shaft mechanism that can be relatively moved, FIG. 11A being a sectional view, and FIG. 11B being a perspective view.

【図12】犠牲層により、相対的に可動する三次元構造
体を製造するフローチャート。
FIG. 12 is a flowchart for manufacturing a relatively movable three-dimensional structure using a sacrificial layer.

【図13】犠牲層により、相対的に可動する三次元構造
体を製造するフローチャート。
FIG. 13 is a flowchart for manufacturing a relatively movable three-dimensional structure using a sacrificial layer.

【図14】樹脂除去工程、焼結工程での樹脂成形体の固
定方法の説明図。
FIG. 14 is an explanatory diagram of a method for fixing a resin molded body in a resin removing step and a sintering step.

【図15】仮固定部により、相対的に可動する三次元構
造体を製造するフローチャート。
FIG. 15 is a flowchart for manufacturing a relatively movable three-dimensional structure by a temporary fixing unit.

【図16】仮固定部を有する構造体の形状について説明
図であり、同図(A)は全体図、同図(B)は同図
(A)の部分拡大図。
16A and 16B are explanatory views of the shape of a structure having a temporary fixing portion, FIG. 16A is an overall view, and FIG. 16B is a partially enlarged view of FIG.

【図17】仮固定部を除去した構造体の斜視図。FIG. 17 is a perspective view of a structure from which a temporary fixing portion is removed.

【図18】仮固定部により、相対的に可動する三次元構
造体を製造するフローチャート。
FIG. 18 is a flowchart for manufacturing a relatively movable three-dimensional structure by the temporary fixing unit.

【図19】仮固定部を有する構造体の形状について説明
図であり、同図(A)は全体図、同図(B)は同図
(A)の部分拡大図。
19A and 19B are explanatory views of a shape of a structure having a temporary fixing portion, FIG. 19A is an overall view, and FIG. 19B is a partially enlarged view of FIG.

【図20】仮固定部を除去した構造体の斜視図。FIG. 20 is a perspective view of the structure from which the temporary fixing portion is removed.

【符号の説明】[Explanation of symbols]

21…第1タンク、 22…ガラス板、
23…紫外線ビーム、24,30…光硬化性流動樹脂、 25…
洗浄液、 26…洗浄タンク、27…後露光用タン
ク、 28…紫外線光源、 31…テーブル、3
2,33…アクチュエータ、 34…硬化した光硬化性流
動樹脂、40…超音波発生装置、 41…ビーム照射
装置。
21 ... First tank, 22 ... Glass plate,
23 ... UV beam, 24, 30 ... Photocurable fluid resin, 25 ...
Cleaning solution, 26 ... Cleaning tank, 27 ... Post-exposure tank, 28 ... Ultraviolet light source, 31 ... Table, 3
2, 33 ... Actuator, 34 ... Cured photocurable fluid resin, 40 ... Ultrasonic generator, 41 ... Beam irradiation device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 相対的に可動できる部分を有する三次元
構造体の製造方法において、光により硬化する光硬化性
流動樹脂に光を照射し所定形状の樹脂成形体とする樹脂
成形工程と、犠牲層成分を含む、または犠牲層成分とな
る光硬化性樹脂に光を照射し所定の形状に犠牲層を硬化
させる犠牲層硬化工程と、前記犠牲層を除去する犠牲層
除去工程とを具備することを特徴とする三次元構造体の
製造方法。
1. A method for manufacturing a three-dimensional structure having a relatively movable portion, a resin molding step of irradiating a photocurable liquid resin that is cured by light with light to obtain a resin molded body having a predetermined shape, and a sacrifice. A sacrificial layer curing step of irradiating a photocurable resin containing a layer component or a sacrificial layer component with light to cure the sacrificial layer into a predetermined shape, and a sacrificial layer removing step of removing the sacrificial layer. And a method for manufacturing a three-dimensional structure characterized by the above.
JP21297493A 1993-08-27 1993-08-27 Manufacturing method of three-dimensional structure Expired - Fee Related JP3537161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21297493A JP3537161B2 (en) 1993-08-27 1993-08-27 Manufacturing method of three-dimensional structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21297493A JP3537161B2 (en) 1993-08-27 1993-08-27 Manufacturing method of three-dimensional structure

Publications (2)

Publication Number Publication Date
JPH0760844A true JPH0760844A (en) 1995-03-07
JP3537161B2 JP3537161B2 (en) 2004-06-14

Family

ID=16631385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21297493A Expired - Fee Related JP3537161B2 (en) 1993-08-27 1993-08-27 Manufacturing method of three-dimensional structure

Country Status (1)

Country Link
JP (1) JP3537161B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082592A1 (en) * 2004-02-27 2005-09-09 Nihon University Method for manufacturing fine component
JP2007510554A (en) * 2003-11-03 2007-04-26 アイディーシー、エルエルシー MEMS device with unreleased thin film portion
JP2014527474A (en) * 2011-07-13 2014-10-16 ヌボトロニクス,エルエルシー Method for fabricating electronic and mechanical structures
KR101459284B1 (en) * 2014-04-18 2014-11-07 주식회사 스맥 Apparatus and process for producing three-dimensional object
WO2015191689A1 (en) * 2014-06-10 2015-12-17 Formlabs, Inc. Improved resin container for stereolithography
US9608303B2 (en) 2013-01-26 2017-03-28 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US9888600B2 (en) 2013-03-15 2018-02-06 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10002818B2 (en) 2007-03-20 2018-06-19 Nuvotronics, Inc. Integrated electronic components and methods of formation thereof
IT201700020797A1 (en) * 2017-02-23 2018-08-23 Dws Srl Method and container to remove resin residues from a model made by 3D 3D printing
US10074885B2 (en) 2003-03-04 2018-09-11 Nuvotronics, Inc Coaxial waveguide microstructures having conductors formed by plural conductive layers
US10193203B2 (en) 2013-03-15 2019-01-29 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
WO2019097383A1 (en) * 2017-11-14 2019-05-23 Dws S.R.L. Multi-station stereolithographic group
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
CN113492530A (en) * 2020-03-18 2021-10-12 苏州苏大维格科技集团股份有限公司 Multi-material three-dimensional printing and cleaning device and method
CN114750408A (en) * 2017-05-15 2022-07-15 霍洛公司 Adhesive film three-dimensional printing system and method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074885B2 (en) 2003-03-04 2018-09-11 Nuvotronics, Inc Coaxial waveguide microstructures having conductors formed by plural conductive layers
JP2007510554A (en) * 2003-11-03 2007-04-26 アイディーシー、エルエルシー MEMS device with unreleased thin film portion
WO2005082592A1 (en) * 2004-02-27 2005-09-09 Nihon University Method for manufacturing fine component
US10431521B2 (en) 2007-03-20 2019-10-01 Cubic Corporation Integrated electronic components and methods of formation thereof
US10002818B2 (en) 2007-03-20 2018-06-19 Nuvotronics, Inc. Integrated electronic components and methods of formation thereof
US10497511B2 (en) 2009-11-23 2019-12-03 Cubic Corporation Multilayer build processes and devices thereof
US9993982B2 (en) 2011-07-13 2018-06-12 Nuvotronics, Inc. Methods of fabricating electronic and mechanical structures
JP2014527474A (en) * 2011-07-13 2014-10-16 ヌボトロニクス,エルエルシー Method for fabricating electronic and mechanical structures
JP2018149813A (en) * 2011-07-13 2018-09-27 ヌボトロニクス、インク. Method for manufacturing electronic and mechanical structure
US9608303B2 (en) 2013-01-26 2017-03-28 Nuvotronics, Inc. Multi-layer digital elliptic filter and method
US10193203B2 (en) 2013-03-15 2019-01-29 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US10361471B2 (en) 2013-03-15 2019-07-23 Nuvotronics, Inc Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems
US9888600B2 (en) 2013-03-15 2018-02-06 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10257951B2 (en) 2013-03-15 2019-04-09 Nuvotronics, Inc Substrate-free interconnected electronic mechanical structural systems
US10310009B2 (en) 2014-01-17 2019-06-04 Nuvotronics, Inc Wafer scale test interface unit and contactors
KR101459284B1 (en) * 2014-04-18 2014-11-07 주식회사 스맥 Apparatus and process for producing three-dimensional object
US9878470B2 (en) 2014-06-10 2018-01-30 Formlabs, Inc. Resin container for stereolithography
JP2017524583A (en) * 2014-06-10 2017-08-31 フォームラブス, インコーポレーテッドFormlabs, Inc. Improved resin container for stereolithography
CN106573397A (en) * 2014-06-10 2017-04-19 福姆实验室公司 Improved resin container for stereolithography
CN106573397B (en) * 2014-06-10 2019-02-19 福姆实验室公司 The improved plastic holding device for stereolithography
WO2015191689A1 (en) * 2014-06-10 2015-12-17 Formlabs, Inc. Improved resin container for stereolithography
US10414073B2 (en) 2014-06-10 2019-09-17 Formlabs, Inc. Resin container for stereolithography
US10511073B2 (en) 2014-12-03 2019-12-17 Cubic Corporation Systems and methods for manufacturing stacked circuits and transmission lines
US10847469B2 (en) 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
WO2018154500A1 (en) * 2017-02-23 2018-08-30 Dws S.R.L. Method and container for removing resin residues from a model created by three-dimensional 3d printing
IT201700020797A1 (en) * 2017-02-23 2018-08-23 Dws Srl Method and container to remove resin residues from a model made by 3D 3D printing
JP2020508243A (en) * 2017-02-23 2020-03-19 ディーダブリューエス エス.アール.エル. Method and container for removing resin residue from a model created by three-dimensional 3D printing
CN114750408A (en) * 2017-05-15 2022-07-15 霍洛公司 Adhesive film three-dimensional printing system and method
WO2019097383A1 (en) * 2017-11-14 2019-05-23 Dws S.R.L. Multi-station stereolithographic group
JP2021507823A (en) * 2017-11-14 2021-02-25 ディーダブリューエス エス.アール.エル. Multiple stereolithography groups
US11590707B2 (en) 2017-11-14 2023-02-28 Dws S.R.L. Multi-station stereolithographic group
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10553511B2 (en) 2017-12-01 2020-02-04 Cubic Corporation Integrated chip scale packages
CN113492530A (en) * 2020-03-18 2021-10-12 苏州苏大维格科技集团股份有限公司 Multi-material three-dimensional printing and cleaning device and method

Also Published As

Publication number Publication date
JP3537161B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP3537161B2 (en) Manufacturing method of three-dimensional structure
Huang et al. A review of stereolithography: Processes and systems
Corbel et al. Materials for stereolithography
CN107750200B (en) Additive manufacturing method for making transparent 3D parts from inorganic material
Deshmukh et al. Fundamentals and applications of 3D and 4D printing of polymers: challenges in polymer processing and prospects of future research
Bertsch et al. Microstereolithography
Bourell et al. Solid freeform fabrication an advanced manufacturing approach
JPH08150662A (en) Optical shaping apparatus and method using powder mixed photo-setting resin
Chabok et al. Ultrasound transducer array fabrication based on additive manufacturing of piezocomposites
JPH09277384A (en) Manufacture of three dimensional structure and apparatus therefor
Kwon Experimentation and analysis of contour crafting (CC) process using uncured ceramic materials
Gawel Review of additive manufacturing methods
Hadipoespito et al. Digital Micromirror device based microstereolithography for micro structures of transparent photopolymer and nanocomposites
Pan et al. Fast mask image projection-based micro-stereolithography process for complex geometry
Hussain et al. Digital light processing 3D printing of ceramic materials: a review on basic concept, challenges, and applications
JPH0760843A (en) Manufacture of three-dimensional structure
JP2007062132A (en) Micro-biochemical device, its manufacturing method and manufacturing method of mold for micro-biochemical device
Hossain et al. TECHNOLOGY OF ADDITIVE MANUFACTURING: A COMPREHENSIVE REVIEW
JP2662934B2 (en) Stereolithography simple mold and its manufacturing method
KR101199496B1 (en) Processing method of large area structure in low cost type stereolithography system using small DMD and UV-LED
JP2019111803A (en) Manufacturing method of article
JPH07256763A (en) Manufacture of structural body, manufacturing device and structural body manufactured by that method
WO2023014840A2 (en) Vat photopolymerization 3d printing method and apparatus
JP3415878B2 (en) Manufacturing method of sintered body
WO2016010189A1 (en) Three-dimensional modeling material supply device and rapid three-dimensional modeling device, and three-dimensional modeling method using same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees