WO2016010189A1 - Three-dimensional modeling material supply device and rapid three-dimensional modeling device, and three-dimensional modeling method using same - Google Patents

Three-dimensional modeling material supply device and rapid three-dimensional modeling device, and three-dimensional modeling method using same Download PDF

Info

Publication number
WO2016010189A1
WO2016010189A1 PCT/KR2014/008861 KR2014008861W WO2016010189A1 WO 2016010189 A1 WO2016010189 A1 WO 2016010189A1 KR 2014008861 W KR2014008861 W KR 2014008861W WO 2016010189 A1 WO2016010189 A1 WO 2016010189A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding
dimensional
stage
layer
unit
Prior art date
Application number
PCT/KR2014/008861
Other languages
French (fr)
Korean (ko)
Inventor
김승택
조영준
이덕근
박문수
김형태
김종석
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2016010189A1 publication Critical patent/WO2016010189A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00

Definitions

  • the present invention relates to a molding material supply apparatus used for 3D molding and a 3D printer to which the same is applied. More specifically, the present invention can be applied to both SLS and SLA molding, and the molding space is enclosed to be molded with a minimum configuration. Provided are a molding material supply apparatus and a three-dimensional molding apparatus capable of easily performing flattening and stabilization of a material, and a three-dimensional molding method using the same.
  • 3D printing is one of the methods of manufacturing a product, and since it uses a lamination method, it has been mainly used for prototyping because the loss of materials is small and relatively low manufacturing cost is required as compared with the conventional cutting process. Recently, technology in this field has been recognized as a next-generation production technology beyond prototyping.Increasing production speed, increasing the completeness of the output (resolution), increasing the available materials, and miniaturizing the device can be used by individuals. This is because accessibility has increased.
  • SLA Stereo Lithography Apparatus
  • SLS Selective Laser Sintering
  • FDM Fused Deposition Modeling
  • U.S. Pat. An energy source that is housed in a housing, a chamber, contains a molding material, supplies energy to the molding material contained in the container, and cures a selected part, and is immersed below the surface of the molding material, and supports a cured layer. It consists of a molding platform, an elevator for driving the molding platform up and down, and comprises a recorder capable of vertically movable on the surface of the molding material.
  • the molding material is contained in the water tank, the surface of the molding material is open, and the thickness of the molding material is set, and it is not short until the stabilization stage where the ripple of the surface of the molding material disappears before the molding light is incident. It takes time.
  • the planarization work must be performed through a separate component having a complicated configuration, such as a recorder. Such a recorder has a problem that the manufacturing cost of equipment increases due to the need for precise control.
  • the present invention proposed in order to solve the above problems, and to supply the appropriate amount of the molding material supply unit and the required molding material for each layer is formed separately from the molding space, and to provide a separate flattening and stabilization
  • the cover plate is provided in the molding space so that the structure is unnecessary, so that the molding material can be reached within a short time until the stabilization stage of the molding material.
  • the present invention includes a molding stage 112 on which a three-dimensional object is laminated and molded, a molding stage driving unit 113 having a function of lifting and lowering the molding stage 112, and a cover plate 116 on an upper surface side thereof.
  • a molding part 110 including a molding stage 112 and a casing 114 for accommodating the molding stage 112 and a function of supplying molding material to the interior of the molding part 110.
  • the cover plate 116 proposes a three-dimensional modeling material supply apparatus, characterized in that the transparent material that can transmit the molding beam of a predetermined wavelength band.
  • the casing side portion inner wall surface 115 is sealed with a gap over the entire circumference between the side surfaces of the molding stage 112, together with the molding stage 112 and the cover plate 116. It may be characterized by forming a closed molding space (111).
  • the present invention provides a first effect that the present invention is applicable to both SLS and SLA molding methods, and a second residual material removal element is unnecessary by supplying the molding material precisely from the supply part 120 configured separately from the molding part 110. After forming the molding material surface, it has a third effect that a separate component required for the planarization and stabilization process can be omitted, and a fourth effect that the molding time can be reduced. In addition, through the use of the enclosed molding space 111, the fifth effect that the required energy of the molding beam to be used can be reduced.
  • the liquid photopolymer or the metal / polymer powder can be used as a molding material, so that it can be used as a kind of general purpose device.
  • the molding material required for each molding layer is By controlling and supplying a precise amount, it is possible to omit the configuration and the process of removing the residue, and in particular with respect to the third effect to the cover plate 116 included in the closed molding space 111 and the casing 114 As a result, the planarization of the surface of the molding preparation layer 520 can be completed immediately after supplying the molding material, thereby simplifying the process.
  • the fifth effect by additionally applying pressure or heat to the closed molding space 111, it is advantageous to accelerate the reaction process of curing or sintering the molding material, thereby reducing the output of the laser light used.
  • FIG. 1 is a schematic view showing the configuration of an embodiment of a three-dimensional modeling material supply apparatus of the present invention.
  • Figure 2 is a schematic diagram showing an embodiment configuration of a rapid three-dimensional molding apparatus of the present invention.
  • FIG 3 is a cross-sectional view showing an embodiment of a detailed configuration of the supply unit 120 of the present invention.
  • Figure 4 is a schematic diagram showing an embodiment of the pattern of the molding material conveying path 118 of the supply unit 120 of the present invention.
  • FIG. 5 is a schematic view showing an embodiment of the light source unit 200 of the present invention.
  • FIG. 6 is a schematic diagram illustrating a molding layer and the like of the present invention.
  • the present invention includes a molding stage 112 on which a three-dimensional object is laminated and molded, a molding stage driving unit 113 having a function of lifting and lowering the molding stage 112, and a cover plate 116 on an upper surface side thereof.
  • a molding part 110 including a molding stage 112 and a casing 114 for accommodating the molding stage 112 and a function of supplying molding material to the interior of the molding part 110.
  • the cover plate 116 proposes a three-dimensional modeling material supply apparatus, characterized in that the transparent material that can transmit the molding beam of a predetermined wavelength band.
  • the casing side portion inner wall surface 115 is sealed with a gap over the entire circumference between the side surfaces of the molding stage 112, together with the molding stage 112 and the cover plate 116. It may be characterized by forming a closed molding space (111).
  • the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and according to the thickness of the one molding layer, the volume of the one-time molding material to be supplied by the supply unit 120 to the molding unit 110 is determined.
  • the preparation stage 112 is positioned and prepared at a predetermined position such that the distance between the upper surface of the molding stage 112 and the lower surface of the cover plate 116 is greater than the thickness of one of the molding layers. 120 supplies the molding material with the volume of the batch determined in the step (i) to the molding unit 110, and predetermined until the ripple on the surface of the formed molding preparation layer 520 disappears and is stabilized.
  • the light source unit 200 After waiting for a time, the light source unit 200 sinters or hardens by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to form one more molding completed layer, and then drives the molding stage.
  • (113) comprises moving the molding stage 112 downward by the thickness of the molding layer determined in step (i), and repeating the steps in order until the three-dimensional object of a predetermined shape is completed It provides a three-dimensional shaping method characterized in that.
  • the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the total volume of the one-time molding material to be supplied by the supply part 120 to the molding part 110 is determined according to the thickness of the molding layer. And a distance between the upper surface of the molding stage 112 or the immediately preceding molding layer and the lower surface of the cover plate 116 is greater than the thickness of one of the molding layers determined in step (a).
  • the molding stage 112 is positioned and prepared, and the supply unit 120 supplies the molding material with the volume of the batch determined in step (a) to the molding unit 110, and the upper surface of the molding stage 112.
  • the molding stage such that the distance between the immediately preceding molding completion layer 511 and the bottom surface of the cover plate 116 is equal to the thickness of one of the molding layers determined in the previous step.
  • the eastern side 113 moves the molding stage 112 upwards, and the light source unit 200 sinters or hardens a predetermined portion of the molding preparation layer 520 to sinter or cure the molding layer to form one more molding layer.
  • the present invention provides a three-dimensional shaping method comprising the steps of repeating the steps in order until a predetermined three-dimensional object is completed.
  • the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the distance between the upper surface of the molding stage 112 or the lower surface of the previous molding completion layer 511 and the lower surface of the cover plate 116 is a previous step.
  • the molding stage 112 is positioned and prepared at a predetermined position such that the thickness of the molding layer is determined by 1, and the molding material is completely filled until the supply part 120 completely fills the sealed molding space 111.
  • the light source unit 200 is sintered or cured by irradiating a molding beam to a predetermined portion of the mold preparation layer 520 to further mold one molding layer, until a three-dimensional object of a predetermined shape is completed It provides a three-dimensional shaping method comprising the step of repeating the previous steps in order.
  • the three-dimensional molding material supply apparatus of the present invention provides a space in which a three-dimensional molding is largely formed, and a molding unit 110 in which a laminated molding is actually made therein, a supply unit 120 having a function of storing and supplying a three-dimensional molding material, and a predetermined one.
  • the controller 130 has a function of controlling the molding part 110 and the supply part 120 according to predetermined data as main components.
  • a molding layer in which hardening / sintering is performed is called a molding completion layer
  • the most recent molding completion layer sequentially generated in this molding process is called a previous molding completion layer 511.
  • a molding layer formed on the immediately preceding molding completion layer 511 and not undergoing hardening / sintering crystallization is referred to as a molding preparation layer 520.
  • the thickness of the molding layer, that is, the molding completion layer and the molding preparation layer 520 becomes the same in principle. This will be described with reference to FIG. 6.
  • the molding unit 110 includes a molding stage 112, a molding stage driving unit 113, and a casing 114.
  • the molding stage 112 is an element in which the three-dimensional sculpture is started to be molded thereon, and the three-dimensional sculpture is attached thereon during the molding process and after the molding is finished. Therefore, the upper surface of the molding stage 112 should be treated with a material capable of maintaining adhesion to a certain degree before and after the molding material placed thereon is cured or sintered by the molding beam. Moreover, it should be noted that the quality of the three-dimensional sculpture is ensured not to be separated from the molding stage 112 despite the vibration and shock generated when the molding stage 112 moves up and down in the molding process.
  • the molding stage driving unit 113 functions to move the above-described molding stage 112 in the up and down direction, and is composed of elements capable of transmitting power to the molding stage 112.
  • an external power source not shown
  • the present invention is not limited to the embodiment, and various mechanical configurations can be considered. However, when a high-resolution molding work such as a thickness of one molding layer is set from several tens to hundreds of micrometers, the scale of the vertical displacement of the molding stage 112 should also be determined in such a range. The precision of the element should also be chosen.
  • the molding stage driving unit 113 is connected to the controller unit 130 as described later. It should be linked with the operation of the supply unit 120 by. Since the molding stage 112 may need to be separated from the molding stage driver 113 in a state in which a three-dimensional object is attached thereto for the post-processing after the molding process is completed, in this case, the molding stage 112 and the molding stage
  • the driving unit 113 should be designed to have a predetermined connection structure and to be detachable.
  • the casing 114 functions as a body of the molding unit 110, and has a cover plate 116 having a special function on its upper surface.
  • the casing side portion inner wall surface 115 acts as a direct guide to the vertical motion of the above-described molding stage 112 or serves as a base for installing a separate guide member-a rail, etc., and thus should be processed with high precision.
  • the surface of the molding stage 112 has to be surface treated so that the adhesion between the molding material is low and the casing side portion inner wall surface 115 is formed on the side of the molding layer. It can be prevented from breaking part or the entirety of the molding layer because it is not separated.
  • At least one molding material inlet 117 to which the molding material conveying path 118 is mounted is formed in the casing 114.
  • the number and size of the molding material inlet 117 should be appropriately determined depending on the type of molding material used-liquid photocurable resin, powder, powder mounted on the liquid vehicle, and the like.
  • the shape of the molding material inlet 117 is related to the cross-sectional shape of the corresponding molding material transport path 118. For example, it may be a long rectangular slot or a circular opening. In consideration of the fact that the inflow rate of the molding material into the molding unit 110 decreases as the cross-sectional area of the molding material inlet 117 increases under the molding material conveying path 118, and the manufacturing cost of the molding material conveying path 118 is determined.
  • the cross-sectional area of the inlet 117 and the molding material transport path 118 to be described later should be determined.
  • the molding material inlet 117 may be selectively provided with a structure such as a shutter or a valve so that the molding material does not flow back into the molding material transport path 118 due to the pressure in the molding space 111.
  • the controller unit 130 to be described later to be interlocked with the other components of course.
  • the cover plate 116 is provided on the upper surface of the casing 114, and transmits the molding light from the light source unit 200 to be described later to irradiate the molding preparation layer 520 formed in the molding space 111, which will be described later.
  • the molding space 111 is configured to be a closed type, it performs a second function of flattening or stabilizing the surface of the molding preparation layer 520, and a third function of blocking disturbance in the surroundings during molding.
  • the material of the cover plate 116 is a problem.
  • the curing of the photopolymer For light having a wavelength in the UV region, preferably, a material that can transmit 90% or more should be selected, and in the case of adopting the SLS molding method, it is possible to use a light-example of a wavelength band capable of sintering metal or polymer particles. It should be made of a material that can sufficiently transmit light of 900 to 1100 nanometer wavelengths used in the processing laser.
  • the silane-based resin widely used as an optical material has a small change in transparency and a high melting point even when the ambient temperature is higher than several hundred degrees Celsius, so that the cover plate 116 of the present invention directly receives the laser light.
  • the present invention is for supplying a liquid photocurable resin, but there is no cover plate 116, the ripple on the surface of the surface of the mold preparation layer 520 under the influence of ambient air flow ( ripple) and the like, and if the molding is made in such a situation, the adhesiveness with the next molding layer is lowered and the quality of the three-dimensional molded product is lowered as a whole.
  • the cover plate 116 when the bottom surface of the cover plate 116 is brought into contact with the top surface of the molding preparation layer 520 formed by supplying the molding material, the cover plate 116 is used when the molding material is a liquid photocurable resin. It is possible to immediately remove the ripple (ripple) formed by various causes by restraining the surface of the mold ready layer (520). In addition, even when the molding material includes powder, since the cover plate 116 is to be flattened immediately, it is possible to omit additional components such as a roller for flattening. In addition, the cover plate 116 may correct the phenomenon that the surface of the mold preparation layer 520 of the upper portion of the previously cured / sintered portion is convex or concave due to the surface tension of the liquid.
  • the cover plate 116 is used for planarization and surface stabilization as described above, the surface of the cover plate 116 is preferably surface-treated or coated so that the molding material does not adhere to the cover plate 116. This is because if the molding material is buried, the molding ray transmission of the cover plate 116 becomes difficult in relation to the first function, or the molding ray is refracted by the buried molding material, which makes it difficult to precisely cure / sinter the crystal. .
  • the supply unit 120 has a first function of supplying a molding material for forming a molding preparation layer 520 each time under the control of the controller unit 130 to the molding unit 110, and a molding material supplied from the outside. It has a second function of temporarily storing. More specifically, the first function is divided into a function of separating and supplying the molding material by a predetermined amount (1-1 function) and a function of transferring the supplied supplying molding material to the molding unit 110 (1-2 function). Lose.
  • the piston drive unit receives the control signal from the controller unit 130 is converted into an electrical signal for driving the built-in servo motor (not shown) do. Since the rotation angle displacement of the servomotor operated in this way can be precisely controlled, for example, if the mechanical elements such as rack and pinion are properly used, the displacement of the piston plate can be precisely controlled. As a result, the molding material can be supplied in the correct volume. In addition, according to the viscosity (viscousity) of the molding material used, the force required for extruding the molding material to the molding unit 110 is increased, so the piston driving unit should be designed in consideration of this.
  • viscosity viscousity
  • the powder phase (phase) itself may be difficult to supply through the supply unit 120 having the configuration as described above because there is no fluidity
  • a method of imparting fluidity to the molding material by mixing and mixing powder in a liquid vehicle as described below may be considered.
  • the molding material transport path 118 should be provided, and one embodiment of such a molding material transport path 118 pattern is shown in FIG. 4.
  • the molding material conveying path 118 is formed corresponding to the number and position of the molding material inlet 117 formed in the casing 114 of the molding part 110, and its diameter or material according to characteristics such as viscosity of the molding material used. And so on.
  • the diameter or cross-sectional area of the molding material conveying path 118 becomes large, it is difficult to utilize a capillary phenomenon, etc., and therefore consider that a considerably high pressure must be applied to the inside of the pipe for conveying.
  • the molding material transport paths 118 are provided corresponding to the plurality of modeling material inlets 117 as in the embodiment of FIG. 4C, the modeling material is introduced into the modeling space 111 from various directions. Since the preparation layer 520 can be formed, it is obvious that the molding speed can be increased.
  • the supply unit 120 may further include an interface for receiving the molding material from a separate reservoir before the molding material is exhausted therein.
  • the molding material conveying path 118 may be selectively provided with a structure such as a shutter or a valve which prevents the molding material from flowing backward due to the pressure in the molding space 111, and the operation of the structure may also be performed later. Of course, it should be interlocked with other components.
  • the controller unit 130 functions to control the driving of the molding stage driving unit 113 and the supply unit 120 according to predetermined data in order to mold the shape of a predetermined three-dimensional object.
  • the molding stage 112 is moved downward by the thickness of the molding layer, and the supplying material as much as the volume to the supply unit 120 to supply to the molding unit 110 side.
  • the generation of a drive signal for driving the modeling stage 112 and the supply unit 120 there is a meaning of the preceding and subsequent order of the generated signal, for example, in the supply unit 120 before moving the molding stage 112 downwardly.
  • the controller 130 controls the input unit to receive information such as the desired thickness of the molding layer that determines the desired resolution or resolution of the three-dimensional object, the type and viscosity of the molding material used, and the received information by using the stored mapping data. And a processing unit for determining a pattern and a signal generation unit for generating an electric control signal for driving each element of the modeling material supply apparatus according to the determined control pattern.
  • the controller 130 may be implemented in a circuit or a combination of circuit and software.
  • the molding material supply apparatus and the rapid three-dimensional molding apparatus of the present invention can be applied to both SLA and SLS type 3D printing methods
  • the liquid photocurable resin (photopolymer) and SLS used in the SLA method Powdered metals or polymers used in the process can be applied.
  • the liquid photocurable resin is a polymer compound that changes from a monomer to a polymer structure through a crosslinking reaction when mainly irradiated with light in the UV region.
  • diazo, azide, acrylic acid, polyester, epoxy, etc. and the one having physical properties suitable for the three-dimensional molded product should be selected.
  • it may be considered to add a separate sensitizer, photoinitiator and the like to enhance the speed of photocuring.
  • the powdered polymer or powdered metal is a liquid vehicle that functions to form and fix the forming preparation layer 520 in a uniform thickness on the forming stage 112 or on the surface of the forming mold layer 511 immediately before. It can be used as a molding material in the state mounted on the.
  • the liquid vehicle is prepared by mixing an organic solvent with a predetermined polymer resin, and the liquid vehicle as the polymer solution imparts fluidity and adhesion to powder metal and the like.
  • the mixing ratio of the organic solvent and the polymer resin in the liquid vehicle together with the mixing ratio of the liquid vehicle and the metal powder determines the physical properties such as the final viscosity of the molding material.
  • the viscosity is too high in the molding material finally formed through the mixing of the liquid vehicle and the powdered material, the fluidity is poor and the transfer and supply from the supply unit 120 to the molding unit 110 become difficult, and after the molding is completed, While the process of removing the hardened / sintered material may not be smooth, if the viscosity is too low, the content of the powder material is low, which determines the composition ratio, taking into account that the strength of the final molding may be low. do.
  • the polymer resin acts as a binder for the powder to be added. Through this element, a molding layer having a uniform thickness can be generated, and the adhesive strength between the molding stage 112 and each molding layer is Secured.
  • the polymer resin may be selected from the group consisting of ethyl cellulose (EC), nitrocellulose, methyl cellulose, carboxy cellulose, polyvinyl alcohol, acrylic acid ester, methacrylic acid ester and polyvinyl butyral ethyl cellulose. But it is not limited thereto.
  • the organic solvent has a first function of dissolving the powdered polymer resin and a second function of imparting the basic viscosity and the like to the molding material.
  • the polymer powder or the metal powder and the liquid vehicle may be uniformly stirred and mixed from the outside, and then supplied into the supply unit 120 to be used.
  • the liquid vehicle and the metal powder may be stirred with a separate stirring means in the supply unit 120.
  • a configuration of supplying the molding unit 110 may be considered.
  • the supply unit 120 supplies the molding material in the form of powder into the molding unit 110
  • the molding unit 110 further includes a liquid vehicle supply unit 129 for supplying the liquid vehicle into the molding space 111
  • the liquid vehicle supply unit 129 may apply the liquid vehicle to a predetermined thickness on the surface of the molding stage or on the surface of the molding layer 511 immediately before the polymer powder or the metal powder is introduced into the molding unit 110.
  • the polymer powder or the metal powder to be supplied thereafter is uniformly dispersed to form a mold preparation layer 520.
  • it may be considered to add a dispersing agent or a dispersing agent to promote the diffusion or dispersion of the powder to the liquid vehicle, but since it takes a relatively longer time to disperse or diffuse than when using the above-described stirrer, the overall three-dimensional object Considering that the molding time becomes longer.
  • the molding space 111 composed of the casing side inner wall surface 115, the molding stage 112, and the cover plate 116 will be described in detail as a closed molding space 111.
  • the closed molding space 111 is configured as described above, the gap between the casing side portion and the cover plate 116 and the gap between the casing side portion inner wall surface 115 and the molding stage 112 side of the molding space 111 are sealed. This is a problem.
  • the configuration of the closed molding space 111 is particularly necessary when the cover plate 116 described above is used for flattening and stabilizing the surface of the molding preparation layer 520, and the volume of the molding preparation layer 520 is the molding space 111.
  • the surface of the mold preparation layer 520 is in close contact with the bottom surface of the cover plate 116 to obtain the effect of the flattening and stabilization, which is the second function of the cover plate 116 described above.
  • the molding material may leak into the aforementioned gap due to the pressure acting on the surfaces of the molding space 111.
  • the casing side surface inner wall surface 115 is sealed with a gap over the entire circumference between the side of the molding stage 112, the molding stage 112 and the cover plate 116 It is to form a closed molding space 111 with.
  • Such a seal may be implemented using a gasket, but is not limited thereto.
  • such a gasket should satisfy the pressure / heat resistance that can withstand such pressure and temperature conditions in consideration of being pressurized / heated in the closed molding space 111 as described below.
  • the side of the cover plate 116 and the casing should be assembled to maintain the sealing space of the molding space (111).
  • the sealing property must be secured in various ways so as to correspond to the operating pressure and temperature.
  • the output value required for the molding beam may be significantly lowered. This is due to the fact that in the photocuring and sintering reactions, when the ambient temperature or pressure is made in a high environment, the reaction can be performed using relatively low energy.
  • the apparatus for heating and pressurizing can generally use a widely used heating and pressurizing apparatus, but since the pressure and temperature to be applied are different according to the molding materials used, it is possible to control these values. desirable.
  • molding apparatus of this invention is demonstrated.
  • This is the above-described three-dimensional modeling material supply device, located above, and irradiated the molding light in a predetermined pattern to a predetermined portion of the molding preparation layer 520 formed on the molding stage 112 to sinter or harden the molding completion layer It is configured to include a light source unit 200 that functions to mold.
  • the light source unit 200 should be driven by the controller unit 130 in conjunction with the driving of the molding stage 112 and the supply unit 120 of the three-dimensional modeling material supply apparatus.
  • the irradiation of the molding beam in the light source unit 200 is to be performed after the downward movement of the molding stage 112 and the molding material in the supply unit 120 are supplied and the process of planarization or stabilization is completed.
  • the controller unit 130 of the rapid three-dimensional molding apparatus must further reflect the shape of the three-dimensional sculpture with respect to the control object of the controller unit 130 in the three-dimensional molding material supply apparatus, the predetermined data related to the three-dimensional sculpture shape That is, it further includes an input unit for receiving 3D CAD information-STL, AMF, OBJ, etc., a processing unit for reconstructing the input 3D modeling information into 2D cross-sectional information, and extracting tool path information. Need to be. Specific implementation thereof may be performed by a circuit or a combination of software and circuit.
  • the controller unit 130 must further control the driving of the modeling light source and the driving of internal components for irradiating the modeling light beam to the desired position of the modeling preparation layer 520.
  • the light source unit 200 according to the exemplary embodiment illustrated in FIG. 5 includes a shaped light source, a first reflector and a second reflector for determining an irradiation pattern of the shaped light.
  • the first reflector and the second reflector each have a prismatic shape having a different size and type, and are rotatable about a central axis.
  • the shaping ray is incident on and reflected from the first reflector and the second reflector, and then a modeling preparation layer A mechanism for irradiating a predetermined position at 520, and the scanning pattern of the shaping ray is determined by the rotation angle displacement of each of the first reflector and the second reflector.
  • the first reflector rotates in a predetermined direction, and since the direction of the incident light beam is fixed, the angle of incidence of the light beam to the first reflector is changed, and thus the reflection angle also changes. It means that the light rays form one scanning line.
  • the new scan line can be spaced with respect to the immediately preceding scan line by rotating the second reflector about the central axis by a predetermined angle while intermitting the shaping ray for a short time.
  • new scan lines can be formed. In the actual molding, it is possible to separately form the part to be cured / sintered and the part not to be made while locally turning the shaping ray on.
  • the rotational speed of the first reflector and the second reflector is related to the speed of hardening / sintering, which is proportional to the molding speed of the entire three-dimensional object, but when the molding light is irradiated for an insufficient time, the hardening / sintering is completely It should be taken into account that this may not occur, and as a result, the strength of the sculpture may be reduced.
  • the installation angles of the rotating shafts of the first reflector, the second reflector and the size thereof are consequently related to the scannable area, these parameters should be set according to the required conditions.
  • the modeling light source should be selected according to the modeling material.
  • the modeling material is a liquid photocurable resin
  • an LED, a laser, or a bulb which can irradiate light in the ultraviolet wavelength range is generally used.
  • a laser having a predetermined wavelength band may be used to melt or sinter it, wherein the liquid vehicle contained in the molding material is evaporated.
  • the energy density of the laser should be carefully controlled so that the shaping ray does not affect the shaping completed layer of the already sintered lower layer.
  • the first embodiment is related to the case where the cover plate 116 is not used to planarize and stabilize the mold preparation layer 520 without forming the mold space 111 in a sealed type.
  • the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the volume of the one-time molding material to be supplied to the molding unit 110 by the supply unit 120 is determined according to the thickness of one molding layer.
  • the molding stage 112 is positioned and prepared at a predetermined position such that the distance between the upper surface of the molding stage 112 and the lower surface of the cover plate 116 is greater than the predetermined thickness of one molding layer. This means that the cover plate 116 does not contact the mold preparation layer 520.
  • the supply unit 120 supplies the molding material with the volume of the first batch determined in the first step to the molding unit 110. Fourth, wait for a predetermined time until the ripple (etc.) of the surface of the mold preparation layer 520 formed in the previous step disappears and stabilizes. Fifth, the light source unit 200 sinters or hardens by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to further mold one molding layer. Sixth, the molding stage driving unit 113 moves the molding stage 112 downward by the thickness of one molding layer determined in the first step. The third to sixth of these steps are repeated until the three-dimensional shape of the predetermined shape is completed.
  • the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the total volume of the first molding material to be supplied to the molding unit 110 is determined by the supply unit 120 according to the thickness of one molding layer.
  • the molding stage 112 at a predetermined position such that the distance between the upper surface of the molding stage 112 or the previous molding completion layer 511 and the lower surface of the cover plate 116 is greater than the thickness of one molding layer determined in the previous step. Ready to be located.
  • the supply unit 120 supplies the molding material with the batch volume determined in the first step to the molding unit 110.
  • the molding stage 113 is formed by the molding stage driving unit 113 such that the distance between the upper surface of the molding stage 112 or the lower surface of the molding completion layer 511 and the lower surface of the cover plate 116 is equal to the thickness of the molding layer. Move upwards. At this stage, the bottom surface of the cover plate 116 is brought into contact with the surface of the modeling preparation layer 520, and as a result, the surface of the modeling layer 520 is planarized or stabilized. Fifth, the light source unit 200 sinters or hardens by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to further mold one molding layer. Thereafter, the second to fifth steps are repeated in order until a three-dimensional object of a predetermined shape is completed.
  • the closed molding space 111 may be closed before starting the full molding process. Pressurizing / heating may be carried out in place.
  • the cover plate 116 is the same as that of the second embodiment in that the molding space 111 is hermetically formed and the cover plate 116 is used for flattening and stabilizing the molding preparation layer 520. Is different in the before and after process for use in connection with planarization or stabilization.
  • the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object.
  • the molding stage 112 is positioned at a predetermined position such that the distance between the upper surface of the molding stage 112 or the surface of the previous molding completion layer 511 and the lower surface of the cover plate 116 is equal to the thickness of the determined molding layer. Position and prepare.
  • the molding material is supplied until the supply part 120 completely fills the sealed molding space 111.
  • the light source unit 200 is sintered or cured by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to further mold one molding layer. Finally, the second to fourth steps are repeated in order until the three-dimensional shape object is completed.
  • the closed molding space 111 may be closed before starting the full molding process. Pressurizing / heating may be carried out in place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

The present invention relates to a modeling material supply device to be used in 3D modeling, and a 3D printer applying the same, and the present invention provides a three-dimensional modeling material supply device comprising: a modeling part (110) provided with a modeling stage (112) on which a three-dimensionally shaped object is stacked and modeled, and provided with a modeling stage driving part (113) having a function of raising and lowering the modeling stage (112) and a cover plate (116) formed on the upper surface side thereof, and including a casing (114) performing a function of receiving the modeling stage (112) and the modeling stage driving part (113) therein; a supply part (120) having a function of supplying a modeling material to the inside of the modeling part (110); and a controller part (130) performing a function of link-controlling the driving of the modeling stage driving part (113) and the supply part (120) according to predetermined data so as to model the form of a determined three-dimensionally shaped object, wherein the cover plate (116) is made from a transparent material capable of transmitting modeling rays of a predetermined wavelength band.

Description

입체 조형소재 공급장치와 쾌속 입체 조형 장치 및 이를 이용한 입체 조형 방법Three-dimensional molding material supply device and rapid three-dimensional molding device and three-dimensional molding method using the same
본 발명은 3D 조형에 사용되는 조형소재 공급장치와 이를 적용한 3D프린터에 관한 것으로, 더욱 상세하게는, SLS 및 SLA 방식의 조형에 모두 적용 가능하고, 조형공간을 밀폐형으로 하여, 최소의 구성으로 조형재료의 평탄화 및 안정화를 용이하게 수행할 수 있는 조형소재 공급장치 및 입체 조형 장치 및 이를 이용한 입체 조형 방법을 제공한다.The present invention relates to a molding material supply apparatus used for 3D molding and a 3D printer to which the same is applied. More specifically, the present invention can be applied to both SLS and SLA molding, and the molding space is enclosed to be molded with a minimum configuration. Provided are a molding material supply apparatus and a three-dimensional molding apparatus capable of easily performing flattening and stabilization of a material, and a three-dimensional molding method using the same.

3D 프린팅은 제품을 제작하는 방식 중 하나로, 적층 방식을 이용하므로 종래의 절삭가공에 비하여 재료의 손실이 작고, 상대적으로 저렴한 제조 비용이 소요되므로 주로 시제품 제작에 이용하여 왔다. 최근 이 분야의 기술은 시제품 제작을 넘어 차세대 생산기술로서의 가능성을 인정받고 있는데, 제작 속도의 증대, 출력물의 완성도(해상도)가 높아지고, 사용가능한 소재가 다양해지고, 장치의 소형화로 인해 개인들도 이용 접근성이 높아졌기 때문이다.3D printing is one of the methods of manufacturing a product, and since it uses a lamination method, it has been mainly used for prototyping because the loss of materials is small and relatively low manufacturing cost is required as compared with the conventional cutting process. Recently, technology in this field has been recognized as a next-generation production technology beyond prototyping.Increasing production speed, increasing the completeness of the output (resolution), increasing the available materials, and miniaturizing the device can be used by individuals. This is because accessibility has increased.
3D 프린팅의 방식은, 크게 SLA(Stereo Lithography Apparatus), SLS(Selective Laser Sintering), FDM(Fused Deposition Modeling) 등의 방식이 존재한다. As the method of 3D printing, there are largely methods such as Stereo Lithography Apparatus (SLA), Selective Laser Sintering (SLS), and Fused Deposition Modeling (FDM).
미국 등록특허 제 7690909 호(“RAPID PROTOTYPING AND MANUFACTURING SYSTEM AND METHOD”, 이하 종래기술1이라 한다.) 는 SLA 타입의 입체조형에 대응하는 것으로서, 내부에 입체조형물이 조형소재로부터 성형되는 챔버가 형성되는 하우징, 챔버에 수납되고, 조형소재를 담는 컨테이너, 컨테이너에 담긴 조형소재 상에 에너지를 공급하여 소정의 선택된 부위를 경화시키는 에너지원, 조형소재의 표면 아래에 침지되고, 경화된 레이어를 지지하는 기능을 하는 조형플랫폼, 조형플랫폼을 상하로 구동하기 위한 엘리베이터, 조형소재 표면 위에서 수직수평이동 가능한 리코터를 포함하여 구성된다.U.S. Pat. An energy source that is housed in a housing, a chamber, contains a molding material, supplies energy to the molding material contained in the container, and cures a selected part, and is immersed below the surface of the molding material, and supports a cured layer. It consists of a molding platform, an elevator for driving the molding platform up and down, and comprises a recorder capable of vertically movable on the surface of the molding material.
종래기술1은 조형소재가 수조에 담겨져 있고, 그 표면이 오픈되어 있어 조형소재의 두께가 설정되고, 조형광선이 입사되기 전 조형소재 표면의 리플(ripple)이 소멸되는 안정화단계에 이르기까지 짧지 않은 시간이 소요된다. 또한 조형소재가 점성이 있는 경우는 리코터라는 복잡한 구성을 갖는 별도의 구성요소를 통해 평탄화작업을 수행하여야 하는데, 이러한 리코터는 정밀한 제어가 필요하는 등 장비의 제작비용이 증가한다는 문제가 존재한다.In the prior art 1, the molding material is contained in the water tank, the surface of the molding material is open, and the thickness of the molding material is set, and it is not short until the stabilization stage where the ripple of the surface of the molding material disappears before the molding light is incident. It takes time. In addition, when the molding material is viscous, the planarization work must be performed through a separate component having a complicated configuration, such as a recorder. Such a recorder has a problem that the manufacturing cost of equipment increases due to the need for precise control.
상기와 같은 문제를 해결하기 위하여 제안되는 본 발명은, 조형공간과 분리되어 구성되는 조형소재 공급부 및 레이어별 소요되는 조형소재의 적정량을 부피(volume)제어하여 공급하도록 하고, 별도의 평탄화 및 안정화를 위한 구성이 불필요하도록, 조형공간에 커버플레이트를 구비하여, 조형소재의 안정화단계에까지 짧은 시간 내에 도달하도록 한다.The present invention proposed in order to solve the above problems, and to supply the appropriate amount of the molding material supply unit and the required molding material for each layer is formed separately from the molding space, and to provide a separate flattening and stabilization The cover plate is provided in the molding space so that the structure is unnecessary, so that the molding material can be reached within a short time until the stabilization stage of the molding material.


본 발명은, 입체형상물이 그 위에서 적층조형되는 조형스테이지(112), 조형스테이지(112)를 승하강하는 기능을 구비한 조형스테이지구동부(113) 및 상면측에 커버플레이트(116)를 구비하고, 내부에 상기 조형스테이지(112) 및 상기 조형스테이지구동부(113)를 수납하는 기능을 하는 케이싱(114)을 포함하여 이루어지는 조형부(110)와, 조형부(110)의 내부로 조형재료를 공급하는 기능을 구비하는 공급부(120), 정해진 입체형상물의 형상을 조형하기 위해 사전 결정된 데이터에 따라 조형스테이지구동부(113), 공급부(120)의 구동을 연동 제어하는 기능을 하는 컨트롤러부(130)를 포함하여 이루어지고, 커버플레이트(116)는 소정의 파장대역의 조형광선을 투과할 수 있는 투명한 재질로 된 것을 특징으로 하는 입체 조형재료 공급장치를 제안한다.The present invention includes a molding stage 112 on which a three-dimensional object is laminated and molded, a molding stage driving unit 113 having a function of lifting and lowering the molding stage 112, and a cover plate 116 on an upper surface side thereof. A molding part 110 including a molding stage 112 and a casing 114 for accommodating the molding stage 112 and a function of supplying molding material to the interior of the molding part 110. It comprises a supply unit 120 having, a molding stage driving unit 113 according to a predetermined data in order to mold the shape of a predetermined three-dimensional object, and a controller unit 130 for controlling the drive of the supply unit 120 interlocked control In addition, the cover plate 116 proposes a three-dimensional modeling material supply apparatus, characterized in that the transparent material that can transmit the molding beam of a predetermined wavelength band.
또한, 상기 케이싱측면부내벽면(115)은, 조형스테이지(112)의 측면과의 사이에 전(全) 둘레에 걸쳐 틈새가 밀봉되어, 상기 조형스테이지(112) 및 상기 커버플레이트(116)와 함께 밀폐조형공간(111)을 형성하는 것을 특징으로 할 수 있다. In addition, the casing side portion inner wall surface 115 is sealed with a gap over the entire circumference between the side surfaces of the molding stage 112, together with the molding stage 112 and the cover plate 116. It may be characterized by forming a closed molding space (111).

본 발명은, SLS 및 SLA 조형방식에 모두 적용 가능하다는 제1효과, 조형부(110)와 분리되어 구성되는 공급부(120)에서 정밀하게 조형소재를 공급함으로써 별도의 잔여소재제거요소가 불필요하다는 제2효과, 조형소재면을 형성한 이후, 평탄화 및 안정화 과정에 필요한 별도의 구성요소를 생략할 수 있다는 제3효과, 조형시간을 감축할 수 있다는 제4효과를 갖는다. 또한, 밀폐조형공간(111)의 이용을 통해, 사용하는 조형광선의 소요에너지를 저감할 수 있다는 제5효과를 얻는다. The present invention provides a first effect that the present invention is applicable to both SLS and SLA molding methods, and a second residual material removal element is unnecessary by supplying the molding material precisely from the supply part 120 configured separately from the molding part 110. After forming the molding material surface, it has a third effect that a separate component required for the planarization and stabilization process can be omitted, and a fourth effect that the molding time can be reduced. In addition, through the use of the enclosed molding space 111, the fifth effect that the required energy of the molding beam to be used can be reduced.
제1효과와 관련하여서는, 액상 포토폴리머 또는 금속/폴리머 분말을 조형재료로서 사용할 수 있어 일종의 범용의 장치로 활용될 수 있다는 것이고, 제2효과와 관련하여서는, 개별 조형레이어별 소요되는 조형소재를 부피제어하여 정밀한 양을 공급하도록 하여, 잔여분을 제거하는 구성 및 공정을 생략할 수 있으며, 제3효과와 관련하여서는 특히 밀폐된 조형공간(111) 및 케이싱(114)에 포함된 커버플레이트(116)에 의해 조형소재의 공급 즉시 조형준비레이어(520)면의 평탄화 과정을 완료할 수 있어 해당 공정을 간소화할 수 있다. 제5효과와 관련하여서는, 밀폐조형공간(111)에 압력 또는 열을 추가로 가하는 것을 통해, 조형소재의 경화 또는 소결의 반응 과정을 촉진하여, 사용되는 레이저 광의 출력을 줄일 수 있어 유리하다.Regarding the first effect, the liquid photopolymer or the metal / polymer powder can be used as a molding material, so that it can be used as a kind of general purpose device. With regard to the second effect, the molding material required for each molding layer is By controlling and supplying a precise amount, it is possible to omit the configuration and the process of removing the residue, and in particular with respect to the third effect to the cover plate 116 included in the closed molding space 111 and the casing 114 As a result, the planarization of the surface of the molding preparation layer 520 can be completed immediately after supplying the molding material, thereby simplifying the process. In relation to the fifth effect, by additionally applying pressure or heat to the closed molding space 111, it is advantageous to accelerate the reaction process of curing or sintering the molding material, thereby reducing the output of the laser light used.

도 1은 본 발명의 입체 조형재료 공급장치의 일실시예의 구성을 나타내는 개략도.1 is a schematic view showing the configuration of an embodiment of a three-dimensional modeling material supply apparatus of the present invention.
도 2는 본 발명의 쾌속 입체 조형 장치의 일실시예 구성을 나타내는 개략도.Figure 2 is a schematic diagram showing an embodiment configuration of a rapid three-dimensional molding apparatus of the present invention.
도 3은 본 발명의 공급부(120)의 상세 구성의 일실시예를 나타내는 단면도.3 is a cross-sectional view showing an embodiment of a detailed configuration of the supply unit 120 of the present invention.
도 4는 본 발명의 공급부(120)의 조형재료이송로(118)의 패턴의 일실시예를 나타내는 개략도.Figure 4 is a schematic diagram showing an embodiment of the pattern of the molding material conveying path 118 of the supply unit 120 of the present invention.
도 5는 본 발명의 광원부(200)의 일실시예를 나타내는 개략도.5 is a schematic view showing an embodiment of the light source unit 200 of the present invention.
도 6은 본 발명의 조형레이어 등을 설명하는 개략도.6 is a schematic diagram illustrating a molding layer and the like of the present invention.

본 발명은, 입체형상물이 그 위에서 적층조형되는 조형스테이지(112), 조형스테이지(112)를 승하강하는 기능을 구비한 조형스테이지구동부(113) 및 상면측에 커버플레이트(116)를 구비하고, 내부에 상기 조형스테이지(112) 및 상기 조형스테이지구동부(113)를 수납하는 기능을 하는 케이싱(114)을 포함하여 이루어지는 조형부(110)와, 조형부(110)의 내부로 조형재료를 공급하는 기능을 구비하는 공급부(120), 정해진 입체형상물의 형상을 조형하기 위해 사전 결정된 데이터에 따라 조형스테이지구동부(113), 공급부(120)의 구동을 연동 제어하는 기능을 하는 컨트롤러부(130)를 포함하여 이루어지고, 커버플레이트(116)는 소정의 파장대역의 조형광선을 투과할 수 있는 투명한 재질로 된 것을 특징으로 하는 입체 조형재료 공급장치를 제안한다.The present invention includes a molding stage 112 on which a three-dimensional object is laminated and molded, a molding stage driving unit 113 having a function of lifting and lowering the molding stage 112, and a cover plate 116 on an upper surface side thereof. A molding part 110 including a molding stage 112 and a casing 114 for accommodating the molding stage 112 and a function of supplying molding material to the interior of the molding part 110. It comprises a supply unit 120 having, a molding stage driving unit 113 according to a predetermined data in order to mold the shape of a predetermined three-dimensional object, and a controller unit 130 for controlling the drive of the supply unit 120 interlocked control In addition, the cover plate 116 proposes a three-dimensional modeling material supply apparatus, characterized in that the transparent material that can transmit the molding beam of a predetermined wavelength band.
또한, 상기 케이싱측면부내벽면(115)은, 조형스테이지(112)의 측면과의 사이에 전(全) 둘레에 걸쳐 틈새가 밀봉되어, 상기 조형스테이지(112) 및 상기 커버플레이트(116)와 함께 밀폐조형공간(111)을 형성하는 것을 특징으로 할 수 있다. In addition, the casing side portion inner wall surface 115 is sealed with a gap over the entire circumference between the side surfaces of the molding stage 112, together with the molding stage 112 and the cover plate 116. It may be characterized by forming a closed molding space (111).

또한, 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하고, 상기 조형레이어 하나의 두께에 따라 상기 공급부(120)가 상기 조형부(110)에 공급할 1회분의 조형재료의 부피를 결정하고, 조형스테이지(112)의 상면과 상기 커버플레이트(116)의 하면 사이의 거리가 상기 조형레이어 하나의 두께보다 크도록 하는 소정의 위치에 상기 조형스테이지(112)가 위치하여 준비하며, 상기 공급부(120)가 상기 (i)단계에서 결정된 1회분의 부피만큼의 조형재료를 상기 조형부(110)에 공급하며, 형성된 조형준비레이어(520)의 표면의 리플(ripple)이 소멸되어 안정해질 때까지 소정의 시간동안 대기하고, 광원부(200)가 상기 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형한 후, 조형스테이지구동부(113)가 상기 조형스테이지(112)를 상기 (i)단계에서 결정된 조형레이어 하나의 두께만큼 하방 이동시키고, 소정 형상의 입체형상물이 완성될 때까지 전 단계들을 순서대로 반복하는 단계를 포함하여 이루어지는 것을 특징으로 하는 입체 조형 방법을 제공한다.In addition, the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and according to the thickness of the one molding layer, the volume of the one-time molding material to be supplied by the supply unit 120 to the molding unit 110 is determined. The preparation stage 112 is positioned and prepared at a predetermined position such that the distance between the upper surface of the molding stage 112 and the lower surface of the cover plate 116 is greater than the thickness of one of the molding layers. 120 supplies the molding material with the volume of the batch determined in the step (i) to the molding unit 110, and predetermined until the ripple on the surface of the formed molding preparation layer 520 disappears and is stabilized. After waiting for a time, the light source unit 200 sinters or hardens by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to form one more molding completed layer, and then drives the molding stage. (113) comprises moving the molding stage 112 downward by the thickness of the molding layer determined in step (i), and repeating the steps in order until the three-dimensional object of a predetermined shape is completed It provides a three-dimensional shaping method characterized in that.
또한, 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하고, 상기 조형레이어 하나의 두께에 따라 상기 공급부(120)가 상기 조형부(110)에 공급할 1회분의 조형재료의 총부피를 결정하고, 조형스테이지(112)의 상면 또는 직전의 조형완료레이어와 상기 커버플레이트(116)의 하면 사이의 거리가 상기 (ㄱ)단계에서 결정된 상기 조형완료레이어 하나의 두께보다 크도록 하는 소정의 위치에 상기 조형스테이지(112)가 위치하여 준비하며, 상기 공급부(120)가 상기 (ㄱ)단계에서 결정된 1회분 부피만큼의 조형재료를 상기 조형부(110)에 공급하고, 상기 조형스테이지(112)의 상면 또는 상기 직전 조형완료레이어(511)와 상기 커버플레이트(116)의 하면 사이의 거리가 전 단계에서 결정된 상기 조형레이어 하나의 두께만큼이 되도록 상기 조형스테이지구동부(113)가 상기 조형스테이지(112)를 상방 이동시키며,상기 광원부(200)가 상기 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형한 후,소정 형상의 입체형상물이 완성될 때까지 전 단계들을 순서대로 반복하는 단계를 포함하여 이루어지는 것을 특징으로 하는 입체 조형 방법을 제공한다.In addition, the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the total volume of the one-time molding material to be supplied by the supply part 120 to the molding part 110 is determined according to the thickness of the molding layer. And a distance between the upper surface of the molding stage 112 or the immediately preceding molding layer and the lower surface of the cover plate 116 is greater than the thickness of one of the molding layers determined in step (a). The molding stage 112 is positioned and prepared, and the supply unit 120 supplies the molding material with the volume of the batch determined in step (a) to the molding unit 110, and the upper surface of the molding stage 112. Or the molding stage such that the distance between the immediately preceding molding completion layer 511 and the bottom surface of the cover plate 116 is equal to the thickness of one of the molding layers determined in the previous step. The eastern side 113 moves the molding stage 112 upwards, and the light source unit 200 sinters or hardens a predetermined portion of the molding preparation layer 520 to sinter or cure the molding layer to form one more molding layer. After that, the present invention provides a three-dimensional shaping method comprising the steps of repeating the steps in order until a predetermined three-dimensional object is completed.
또한, 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하고, 조형스테이지(112)의 상면 또는 직전 조형완료레이어(511)면과 상기 커버플레이트(116)의 하면 사이의 거리가 전 단계에서 결정된 상기 조형레이어 하나의 두께만큼이 되도록 하는 소정의 위치에 상기 조형스테이지(112)가 위치하여 준비하고, 상기 공급부(120)가 상기 밀폐조형공간(111)을 완전히 충전할 때까지 상기 조형재료를 공급하며, 상기 광원부(200)가 상기 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형하고, 소정 형상의 입체형상물이 완성될 때까지 전단계들을 순서대로 반복하는 단계를 포함하여 이루어지는 것을 특징으로 하는 입체 조형 방법을 제공한다.In addition, the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the distance between the upper surface of the molding stage 112 or the lower surface of the previous molding completion layer 511 and the lower surface of the cover plate 116 is a previous step. The molding stage 112 is positioned and prepared at a predetermined position such that the thickness of the molding layer is determined by 1, and the molding material is completely filled until the supply part 120 completely fills the sealed molding space 111. Supplying, and the light source unit 200 is sintered or cured by irradiating a molding beam to a predetermined portion of the mold preparation layer 520 to further mold one molding layer, until a three-dimensional object of a predetermined shape is completed It provides a three-dimensional shaping method comprising the step of repeating the previous steps in order.

본 발명의 일실시예의 실시 형태를 를 도시한 각 도면에 사용된 부호에 대해 설명하면 다음과 같다.Referring to the symbols used in the drawings showing an embodiment of an embodiment of the present invention are as follows.
100 : 입체 조형재료 공급장치100: three-dimensional molding material supply device
110 : 조형부        110: molding
111 : 조형공간                111: Modeling space
112 : 조형스테이지                112: Modeling Stage
113 : 조형스테이지구동부                113: molding stage driving unit
114 : 케이싱                114 casing
115 : 케이싱측면부내벽면                        115: casing side portion inner wall surface
116 : 커버플레이트                116: cover plate
117 : 조형재료유입구                117: molding material inlet
118 : 조형재료이송로                118: molding material conveying path
120 : 공급부         120: supply unit
121 : 피스톤로드                121: piston rod
122 : 피스톤플레이트                122: piston plate
123 : 조형재료                123: molding material
124 : 공급부하우징                124: Supply housing
125 : 피스톤구동부                125: piston driving part
129 : 액상비히클공급부                129: liquid vehicle supply unit
130 : 컨트롤러부        130: controller
200 : 광원부200: light source
210 : 조형광선        210: shaping ray
220 : 조형광원         220: molding light source
230 : 제1반사체        230: first reflector
240 : 제2반사체        240: second reflector
조형레이어Molding Layer
510 : 조형완료레이어        510: Modeling completed layer
510a : 경화/소결부위                510a: hardened / sintered part
510b : 비경화/소결부위                510b: non-hardened / sintered part
511 : 직전 조형완료레이어        511: last molding completed layer
520 : 조형준비레이어        520: Modeling preparation layer

본 발명의 입체 조형재료 공급장치는 크게 입체조형물이 조형되는 공간을 제공하고, 실제 그 내부에서 적층조형이 이루어지는 조형부(110), 입체 조형재료를 저장하고 공급하는 기능을 하는 공급부(120) 및 정해진 입체형상물의 형상을 조형하기 위해 사전 결정된 데이터에 따라 조형부(110) 및 공급부(120)를 연동하여 제어하는 기능을 하는 컨트롤러부(130)를 주요 구성요소로 갖는다.The three-dimensional molding material supply apparatus of the present invention provides a space in which a three-dimensional molding is largely formed, and a molding unit 110 in which a laminated molding is actually made therein, a supply unit 120 having a function of storing and supplying a three-dimensional molding material, and a predetermined one. In order to mold the shape of the three-dimensional object, the controller 130 has a function of controlling the molding part 110 and the supply part 120 according to predetermined data as main components.

언급되는 조형레이어 중 경화/소결이 일어난 조형레이어를 조형완료레이어라 하고, 이러한 조형 과정에서 순차적으로 생성되는 조형완료레이어 중 가장 최근의 것을 직전 조형완료레이어(511)라 한다. 또한, 직전 조형완료레이어(511) 위에 형성되고, 경화/소결과정을 겪지 않은 조형레이어를 조형준비레이어(520)라 한다. 조형레이어, 즉 조형완료레이어 및 조형준비레이어(520)의 두께는 원칙적으로 같게 된다. 이에 대해서는 도 6에 도시된 설명도를 참조한다. Among the molding layers mentioned, a molding layer in which hardening / sintering is performed is called a molding completion layer, and the most recent molding completion layer sequentially generated in this molding process is called a previous molding completion layer 511. In addition, a molding layer formed on the immediately preceding molding completion layer 511 and not undergoing hardening / sintering crystallization is referred to as a molding preparation layer 520. The thickness of the molding layer, that is, the molding completion layer and the molding preparation layer 520 becomes the same in principle. This will be described with reference to FIG. 6.

조형부(110)는 조형스테이지(112), 조형스테이지구동부(113), 케이싱(114)을 포함하여 구성된다.The molding unit 110 includes a molding stage 112, a molding stage driving unit 113, and a casing 114.
조형스테이지(112)는 그 위에서 입체조형물이 조형되기 시작하고, 조형과정 중 및 조형이 종료된 뒤에도 입체조형물이 그 위에 부착되어 있게 되는 요소이다. 따라서 조형스테이지(112)의 상면은 그 위에 위치한 조형재료가 조형광선에 의해 경화 내지 소결되기 이전 및 이후에 일정 정도 부착을 유지할 수 있는 재질로 처리되어야 한다. 더욱이 조형스테이지(112)가 조형과정에서 상하로 이동할 때 발생하는 진동, 충격에도 불구하고 조형물이 조형스테이지(112)로부터 분리되지 않아야 입체조형물의 품질이 보장됨을 유의하여야 한다.The molding stage 112 is an element in which the three-dimensional sculpture is started to be molded thereon, and the three-dimensional sculpture is attached thereon during the molding process and after the molding is finished. Therefore, the upper surface of the molding stage 112 should be treated with a material capable of maintaining adhesion to a certain degree before and after the molding material placed thereon is cured or sintered by the molding beam. Moreover, it should be noted that the quality of the three-dimensional sculpture is ensured not to be separated from the molding stage 112 despite the vibration and shock generated when the molding stage 112 moves up and down in the molding process.

조형스테이지구동부(113)는 전술한 조형스테이지(112)를 상하방향으로 이동할 수 있도록 하는 기능을 하므로, 동력을 전달받아 조형스테이지(112)까지 전달할 수 있는 요소들로 구성된다. 도 1에서의 도시된 실시예에서는 서보모터 등의 외부동력원(미도시)로부터 동력을 받고, 조형스테이지(112)의 상하변위를 야기하는 바(bar)형의 동력전달부재를 적용하고 있는데, 이러한 실시예에 한정할 것은 아니며, 다양한 방식의 기구적 구성을 고려할 수 있다. 다만, 조형레이어 하나의 두께가 수십에서 수백 마이크로미터로 설정되는 등 고해상도 조형작업이 예정된 경우에는 조형스테이지(112)의 상하변위의 스케일도 그러한 범위에서 결정되어야 하므로, 모터나 동력전달부재 등의 구성요소의 정밀도 또한 높은 것을 선택하여야 한다. 또한, 조형스테이지(112)의 상하운동은 후술하는 바와 같이 조형레이어의 두께와 직결되고, 이는 다시 입체조형물의 해상도와 관련 있으므로, 조형스테이지구동부(113)는 후술하는 바와 같이 컨트롤러부(130)에 의해 공급부(120)의 운용과 연동되어야 한다. 조형과정 종료 후 후처리를 위해 조형스테이지(112)를 그 위에 입체조형물이 부착된 상태에서 조형스테이지구동부(113)와 분리해야 할 필요가 있을 수 있으므로, 이런 경우에는 조형스테이지(112) 및 조형스테이지구동부(113)를 소정의 연결구조를 가지고 탈결합이 가능하도록 설계해야 한다. The molding stage driving unit 113 functions to move the above-described molding stage 112 in the up and down direction, and is composed of elements capable of transmitting power to the molding stage 112. In the embodiment shown in Figure 1 receives a power from an external power source (not shown), such as a servo motor, and applies a bar-type power transmission member causing a vertical displacement of the molding stage 112, such a The present invention is not limited to the embodiment, and various mechanical configurations can be considered. However, when a high-resolution molding work such as a thickness of one molding layer is set from several tens to hundreds of micrometers, the scale of the vertical displacement of the molding stage 112 should also be determined in such a range. The precision of the element should also be chosen. In addition, the vertical movement of the molding stage 112 is directly related to the thickness of the molding layer as described later, and again related to the resolution of the three-dimensional object, the molding stage driving unit 113 is connected to the controller unit 130 as described later. It should be linked with the operation of the supply unit 120 by. Since the molding stage 112 may need to be separated from the molding stage driver 113 in a state in which a three-dimensional object is attached thereto for the post-processing after the molding process is completed, in this case, the molding stage 112 and the molding stage The driving unit 113 should be designed to have a predetermined connection structure and to be detachable.

케이싱(114)은 조형부(110)의 몸체기능을 하는 것으로서, 상면에는 특별한 기능을 하는 커버플레이트(116)를 구비하는 것이 특징이다. 케이싱측면부내벽면(115)은 전술한 조형스테이지(112)의 상하운동에 대해 직접 가이드 역할을 하거나, 별도의 가이드부재-레일(rail) 등-설치의 베이스 역할을 하므로, 높은 정밀도로 가공되어야 하고, 전술한 조형스테이지(112)의 표면과 달리, 조형재료와의 사이에 부착성이 낮도록 표면처리되어 있어야 조형스테이지(112)의 상하운동 시, 케이싱측면부내벽면(115)이 조형레이어의 측면과 분리되지 않아 조형레이어 일부 또는 전체가 파괴되는 것을 방지할 수 있다. The casing 114 functions as a body of the molding unit 110, and has a cover plate 116 having a special function on its upper surface. The casing side portion inner wall surface 115 acts as a direct guide to the vertical motion of the above-described molding stage 112 or serves as a base for installing a separate guide member-a rail, etc., and thus should be processed with high precision. Unlike the surface of the molding stage 112 described above, the surface of the molding stage 112 has to be surface treated so that the adhesion between the molding material is low and the casing side portion inner wall surface 115 is formed on the side of the molding layer. It can be prevented from breaking part or the entirety of the molding layer because it is not separated.

또한, 케이싱(114)에는 후술하는 바와 같이, 조형재료이송로(118)가 장착되는 조형재료유입구(117)가 한 개 이상 형성된다. 조형재료유입구(117)의 개수 및 크기는 사용되는 조형재료의 유형-액상광경화수지, 분말, 액상비히클에 탑재된 분말 등-에 따라 적절하게 결정되어야 한다. 조형재료유입구(117)의 형상은 대응되는 조형재료이송로(118)의 단면 형상과 관련이 있는데, 일례로, 긴 직사각형 모양의 슬롯(slot)이거나 원형의 개구일 수 있는데, 동일한 동력으로 작동되는 조형재료이송로(118) 조건하에서는 조형재료유입구(117)의 단면적이 클수록 조형재료의 조형부(110)로의 유입속도가 저하된다는 사실과 조형재료이송로(118)의 제작비용을 감안하여, 조형재료유입구(117) 및 후술할 조형재료이송로(118)의 단면적을 결정하여야 한다. 조형재료유입구(117)에는 조형공간(111)내의 압력에 의해 조형재료가 조형재료이송로(118)로 역류하지 않도록 하는 셔터 또는 밸브 등의 구조를 선택적으로 구비할 수 있고, 이러한 구조의 가동은 역시 후술할 컨트롤러부(130)에 의해 다른 구성요소들과 연동 제어되어야 함은 물론이다. In addition, as described later, at least one molding material inlet 117 to which the molding material conveying path 118 is mounted is formed in the casing 114. The number and size of the molding material inlet 117 should be appropriately determined depending on the type of molding material used-liquid photocurable resin, powder, powder mounted on the liquid vehicle, and the like. The shape of the molding material inlet 117 is related to the cross-sectional shape of the corresponding molding material transport path 118. For example, it may be a long rectangular slot or a circular opening. In consideration of the fact that the inflow rate of the molding material into the molding unit 110 decreases as the cross-sectional area of the molding material inlet 117 increases under the molding material conveying path 118, and the manufacturing cost of the molding material conveying path 118 is determined. The cross-sectional area of the inlet 117 and the molding material transport path 118 to be described later should be determined. The molding material inlet 117 may be selectively provided with a structure such as a shutter or a valve so that the molding material does not flow back into the molding material transport path 118 due to the pressure in the molding space 111. Of course, the controller unit 130 to be described later to be interlocked with the other components of course.

커버플레이트(116)는 케이싱(114) 상면에 구비되며, 후술할 광원부(200)로부터의 조형광선을 투과시켜 조형공간(111)에 형성되는 조형준비레이어(520)에 조사시키는 제1기능, 후술할 조형공간(111)이 밀폐형으로 구성되는 경우, 조형준비레이어(520)의 표면을 평탄화 내지 안정화하는 제2기능, 기타 조형시 주변의 외란(disturbance)을 차단하는 제3기능을 수행한다. 제1기능과 관련하여서는 커버플레이트(116)의 재질이 문제되는데, 본 발명의 입체 조형재료 공급장치 및 입체 조형 장치가 SLA 방식의 조형 방식을 채택한 경우에는 포토폴리머(광경화 폴리머)를 경화시키기 위한 UV 영역의 파장을 갖는 광에 대해 바람직하게는 90% 이상 투과가능한 소재를 선택해야 하고, SLS 방식의 조형 방식을 채택한 경우에는 금속 내지 폴리머 입자를 소결(sintering)할 수 있는 파장대의 광-일례로 가공용 레이저에 사용되는 900 내지 1100나노미터 파장의 광-을 충분히 투과할 수 있는 소재로 되어야 한다. 특히 광학 소재로 널리 사용되는 실란(silane)계 수지는 주변 온도가 섭씨 수백도를 상회하는 경우에도, 투명도에 있어 변화가 적고, 녹는점도 높아 레이저광을 직접 입사받는 본 발명의 커버플레이트(116)의 재질로 바람직하나 이에 한정될 것은 아니다. 또한 형성되는 제3기능과 관련하여서, 만약 본 발명이 액상의 광경화수지를 공급하기 위한 것인데 커버플레이트(116)가 없다면, 주변 공기 흐름의 영향으로 조형준비레이어(520)면의 표면에 잔물결(ripple) 등이 생길 수 있고, 이러한 상황에서 조형이 이루어진다면, 다음 조형레이어와의 접착성이 저하되어 입체조형물의 품질이 전체적으로 저하된다는 것이다.The cover plate 116 is provided on the upper surface of the casing 114, and transmits the molding light from the light source unit 200 to be described later to irradiate the molding preparation layer 520 formed in the molding space 111, which will be described later. When the molding space 111 is configured to be a closed type, it performs a second function of flattening or stabilizing the surface of the molding preparation layer 520, and a third function of blocking disturbance in the surroundings during molding. In relation to the first function, the material of the cover plate 116 is a problem. When the three-dimensional molding material supply device and the three-dimensional molding apparatus of the present invention adopt the SLA type molding method, the curing of the photopolymer (photocuring polymer) For light having a wavelength in the UV region, preferably, a material that can transmit 90% or more should be selected, and in the case of adopting the SLS molding method, it is possible to use a light-example of a wavelength band capable of sintering metal or polymer particles. It should be made of a material that can sufficiently transmit light of 900 to 1100 nanometer wavelengths used in the processing laser. In particular, the silane-based resin widely used as an optical material has a small change in transparency and a high melting point even when the ambient temperature is higher than several hundred degrees Celsius, so that the cover plate 116 of the present invention directly receives the laser light. Preferred as a material of, but is not limited thereto. In addition, with respect to the third function to be formed, if the present invention is for supplying a liquid photocurable resin, but there is no cover plate 116, the ripple on the surface of the surface of the mold preparation layer 520 under the influence of ambient air flow ( ripple) and the like, and if the molding is made in such a situation, the adhesiveness with the next molding layer is lowered and the quality of the three-dimensional molded product is lowered as a whole.

제2기능과 관련하여서는, 커버플레이트(116)의 하면이 조형재료가 공급되어 형성하는 조형준비레이어(520)의 상면과 접촉하도록 하는 경우, 조형재료가 액상광경화수지인 때는, 커버플레이트(116)가 조형준비레이어(520)면을 구속하여 다양한 원인으로 형성되는 잔물결(ripple)등을 즉시 제거할 수 있는 것이다. 또한 조형재료가 분말을 포함하고 있는 경우에도, 커버플레이트(116)가 즉시 평탄화를 수행하게 되는 것이므로, 평탄화를 위한 롤러 등 추가 구성요소를 생략할 수 있다는 것이다. 또한, 액체의 표면장력으로 인해 기존에 경화/소결된 부위의 윗 부분의 조형준비레이어(520)면이 볼록 또는 오목하게 되는 현상을 커버플레이트(116)가 보정할 수도 있는 것이다. 이렇게 되면 균일한 조형 두께를 전 면적에 대해 확보할 수 있게 되어 입체조형물의 품질이 높아지게 된다. 다만, 전술한 바와 같이 커버플레이트(116)가 평탄화 및 표면 안정화에 사용되는 경우, 커버플레이트(116)의 표면은 조형재료가 부착하지 않도록 표면처리 또는 코팅되는 것이 바람직한데, 커버플레이트(116)에 조형재료가 묻게 된다면, 상기 제1기능과 관련하여 커버플레이트(116)의 조형광선투과가 어려워지거나, 묻어있는 조형재료에 의해 조형광선이 굴절되어 정밀한 경화/소결과정이 어려워질 수 있게 되기 때문이다.In relation to the second function, when the bottom surface of the cover plate 116 is brought into contact with the top surface of the molding preparation layer 520 formed by supplying the molding material, the cover plate 116 is used when the molding material is a liquid photocurable resin. It is possible to immediately remove the ripple (ripple) formed by various causes by restraining the surface of the mold ready layer (520). In addition, even when the molding material includes powder, since the cover plate 116 is to be flattened immediately, it is possible to omit additional components such as a roller for flattening. In addition, the cover plate 116 may correct the phenomenon that the surface of the mold preparation layer 520 of the upper portion of the previously cured / sintered portion is convex or concave due to the surface tension of the liquid. In this case, a uniform molding thickness can be secured for the entire area, thereby increasing the quality of the three-dimensional sculpture. However, when the cover plate 116 is used for planarization and surface stabilization as described above, the surface of the cover plate 116 is preferably surface-treated or coated so that the molding material does not adhere to the cover plate 116. This is because if the molding material is buried, the molding ray transmission of the cover plate 116 becomes difficult in relation to the first function, or the molding ray is refracted by the buried molding material, which makes it difficult to precisely cure / sinter the crystal. .

공급부(120)는 크게 컨트롤러부(130)의 제어에 따라 매번의 조형준비레이어(520)를 형성하기 위한 1회분의 조형재료를 조형부(110)측으로 공급하는 제1기능, 외부로부터 공급되는 조형재료를 일시적으로 저장하는 제2기능을 갖는다. 제1기능은 더 자세하게는 조형재료를 소정량만큼씩 분리공급하는 기능(1-1기능)과 분리공급된 조형재료를 조형부(110)로 공급하기 위해 이송하는 기능(1-2기능)으로 나뉘어진다. The supply unit 120 has a first function of supplying a molding material for forming a molding preparation layer 520 each time under the control of the controller unit 130 to the molding unit 110, and a molding material supplied from the outside. It has a second function of temporarily storing. More specifically, the first function is divided into a function of separating and supplying the molding material by a predetermined amount (1-1 function) and a function of transferring the supplied supplying molding material to the molding unit 110 (1-2 function). Lose.

1-1기능을 수행하기 위한 실시예의 구성이 도3에 도시되어 있는데, 피스톤구동부는 컨트롤러부(130)로부터의 제어신호를 받아 내장된 서보모터(미도시) 등을 구동하기 위한 전기신호로 변환한다. 이렇게 운전되는 서보모터의 회전각변위는 정밀하게 제어할 수 있으므로, 일례로 랙(rack)과 피니언(pinion) 등의 기계요소를 적절하게 사용한다면, 피스톤플레이트의 이동변위를 정밀하게 제어할 수 있는 것이 되고, 결과적으로 조형재료를 정확한 부피만큼 공급할 수 있다는 것이다. 또한, 사용되는 조형재료의 점도(viscousity)에 따라 조형재료를 조형부(110)로 압출하는데 소요되는 힘이 커지므로, 이를 고려하여 피스톤구동부를 설계하여야 한다. 특히, SLS 방식의 입체 조형의 경우에 사용되는 금속 또는 폴리머 분말을 공급하고자 하는 경우, 분말상(phase) 자체는 유동성이 없어 전술한 바와 같은 구성을 갖는 공급부(120)를 통해 공급하는 것이 어려울 수 있는데, 이에, 후술하는 바와 같은 액상비히클에 분말을 혼합조성하여 조형재료에 유동성을 부여하는 방법 등을 고려할 수 있다.The configuration of an embodiment for performing the function 1-1 is shown in Figure 3, the piston drive unit receives the control signal from the controller unit 130 is converted into an electrical signal for driving the built-in servo motor (not shown) do. Since the rotation angle displacement of the servomotor operated in this way can be precisely controlled, for example, if the mechanical elements such as rack and pinion are properly used, the displacement of the piston plate can be precisely controlled. As a result, the molding material can be supplied in the correct volume. In addition, according to the viscosity (viscousity) of the molding material used, the force required for extruding the molding material to the molding unit 110 is increased, so the piston driving unit should be designed in consideration of this. In particular, in the case of supplying the metal or polymer powder used in the case of the three-dimensional molding of the SLS method, the powder phase (phase) itself may be difficult to supply through the supply unit 120 having the configuration as described above because there is no fluidity Thus, a method of imparting fluidity to the molding material by mixing and mixing powder in a liquid vehicle as described below may be considered.

1-2기능을 수행하기 위해 조형재료이송로(118)가 구비되어야 하며, 이러한 조형재료이송로(118) 패턴의 일실시예가 도 4에 도시되어 있다. 조형재료이송로(118)는 조형부(110)의 케이싱(114)에 형성되는 조형재료유입구(117)의 개수와 위치에 대응하여 형성되며,사용되는 조형재료의 점도 등 특성에 따라 그 직경이나 재질 등을 결정하여야 한다. 조형재료이송로(118)의 직경 내지 단면적이 커지면, 모세관 현상 등을 활용하기 어려워지므로 이송을 위해 상당히 높은 압력을 관내부로 가해야 함을 감안한다. 도 4(c)의 일실시예에서처럼 복수개의 조형재료유입구(117)에 대응하여 복수개의 조형재료이송로(118)를 구비하는 경우, 조형공간(111)에 여러 방향으로부터 조형재료가 유입되어 조형준비레이어(520)를 형성할 수 있으므로, 조형속도를 증대시킬 수 있음은 자명하다. 또한, 제2기능과 관련하여 공급부(120)는 내부에 조형재료가 소진되기 전에 별도의 저장소로부터 조형재료를 충전받을 수 있는 인터페이스를 선택적으로 더 구비할 수도 있다. 조형재료이송로(118)에는 조형공간(111)내의 압력에 의해 조형재료가 역류하지 않도록 하는 셔터 또는 밸브 등의 구조를 선택적으로 구비할 수 있고, 이러한 구조의 가동은 역시 후술할 컨트롤러부(130)에 의해 다른 구성요소들과 연동 제어되어야 함은 물론이다.In order to perform the 1-2 function, the molding material transport path 118 should be provided, and one embodiment of such a molding material transport path 118 pattern is shown in FIG. 4. The molding material conveying path 118 is formed corresponding to the number and position of the molding material inlet 117 formed in the casing 114 of the molding part 110, and its diameter or material according to characteristics such as viscosity of the molding material used. And so on. When the diameter or cross-sectional area of the molding material conveying path 118 becomes large, it is difficult to utilize a capillary phenomenon, etc., and therefore consider that a considerably high pressure must be applied to the inside of the pipe for conveying. When the plurality of modeling material transport paths 118 are provided corresponding to the plurality of modeling material inlets 117 as in the embodiment of FIG. 4C, the modeling material is introduced into the modeling space 111 from various directions. Since the preparation layer 520 can be formed, it is obvious that the molding speed can be increased. In addition, in relation to the second function, the supply unit 120 may further include an interface for receiving the molding material from a separate reservoir before the molding material is exhausted therein. The molding material conveying path 118 may be selectively provided with a structure such as a shutter or a valve which prevents the molding material from flowing backward due to the pressure in the molding space 111, and the operation of the structure may also be performed later. Of course, it should be interlocked with other components.

컨트롤러부(130)는, 정해진 입체형상물의 형상을 조형하기 위해 사전 결정된 데이터에 따라 조형스테이지구동부(113), 공급부(120)의 구동을 연동하여 제어하는 기능을 하는데, 구체적으로는 각 조형레이어의 조형완료 후, 조형스테이지(112)를 조형레이어의 두께만큼 하방이동시키고, 그 부피만큼의 조형재료를 공급부(120)로 하여금 조형부(110)측으로 공급하게 한다는 것이다. 이 때, 조형스테이지(112) 및 공급부(120)를 구동하기 위한 구동신호 생성에 있어서는 그 생성된 신호의 선후 순서도 의미가 있는데, 일례로 조형스테이지(112)를 하방이동하기 전에 공급부(120)에서 조형재료를 공급하면 조형공간(111)에 공급된 조형재료를 주입할 공간이 없거나 부족하여 조형재료가 역류하거나 누출되는 등의 문제가 생길 수 있기 때문이다. 이와 관련한 더 자세한 내용은 후술하기로 한다. 컨트롤러부(130)는 입체조형물의 희망해상도 또는 해상도를 좌우하는 조형레이어의 희망두께 또는 사용되는 조형재료의 종류 및 점도 등의 정보를 입력받는 입력부, 입력받은 정보를 저장된 매핑데이터 등을 이용하여 제어 패턴을 결정하는 처리부, 결정된 제어 패턴에 따라 조형재료 공급장치의 각 요소를 구동하기 위한 전기제어신호를 생성하는 신호생성부 등을 포함하여 구성할 수 있다. 이러한 컨트롤러부(130)는 회로적으로 또는 회로와 소프트웨어의 조합으로 구현할 수 있다.The controller unit 130 functions to control the driving of the molding stage driving unit 113 and the supply unit 120 according to predetermined data in order to mold the shape of a predetermined three-dimensional object. After the completion of the molding, the molding stage 112 is moved downward by the thickness of the molding layer, and the supplying material as much as the volume to the supply unit 120 to supply to the molding unit 110 side. At this time, in the generation of a drive signal for driving the modeling stage 112 and the supply unit 120, there is a meaning of the preceding and subsequent order of the generated signal, for example, in the supply unit 120 before moving the molding stage 112 downwardly. This is because when the molding material is supplied, there may be a problem such that the molding material flows backward or leaks because there is no or insufficient space for injecting the molding material supplied to the molding space 111. More details in this regard will be described later. The controller 130 controls the input unit to receive information such as the desired thickness of the molding layer that determines the desired resolution or resolution of the three-dimensional object, the type and viscosity of the molding material used, and the received information by using the stored mapping data. And a processing unit for determining a pattern and a signal generation unit for generating an electric control signal for driving each element of the modeling material supply apparatus according to the determined control pattern. The controller 130 may be implemented in a circuit or a combination of circuit and software.
조형재료로는 본 발명의 입체 조형재료 공급장치 및 쾌속 입체 조형 장치가 SLA 및 SLS 방식의 3D 프린팅 방식 모두에 적용될 수 있다는 것을 감안할 때, SLA방식에 사용되는 액상 광경화수지(포토폴리머), SLS 방식에 사용되는 분말상 금속 또는 폴리머 등을 모두 적용할 수 있다. Considering that the molding material supply apparatus and the rapid three-dimensional molding apparatus of the present invention can be applied to both SLA and SLS type 3D printing methods, the liquid photocurable resin (photopolymer) and SLS used in the SLA method Powdered metals or polymers used in the process can be applied.

액상 광경화수지는, 주로 UV 영역의 광을 조사받으면 가교반응 등을 통해 모노머(monomer)에서 폴리머(polymer)구조로 변화하는 고분자 화합물이다. 다이아조계, 아자이드계, 아크릴산계, 폴리에스터계, 에폭시계 등이 있으며, 입체조형물의 요구강도 등을 감안하여 그에 맞는 물성을 가진 것을 선택하여야 한다. 액상 광경화수지를 이용하여 조형재료를 조성하는 경우, 광경화의 속도를 증진시키기 위해 별도의 증감제, 광개시제 등을 첨가하는 것을 고려할 수 있다.The liquid photocurable resin is a polymer compound that changes from a monomer to a polymer structure through a crosslinking reaction when mainly irradiated with light in the UV region. There are diazo, azide, acrylic acid, polyester, epoxy, etc., and the one having physical properties suitable for the three-dimensional molded product should be selected. When forming the molding material using the liquid photocurable resin, it may be considered to add a separate sensitizer, photoinitiator and the like to enhance the speed of photocuring.
분말상의 폴리머 또는 분말상의 금속은, 조형준비레이어(520)가 상기 조형스테이지(112) 위 또는 직전 조형완료레이어(511)면 위에서 균일한 두께로 형성 및 고정되게 하는 기능을 하는 액상비히클(vehicle)에 탑재된 상태에서 조형재료로서 사용할 수 있다. 액상비히클은 소정의 폴리머수지(polymer resin)에 유기용제(solvent)를 혼합하여 제조되며, 이러한 고분자 용액으로서의 액상비히클은 분말 금속 등에 유동성 및 접착성을 부여한다. 액상비히클 내의 유기용제와 폴리머수지의 배합비율은 액상비히클과 금속분말의 배합비율과 함께, 조형재료의 최종적인 점도 등의 물성을 결정하게 된다. 액상비히클과 분말재료의 혼합을 통해 최종적으로 조성되는 조형재료에 있어 그 점도가 너무 높으면, 유동성이 떨어져 공급부(120)에서 조형부(110)로의 이송, 공급이 어려워질 뿐만 아니라, 조형이 종료된 후 경화/소결되지 않은 재료를 제거하는 과정이 원활하지 않을 수 있는 반면, 점도가 너무 낮으면, 분말재료의 함유량이 낮다는 것인데, 이렇게 되면 최종 조형물의 강도가 낮을 수 있다는 점을 감안하여 조성비를 결정한다. The powdered polymer or powdered metal is a liquid vehicle that functions to form and fix the forming preparation layer 520 in a uniform thickness on the forming stage 112 or on the surface of the forming mold layer 511 immediately before. It can be used as a molding material in the state mounted on the. The liquid vehicle is prepared by mixing an organic solvent with a predetermined polymer resin, and the liquid vehicle as the polymer solution imparts fluidity and adhesion to powder metal and the like. The mixing ratio of the organic solvent and the polymer resin in the liquid vehicle together with the mixing ratio of the liquid vehicle and the metal powder determines the physical properties such as the final viscosity of the molding material. If the viscosity is too high in the molding material finally formed through the mixing of the liquid vehicle and the powdered material, the fluidity is poor and the transfer and supply from the supply unit 120 to the molding unit 110 become difficult, and after the molding is completed, While the process of removing the hardened / sintered material may not be smooth, if the viscosity is too low, the content of the powder material is low, which determines the composition ratio, taking into account that the strength of the final molding may be low. do.

폴리머수지(polymer resin)는 첨가되는 분말에 대하여 바인더(binder)역할을 하는데, 이 요소를 통해 균일한 두께의 조형레이어를 생성할 수 있게 되고, 조형스테이지(112) 및 각 조형레이어간의 접착력 등이 확보된다. 폴리머수지로는 에틸셀룰로오스(Ethyl cellulose, EC), 니트로셀룰로오스, 메틸셀룰로오스, 카르복시셀룰로오스, 폴리비닐알콜, 아크릴산에스테르, 메타크릴산에스테르 및 폴리비닐부티랄에틸셀룰로오스로 이루어지는 군에서 하나 이상을 포함하도록 선택할 수 있지만 이에 한정되는 것은 아니다. 유기용제(organic solvent)는, 분말상태의 폴리머수지를 용해하는 제1기능과 폴리머수지가 가지고 있는 기본적인 점도, 등을 조형재료에 부여하는 제2기능을 가진다.The polymer resin acts as a binder for the powder to be added. Through this element, a molding layer having a uniform thickness can be generated, and the adhesive strength between the molding stage 112 and each molding layer is Secured. The polymer resin may be selected from the group consisting of ethyl cellulose (EC), nitrocellulose, methyl cellulose, carboxy cellulose, polyvinyl alcohol, acrylic acid ester, methacrylic acid ester and polyvinyl butyral ethyl cellulose. But it is not limited thereto. The organic solvent has a first function of dissolving the powdered polymer resin and a second function of imparting the basic viscosity and the like to the molding material.

폴리머 분말 또는 금속 분말과 액상비히클은 외부에서 균일하게 교반혼합된 후, 공급부(120) 내부로 공급되어 사용될 수도 있고, 공급부(120) 내부에 별도의 교반수단을 두고 액상비히클과 금속분말 등을 교반한 뒤 조형부(110)로 공급하는 구성을 고려할 수도 있다. 반면, 공급부(120)에서는 분말 상태의 조형재료를 조형부(110) 내부로 공급하고, 조형부(110)는, 액상비히클을 조형공간(111) 내부로 공급하는 액상비히클공급부(129)를 더 포함하고, 액상비히클공급부(129)는, 폴리머 분말 또는 상기 금속 분말이 조형부(110) 내부로 유입되기 이전에 조형스테이지면 위 또는 직전 조형완료레이어(511)면 위에 액상비히클을 소정의 두께로 도포하도록 하여, 그 이후 공급되는 상기 폴리머 분말 또는 상기 금속 분말이 균일하게 분산하도록 하여 조형준비레이어(520)를 만든다. 이 때, 액상비히클에는 분말의 확산 내지 분산을 촉진하기 위한 분산제 또는 확산제를 더 첨가하는 것을 고려할 수 있지만, 전술한 교반기를 사용한 경우보다는 분산 내지 확산에 시간이 상대적으로 많이 소요될 것이므로, 전체적인 입체조형물 조형시간이 길어지게 됨을 감안한다.The polymer powder or the metal powder and the liquid vehicle may be uniformly stirred and mixed from the outside, and then supplied into the supply unit 120 to be used. The liquid vehicle and the metal powder may be stirred with a separate stirring means in the supply unit 120. After that, a configuration of supplying the molding unit 110 may be considered. On the other hand, the supply unit 120 supplies the molding material in the form of powder into the molding unit 110, the molding unit 110 further includes a liquid vehicle supply unit 129 for supplying the liquid vehicle into the molding space 111 The liquid vehicle supply unit 129 may apply the liquid vehicle to a predetermined thickness on the surface of the molding stage or on the surface of the molding layer 511 immediately before the polymer powder or the metal powder is introduced into the molding unit 110. After that, the polymer powder or the metal powder to be supplied thereafter is uniformly dispersed to form a mold preparation layer 520. At this time, it may be considered to add a dispersing agent or a dispersing agent to promote the diffusion or dispersion of the powder to the liquid vehicle, but since it takes a relatively longer time to disperse or diffuse than when using the above-described stirrer, the overall three-dimensional object Considering that the molding time becomes longer.

다음으로는 케이싱측면부내벽면(115)과 조형스테이지(112) 및 커버플레이트(116)로 구성되는 조형공간(111)을 밀폐조형공간(111)으로 구성하는 것에 대해 상술하기로 한다. 이렇게 밀폐조형공간(111)으로 구성하는 경우, 상기 조형공간(111)의 구성 중 케이싱 측면부와 커버플레이트(116)간 틈새 및 케이싱측면부내벽면(115)과 조형스테이지(112) 측면간 틈새의 밀봉이 문제된다. 밀폐조형공간(111)의 구성은 특히 전술한 커버플레이트(116)를 조형준비레이어(520)면의 평탄화 및 안정화에 사용하는 경우에 특히 필요한데, 조형준비레이어(520)의 부피는 조형공간(111)의 부피 이상이 되어야 조형준비레이어(520)면이 커버플레이트(116) 하면에 밀착되어 상기 평탄화 및 안정화의 효과-이 점이 전술한 커버플레이트(116)의 제2기능이다-를 얻을 수 있으나, 이 경우 조형재료가 조형공간(111)을 이루는 면들에 대해 작용하는 압력으로 인해 상기 언급한 틈새로 조형재료가 누출될 가능성이 있기 때문이다. 이를 방지하기 위해 특히, 케이싱측면부내벽면(115)은, 조형스테이지(112)의 측면과의 사이에 전(全) 둘레에 걸쳐 틈새가 밀봉되어, 조형스테이지(112) 및 상기 커버플레이트(116)와 함께 밀폐조형공간(111)을 형성하도록 한다는 것이다. 이러한 밀봉은 개스킷을 이용하여 구현할 수 있으나 이에 한정되는 것은 아니다. 또한, 이러한 개스킷은 후술하는 바와 같이 밀폐조형공간(111)에 가압/가열되는 경우가 있을 것을 감안하여 이러한 압력 및 온도조건을 견딜 수 있는 내압/내열성을 충족하여야 한다. 또한, 커버플레이트(116)와 케이싱의 측면부도 조형공간(111) 밀폐성을 유지할 수 있도록 조립되어야 한다. 또한, 커버플레이트(116)와 케이싱과의 밀봉조립에 있어서도 작동 압력 및 온도에 대응할 수 있도록 다양한 방법으로 밀봉성을 확보하여야 한다.Next, the molding space 111 composed of the casing side inner wall surface 115, the molding stage 112, and the cover plate 116 will be described in detail as a closed molding space 111. When the closed molding space 111 is configured as described above, the gap between the casing side portion and the cover plate 116 and the gap between the casing side portion inner wall surface 115 and the molding stage 112 side of the molding space 111 are sealed. This is a problem. The configuration of the closed molding space 111 is particularly necessary when the cover plate 116 described above is used for flattening and stabilizing the surface of the molding preparation layer 520, and the volume of the molding preparation layer 520 is the molding space 111. ), The surface of the mold preparation layer 520 is in close contact with the bottom surface of the cover plate 116 to obtain the effect of the flattening and stabilization, which is the second function of the cover plate 116 described above. In this case, the molding material may leak into the aforementioned gap due to the pressure acting on the surfaces of the molding space 111. In order to prevent this, in particular, the casing side surface inner wall surface 115 is sealed with a gap over the entire circumference between the side of the molding stage 112, the molding stage 112 and the cover plate 116 It is to form a closed molding space 111 with. Such a seal may be implemented using a gasket, but is not limited thereto. In addition, such a gasket should satisfy the pressure / heat resistance that can withstand such pressure and temperature conditions in consideration of being pressurized / heated in the closed molding space 111 as described below. In addition, the side of the cover plate 116 and the casing should be assembled to maintain the sealing space of the molding space (111). In addition, in sealing assembly between the cover plate 116 and the casing, the sealing property must be secured in various ways so as to correspond to the operating pressure and temperature.


또한, 이러한 밀폐조형공간(111)에 소정의 압력 또는 열을 가하게 되면, 조형광선에 소요되는 출력값을 현저히 낮출 수 있다. 이는 광경화 및 소결 반응에 있어 주위 온도 내지 압력이 높은 환경에서 이루어지는 경우, 상대적으로 낮은 에너지를 사용하여 상기 반응을 수행할 수 있다는 점에 기인한다. 이러한 가열 및 가압을 위한 장치는 일반적으로 널리 사용되는 가열가압장치를 이용할 수 있으나, 사용되는 조형재료에 따라, 가하여야 하는 압력과 온도가 차이가 있게 되므로, 이들 값을 조절할 수 있는 기능을 가진 것이 바람직하다. In addition, when a predetermined pressure or heat is applied to the sealed molding space 111, the output value required for the molding beam may be significantly lowered. This is due to the fact that in the photocuring and sintering reactions, when the ambient temperature or pressure is made in a high environment, the reaction can be performed using relatively low energy. The apparatus for heating and pressurizing can generally use a widely used heating and pressurizing apparatus, but since the pressure and temperature to be applied are different according to the molding materials used, it is possible to control these values. desirable.

이하, 본 발명의 쾌속 입체 조형 장치에 대해 설명하기로 한다. 이는 전술한 입체 조형재료 공급장치에 대하여, 그 상방에 위치하고, 조형스테이지(112) 위에 형성된 조형준비레이어(520)의 소정의 부위에 소정의 패턴으로 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어를 성형하는 기능을 하는 광원부(200)를 포함하여 구성되는 것이다.Hereinafter, the rapid three-dimensional shaping | molding apparatus of this invention is demonstrated. This is the above-described three-dimensional modeling material supply device, located above, and irradiated the molding light in a predetermined pattern to a predetermined portion of the molding preparation layer 520 formed on the molding stage 112 to sinter or harden the molding completion layer It is configured to include a light source unit 200 that functions to mold.
이 때의 광원부(200)는 컨트롤러부(130)에 의해 입체 조형재료 공급장치 중 조형스테이지(112)와 공급부(120)의 구동과 연동되어 구동되어야 한다. 일례로 광원부(200)에서의 조형광선의 조사는 조형스테이지(112)의 하방 운동과 공급부(120)에서의 조형재료가 공급되고, 평탄화 또는 안정화의 과정이 종료된 후에 이루어져야 한다는 것이다. 쾌속 입체 조형 장치의 컨트롤러부(130)는, 입체 조형재료 공급장치에서의 컨트롤러부(130)의 제어 대상에 대하여 추가로 입체 조형물의 형상까지를 반영하여야 하므로, 입체조형물 형상과 관련하여 사전결정된 데이터, 즉 3D CAD 정보-STL, AMF, OBJ 등-을 입력받는 입력부, 입력된 3D 모델링 정보를 2차원 단면정보로 재구성하고, 툴패스(Tool Path)정보 등을 추출하는 처리부 등을 더 포함하여 구성될 필요가 있다. 이의 구체적인 구현은 회로 또는 소프트웨어와 회로의 조합으로 수행할 수 있다. At this time, the light source unit 200 should be driven by the controller unit 130 in conjunction with the driving of the molding stage 112 and the supply unit 120 of the three-dimensional modeling material supply apparatus. For example, the irradiation of the molding beam in the light source unit 200 is to be performed after the downward movement of the molding stage 112 and the molding material in the supply unit 120 are supplied and the process of planarization or stabilization is completed. Since the controller unit 130 of the rapid three-dimensional molding apparatus must further reflect the shape of the three-dimensional sculpture with respect to the control object of the controller unit 130 in the three-dimensional molding material supply apparatus, the predetermined data related to the three-dimensional sculpture shape That is, it further includes an input unit for receiving 3D CAD information-STL, AMF, OBJ, etc., a processing unit for reconstructing the input 3D modeling information into 2D cross-sectional information, and extracting tool path information. Need to be. Specific implementation thereof may be performed by a circuit or a combination of software and circuit.

또한, 이 때의 컨트롤러부(130)는 조형광원의 구동 및 조형광선을 조형준비레이어(520)의 희망위치로 조사하기 위한 내부구성요소의 구동 등에 있어서도 추가로 제어를 행하여야 한다. 도 5에 도시된 일실시예에서의 광원부(200)는 조형광원, 조형광선의 조사 패턴을 결정짓는 제1반사체 및 제2반사체를 포함하여 이루어져 있다. 제1반사체 및 제2반사체는 각각 서로 다른 크기 및 종류의 각기둥 형상으로 되고, 중심축을 중심으로 회전가능하도록 되어 있으며, 조형광선은 제1반사체와 제2반사체에 차례로 입사 및 반사된 후 조형준비레이어(520)의 소정의 위치에 조사되는 메커니즘으로 되어 있으며, 조형광선의 조사(scanning) 패턴은 제1반사체 및 제2반사체 각각의 회전각변위에 의해 결정된다. 도 5에서의 제1반사체는 일정방향으로 회전하는데, 입사되는 조형광선의 방향은 고정되어 있으므로, 결과적으로 조형광선의 제1반사체에 대한 입사각이 달라지는 것이 되고, 이에 따라 반사각도 변화하는데, 이는 조형광선이 하나의 주사선을 형성하는 것을 의미한다. 하나의 주사선이 완성되고 나면, 짧은 시간동안 조형광선을 단속하면서, 제2반사체를 소정의 각도만큼 중심축을 중심으로 회전시키는 것을 통해 새로운 주사선이 직전 주사선에 대해 소정의 간격을 갖도록 할 수 있고, 다시 조형광선을 회전하는 제1반사체에 입사하면 새로운 주사선을 형성할 수 있게 된다. 실제의 조형시에는 국부적으로 조형광선을 온-오프하면서 경화/소결시킬 부분과 그렇지 않을 부분을 구별하여 조형할 수 있다. 제1반사체와 제2반사체의 회전속도는 경화/소결과정의 속도와 관련이 있고, 이에 전체 입체형상물의 조형속도와 비례하지만, 충분하지 않은 시간동안 조형광이 조사되는 경우, 경화/소결이 완전히 일어나지 않을 수 있고, 이 결과, 조형물의 강도가 저하될 수 있음을 고려하여야 한다. 또한, 제1반사체, 제2반사체의 회전축의 설치각도 및 이들의 크기는 결과적으로 주사 가능 면적과 관련이 있으므로, 요구되는 조건에 맞게 이러한 파라미터들을 설정하여야 한다. 조형광원은 조형재료에 따라 맞는 것을 선택하여야 하는데, 조형재료가 액상 광경화수지인 경우에는 일반적으로 자외선 파장대의 광을 조사할 수 있는 LED, 레이저 또는 bulb 등이 사용되고, 조형재료가 금속 및 폴리머 분말을 포함하는 경우에는 이를 용융 내지 소결(sintering)- 이 때, 조형재료에 포함된 액상비히클은 증발된다- 할 수 있도록 소정의 파장대역을 갖는 레이저를 사용할 수 있다. 단, 조형광선이 이미 소결된 아래층의 조형완료레이어에 영향을 주지 않도록 레이저의 에너지 밀도를 사려깊게 조절하여야 한다. At this time, the controller unit 130 must further control the driving of the modeling light source and the driving of internal components for irradiating the modeling light beam to the desired position of the modeling preparation layer 520. The light source unit 200 according to the exemplary embodiment illustrated in FIG. 5 includes a shaped light source, a first reflector and a second reflector for determining an irradiation pattern of the shaped light. The first reflector and the second reflector each have a prismatic shape having a different size and type, and are rotatable about a central axis. The shaping ray is incident on and reflected from the first reflector and the second reflector, and then a modeling preparation layer A mechanism for irradiating a predetermined position at 520, and the scanning pattern of the shaping ray is determined by the rotation angle displacement of each of the first reflector and the second reflector. In FIG. 5, the first reflector rotates in a predetermined direction, and since the direction of the incident light beam is fixed, the angle of incidence of the light beam to the first reflector is changed, and thus the reflection angle also changes. It means that the light rays form one scanning line. Once one scan line is completed, the new scan line can be spaced with respect to the immediately preceding scan line by rotating the second reflector about the central axis by a predetermined angle while intermitting the shaping ray for a short time. When the incident light is incident on the rotating first reflector, new scan lines can be formed. In the actual molding, it is possible to separately form the part to be cured / sintered and the part not to be made while locally turning the shaping ray on. The rotational speed of the first reflector and the second reflector is related to the speed of hardening / sintering, which is proportional to the molding speed of the entire three-dimensional object, but when the molding light is irradiated for an insufficient time, the hardening / sintering is completely It should be taken into account that this may not occur, and as a result, the strength of the sculpture may be reduced. In addition, since the installation angles of the rotating shafts of the first reflector, the second reflector and the size thereof are consequently related to the scannable area, these parameters should be set according to the required conditions. The modeling light source should be selected according to the modeling material. When the modeling material is a liquid photocurable resin, an LED, a laser, or a bulb which can irradiate light in the ultraviolet wavelength range is generally used. If included, a laser having a predetermined wavelength band may be used to melt or sinter it, wherein the liquid vehicle contained in the molding material is evaporated. However, the energy density of the laser should be carefully controlled so that the shaping ray does not affect the shaping completed layer of the already sintered lower layer.

다음으로는 전술한 본 발명의 쾌속 입체 조형 장치를 이용한 입체 조형 방법에 대해 설명한다. Next, the three-dimensional shaping | molding method using the rapid three-dimensional shaping | molding apparatus of this invention mentioned above is demonstrated.
이에 대한 제 1실시예는, 밀폐형으로 조형공간(111)을 구성하지 아니하고, 커버플레이트(116)를 조형준비레이어(520)의 평탄화 및 안정화에 사용하지 않는 경우와 관련한 것이다. 첫째, 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하고, 조형레이어 하나의 두께에 따라 공급부(120)가 상기 조형부(110)에 공급할 1회분의 조형재료의 부피를 결정한다. 둘째, 조형스테이지(112)의 상면과 커버플레이트(116)의 하면 사이의 거리가 기결정된 조형레이어 하나의 두께보다 크도록 하는 소정의 위치에 조형스테이지(112)가 위치하여 준비한다. 이는 커버플레이트(116)가 조형준비레이어(520)에 접촉하지 않는다는 것을 의미한다. 셋째, 공급부(120)가 상기 첫번째 단계에서 결정된 1회분의 부피만큼의 조형재료를 조형부(110)에 공급한다. 넷째, 전단계에서 형성된 조형준비레이어(520)의 표면의 리플(ripple) 등이 소멸되어 안정해질 때까지 소정의 시간동안 대기한다. 다섯째, 광원부(200)가 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형한다. 여섯째, 조형스테이지구동부(113)가 조형스테이지(112)를 첫번째 단계에서 결정된 조형레이어 하나의 두께만큼 하방 이동시킨다. 이러한 단계 중 세번째 내지 여섯번째 단계를 소정 형상의 입체형상물이 완성될 때까지 반복한다. The first embodiment is related to the case where the cover plate 116 is not used to planarize and stabilize the mold preparation layer 520 without forming the mold space 111 in a sealed type. First, the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the volume of the one-time molding material to be supplied to the molding unit 110 by the supply unit 120 is determined according to the thickness of one molding layer. Second, the molding stage 112 is positioned and prepared at a predetermined position such that the distance between the upper surface of the molding stage 112 and the lower surface of the cover plate 116 is greater than the predetermined thickness of one molding layer. This means that the cover plate 116 does not contact the mold preparation layer 520. Third, the supply unit 120 supplies the molding material with the volume of the first batch determined in the first step to the molding unit 110. Fourth, wait for a predetermined time until the ripple (etc.) of the surface of the mold preparation layer 520 formed in the previous step disappears and stabilizes. Fifth, the light source unit 200 sinters or hardens by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to further mold one molding layer. Sixth, the molding stage driving unit 113 moves the molding stage 112 downward by the thickness of one molding layer determined in the first step. The third to sixth of these steps are repeated until the three-dimensional shape of the predetermined shape is completed.

본 발명의 쾌속 입체 조형 장치를 이용한 입체 조형 방법에 대한 제 2실시예는,The second embodiment of the three-dimensional molding method using the rapid three-dimensional molding apparatus of the present invention,
밀폐형으로 조형공간(111)을 구성하고, 커버플레이트(116)를 조형준비레이어(520)의 평탄화 및 안정화에 사용하는 경우와 관련한 것이다. 첫째, 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하고, 조형레이어 하나의 두께에 따라 공급부(120)가 조형부(110)에 공급할 1회분의 조형재료의 총부피를 결정한다. 둘째, 조형스테이지(112)의 상면 또는 직전 조형완료레이어(511)와 커버플레이트(116)의 하면 사이의 거리가 전단계에서 결정된 조형레이어 하나의 두께보다 크도록 하는 소정의 위치에 상기 조형스테이지(112)가 위치하여 준비한다. 셋째, 공급부(120)가 첫번째 단계에서 결정된 1회분 부피만큼의 조형재료를 조형부(110)에 공급한다. 넷째, 조형스테이지(112)의 상면 또는 직전 조형완료레이어(511)와 커버플레이트(116)의 하면 사이의 거리가 조형레이어 하나의 두께만큼이 되도록 조형스테이지구동부(113)가 상기 조형스테이지(112)를 상방 이동시킨다. 바로 이 단계에서, 커버플레이트(116)의 하면과 조형준비레이어(520)면과의 접촉이 이루어지고, 결과적으로 조형준비레이어(520)면의 평탄화 또는 안정화가 이루어진다. 다섯째, 광원부(200)가 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형한다. 이후, 소정 형상의 입체형상물이 완성될 때까지 상기 두번 째 단계 내지 다섯 번째 단계를 순서대로 반복한다. 특히, 전술한 바와 같이 밀폐조형공간(111)에 부가적으로 가압/가열하여 광경화 내지 소결 반응에 사용되는 에너지를 저감하려고 하는 경우에는 본격적인 조형과정을 시작하기 전에, 밀폐조형공간(111)을 가압/가열하는 단계를 두어 수행할 수 있다.It is related to the case where the molding space 111 is formed in a closed type, and the cover plate 116 is used to planarize and stabilize the molding preparation layer 520. First, the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object, and the total volume of the first molding material to be supplied to the molding unit 110 is determined by the supply unit 120 according to the thickness of one molding layer. Second, the molding stage 112 at a predetermined position such that the distance between the upper surface of the molding stage 112 or the previous molding completion layer 511 and the lower surface of the cover plate 116 is greater than the thickness of one molding layer determined in the previous step. Ready to be located. Third, the supply unit 120 supplies the molding material with the batch volume determined in the first step to the molding unit 110. Fourth, the molding stage 113 is formed by the molding stage driving unit 113 such that the distance between the upper surface of the molding stage 112 or the lower surface of the molding completion layer 511 and the lower surface of the cover plate 116 is equal to the thickness of the molding layer. Move upwards. At this stage, the bottom surface of the cover plate 116 is brought into contact with the surface of the modeling preparation layer 520, and as a result, the surface of the modeling layer 520 is planarized or stabilized. Fifth, the light source unit 200 sinters or hardens by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to further mold one molding layer. Thereafter, the second to fifth steps are repeated in order until a three-dimensional object of a predetermined shape is completed. In particular, in the case of reducing energy used in the photocuring or sintering reaction by additionally pressing / heating the closed molding space 111 as described above, the closed molding space 111 may be closed before starting the full molding process. Pressurizing / heating may be carried out in place.
본 발명의 쾌속 입체 조형 장치를 이용한 입체 조형 방법에 대한 제 3실시예는, The third embodiment of the three-dimensional molding method using the rapid three-dimensional molding apparatus of the present invention,
밀폐형으로 조형공간(111)을 구성하고, 커버플레이트(116)를 조형준비레이어(520)의 평탄화 및 안정화에 사용하는 경우와 관련한 것이라는 점에서는 제2실시예의 경우와 동일하지만, 커버플레이트(116)를 평탄화 내지 안정화와 관련하여 사용하기 위한 전후 프로세스에 있어 차이가 있다. 첫째, 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정한다. 둘째, 조형스테이지(112)의 상면 또는 직전 조형완료레이어(511)면과 커버플레이트(116)의 하면 사이의 거리가 결정된 조형레이어 하나의 두께만큼이 되도록 하는 소정의 위치에 조형스테이지(112)가 위치하여 준비한다. 셋째, 공급부(120)가 밀폐된 조형공간(111)을 완전히 충전할 때까지 조형재료를 공급한다. 넷째, 광원부(200)가 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형한다. 마지막으로, 소정 형상의 입체형상물이 완성될 때까지 상기 두번째 단계 내지 네 번째 단계를 순서대로 반복한다. The cover plate 116 is the same as that of the second embodiment in that the molding space 111 is hermetically formed and the cover plate 116 is used for flattening and stabilizing the molding preparation layer 520. Is different in the before and after process for use in connection with planarization or stabilization. First, the thickness of one molding layer is determined in consideration of the vertical resolution of the three-dimensional object. Second, the molding stage 112 is positioned at a predetermined position such that the distance between the upper surface of the molding stage 112 or the surface of the previous molding completion layer 511 and the lower surface of the cover plate 116 is equal to the thickness of the determined molding layer. Position and prepare. Third, the molding material is supplied until the supply part 120 completely fills the sealed molding space 111. Fourth, the light source unit 200 is sintered or cured by irradiating molding rays to a predetermined portion of the molding preparation layer 520 to further mold one molding layer. Finally, the second to fourth steps are repeated in order until the three-dimensional shape object is completed.
특히, 전술한 바와 같이 밀폐조형공간(111)에 부가적으로 가압/가열하여 광경화 내지 소결 반응에 사용되는 에너지를 저감하려고 하는 경우에는 본격적인 조형과정을 시작하기 전에, 밀폐조형공간(111)을 가압/가열하는 단계를 두어 수행할 수 있다.In particular, in the case of reducing energy used in the photocuring or sintering reaction by additionally pressing / heating the closed molding space 111 as described above, the closed molding space 111 may be closed before starting the full molding process. Pressurizing / heating may be carried out in place.

본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시예에 불과하며, 당업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.Although the present invention has been described with reference to the accompanying drawings, it is merely one example of various embodiments including the gist of the present invention, which can be easily implemented by those skilled in the art. It is clear that the present invention is not limited to the above-described embodiment only. Therefore, the protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent to the change, substitution, substitution, etc. within the scope not departing from the gist of the present invention shall be the right of the present invention. It will be included in the scope. In addition, some of the components of the drawings are intended to more clearly describe the configuration, and it is clear that the exaggerated or reduced size is provided.

Claims (20)

  1. 입체 조형재료 공급장치에 있어서,
    입체형상물이 그 위에서 적층조형되는 조형스테이지(112),
    상기 조형스테이지(112)를 승하강하는 기능을 구비한 조형스테이지구동부(113), 및
    상면측에 커버플레이트(116)를 구비하고, 내부에 상기 조형스테이지(112) 및 상기 조형스테이지구동부(113)를 수납하는 기능을 하는 케이싱(114),
    을 포함하여 이루어지는 조형부(110);
    상기 조형부(110)의 내부로 조형재료를 공급하는 기능을 구비하는 공급부(120);
    정해진 입체형상물의 형상을 조형하기 위해 사전 결정된 데이터에 따라 상기 조형스테이지구동부(113), 상기 공급부(120)의 구동을 연동 제어하는 기능을 하는 컨트롤러부(130);
    를 포함하여 이루어지고,
    상기 커버플레이트(116)는 소정의 파장대역의 조형광선을 투과할 수 있는 투명한 재질로 된 것을 특징으로 하는 입체 조형재료 공급장치.

    In the three-dimensional molding material supply apparatus,
    A molding stage 112 in which a three-dimensional object is laminated and molded thereon,
    A modeling stage driving unit 113 having a function of lifting and lowering the modeling stage 112, and
    A casing 114 having a cover plate 116 at an upper surface side and having a function of accommodating the molding stage 112 and the molding stage driving unit 113 therein,
    Molding unit 110 comprising a;
    A supply unit 120 having a function of supplying a molding material into the molding unit 110;
    A controller unit 130 functioning to control driving of the molding stage driving unit 113 and the supply unit 120 according to predetermined data in order to mold a shape of a predetermined three-dimensional object;
    It is made, including
    The cover plate 116 is a three-dimensional molding material supply device, characterized in that the transparent material which can transmit the molding light of a predetermined wavelength band.

  2. 청구항 1에 있어서,
    상기 케이싱(114)은, 상기 공급부(120)로부터 조형재료를 유입받는 조형재료유입구(117)를 한 개 이상 구비하는 것을 특징으로 하는 입체 조형재료 공급장치.

    The method according to claim 1,
    The casing 114, the three-dimensional modeling material supply apparatus characterized in that it comprises at least one molding material inlet 117 for receiving the molding material from the supply unit (120).

  3. 청구항 1에 있어서,
    상기 조형재료는 액상의 광경화폴리머를 포함하여 이루어지는 것을 특징으로 하는 입체 조형재료 공급장치.

    The method according to claim 1,
    The modeling material is a three-dimensional modeling material supply device characterized in that it comprises a liquid photocurable polymer.

  4. 청구항 1에 있어서,
    상기 조형재료가 분말상의 폴리머 또는 분말상의 금속을 포함하여 이루어지는 것을 특징으로 하는 입체 조형재료 공급장치.
    The method according to claim 1,
    A three-dimensional modeling material supply device, characterized in that the molding material comprises a powdery polymer or powdery metal.
  5. 청구항 4에 있어서,
    상기 분말상의 폴리머 또는 분말상의 금속은, 조형준비레이어(520)가 상기 조형스테이지(112) 위 또는 직전 조형완료레이어(511)면 위에서 균일한 두께로 형성 및 고정되게 하는 기능을 하는 액상비히클(vehicle)에 포함되는 것을 특징으로 하는 입체 조형재료 공급장치.

    The method according to claim 4,
    The powdered polymer or powdered metal is a liquid vehicle (vehicle) that functions to form and fix the forming preparation layer 520 in a uniform thickness on the surface of the molding stage 112 or immediately before the molding completion layer (511) Three-dimensional molding material supply apparatus characterized in that it is included.

  6. 청구항 5에 있어서,
    상기 폴리머 분말 또는 금속 분말과 상기 액상비히클은 균일하게 교반혼합된 후, 상기 조형부(110)로 공급되는 것을 특징으로 하는 입체 조형재료 공급장치.
    The method according to claim 5,
    The polymer powder or the metal powder and the liquid vehicle are uniformly stirred and mixed, and then supplied to the molding unit 110, a three-dimensional molding material supply apparatus.
  7. 청구항 5에 있어서,
    상기 조형부(110)는, 상기 액상비히클을 상기 조형스테이지(112) 상에 공급하는 액상비히클공급부(129)를 더 포함하고,
    상기 액상비히클공급부(129)는, 상기 폴리머 분말 또는 상기 금속 분말이 상기 조형부(110) 내부로 유입되기 이전에 상기 조형스테이지면 위 또는 상기 직전 조형완료레이어(511)면 위에 상기 액상비히클을 소정의 두께로 도포하여, 이후 공급되는 상기 폴리머 분말 또는 상기 금속 분말이 균일하게 분산하도록 하는 것을 특징으로 하는 입체 조형재료 공급장치.
    The method according to claim 5,
    The molding unit 110 further includes a liquid vehicle supply unit 129 for supplying the liquid vehicle on the molding stage 112.
    The liquid vehicle supply unit 129 may be configured to provide the liquid vehicle on the surface of the molding stage or on the surface of the previous molding completion layer 511 before the polymer powder or the metal powder is introduced into the molding unit 110. Applied to a thickness, the three-dimensional modeling material supply apparatus characterized in that the polymer powder or the metal powder to be supplied after the uniform distribution.
  8. 청구항 1 내지 청구항 7 중 어느 한 항의 입체 조형재료 공급장치;
    상기 입체 조형재료 공급장치의 상방에 위치하고, 상기 조형스테이지(112) 위에 형성된 조형준비레이어(520)의 소정의 부위에 소정의 패턴으로 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어를 성형하는 광원부(200);
    를 포함하여 이루어지고,
    상기 광원부(200)는 상기 컨트롤러부(130)에 의해 상기 조형스테이지(112)와 상기 공급부(120)의 구동과 연동되어 구동되는 것을 특징으로 하는 쾌속 입체 조형 장치.
    The three-dimensional molding material supply apparatus of any one of claims 1 to 7.
    A light source unit which is located above the three-dimensional molding material supplying device and irradiates molding light beams in a predetermined pattern on a predetermined portion of the molding preparation layer 520 formed on the molding stage 112 to sinter or harden it to form a molding completion layer. 200;
    It is made, including
    The light source unit 200 is driven by the controller unit 130, the rapid three-dimensional molding apparatus, characterized in that driven in conjunction with the drive of the molding stage 112 and the supply unit (120).
  9. 청구항 8에 있어서,
    상기 광원부(200)는, 각기둥 형상을 갖고, 중심축을 중심으로 회전가능한 제1반사체 및 제2반사체를 포함하여 구성되어, 상기 조형광선은 상기 제1반사체와 상기 제2반사체에 차례로 입사 및 반사된 후 상기 조형준비레이어(520)의 소정의 위치에 조사되며,
    상기 조형광선의 조사(scanning) 패턴은 상기 제1반사체 및 상기 제2반사체 각각의 회전각변위에 의해 결정되는 것을 특징으로 하는 쾌속 입체 조형 장치.
    The method according to claim 8,
    The light source unit 200 includes a first reflector and a second reflector having a prismatic shape and rotatable about a central axis, and the modeling light is incident and reflected on the first reflector and the second reflector in order. Then irradiated to a predetermined position of the mold preparation layer 520,
    The scanning pattern of the shaping ray is determined by the rotation angle displacement of each of the first reflector and the second reflector, rapid stereoscopic molding apparatus.
  10. 청구항 8의 쾌속 입체 조형 장치를 이용한 입체 조형 방법에 있어서,
    (i) 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하고, 상기 조형레이어 하나의 두께에 따라 상기 공급부(120)가 상기 조형부(110)에 공급할 1회분의 조형재료의 부피를 결정하는 단계(s10);
    (ii) 상기 조형스테이지(112)의 상면과 상기 커버플레이트(116)의 하면 사이의 거리가 상기 (i)단계에서 결정된 상기 조형레이어 하나의 두께보다 크도록 하는 소정의 위치에 상기 조형스테이지(112)가 위치하여 준비하는 단계(s20)
    (iii) 상기 공급부(120)가 상기 (i)단계에서 결정된 1회분의 부피만큼의 조형재료를 상기 조형부(110)에 공급하는 단계(s30);
    (iv) 상기 (iii)단계에서 형성된 조형준비레이어(520)의 표면의 리플(ripple)이 소멸되어 안정해질 때까지 소정의 시간동안 대기하는 단계(s40);
    (v) 상기 광원부(200)가 상기 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형하는 단계(s50);
    (vi) 상기 조형스테이지구동부(113)가 상기 조형스테이지(112)를 상기 (i)단계에서 결정된 조형레이어 하나의 두께만큼 하방 이동시키는 단계(s60);
    (vii) 소정 형상의 입체형상물이 완성될 때까지 상기 (iii)단계 내지 상기 (vi)단계를 순서대로 반복하는 단계(s70);
    를 포함하여 이루어지는 것을 특징으로 하는 입체 조형 방법.
    In the three-dimensional molding method using the rapid three-dimensional molding apparatus of claim 8,
    (i) Determine the thickness of one molding layer in consideration of the vertical resolution of the three-dimensional shape, and determine the volume of the one-time molding material to be supplied by the supply part 120 to the molding part 110 according to the thickness of the molding layer. Step (s10);
    (ii) the molding stage 112 at a predetermined position such that the distance between the upper surface of the molding stage 112 and the lower surface of the cover plate 116 is larger than the thickness of one of the molding layers determined in step (i). Step is prepared to position (s20)
    (s) the supply unit 120 supplying the molding material with the volume of the batch determined in the step (i) to the molding unit (s30);
    (iv) waiting for a predetermined time until the ripple of the surface of the molding preparation layer 520 formed in step (iii) disappears and stabilizes (s40);
    (v) forming, by the light source unit 200, one of the molding completed layers by sintering or curing by irradiating molding rays to a predetermined portion of the molding preparation layer 520;
    (vi) the molding stage driving unit 113 moving the molding stage 112 downward by one thickness of the molding layer determined in step (i);
    (vii) repeating steps (iii) to (vi) in order until a solid shape of a predetermined shape is completed (s70);
    Three-dimensional shaping method comprising a.
  11. 청구항 1에 있어서,
    상기 케이싱측면부내벽면(115)은, 상기 조형스테이지(112)의 측면과의 사이에 전(全) 둘레에 걸쳐 틈새가 밀봉되어, 상기 조형스테이지(112) 및 상기 커버플레이트(116)와 함께 밀폐조형공간(111)을 형성하는 것을 특징으로 하는 입체 조형재료 공급장치.
    The method according to claim 1,
    The casing side portion inner wall surface 115 is sealed with a gap over the entire circumference between the side surfaces of the molding stage 112 and sealed together with the molding stage 112 and the cover plate 116. Three-dimensional molding material supply device characterized in that to form a molding space (111).
  12. 청구항 11에 있어서,
    상기 케이싱측면부내벽면(115)과 상기 조형스테이지(112)의 측면의 틈새는, 개스킷으로 밀봉되는 것을 특징으로 하는 입체 조형재료 공급장치.
    The method according to claim 11,
    And a gap between the casing side portion inner wall surface 115 and the side surface of the molding stage 112 is sealed with a gasket.
  13. 청구항 11에 있어서,
    상기 커버플레이트(116)의 표면은 상기 조형재료가 부착하지 않도록 표면처리 또는 코팅되는 것을 특징으로 하는 입체 조형재료 공급장치.
    The method according to claim 11,
    Surface of the cover plate 116 is a three-dimensional modeling material supply apparatus characterized in that the surface treatment or coating so that the molding material does not adhere.
  14. 청구항 11에 있어서,
    상기 입체 조형재료 공급장치는, 상기 밀폐조형공간(111)에 압력 또는 열을 부가할 수 있는 가압가열부를 더 포함하는 것을 특징으로 하는 입체 조형재료 공급장치.
    The method according to claim 11,
    The three-dimensional modeling material supply apparatus, the three-dimensional modeling material supply apparatus further comprises a pressurized heating unit that can add pressure or heat to the closed molding space (111).
  15. 청구항 11 내지 청구항 14 중 어느 한 항의 입체 조형재료 공급장치;
    상기 입체 조형재료 공급장치의 상방에 위치하고, 상기 조형스테이지(112) 위에 형성된 조형준비레이어(520)의 소정의 부위에 소정의 패턴으로 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어를 성형하는 광원부(200);
    를 포함하여 이루어지고,
    상기 광원부(200)는 상기 컨트롤러부(130)에 의해 상기 조형스테이지(112)와 상기 공급부(120)의 구동과 연동되어 구동되는 것을 특징으로 하는 쾌속 입체 조형 장치.
    The three-dimensional molding material supply apparatus of any one of claims 11 to 14;
    A light source unit which is located above the three-dimensional molding material supplying device and irradiates molding light beams in a predetermined pattern on a predetermined portion of the molding preparation layer 520 formed on the molding stage 112 to sinter or harden it to form a molding completion layer. 200;
    It is made, including
    The light source unit 200 is driven by the controller unit 130, the rapid three-dimensional molding apparatus, characterized in that driven in conjunction with the drive of the molding stage 112 and the supply unit (120).
  16. 청구항 15에 있어서,
    상기 광원부(200)는, 각기둥 형상을 갖고, 중심축을 중심으로 회전가능한 제1반사체 및 제2반사체를 포함하여 구성되어, 상기 조형광선은 상기 제1반사체와 상기 제2반사체에 차례로 입사 및 반사된 후 상기 조형준비레이어(520)의 소정의 위치에 조사되며,
    상기 조형광선의 조사(scanning) 패턴은 상기 제1반사체 및 상기 제2반사체 각각의 회전각변위에 의해 결정되는 것을 특징으로 하는 쾌속 입체 조형 장치.
    The method according to claim 15,
    The light source unit 200 includes a first reflector and a second reflector having a prismatic shape and rotatable about a central axis, and the modeling light is incident and reflected on the first reflector and the second reflector in order. Then irradiated to a predetermined position of the mold preparation layer 520,
    The scanning pattern of the shaping ray is determined by the rotation angle displacement of each of the first reflector and the second reflector, rapid stereoscopic molding apparatus.
  17. 청구항 15의 쾌속 입체 조형 장치를 이용한 입체 조형 방법에 있어서,
    (ㄱ) 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하고, 상기 조형레이어 하나의 두께에 따라 상기 공급부(120)가 상기 조형부(110)에 공급할 1회분의 조형재료의 총부피를 결정하는 단계(s100);
    (ㄴ) 상기 조형스테이지(112)의 상면 또는 직전의 조형완료레이어와 상기 커버플레이트(116)의 하면 사이의 거리가 상기 (ㄱ)단계에서 결정된 상기 조형완료레이어 하나의 두께보다 크도록 하는 소정의 위치에 상기 조형스테이지(112)가 위치하여 준비하는 단계(s200);
    (ㄷ) 상기 공급부(120)가 상기 (ㄱ)단계에서 결정된 1회분 부피만큼의 조형재료를 상기 조형부(110)에 공급하는 단계(s300);
    (ㄹ) 상기 조형스테이지(112)의 상면 또는 상기 직전 조형완료레이어(511)와 상기 커버플레이트(116)의 하면 사이의 거리가 상기 (ㄱ)단계에서 결정된 상기 조형레이어 하나의 두께만큼이 되도록 상기 조형스테이지구동부(113)가 상기 조형스테이지(112)를 상방 이동시키는 단계(s400);
    (ㅁ) 상기 광원부(200)가 상기 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형하는 단계(s500);
    (ㅂ) 소정 형상의 입체형상물이 완성될 때까지 상기 (ㄴ)단계 내지 상기 (ㅁ)단계 를 순서대로 반복하는 단계(s600);
    를 포함하여 이루어지는 것을 특징으로 하는 입체 조형 방법.
    In the three-dimensional molding method using the rapid three-dimensional molding apparatus of claim 15,
    (A) determine the thickness of one molding layer in consideration of the vertical resolution of the three-dimensional shape, and determine the total volume of the one-time molding material to be supplied by the supply part 120 to the molding part 110 according to the thickness of the molding layer. Determining (s100);
    (B) a predetermined distance such that the distance between the upper surface of the molding stage 112 or the immediately preceding molding completed layer and the lower surface of the cover plate 116 is larger than the thickness of one of the molding completed layers determined in step (a). Preparing and positioning the molding stage 112 at a position (s200);
    (C) the supply unit 120 supplying the molding material with the volume of the batch determined in the step (a) to the molding unit 110 (s300);
    (D) the distance between the upper surface of the molding stage 112 or the lower surface of the immediately preceding molding completion layer 511 and the cover plate 116 is equal to the thickness of one of the molding layers determined in step (a). A molding stage driving unit 113 moving the molding stage 112 upward (s400);
    (S500) the step of sintering or curing one of the molding completed layer by further sintering or curing the predetermined light beam to a predetermined portion of the mold preparation layer (520) (s500);
    (Iii) repeating steps (b) to (ㅁ) in order until a three-dimensional object of a predetermined shape is completed (s600);
    Three-dimensional shaping method comprising a.
  18. 청구항 17에 있어서,
    상기 (ㄱ)단계와 상기 (ㄴ)단계의 사이에, 상기 조사광선의 사용출력을 저감하기 위해 상기 밀폐조형공간(111)에 압력 또는 열을 가하는 단계(s150)를 추가하는 것을 특징으로 하는 입체 조형 방법.
    The method according to claim 17,
    Between the step (a) and the step (b), to add a pressure or heat to the closed molding space 111 to reduce the use output of the irradiation beam (s150) characterized in that the addition Molding method.
  19. 청구항 15의 쾌속 입체 조형 장치를 이용한 입체 조형 방법에 있어서,
    (a) 입체형상물의 수직해상도를 고려하여 조형레이어 하나의 두께를 결정하는 단계(s1000);
    (b) 상기 조형스테이지(112)의 상면 또는 직전 조형완료레이어(511)면과 상기 커버플레이트(116)의 하면 사이의 거리가 상기 (a)단계에서 결정된 상기 조형레이어 하나의 두께만큼이 되도록 하는 소정의 위치에 상기 조형스테이지(112)가 위치하여 준비하는 단계(s2000);
    (c) 상기 공급부(120)가 상기 밀폐조형공간(111)을 완전히 충전할 때까지 상기 조형재료를 공급하는 단계(s3000);
    (d) 상기 광원부(200)가 상기 조형준비레이어(520)의 소정의 부위에 조형광선을 조사하여 소결 또는 경화시켜 조형완료레이어 하나를 더 성형하는 단계(s4000);
    (e) 소정 형상의 입체형상물이 완성될 때까지 상기 (b)단계 내지 상기 (d)단계를 순서대로 반복하는 단계(s5000);
    를 포함하여 이루어지는 것을 특징으로 하는 입체 조형 방법.
    In the three-dimensional molding method using the rapid three-dimensional molding apparatus of claim 15,
    (a) determining a thickness of one molding layer in consideration of the vertical resolution of the three-dimensional object (s1000);
    (b) the distance between the upper surface of the molding stage 112 or the surface of the previous molding completion layer 511 and the lower surface of the cover plate 116 is equal to the thickness of the molding layer determined in step (a). Preparing and positioning the molding stage 112 at a predetermined position (s2000);
    (c) supplying the molding material until the supply part 120 completely fills the closed molding space 111 (s3000);
    (d) forming, by the light source unit 200, one of the molding completed layers by sintering or curing by irradiating molding rays to a predetermined portion of the molding preparation layer 520 (S4000);
    (e) repeating steps (b) to (d) in order until a three-dimensional object of a predetermined shape is completed (s5000);
    Three-dimensional shaping method comprising a.
  20. 청구항 19에 있어서,
    상기 (a)단계와 상기 (b)단계의 사이에, 상기 조사광선의 사용출력을 저감하기 위해 상기 밀폐조형공간(111)에 압력 또는 열을 가하는 단계(s1500);를 더 포함하는 것을 특징으로 하는 입체 조형 방법.
    The method according to claim 19,
    Between the step (a) and the step (b), to apply a pressure or heat to the closed molding space 111 to reduce the use output of the irradiation light (s1500); characterized in that it further comprises Three-dimensional molding method to do.
PCT/KR2014/008861 2014-07-18 2014-09-24 Three-dimensional modeling material supply device and rapid three-dimensional modeling device, and three-dimensional modeling method using same WO2016010189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0090847 2014-07-18
KR1020140090847A KR101665939B1 (en) 2014-07-18 2014-07-18 A material supply apparatus for 3D manufacturing, a rapid 3D printer therewith, and 3D manufacturing method using it.

Publications (1)

Publication Number Publication Date
WO2016010189A1 true WO2016010189A1 (en) 2016-01-21

Family

ID=55078668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008861 WO2016010189A1 (en) 2014-07-18 2014-09-24 Three-dimensional modeling material supply device and rapid three-dimensional modeling device, and three-dimensional modeling method using same

Country Status (2)

Country Link
KR (1) KR101665939B1 (en)
WO (1) WO2016010189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210245435A1 (en) * 2016-08-23 2021-08-12 Canon Kabushiki Kaisha Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101981859B1 (en) * 2017-08-09 2019-05-23 울산대학교 산학협력단 3-Dimensional printer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182056A (en) * 1988-04-18 1993-01-26 3D Systems, Inc. Stereolithography method and apparatus employing various penetration depths
US20020030680A1 (en) * 2000-06-05 2002-03-14 Leica Microsystems Heidelberg Gmbh Method and system for generating a three-dimensional object
US20040200816A1 (en) * 2003-04-09 2004-10-14 3D Systems, Inc. Sintering using thermal image feedback
US20070196561A1 (en) * 2005-04-06 2007-08-23 Jochen Philippi Apparatus and method for the manufacture of a three- dimensional object
US20110165340A1 (en) * 2010-01-05 2011-07-07 Eos Gmbh Electro Optical Systems Device for generatively manufacturing a three-dimensional object with continuous heat supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001353787A (en) * 2000-06-16 2001-12-25 Minolta Co Ltd Adhesive liquid and three-dimensional shaping method
US7690909B2 (en) 2005-09-30 2010-04-06 3D Systems, Inc. Rapid prototyping and manufacturing system and method
JP4661551B2 (en) * 2005-11-25 2011-03-30 パナソニック電工株式会社 Three-dimensional shaped object manufacturing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182056A (en) * 1988-04-18 1993-01-26 3D Systems, Inc. Stereolithography method and apparatus employing various penetration depths
US20020030680A1 (en) * 2000-06-05 2002-03-14 Leica Microsystems Heidelberg Gmbh Method and system for generating a three-dimensional object
US20040200816A1 (en) * 2003-04-09 2004-10-14 3D Systems, Inc. Sintering using thermal image feedback
US20070196561A1 (en) * 2005-04-06 2007-08-23 Jochen Philippi Apparatus and method for the manufacture of a three- dimensional object
US20110165340A1 (en) * 2010-01-05 2011-07-07 Eos Gmbh Electro Optical Systems Device for generatively manufacturing a three-dimensional object with continuous heat supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210245435A1 (en) * 2016-08-23 2021-08-12 Canon Kabushiki Kaisha Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product
US11951677B2 (en) * 2016-08-23 2024-04-09 Canon Kabushiki Kaisha Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product

Also Published As

Publication number Publication date
KR20160010776A (en) 2016-01-28
KR101665939B1 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
US9486964B2 (en) Solid imaging apparatus with improved part separation from the image plate
US20020149137A1 (en) Layer manufacturing method and apparatus using full-area curing
US20020093115A1 (en) Layer manufacturing method and apparatus using a programmable planar light source
JP6456353B2 (en) 3D printing using spiral stacking
CN105711088B (en) Photocuring 3D printer
JP2022033816A (en) SOLID MOLDING METHOD AND DEVICE APPLYING In-situ INJECTION
CN113795370B (en) Method and apparatus for digitally fabricating objects employing actuated micropixel and dynamic density control
KR101715589B1 (en) three-dimensional printer with light path blocking device
JPH08150662A (en) Optical shaping apparatus and method using powder mixed photo-setting resin
EP3323615B1 (en) Three-dimensional printing apparatus
JP6058819B2 (en) 3D object production
US20030173713A1 (en) Maskless stereo lithography method and apparatus for freeform fabrication of 3-D objects
JP3537161B2 (en) Manufacturing method of three-dimensional structure
JP6938398B2 (en) Three-dimensional modeling method
US20220063191A1 (en) Method of joining additively manufactured components
CN109591288A (en) Selectivity solidification increasing material manufacturing method
TW201921031A (en) Method and apparatus for solid freeform fabrication of objects utilizing in situ infusion and ultra high resolution imaging
WO2016010189A1 (en) Three-dimensional modeling material supply device and rapid three-dimensional modeling device, and three-dimensional modeling method using same
Jang et al. 3-dimensional circuit device fabrication process using stereolithography and direct writing
JPH09277384A (en) Manufacture of three dimensional structure and apparatus therefor
US20210260819A1 (en) Systems, apparatuses, and methods for manufacturing three dimensional objects via continuously curing photopolymers, utilising a vessel containing an interface fluid
JP4040177B2 (en) 3D modeling apparatus, 3D modeling method, and medium on which 3D modeling control program is recorded
JP2016087906A (en) Method and device for producing steric structure
US8389896B2 (en) Rapid prototyping device and method with indirect laser exposure
KR102294723B1 (en) 3D printing method and apparatus for printing objects by selectively using resin tanks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897460

Country of ref document: EP

Kind code of ref document: A1