TW201107547A - Carbon fiber strand exhibiting excellent mechanical property - Google Patents

Carbon fiber strand exhibiting excellent mechanical property Download PDF

Info

Publication number
TW201107547A
TW201107547A TW099118900A TW99118900A TW201107547A TW 201107547 A TW201107547 A TW 201107547A TW 099118900 A TW099118900 A TW 099118900A TW 99118900 A TW99118900 A TW 99118900A TW 201107547 A TW201107547 A TW 201107547A
Authority
TW
Taiwan
Prior art keywords
fiber
carbon fiber
strength
fiber bundle
epoxy resin
Prior art date
Application number
TW099118900A
Other languages
Chinese (zh)
Other versions
TWI396786B (en
Inventor
Naoki Sugiura
Takahiro Okuya
Hiroshi Hashimoto
Isao Ooki
Hiroko Matsumura
Masahiro Hata
Kouki Wakabayashi
Akito Hatayama
Original Assignee
Mitsubishi Rayon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co filed Critical Mitsubishi Rayon Co
Publication of TW201107547A publication Critical patent/TW201107547A/en
Application granted granted Critical
Publication of TWI396786B publication Critical patent/TWI396786B/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • D02J3/02Modifying the surface by abrading, scraping, scuffing, cutting, or nicking
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

A carbon fiber strand for obtaining a fiber reinforced resin having high mechanical property is provided. The carbon fiber strand of this invention includes single fiber of carbon fiber, wherein the single fiber has no surface irregular structure extended along a length direction of the fiber in which the length of the structure is 0.6 μ m or more on a surface of the single fiber, and the single fiber has an irregular structure having a height difference (Rp-V) between a highest portion and a lowest portion of 5 to 25 nm on the surface of the single fiber and an average irregularity Ra of 2 to 6 nm, and a ratio of major to miner axes (major axis/miner axis) of a fiber section of the single fiber is 1.00 to 1.01. A weight per unit length of the single fiber of the corbon fiber is within a range of 0.030 to 0.042 mg/m, a strand strength is 5900 MPa or more, a strand elastic modulus measured by ASTM method is 250 to 380 GPa, and a knot strength is 900 N/mm2 or more.

Description

201107547 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種用以獲得具有 特別是飛機用途的以高動性、财熱性樹作 的鱼 強化樹脂的碳纖維束。 的纖維 【先前技術】 先前,為了提高樹脂系成型品的機械 料與樹脂複合的方法。特別Ϊ二ΐ 材料用作飛機、高速移動體等的結構材料。=將 性更高,且亦要求材料的比強度、比剛 =憂異,因此要求碳纖維的性能亦實現更高強度、高 模數。 =4利文獻i中提出了下述方法:當利用乾壤式 、,方4法來獲付碳纖維用前驅體丙烯gn纖維束時,藉 含有溶劑的狀態的凝固絲在含溶劑的延伸浴中延伸^提古 結構及配向的均勻性。在含有溶劑的浴槽中使凝固絲= 伸,是作為溶劑延伸技術而眾所周知的方法,是一種藉 溶劑塑化而實現穩定的延伸處理的方&。因^本領^ 術人員認為該方法是-赫常優異的獲得結構及配向 勻性較1¾的纖維的方法。但是’ H由使含有溶㈣處於膨 潤狀態的纖維束延伸,單絲(filament)内部存在的溶劑产 著延伸而被急遽地自單絲内部擠出,因而所獲得的單絲= 4 201107547 易形成鬆散的結構,無法獲得作為目標的具有緻密結構的 纖維。 另外,專利文獻2中提出有下述技術:著眼於凝固絲 的細孔分布,藉由將具有高緻密化結構的凝固絲乾燥緻密 化,而獲得強度發現性優異的前驅體纖維。利用汞滲法 (mercury penetration meth〇d )所獲得的細孔分布反映了包 含自單絲的表層至内部的整體(bulk)的性狀,對於評價 纖維=整體結構的緻密性種非常優異的方法。利用整 體,密性處於-定水準(levd)以上的前驅體纖維束,可 獲得缺陷點的形成受到抑制的高強度的碳纖維。但是,若 觀察碳纖維的斷裂狀態’可發現存在非常高_的纖維是 以表1附近作為_起始·_。該現象表示在表層附近存 在缺陷點。亦即,該技術對於製造表騎近的緻密性優異 的前驅體纖維束不充分。 、 專利文獻3中,提出了一種製造纖維整體的緻密性高 且表層部的緻密性極高的丙烯腈系前驅體纖維束的方法。 另外於專散獻4巾’提&因㈣滲人至齡表層部會阻 礙緻密化,故而著眼於表層部的微空隙,抑制油劑滲透的 ,術。但是’抑制油劑滲人的技術、抑制缺陷點形成的技 術均需要非常複雜的步驟,因而難以得到實際應用。因此, ,在研究的技術的賊是’敎地抑制關滲人纖維表層 =的效果並不充分,且碳纖維的高強度化效果亦尚不 為充分的水準。 。 [先前技術文獻] 201107547 [專利文獻] 專利文獻1:日本專利特開平5-5224號公報 專利文獻2.曰本專利特開平4_9123〇號公報 專利文獻3:日本專利特公平6·15722號公報 專利文獻4 :曰本專利特開平11-124744號公報 【發明内容】 本發明的目的在於提供—種用以獲得具有高機械特性 的纖維強化樹脂的碳纖維束。 上述課題是藉由以下的本發明而得以解決。 本發明是-種碳纖維束,其包含如下所述的碳纖維的 單纖維’即於該單纖維的表面無沿纖_長度方向延伸且 長度為0.6 μιη以上的表面凹凸結構,而具有單纖維表面的 最高部與最低部的高低差(Rp_v)為5 nm〜25 nm,平均 凹凸度Ha為2 nm〜6 nm的凹凸結構’且單纖維的纖維剖 面的長徑與短徑的比(長徑/短徑)為丨〇〇〜丨〇1,並且, 該碳纖維的單纖_每單位長度的重量在0·_ mg/m〜 0.042 mg/m的範圍内,股線強度為59〇〇 Mpa以上,以美 國材料及試驗學會(American s〇ciety f〇r 丁⑽丨叩 Matenals,ASTM)法所測定的股線彈性模數為25〇 Gpa 380 GPa ’結郎強度為900 N/mm2以上。 另外,結節(knot)強度是用結節的碳纖維束的拉伸 斷裂應力除以纖維束的剖面積(每單位長度的重量及密 而求出。 夂) [發明的效果] 6 201107547 利用本發明的碳纖維束,可提供一種具有高機械特性 的纖維強化樹脂。 另外,藉由使破壞表面產生能量為3〇 N/m以上 獲得具有更優異的性能的碳纖維束。 另外,藉由形成為具有如以下所述的表面的碳纖維 束,可獲得具有非常高的機械性能的碳纖維複合材料,即 其表面利用電化學測定法(循環伏安法(cyclic v〇1tammetry))所求出的lpa值為〇〇5心咖2〜〇25 M/Cm ’利用X射線光電子光譜法(x-my Ph〇toelectron S_〇SC〇Py)戶斤求出的碳纖維表面的含氧官能基量 (〇1S/C1S)在〇.05〜〇.1〇的範圍内。 月匕丞里 祕為上ΐ和其他目的、特徵和優點能更明顯 明如下。、+ &佳貫施例,並配合所附圖式,作詳細說 【實施方式】 碳纖維表©存在的沿纖_長度 常重要τ。原因===== 關係觀纖維與樹脂的界相(—心 =:ΐ材二基 差,纖維強化樹腊材料即—無Γ法發現優異;個^素^性能較 201107547 Λ. 結構)(於單纖維的表面沿纖維的長度方向延伸的表面凹凸 根據碳纖維束的通常的製造方法,通常的碳纖維存在 2維軸方向大致平行的表面凹凸結構。該凹凸结構且有 大致平行,且沿纖維軸方向延伸的起伏結構:、凹 〜數Γ常為5。細〜數百nm左右,長度通常為 為表二J βμιη °該表面凹凸結構通常被稱 度方具有於單纖維的表面沿纖維的長 長又為0.6 μιη以上的表面凹凸結構。 方面’本發明的碳纖維束於單纖維的表面具有尺 唯上所存構的較小的凹凸結構。該碳纖維的單纖 、·隹上:存在的表面凹凸結構的深度,由以圓周長度10 向長度[ομιη所包圍的範圍内纖維表面的 =雜最低陶健(Rp_v)解均凹凸度 该(RP-V)及Ra可使用掃福式原子力顯微鏡(at〇mic f〇rce 丽嶋Pe,AFM)掃描單纖維的表 =差=5n—平均凹凸度二二 更佳為(RP_V)為5⑽叫8nm,Ra為2nm〜5 nm 〇 本發明巾’構細_的各單 凹凸結構。於複合材料的界相中,t L μ 乂上的表面 凸結構容易成為應力集中部此之大尺寸的表面凹 且該凹凸結構附近的碳纖 8 201107547 的破_性低。因此,該尺寸的表面凹凸結構即便 =複5材制貞_應力水準並錢大的狀態下,該凹凸 、-構附近亦谷易成為界面破壞的起點。結果導致複合材料 的機械性能大幅降低。 構成本發明的碳纖維的各單纖維的表面的凹凸結構的 更具體的型態如下所述。 焦人^通碳纖維表面’具有沿以數根原纖維(fibril)的 ,合體為單位的纖維的長度方向延伸且長度為〇6帅以 的皺褶狀結構的凹凸結構、及與該皺褶狀結 =比尺寸較小,存在於各原纖維體自身的微小的凹凸= 不 亦即,於構成本發明的碳纖維的各單纖維 存在沿纖維的長度方向延伸且長度為〇6 以面,,、 結構,僅存在與此種凹凸結構相比尺寸較小 上的凹凸 纖維體自身的微小的凹凸結構。而且,該微小^成於各原 的長度為300 nm以下。該凹凸結構由上述的凸結構 Ra表示。亦即,該凹凸結構是在單纖維表面的以P - v )及 1·〇 μιη,纖維轴方向長度1.0 μπι所包圍的範圍内,長度 (Rp-v)為5 nm〜25 nm,平均凹凸度Ra為2 向低差 的起伏。較佳為(Rp-v)為5 nm〜18 nm,Ra 〜6 nm nm。對該微小尺寸的凹凸結構的方向並無特f〜5 纖維軸方向平行或垂直、或者具有一定的角度。'"弋,可與 (單纖維的纖維剖面) & 另外,本發明的單纖維必須是單纖維的纖維剖面的 9 201107547 控與短徑的比(長徑/短徑)為1.00〜1.01,具有正圓或接 近正圓的剖面的單纖維。原因在於,藉由使單纖維的剖面 為正圓’纖維表面附近的結構均勻性優異,因此可減少應 力集中。該比較佳為1.00〜1.005。另外,由於同樣的理由, 單纖維的每單位長度的重量為0.030〜0.042 mg/m。所謂纖 維的每單位長度的重量(單纖維的單位面積重量)小,表 示纖維直徑小’剖面方向上存在的結構的不均勻性小,^ 纖維轴垂直的方向的機械性能高。因此複合材料中,對與 纖維軸垂直的方向的應力的耐性提高,藉此可使作為複^ 材料的機械性能提高。 (碳纖維束) 於本發明中,為了獲得具有優異的機械物性的纖維強 化樹脂,碳纖維束的股線強度必須為5900 MPa以上。碳 纖維束的股線強度較佳為6000 MPa以上,更佳為61〇〇 MPa以上。股線強度越高越佳,但作為複合材料而言,考 慮到與壓縮強度的平衡(baiance),股線強度為1〇〇〇〇Mpa 即充分。另外,於本發明中,為了獲得具有優異的機械物 性的纖維強化樹脂,碳纖維束的股線彈性模數以用ASTM 法所測定的數值計必須為25〇 GPa〜38〇 GPa。若彈性模數 未達250 GPa ’則作為碳纖維束的彈性模數不足無法發 現充分的機械物性。另一方面,若彈性模數超過38〇 Gpa, 則碳纖維的表面及内部的石墨結晶尺寸增大,伴隨於此, 纖維剖面方向強度及纖維軸方向的壓縮強度降低,無法良 好地獲得作為複合材料的拉伸與壓縮的性能平衡,結果無 201107547 η:的複合材料。而且,由於表面的石墨結晶尺寸 斷缝,躲㈣賴接著性㈣,導致複 方向的拉伸強度、層間剪切強度,面内煎切 X塱縮強度等機械性能顯著降低。 伸卜=本發0种’重要的是用結節的碳纖維束的拉 纖維束的剖面積(每單位長度的重量及密 么以上。上述結節強度更 ^ 以上,進一步更佳為1100 N/mm2以上。 的^碑又可作為反映纖維轴方向以外的纖維束的機械性能 处。曰二特別是可容易地看出與纖維軸垂直的方向的性 廡口材料多藉由準等向積層而形成材料,形成複雜的 ς、j。此時’除纖維軸方向的拉伸、壓縮應力以外,亦 ^纖維軸方向的應力。另外,於如衝擊試驗等賦予相 雜'速的應㈣情況,材料㈣的產生應力狀態非常複 若不同的料㈣度變得十分重要。因此, 的i_NW’則準等向材料無法發現充分 =械性m面,當結節強度超過雇州醜2時, 維軸方向的配向。因此,結節強度應為3000 I另外’本發明的碳纖維束較佳為破壞表面產生能量為 於單ΓΓί。對於破壞表面產生能量,可利用雷射(ι纖) 由表面形成具有規定範圍的大小的半球狀缺陷,藉 伸试驗使該纖維於該半球狀缺陷部位斷裂,由纖維的 裂強度及半球狀缺陷的大小’利用以下的葛里菲斯 11 201107547 (Griffkh )式(1)而求出。 σ= (2Ε/π〇 1/2χ (破壞表面產生能量)1/2 d) 其中,σ為斷裂強度,E為碳纖維束的超音波彈性模 數,c為半球狀缺陷的大小。破壞表面產生能量更佳為^ N/m以上 選一芡更侄為32 M/m以上。 其中,破壞產生能量是碳纖維破損難易度的指標,表 示基體強度(matrix strength)。碳纖維是顯示脆性破壞的 材料,其拉伸強度受缺陷點的影響。當碳纖維具有相同的 缺陷點時,碳纖維的基體強度越高,則破壞強度越高。另 ^卜,两性能複合材料用的基質樹脂多與碳纖維的接著性較 高,結果作為應力傳遞的指標的臨界纖維長度變短。由此, 可認,複合材料的強度反映的是更短長度下的強度,基體 重ί的指標。另—方面,當破壞表面產生能量 ° m時,需要降低纖維軸方向的配向。因此,破 屐產生能量應為50 N/m以下。 於本發明t 電化學败法(循環伏安法)所求 Ϊ ί 較佳為〇.05 —m2〜〇.25 —m2。該加值受 含氧官能基數量、與電偶層—㈣ 影趣。凸度及碳纖維表面的微細的石墨結構的 維:或形成:陰:::懷·大,的蝕刻(etChing)的碳纖 間化人物的#她子(amon)進入至石墨結晶的層間的層 械性i的複有較:的ipa值。已知發現優異的機 別是具有存在適二樹脂的界面十分重要,特 的3氧S犯基,且形成較小的電偶層的 12 201107547 6的界面。…為。·。5 3 i=著性。另—方面,若-值為〇~ 層間化合刻的狀態’而且亦未形成 μΑ/W〜〇2〇 :二,的界面接著性♦值更佳為 0.—。’ m,進-步更佳為Ο.—2〜 $ φ於本&明巾,較理想的是湘X射線光電子光 =所,出的碳纖維表面的含氧官能基量(喔⑻在 適产的血圍内的碳纖維。原因在於,使碳纖維具有 適度的與基質樹脂的界面接著性十分重要。 ;並八明巾’較理想的是湘心肝發射光 3曰刀斤法(感應耗合電聚原子發射光譜分析法,inductivdy C:Uf;nplasma at〇mic emission spectrometry)所測定的 si 3二、Oppm 下。為了製造高強度碳纖維,通常於前驅 -纖維束上附著含魏油㈤ie〇neQil)的油劑。魏油的 财熱f生非彳優異’而且可對前驅體纖維束賦傾異的脫模 性。因此’認為單絲直徑非常小,具有將該些單絲多根集 合而形成的複絲(multifilament)絲束的形態,並供給至於 200C以上的㈣下進行幾十分鐘至幾小時的高溫處理的 碳纖維前驅體纖維束最適合使用油劑。但是,於在防焰化 處理後實施的碳化處理巾,該些魏油大部分將分解、飛 散,殘存於碳纖維表面㈣氧化合物量變得非常少。另外, 13201107547 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a carbon fiber bundle for use in a fish reinforced resin having a highly dynamic and heat-generating tree, particularly for aircraft use. Fiber [Prior Art] A method for recombining a mechanical material and a resin of a resin-based molded article. In particular, the material is used as a structural material for aircraft, high-speed moving objects, and the like. = The higher the specificity, and the specific strength of the material, the ratio of the material is just too much. Therefore, the performance of the carbon fiber is required to achieve higher strength and high modulus. The following method is proposed in the literature: When the carbon fiber precursor propylene gn fiber bundle is obtained by the dry soil type, the square 4 method, the solidified yarn in the solvent-containing state is in the solvent-containing extension bath. Extend the structure and alignment uniformity. The coagulation yarn = stretching in a bath containing a solvent is a well-known method as a solvent stretching technique, and is a method of achieving stable elongation treatment by solvent plasticization. Because of the skill, the method is considered to be a method for obtaining a structure and a fiber having a uniform alignment of 13⁄4. However, 'H is extended by the fiber bundle containing the dissolved (four) in a swollen state, and the solvent existing inside the filament is extended and is rapidly extruded from the inside of the monofilament, so that the obtained monofilament = 4 201107547 is easily formed. A loose structure makes it impossible to obtain a fiber having a dense structure as a target. Further, Patent Document 2 proposes a technique of obtaining a precursor fiber excellent in strength discovery property by focusing on the pore distribution of the coagulated filament and drying and solidifying the coagulated filament having a high densification structure. The pore distribution obtained by mercury penetration meth〇d reflects the bulk property from the surface layer to the inside of the monofilament, and is excellent for evaluating the denseness of the fiber = the overall structure. A high-strength carbon fiber in which the formation of defective spots is suppressed can be obtained by using a precursor fiber bundle having an overall density of at least a predetermined level (levd). However, if the fracture state of the carbon fiber is observed, it can be found that the fiber having a very high value is referred to as _start·_ in the vicinity of Table 1. This phenomenon indicates that there is a defect point near the surface layer. That is, this technique is insufficient for producing a precursor fiber bundle excellent in compactness in the vicinity of the watch. Patent Document 3 proposes a method for producing an acrylonitrile-based precursor fiber bundle having a high density of the entire fiber and an extremely high denseness of the surface layer portion. In addition, the special offer of 4 towels 'to mention & (4) infiltration of the surface layer of the age will hinder the densification, so focus on the micro-voids in the surface layer, inhibit oil penetration, surgery. However, the technique of suppressing the infiltration of the oil agent and the technique of suppressing the formation of the defect point require very complicated steps, and thus it is difficult to obtain practical application. Therefore, the thief in the research technique is not sufficient to suppress the surface layer of the human fiber, and the effect of the high strength of the carbon fiber is not sufficient. . [Prior Art Document] 201107547 [Patent Document] Patent Document 1: Japanese Patent Laid-Open Publication No. Hei No. Hei-5-5224. Patent Publication No. Hei. [Problem of the Invention] It is an object of the present invention to provide a carbon fiber bundle for obtaining a fiber-reinforced resin having high mechanical properties. The above problems are solved by the following invention. The present invention is a carbon fiber bundle comprising a single fiber of a carbon fiber as described below, that is, a surface uneven structure having a length of 0.6 μm or more extending in a fiber length direction on a surface of the single fiber, and having a single fiber surface The height difference (Rp_v) between the highest part and the lowest part is 5 nm to 25 nm, the average unevenness Ha is a concave-convex structure of 2 nm to 6 nm, and the ratio of the long diameter to the short diameter of the fiber cross section of the single fiber (long diameter / The short diameter is 丨〇〇~丨〇1, and the weight of the single fiber _ per unit length of the carbon fiber is in the range of 0·_mg/m to 0.042 mg/m, and the strand strength is 59 〇〇Mpa or more. The elastic modulus of the strand measured by the American Society for Materials and Testing (American s〇ciety f〇r(10)丨叩Matenals, ASTM) method is 25〇Gpa 380 GPa 'the strength of the knot is 900 N/mm2 or more. Further, the knot strength is obtained by dividing the tensile fracture stress of the carbon fiber bundle of the nodule by the sectional area of the fiber bundle (weight and density per unit length. 夂) [Effect of the Invention] 6 201107547 A carbon fiber bundle provides a fiber-reinforced resin having high mechanical properties. Further, a carbon fiber bundle having more excellent properties is obtained by generating energy of the fracture surface of 3 〇 N/m or more. Further, by forming a carbon fiber bundle having a surface as described below, a carbon fiber composite material having very high mechanical properties can be obtained, that is, its surface is electrochemically measured (cyclic v 〇 tammetry) The obtained lpa value is 〇〇5 heart coffee 2~〇25 M/Cm 'The oxygen content of the carbon fiber surface determined by X-ray photoelectron spectroscopy (x-my Ph〇toelectron S_〇SC〇Py) The amount of functional groups (〇1S/C1S) is in the range of 〇.05~〇.1〇. The secrets of the Moon and other purposes, features and advantages can be more clearly as follows. , + & good example, and with the accompanying drawings, for details. [Embodiment] Carbon fiber table © exists along the fiber length is often important τ. Reason ===== Relationship between the fiber and the resin boundary (-heart =: coffin two basis difference, fiber-reinforced tree wax material that is - excellent by flawless method; one ^ ^ ^ performance compared to 201107547 Λ. structure) ( Surface unevenness extending along the longitudinal direction of the fiber on the surface of the single fiber. According to a general manufacturing method of the carbon fiber bundle, a normal carbon fiber has a surface uneven structure in which the two-dimensional axial direction is substantially parallel. The uneven structure is substantially parallel and along the fiber axis. The undulating structure extending in the direction: the concave Γ Γ is usually 5. The fine ~ hundreds of nm or so, the length is usually the same as the surface J Jμμη ° The surface concave and convex structure is usually called the surface of the single fiber along the length of the fiber The surface has a surface unevenness of 0.6 μm or more. Aspect 'The carbon fiber bundle of the present invention has a small uneven structure on the surface of the single fiber. The carbon fiber is monofilament, and the surface is uneven. The depth of the structure is determined by the circumferential length of 10 to the length of the fiber [of the range of the fiber surface = the lowest of the fiber (Rp_v) solution, the uniformity of the roughness (RP-V) and Ra can be used to sweep the atomic force Mirror (at〇mic f〇rce 嶋Pe, AFM) scan single fiber table = difference = 5n - average embossing degree 22 is better (RP_V) is 5 (10) called 8nm, Ra is 2nm~5 nm In the boundary phase of the composite material, the surface convex structure on t L μ 容易 is likely to become a large-sized surface concave portion of the stress concentration portion and the carbon fiber 8 201107547 is broken near the concave and convex structure. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The performance is greatly reduced. A more specific form of the uneven structure of the surface of each of the individual fibers constituting the carbon fiber of the present invention is as follows. The surface of the carbon fiber of the coke is composed of a plurality of fibrils in units of units. a concavo-convex structure in which the length of the fiber is extended in the longitudinal direction and a wrinkle-like structure of the length of the fiber, and the wrinkle-like knot is smaller than the size of the wrinkle-like structure, and the fine unevenness existing in each of the fibril bodies itself is not uniform. For constituting the carbon fiber of the present invention Each of the individual fibers has a small uneven structure in which the length of the fiber is extended in the longitudinal direction of the fiber and has a length of 〇6, and has a small size as compared with the uneven structure. The length of each of the original elements is 300 nm or less. The uneven structure is represented by the above-mentioned convex structure Ra. That is, the uneven structure is P - v ) and 1 · 〇 μηη on the surface of the single fiber, and the length in the fiber axis direction In the range surrounded by 1.0 μπι, the length (Rp-v) is 5 nm to 25 nm, and the average concavity Ra is a fluctuation of 2 low. Preferably, (Rp-v) is 5 nm to 18 nm, and Ra is -6 nm. The direction of the fine-sized uneven structure is not particularly ff5, and the fiber axis direction is parallel or perpendicular or has a certain angle. '"弋, can be combined with (single fiber fiber profile) & In addition, the single fiber of the present invention must be a single fiber fiber profile of 9 201107547 control and short diameter ratio (long diameter / short diameter) is 1.00~1.01 A single fiber having a cross section of a perfect circle or a nearly perfect circle. The reason is that the stress uniformity can be reduced by making the cross section of the single fiber a perfect circle. The comparison is preferably from 1.00 to 1.005. Further, for the same reason, the weight per unit length of the single fiber is 0.030 to 0.042 mg/m. The weight per unit length of the fiber (the basis weight per fiber) is small, indicating that the fiber diameter is small, and the unevenness of the structure existing in the cross-sectional direction is small, and the mechanical properties in the direction perpendicular to the fiber axis are high. Therefore, in the composite material, the resistance to stress in the direction perpendicular to the fiber axis is improved, whereby the mechanical properties as a composite material can be improved. (Carbon fiber bundle) In the present invention, in order to obtain a fiber-reinforced resin having excellent mechanical properties, the strand strength of the carbon fiber bundle must be 5,900 MPa or more. The strand strength of the carbon fiber bundle is preferably 6,000 MPa or more, more preferably 61 MPa or more. The higher the strand strength, the better, but as a composite material, considering the balance with the compressive strength (baiance), the strand strength is 1 〇〇〇〇Mpa. Further, in the present invention, in order to obtain a fiber-reinforced resin having excellent mechanical properties, the strand elastic modulus of the carbon fiber bundle must be 25 Å GPa to 38 Å GPa as measured by the ASTM method. If the modulus of elasticity is less than 250 GPa', sufficient mechanical properties cannot be found as a sufficient modulus of elasticity of the carbon fiber bundle. On the other hand, when the modulus of elasticity exceeds 38 〇Gpa, the graphite crystal size on the surface and inside of the carbon fiber increases, and as a result, the strength in the cross-sectional direction of the fiber and the compressive strength in the fiber axis direction are lowered, and the composite material cannot be satisfactorily obtained. The tensile and compression properties are balanced and the results are no 201107547 η: composite. Moreover, due to the fracture of the graphite crystal size on the surface, hiding (4) adhesion (4), the mechanical properties such as tensile strength in the complex direction, interlaminar shear strength, and in-plane frying X shrinkage strength are remarkably lowered.伸 卜 = 0 of the present type 'Important is the cross-sectional area of the drawn fiber bundle of the carbon fiber bundle of the nodule (the weight per unit length and more than the density. The above-mentioned nodule strength is more than ^, further preferably more than 1100 N/mm2 or more The monument can be used as a mechanical property to reflect the fiber bundles other than the direction of the fiber axis. In particular, it is easy to see that the material of the mouth perpendicular to the fiber axis is formed by quasi-isotropic lamination. In addition, in addition to the tensile and compressive stress in the direction of the fiber axis, the stress in the direction of the fiber axis is also added. In addition, in the case of the impact (such as the impact test), the material (4) The stress state is very different. The material (four degrees) becomes very important. Therefore, the i_NW' quasi-isotropic material cannot find sufficient = mechanical m-plane. When the nodule strength exceeds the ugly state 2, the dimension of the dimension Therefore, the knot strength should be 3000 I. In addition, the carbon fiber bundle of the present invention preferably generates energy for destroying the surface. For energy generation on the damaged surface, a laser (ι) can be used to form the surface. A hemispherical defect of a range of sizes, the elongation test causes the fiber to break at the hemispherical defect, and the size of the fiber and the size of the hemispherical defect are utilized by the following Griffith 11 201107547 (Griffkh) formula ( 1) Find σ = (2Ε/π〇1/2χ (breaking surface energy) 1/2 d) where σ is the breaking strength, E is the ultrasonic modulus of the carbon fiber bundle, and c is the hemispherical defect The size of the damaged surface is preferably more than 2 N/m, and more than 32 M/m. Among them, the energy generated by the damage is an indicator of the difficulty of carbon fiber damage, indicating the matrix strength. The material showing brittle failure is affected by the defect point. When the carbon fiber has the same defect point, the higher the matrix strength of the carbon fiber, the higher the breaking strength. In addition, the matrix resin for the two-performance composite material The adhesion to carbon fiber is high, and as a result, the critical fiber length as an indicator of stress transmission becomes shorter. Therefore, it can be recognized that the strength of the composite material reflects the strength at a shorter length, and the basis weight is On the other hand, when destroying the surface to generate energy ° m, it is necessary to reduce the orientation of the fiber axis direction. Therefore, the energy generated by the breakage should be 50 N / m or less. In the present invention, the electrochemical defeat method (cyclic voltammetry) The desired Ϊ ί is preferably 〇.05 —m2~〇.25 —m2. The added value is affected by the number of oxygen-containing functional groups, and the galvanic layer—(4). The convexity and the fine graphite structure on the surface of the carbon fiber. Dimension: or formation: yin::: 怀·大, the etching (etChing) of the carbon fiber interfering person #her (amon) enters the layer of the graphite crystal layer i of the composite i is more than the ipa value. It is known that an excellent machine is an interface having a site in which a suitable resin is present, a special 3 oxygen S group, and a smaller galvanic layer 12 201107547 6 is formed. …for. ·. 5 3 i=sexuality. On the other hand, if the -value is 〇~ the state of the inter-layer merging and the formation of μΑ/W~〇2〇 :2, the interface adhesion ♦ value is preferably 0. ' m, the step-by-step is better. 2 2~ $ φ in this & Ming towel, ideally X-ray photoelectron light = the amount of oxygen-containing functional group on the surface of the carbon fiber (喔(8) is suitable The carbon fiber in the blood circumference is produced. The reason is that it is very important to make the carbon fiber have a proper interfacial adhesion with the matrix resin. And the eight-seal towel is ideally the Xiangxin liver emission light 3 knives method (sensing power consumption) Polyatomic emission spectrometry, inductivdy C: Uf; nplasma at 〇mic emission spectrometry) measured under si 3 2, Oppm. In order to produce high-strength carbon fiber, usually containing pre-drive fiber bundle containing Wei oil (five) ie〇neQil) Oil agent. Weiyou's wealth is not good, and it can repel the release of the precursor fiber bundle. Therefore, it is considered that the diameter of the monofilament is very small, and it has a form of a multifilament tow formed by collecting the plurality of monofilaments, and is supplied to a high temperature treatment of tens of minutes to several hours under (4) of 200 C or more. Carbon fiber precursor fiber bundles are most suitable for use with oils. However, in the carbonized treated towel which is subjected to the flameproofing treatment, most of the Wei oil is decomposed and scattered, and the amount of the oxygen compound remaining on the surface of the carbon fiber is extremely small. In addition, 13

201107547 L 已知該殘存的魏化合物會存在於碳纖 形成孔隙(滅)的主要原因。因此,藉由將^石夕氧化 合物,^能地控制為較少,可製造孔隙較少的碳纖維,結 果可提高碳纖維束的強度。更佳的Si量為150ppm以下, 進一步更佳的Si量為100ppm以下。 (前驅體纖維束及其製造方法) 對於獲得本發明的碳纖維束的起始原料並無特別限 制,就機械性能發現的觀點而言,較佳為由丙烯腈系前驅 體纖維(以下適宜稱為「前驅體纖維」)來獲得本發明的碳 纖維束。 構成該前驅體纖維的丙烯腈系共聚物是由96wt%(重 量百分比)以上的丙烯腈與數種可共聚合的單體 (monomer)所獲得。更佳為丙烯腈的組成比為97 wt%以 上。丙烯腈以外的共聚合成分例如合適的是:丙稀酸 (acrylic acid)、曱基丙稀酸(methacrylic acid)、衣康酸 (itaconic acid)、丙烯酸曱酯、曱基丙烯酸甲酯等丙烯酸 衍生物’丙烯醢胺(acrylamide )、曱基丙稀醯胺 (methacrylamide)、N-經曱基丙稀醯胺、N,N-二曱基丙烯 醯胺等丙烯醯胺衍生物,乙酸乙烯酯(vinylacetate)等。 該些可單獨使用亦可組合使用。較佳的共聚物是以具有一 個以上羧基的單體為必需成分而共聚合所得的丙烯腈系共 聚物。 使單體的混合物共聚合的適當的方法例如可為水溶液 中的氧化還原聚合(redox polymerization )、或不均勻系統 14 201107547 中的懸浮聚合及使用分散劑的乳化聚合,以及其他任一種 聚合方法,本發明並不受·聚合方法的差異的制約。對 於前驅體纖維^言’較佳為將上述_腈絲合物溶解於 二甲基乙醯胺(dimethyl acetamide )、二甲基亞砜 (dimethylsulfoxide)^f C dimethylfornTamide ) 等有機溶劑中來製備紡絲原液。由於該些有機溶劑不含金 屬成分,故而可降低所獲得的碳纖維束的金屬成分的含 量。_驗的©體成分濃度難為2()㈣以上,更 21 wt%以上。 … 紡絲方法可為濕式紡絲、乾濕紡絲的任一種 3=^乾濕式紡絲卜將所製備的紡絲原液自配 置有夕個喷出孔的紡絲噴嘴暫時紡出至空氣中後 充滿經調溫的有機溶劑與水的混合溶液的凝 抽取凝_,錢騎清洗、延伸。至於清洗綠= 可法。另外,在對所抽取的凝固絲進 ^的刖延^中進行延伸,㈣成原纖結 秦 進行延料,延伸槽的溫度較佳為 4〇C 80C的範圍。若溫度未達啊,則益法確 而變成強迫延伸,無法形成均勻的原纖結構。另一方面, ==:,、則由於熱所引起的塑化作用變得過大, 以及絲線表面的脫溶劑急速地進行 等,而導致作為前驅體纖唯束的σ ,,仟不句勻 5(TC〜束f變差。更佳的溫度為 75C另外,延伸槽的濃度較佳為3Qwt%〜6〇 15 201107547 2。若延伸槽的濃度未達3G wt%,則無法確健定的延 伸性’若延伸槽的濃度超過6〇 wt%,則塑化效果變得 大,使穩定的延伸性受損。更合適的濃度$ 35赠 wt%。 於該延伸槽中的延伸倍率較佳為2倍〜4倍。— 'Γίϊ2倍,則延伸不足,無法形成所需的原:纖:構。 另一方面,若進行超過4倍的延伸,則原纖結構自身產生 斷裂’變成非常鬆散的結構形態的前驅體纖 延伸倍率為2.2倍〜3·8倍,進—步更佳為2 5倍〜3更=的 另外,清洗後,可藉由將處於無溶劑成分的膨 =步驟纖維束於熱水中延伸,㈣—步提高纖維的配向了 施Γ若干的鬆弛來消除上一步驟中的延伸的應變。較 ==::倍〜2.°倍的延伸,高總延伸倍 ,使用包含石夕氧系化合物的油劑,以達到0 8 wt% i谓著纽,錄触魏。乾燥緻密 化错由么㈣絲方法進行·、緻密化即可,並 限制。較佳為使纖維束通過多個加熱輕的方法。’ 將乾燥緻密化後的丙烯酸系纖維束,視需要於 蒸汽中、410(rc〜20(rc的乾熱熱媒中、 或者150 C〜220 C的加熱輥間或加熱板上延伸18倍〜6 () :維Ϊ了步料配向及進行緻密化後’捲取而獲得^驅體 然後’可藉由如下方式由上述前驅體纖維束來製造本 201107547 發明的碳纖維。使前驅體纖維束於220°C〜260¾的熱風猶 環型的防焰化爐中通過30分鐘〜100分鐘,而獲得防焰絲 密度為1.335 g/cm3〜1.360 g/cm3的防焰絲。此時,實施〇〇/〇 〜10%的伸長操作。防焰化反應中,存在由熱所引起的環 化反應與由氧所引起的氧化反應’使該兩個反應平衡十分 重要。為了使該兩個反應平衡,防焰化處理時間合適的是 30分鐘〜100分鐘。當防焰化處理時間未達3〇分鐘時,於 單纖維的内側存在未充分發生氧化反應的部分,從而於單 纖維的剖面方向上產生較大的結構不均。結果所獲得的碳 纖維具有不均勻的結構,無法發現高機械性能。另一方面, 當防焰化處理時間超過100分鐘時,於單纖維的接近表面 的部分存在更多的氧,藉由之後的高溫下的熱處理,發生 過剩的氧消失的反應,形成缺陷點。因此無法獲得高強度。 更佳的防焰化處理時間為40分鐘〜80分鐘。 當防焰絲密度未達1.335 g/cm3時,防焰化不充分,藉 由之後的咼溫下的熱處理會發生分解反應,形成缺陷點, 因而無法獲得高強度。當防焰絲密度超過1 36〇g/cm3時, 纖維的氧含量增加,故而藉由之後的高溫下的熱處理,會 發生過剩的氧消失的反應,形成缺陷點,因而無法獲得高 強度。更佳的防焰絲密度的範圍是L340 g/em3〜135() g/cm3。 為了維持、提高形成纖維的原纖結構的配向,於防焰 化爐中進行適度的伸長十分必要。若伸長未達〇%,則無 法維持原纖維結構的配向,碳纖維的結構形成中纖維軸上 17 20110754: 的配向不充分 热次贫現優異的機械性能。另一方面,若 伸長超過1〇%,則原纖結構自身產生斷裂,損及之後的碳 成’而且_點成為缺陷點’無法獲得高強 度的奴纖維。更佳的伸長率為3%〜8%。 „氮氣等惰性環境中、具有·。c〜8G(rc的溫 度梯度的第-碳化爐中,一面對防焰纖維施加2%〜7%的 伸長’-面使該防焰纖維通過該第—碳化I合適的處理 溫度為300 C至800〇C,且於線性梯度下進行處理。若考慮 防焰化步驟的溫度,則起始溫度較佳為卿。c以上。若^ 高溫度超過80Gt,則步驟絲變得非常脆,難以向下一步 驟前進。更合適的溫度範圍為綱。c〜75(n: 並無特別限制,較佳為設定成線性梯度。 又梯度 若伸長未達2% ’則無法維持原纖結構的配向,碳纖 維的結構形射纖_上植料充分,無法發現優異的 機械性能。另-方面,若伸長超過7%,則原纖結構自身 產生斷裂,損及之後的碳纖_結構形成,而且斷裂點成 為缺陷點,無法獲得高強度的碳纖維。更佳的伸長 〜5% 〇 第一碳化爐中的合適的熱處理時間為1〇分鐘〜3 〇分 鐘。若處理未達1.G分鐘’職著溫度急遽上升而產生劇 烈的分解反應’無法獲得高強度的碳纖維。若處理超過3 〇 分鐘’則存在步驟前期的塑化魅影響,結晶的配向度降201107547 L It is known that this residual Wei compound is the main cause of carbon fiber formation pores. Therefore, by controlling the cerium oxide compound to be less, it is possible to produce carbon fibers having less pores, and as a result, the strength of the carbon fiber bundle can be increased. More preferably, the amount of Si is 150 ppm or less, and further preferably, the amount of Si is 100 ppm or less. (Precursor fiber bundle and method for producing the same) The starting material for obtaining the carbon fiber bundle of the present invention is not particularly limited, and from the viewpoint of mechanical properties, it is preferably an acrylonitrile-based precursor fiber (hereinafter referred to as "Precursor fiber") to obtain the carbon fiber bundle of the present invention. The acrylonitrile-based copolymer constituting the precursor fiber is obtained from 96 wt% (by weight) or more of acrylonitrile and several copolymerizable monomers. More preferably, the composition ratio of acrylonitrile is 97 wt% or more. The copolymerization component other than acrylonitrile is suitably, for example, acrylic acid, methacrylic acid, itaconic acid, decyl acrylate, methyl methacrylate or the like. Acrylamide derivatives such as acrylamide, methacrylamide, N- mercapto acrylamide, N,N-dimercaptopropenylamine, vinyl acetate ( Vinylacetate) and so on. These may be used alone or in combination. A preferred copolymer is an acrylonitrile-based copolymer obtained by copolymerizing a monomer having one or more carboxyl groups as an essential component. A suitable method for copolymerizing a mixture of monomers may be, for example, redox polymerization in an aqueous solution, or suspension polymerization in a heterogeneous system 14 201107547, and emulsion polymerization using a dispersant, and any other polymerization method. The present invention is not limited by the difference in the polymerization method. For the precursor fiber, it is preferred to prepare the spinning by dissolving the above-mentioned nitrile compound in an organic solvent such as dimethyl acetamide or dimethylsulfoxide ^f C dimethylfornTamide. Silk stock solution. Since these organic solvents do not contain a metal component, the content of the metal component of the obtained carbon fiber bundle can be lowered. The concentration of the body component of the test is difficult to be 2 () (four) or more, and more than 21 wt%. The spinning method can be any of wet spinning, dry-wet spinning, and the spinning dope prepared by spinning the spinning nozzle prepared from the spout hole to the spun nozzle. After the air is filled with the condensed solution of the mixed solution of the temperature-controlled organic solvent and water, the money is washed and extended. As for cleaning green = can be used. In addition, the extension of the extracted coagulated filaments is carried out, and (4) the fibril formation is carried out to extend the material, and the temperature of the extension tank is preferably in the range of 4 〇 C 80C. If the temperature is not reached, the benefit method becomes forced extension and a uniform fibril structure cannot be formed. On the other hand, ==:,, the plasticization caused by heat becomes too large, and the desolvation of the surface of the wire is rapidly performed, etc., resulting in σ as a precursor fiber bundle, and 仟不句匀5 (TC~ bundle f is deteriorated. The better temperature is 75C. In addition, the concentration of the extension tank is preferably 3Qwt%~6〇15 201107547 2. If the concentration of the extension tank is less than 3G wt%, the extension cannot be confirmed. If the concentration of the stretching tank exceeds 6 〇wt%, the plasticizing effect becomes large, and the stable elongation is impaired. A more suitable concentration is 35% by weight. The stretching ratio in the stretching groove is preferably 2 times to 4 times. - 'Γίϊ 2 times, the extension is insufficient, and the desired original: fiber: structure cannot be formed. On the other hand, if the extension is more than 4 times, the fibril structure itself breaks and becomes very loose. The precursor fiber extension ratio of the structural form is 2.2 times to 3. 8 times, and the further step is more preferably 2 5 times to 3 times more. Further, after washing, the fiber bundle can be obtained by the expansion step in the solventless component. Extending in hot water, (4) - step to improve the alignment of the fiber to apply some relaxation to eliminate the previous step The extension of the strain. Compared with ==:: times ~ 2. ° times the extension, the high total extension times, using an oil containing a compound of Shihe oxygen, to reach 0 8 wt% i said New Zealand, recorded Wei. The drying densification is carried out by the method of silk (4), densification, and limitation. It is preferred to pass the fiber bundle through a plurality of heating methods. 'The dried densified acrylic fiber bundle is optionally steamed. Medium, 410 (rc~20 (in rc dry heat medium, or between 150 C~220 C heating rolls or on a hot plate extending 18 times to 6 (): after the stepping of the material and densification] The carbon fiber of the invention of the invention can be produced by the above-mentioned precursor fiber bundle by the following method. The precursor fiber is bundled in a hot air type flameproof furnace of 220 ° C to 2603⁄4. A flame-resistant filament having a flame-proof filament density of 1.335 g/cm 3 to 1.360 g/cm 3 is obtained through 30 minutes to 100 minutes. At this time, an elongation operation of 〇〇/〇 10% is carried out. In the flameproof reaction, there is The cyclization reaction caused by heat and the oxidation reaction caused by oxygen make it important to balance the two reactions. In order to balance the two reactions, the flame-proof treatment time is suitably 30 minutes to 100 minutes. When the flame-proof treatment time is less than 3 minutes, the portion of the single fiber that is not sufficiently oxidized is present, thereby Large structural unevenness occurs in the cross-sectional direction of the single fiber. As a result, the carbon fiber obtained has an uneven structure and high mechanical properties cannot be found. On the other hand, when the flame-proof treatment time exceeds 100 minutes, the single fiber is used. There is more oxygen in the portion close to the surface, and the heat treatment at a high temperature thereafter causes a reaction in which excess oxygen disappears to form a defect point. Therefore, high strength cannot be obtained. A better flame retardant treatment time is 40 minutes to 80 minutes. When the flame-proof filament density is less than 1.335 g/cm3, the flame-proofing is insufficient, and the decomposition reaction occurs by the heat treatment at the subsequent temperature, and a defect point is formed, so that high strength cannot be obtained. When the flameproof filament density exceeds 1 36 〇g/cm3, the oxygen content of the fiber increases. Therefore, by the heat treatment at a high temperature thereafter, excessive oxygen disappears and a defect is formed, so that high strength cannot be obtained. A more preferred range of flame resistance is L340 g/em 3 to 135 () g/cm 3 . In order to maintain and improve the alignment of the fibril structure forming the fibers, it is necessary to carry out moderate elongation in the flameproof furnace. If the elongation is less than 〇%, the alignment of the fibril structure cannot be maintained, and the structure of the carbon fiber is formed on the middle fiber shaft. 17 20110754: The alignment is insufficient. The thermal properties are excellent. On the other hand, if the elongation exceeds 1%, the fibril structure itself is broken, and the carbon after the damage is formed, and the point becomes a defect point, and a high-strength slave fiber cannot be obtained. A more preferable elongation is 3% to 8%. „In an inert environment such as nitrogen, with a temperature gradient of rc~8G (in the first carbonization furnace with a temperature gradient of rc, a 2% to 7% elongation is applied to the flame-proof fiber) to pass the flame-resistant fiber through the first - Carbonization I is suitable for a treatment temperature of 300 C to 800 ° C and is treated under a linear gradient. If the temperature of the flameproofing step is considered, the initial temperature is preferably above c. If the high temperature exceeds 80 Gt , the step filament becomes very brittle and it is difficult to proceed to the next step. A more suitable temperature range is the outline. c~75 (n: no particular limitation, preferably set to a linear gradient. % 'is unable to maintain the alignment of the fibril structure, the structural fiber of the carbon fiber _ the upper planting material is sufficient, and excellent mechanical properties cannot be found. On the other hand, if the elongation exceeds 7%, the fibril structure itself is broken and damaged. After the carbon fiber _ structure is formed, and the breaking point becomes a defect point, high-strength carbon fiber cannot be obtained. More preferably 5% elongation 〇 The appropriate heat treatment time in the first carbonization furnace is 1 〜 minutes to 3 〇 minutes. Not up to 1.G minutes' job temperature is urgent Increased decomposition reaction generated vigorously 'can not be obtained a high strength carbon fiber. If the processing for more than 3 billion minutes' pre-plasticizing step Charm influence exists, crystalline orientation degree drop

低的傾向,結果所獲得的碳纖維的機械性能受損。更合適 的熱處理時間為1.2分鐘〜2.5分鐘。 、 Q 18 201107547 j-to / UL;il 接者 於釓軋寻Tf性環境中、具有1〇〇(rc〜16〇〇 溫度梯度的第二碳化爐巾,於㈣狀態下進行熱處 得碳纖維。另外,視“追加於具_㈣溫度梯度^ 二石反=爐巾、躲環境巾,於拉緊㈣下騎熱處理。 奴化處理的溫歧根據碳纖輯敏的雜模數來設 定。為了獲得具有高強度特性的碳纖維,較佳為碳化處二 的最向溫度低。而且’由於藉由使處理時間長可提高彈性 模數’因此可降低最高溫度。料,藉由使處理時間長, ^將=度梯度設定成平緩’從而可有效果地抑制形成缺陷 ‘::第:碳化爐的溫度亦受第一碳化爐的溫度設定的影 1曰〇5〇r^ 1〇〇〇C以上即可。第二碳化爐的溫度較佳為 以上。對溫度梯度並無制關,較佳為設定成線 铲ΪΓΪ化爐中的熱處理時間合適岐U分鐘〜5.0分 二=理時間更佳為2.°〜4.2分鐘。於該熱處理中, 纖維將伴有較大程度的收縮,故而於拉緊狀態下 進仃熱處理十分重要。 曰適的是撕°〜M%。若伸長未達,則結 ϋζ維,向上的配向較差,無法獲得充分的性能。另 身產:破Γ」ϊΐ過〇:〇%時’到目前為止所形成的結構本 的伸長為_^%==- ’嶋㈣。更合適 韻轉祕絲面氧化處理 處理方 去Τ列舉公知的方法,即藉由電解氧化、化學品氧化及空 19 201107547 氣氧化等的氧化處理,可採用任—種方;卜 ::的電:氧化處理可實現穩定的表 理= i值㈣中’為了將表示較佳的表面處理狀二 量最簡便的方法是使用電解氧化處 ㈣二電量進行氧化處理。此時,較於相同電量下, ==的電解質料濃度料同,ipa健會大幅不 二山鑰維二日1中’較佳為於pH值大於7的鹼性水溶液中’ 的二曰、一:'、、陽極’流通10 Coul (庫命)/g〜200 Coul/g 厂二進仃電解氧化處理。藉由該氧化處理,可使批值 ’ MA/em 〜G·25 M/cm2。電解質較佳為使用:碳酸銨 (a=in〇nium耐咖把)、碳酸氫銨(細麵— ⑽扣6)、氫氧化約(calcium hydroxide)、氫氧化鈉 m hydroxide)、虱氧化卸(p〇tassium hydroxide)等。 =而,將本發明的碳纖維束供給至上漿處理。上漿劑 使用溶解於有機溶财所得的溶液、糾用乳化劑等分散 ?水中所㈣乳液,藉由輥浸潰法、親接觸法等而賦予至 碳纖維束。_,觸錢維束麟,藉此可進行上聚處 理>1=外’可藉由調整上毁劑液的濃度或調整擠除量,來 調即钱維表_上||劑_著量。另外,錢可利用熱 力,、、、板加熱輥、各種紅外線加熱器(infraredheater) 等來進行。 ^賊予本發明的碳纖維的表面的最合適的上漿劑組成物 I列舉.(a)具有經基的環氧樹脂(以下適宜稱為(a)成 分)、(b)多經基化合物(以下適宜稱為(b)成分)及(c) 20 201107547 含有芳香環的二異氰酸g旨(以下適宜稱為(c)成分 應產物即胺基曱酸醋改質環氧樹脂。另外可列舉· 較反應所需之數量侧之U)成分導人至反應系^而獲 得的反應性生物即胺基曱酸酯改質環氧樹脂與 未反應物的混合物。 n 此外,亦可列舉使用不具有經基的環氧樹脂(以下適 宜稱為⑷成分)而獲得的胺基曱酸酿改質環氧樹脂斑⑷ 成分的混合物。另外,可解絲?_改質環氧樹脂、(a) 成分及(d)成分的混合物。 環氧基與碳纖維表面的含氧官能基的相互作用非常 強’可使上毁劑成分牢固地接著於碳纖維表面。而且,藉 多《化合物及含有芳香環的二異氰酸醋製造的 胺基甲酸S旨鍵結單元’可賦予柔軟性,且可利用胺酸 芳香環所具有之極性而賦予與碳纖維表面的ς強的 ^作用°因此’分子中具有環氧基及上述胺基曱酸醋鍵 胺基甲_改質環氧樹脂是一種可強力地附著於 :物I -面ΐ具有柔軟性的化合物。亦即,此種上漿劑組 成牢固地接著於碳纖維表面且錄的界面層,因 且使碳纖維含浸基⑽脂並硬化所獲得的複合材料 具有優異的機械性能。 含的il/、(a)成分並無特別限制,且⑷成分中所 (土目並無限定。言亥(a)成分例如可使用:環氧丙 型環^二1)、甲基環氧丙醇(methyl glydd〇1)、雙紛F 魏奶日、㈣A型環氧樹脂、鐵縮水甘油g§環氧樹 201107547 t v/pif 月I等特佳為雙―環氧_旨。該些化合物由於具有芳香 環’故而與碳纖維表面的相互作用強。此外原因在於,就 而寸熱性、剛直性的觀點而言’用於複合材料的基質樹脂多 使用^有芳香_環氧賴,上述化合物與該祕質樹脂 的相谷性優異。 成分亦可使用兩種以上的環氧樹脂。 另外(b)成分較佳為雙盼A的環氧烧加成物、脂取 族讀基化合物、多喊單誠化合物中的任—種或肩 由該些化合物的混合騎構成。原因在於,触化合物月 使上述胺基曱改質環氧樹脂變得柔軟。I體可列舉: 雙紛A的環氧w 4莫耳〜14莫耳加成物,紛a的驾 氧丙烧2莫耳〜14莫耳加成物,雙齡A的環氧乙烧、環輩 丙烧嵌段絲物加賴,聚乙二醇(polyethylene glycol) 三經曱基丙烧(trimethylolpfopane)、二鮮基丙酸等。 另外,對(c)成分並無特別限制。特佳為甲苯二異壽 酸醋(toluene diisocyanate)或二曱笨二異氛酸醋㈣⑽ diisocyanate) ° 另外’對(d)成分的環氧樹脂並無特別限制。較佳為 刀子中具有兩個以上環氧基的樹脂。原因在於,碳纖維的 表面與環氧基的相互作用強,該些化合物可牢固地附著於 表面。對縣基雜類並無__,可採職水甘油基 型、脂環環氧基等。較佳的環氧樹脂可使用:雙盼F型環 氧樹脂、雙酴A型環氧概、贿清漆型魏樹脂、二環 戊二烯型(dicyclopentadiene type)環氧樹脂(Epid〇n 22 201107547 HP-7200系列,大日本油墨化學工業股份有限公司)、三羥 基苯基曱燒型環氧樹脂(Epikote 1032H60、Epikote 1032S50 ’日本環氧樹脂(Japan Epoxy Resins)股份有限 公司)、DPP紛酸·清漆型環氧樹脂(Epikote 157S65、Epikote 157S70,日本環氧樹脂股份有限公司)、雙酚a環氧烷加 成環氧樹脂等。 製造含有(d)成分的上述混合物時,可在使(a)成 分、(b)成分、(c)成分反應時與(a)成分同時投入(d) 成分,另外亦可於胺基甲酸酯化反應結束後投入(d)成分。 包含此種化合物的水分散液可列舉Hydran N32〇 (DIC股 份有限公司製造)等。 為了使本發明的碳纖維的股線彈性模數為25〇 Gpa以 1:?於相對高溫下煅燒獲得本發明的碳纖維。因此,有The tendency is low, and as a result, the mechanical properties of the obtained carbon fiber are impaired. A more suitable heat treatment time is from 1.2 minutes to 2.5 minutes. , Q 18 201107547 j-to / UL; il picker in the Tf environment, with a 1 〇〇 (rc ~ 16 〇〇 temperature gradient of the second carbonized towel, in the (four) state of the heat to obtain carbon fiber In addition, depending on the "additional temperature _ (four) temperature gradient ^ two stone reverse = towel, hide the environmental towel, under the tension (four) ride heat treatment. The temperature of the enslaving treatment is set according to the number of hybrid models of carbon fiber sensitivity. In order to obtain The carbon fiber having high strength characteristics preferably has a low temperature at the lowest temperature of the carbonization point 2, and 'because the treatment time is long to increase the elastic modulus', the maximum temperature can be lowered. By making the treatment time long, ^ Setting the degree gradient to be gentle' can effectively suppress the formation of defects'::: The temperature of the carbonization furnace is also affected by the temperature setting of the first carbonization furnace: 1曰〇5〇r^ 1〇〇〇C or more The temperature of the second carbonization furnace is preferably above. The temperature gradient is not controlled, and it is preferable to set the heat treatment time in the wire shoveling furnace to be suitable. U minutes to 5.0 minutes 2 = the rational time is better 2 .°~4.2 minutes. In this heat treatment, the fiber will be accompanied by a larger The degree of shrinkage, it is very important to heat the heat in the tension state. The appropriate is to tear ° ~ M%. If the elongation is not reached, the knot is short, the upward alignment is poor, and sufficient performance cannot be obtained. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : That is, by electrolytic oxidation, chemical oxidation, and oxidation treatment of air oxidation, such as 19 201107547, it can be used in any kind; Bu:: Electricity: Oxidation treatment can achieve stable texture = i value (four) in 'for The easiest way to indicate the best surface treatment is to use the electrolytic oxidation (4) two-electrode oxidation treatment. At this time, compared with the same power, the electrolyte concentration of == is the same, ipa health will be greatly different. In the second day of the 1st 'preferably in the alkaline aqueous solution with a pH greater than 7', the bismuth, a: ', and the anode 'circulation 10 Coul (cob) / g ~ 200 Coul / g plant two enthalpy electrolytic oxidation By the oxidation treatment, the batch value 'MA/em ~ G · 25 M/cm 2 can be obtained. The electrolyte is preferably used: ammonium carbonate (a = in〇nium resistant), ammonium bicarbonate (fine surface - (10) buckle 6), hydroxide hydroxide, sodium hydroxide m hydroxide) P〇tassium hydroxide) and the like. =, the carbon fiber bundle of the present invention is supplied to the sizing treatment. The sizing agent is applied to a carbon fiber bundle by a roll dipping method, a contact method, or the like, using a solution obtained by dissolving in an organic solvent, an emulsifier, or the like, and dispersing the emulsion in water. _, touch the money and maintain the bundle, so that the upper polymerization can be performed >1=outer' can be adjusted by adjusting the concentration of the destructurizing liquid or adjusting the amount of extrusion, so that the money dimension table_上||剂_ the amount. Further, the money can be carried out by using heat, heat, a plate heating roller, various infrared heaters, or the like. The most suitable sizing agent composition I for the surface of the carbon fiber of the present invention is exemplified by (a) an epoxy resin having a radical (hereinafter suitably referred to as component (a)), and (b) a poly-based compound ( Hereinafter, it is suitably referred to as (b) component) and (c) 20 201107547 The diisocyanate g containing an aromatic ring (hereinafter referred to as the component (c) component product, that is, an amine phthalic acid vinegar modified epoxy resin. The reactive organisms obtained by directing the U) component on the quantity side required for the reaction to the reaction system are a mixture of an amino phthalate-modified epoxy resin and an unreacted material. n Further, a mixture of an amino phthalic acid-based epoxy resin enamel (4) component obtained by using an epoxy resin having no warp group (hereinafter, suitably referred to as a component (4)) may be mentioned. In addition, can you solve the wire? _Modified epoxy resin, a mixture of (a) component and (d) component. The epoxy group interacts very strongly with the oxygen-containing functional groups on the surface of the carbon fibers to allow the top breaker component to adhere firmly to the carbon fiber surface. Further, a plurality of "amino acid carboxylic acid S-bonding unit" which is a compound and an aromatic ring-containing diisocyanate can impart flexibility, and can impart enthalpy to the surface of the carbon fiber by utilizing the polarity of the aromatic acid aromatic ring. The strong epoxy group and the above-mentioned amine bismuth acetamate-modified epoxy resin are compounds which can be strongly adhered to: I-face enamel has flexibility. That is, such a sizing agent is composed of an interface layer firmly adhered to the surface of the carbon fiber, and the composite material obtained by impregnating the carbon fiber with the base (10) and hardening has excellent mechanical properties. The il/ or (a) component to be contained is not particularly limited, and the component (4) is not limited. The term (a) component can be, for example, a propylene-propylene ring (II), methyl epoxy. Propyl alcohol (methyl glydd〇1), double F, Weiweiri, (4) A type epoxy resin, iron glycidol g§ epoxy tree 201107547 tv/pif month I, etc. is especially good for double epoxy. These compounds have strong interaction with the surface of the carbon fiber due to the aromatic ring. Further, the reason is that the matrix resin used for the composite material is often used in the viewpoint of heat conductivity and rigidity, and the above compound has excellent phase-to-phase property with the secret resin. Two or more epoxy resins may be used as the component. Further, the component (b) is preferably an epoxy burnt adduct of the bispan A, a lipopeptide group, or a compound of the singular compound, or a shoulder of the compound. The reason is that the above-mentioned amine fluorene-modified epoxy resin becomes soft by the touch of the compound. The body of I can be listed as: Epoxy w 4 Moer ~ 14 Moer Additives of A. A, a oxy-propane-burning 2 Moules ~ 14 Moer Additives, Ethylene Ethylene of Double Age A, Ring-generation propylene block filaments plus galactic, polyethylene glycol (trimethylolpfopane), dico-propionic acid and the like. Further, the component (c) is not particularly limited. Particularly preferred is toluene diisocyanate or diterpene diacetoic acid vinegar (4) (10) diisocyanate) ° Further, the epoxy resin of the component (d) is not particularly limited. A resin having two or more epoxy groups in the knives is preferred. The reason is that the surface of the carbon fiber interacts strongly with the epoxy group, and the compounds can be firmly attached to the surface. There is no __ for the county-based miscellaneous class, and it is available for glycerin-based and alicyclic epoxy groups. Preferred epoxy resins can be used: double-preferred F-type epoxy resin, double-twisted A-type epoxy, brittle varnish-type Wei resin, dicyclopentadiene type epoxy resin (Epid〇n 22 201107547 HP-7200 series, Dainippon Ink Chemical Industry Co., Ltd.), trihydroxyphenyl oxime-type epoxy resin (Epikote 1032H60, Epikote 1032S50 'Japan Epoxy Resins Co., Ltd.), DPP A varnish type epoxy resin (Epikote 157S65, Epikote 157S70, Japan Epoxy Co., Ltd.), a bisphenol a alkylene oxide addition epoxy resin, and the like. When the above mixture containing the component (d) is produced, the component (a), the component (b), and the component (c) may be reacted with the component (d) at the same time as the component (d), or the urethane may be used. After the esterification reaction is completed, the component (d) is charged. Examples of the aqueous dispersion containing such a compound include Hydran N32® (manufactured by DIC Co., Ltd.) and the like. The carbon fiber of the present invention is obtained in order to make the carbon fiber of the present invention have a strand elastic modulus of 25 Å Gpa and calcined at a relatively high temperature. Therefore, there is

n叉r笮齊七反久應, 原因,導致無法製造高強度的 或者炼融或蒸發,成為戦缺陷點的 [實例] 碳纖維。The n-rh 笮 笮 七 反 , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

發明。另外,本實例中 由以下的方法來進行。 23 201107547 將碳纖維束的數根單纖維置於試樣台上,固定兩端, 然後在周圍塗佈DGtite ’作為測定樣品。糊原子力顯微 鏡(精工電子(Seiko instruments)股份有限公司製造, S『I3700/SPA-300 (商品名)),使用氮化石夕(仙⑽遍如) 製的懸臂(Cantilever ),於AFM模式下對單纖維的圓周方 =lOOOnm的範圍,一面遍及纖維軸方向長度1〇〇〇nm少 量地移動-面反覆掃描,藉由二維傅利葉轉換將所獲得的 ,定圖像的低頻成分截斷後進行逆轉換。自如此而獲得的 單纖維的除去曲率的剖面的平面圖像,讀取由圆周長度1〇 μπι、纖維軸方向長度i 〇 μηι所包圍的範圍内的最高部與 最低部的高低差’紐測定以下述式(2)計算出的Ra。invention. Further, in the present example, it was carried out by the following method. 23 201107547 Several single fibers of a carbon fiber bundle were placed on a sample stage, both ends were fixed, and then DGtite' was applied as a measurement sample. Atom atomic force microscope (manufactured by Seiko Instruments Co., Ltd., S "I3700/SPA-300 (trade name)), cantilever (Cantilever) made of nitrite (Xian (10)), in AFM mode The circumferential direction of the single fiber = the range of lOOOnm, one side is moved in a small amount of 1 〇〇〇 nm in the direction of the fiber axis, and the surface is repeatedly scanned, and the obtained low-frequency component of the fixed image is truncated by two-dimensional Fourier transform Conversion. From the plane image of the cross section of the single fiber obtained by the curvature removal, the height difference between the highest part and the lowest part in the range surrounded by the circumferential length 1 〇 μπι and the fiber axis direction length i 〇μηι is read. Ra calculated by the following formula (2).

Ra=={1/(LxxLy)> 十,。(x, y)Nxdy ⑺ 中央面:和與實際表面的高度偏差最小的平面平行, 且將實際表面以相等的體積分為兩半的平面,亦即,由該 平面與實際表面所包圍且位於該+面的兩側的部分的體積 VI與V2相等的平面; f (x ’ y):實際表面與中央面的高低差;Ra=={1/(LxxLy)> Ten,. (x, y) Nxdy (7) The central plane: parallel to the plane with the smallest deviation from the actual surface height, and the actual surface is divided into two halves in an equal volume, that is, surrounded by the plane and the actual surface and located a plane where the volume VI of both sides of the + face is equal to V2; f (x ' y): the difference between the actual surface and the center plane;

Lx、Ly _ X γ平面的大小。 並且,藉由原子力顯微鏡進行測定時,測定有無長度 為0.6 μιη以上的凹凸結構、以及長度為3〇〇 nm以下的凹 凸結構的長度。 「2.單纖維的剖面形狀的評價」 藉由如下方式’來決定構成碳纖維束的單纖維的纖維 剖面的長徑與短徑的比(長徑/短徑)。 24 201107547 使測定用的碳纖維束於内徑為1 mm的氯乙烯樹脂製 的官(tube)内通過後,用刀將該碳纖維束切成圓片而準 備試樣。繼而,將上述試樣以纖維剖面朝上的方式而接著 於知描式電子顯微鏡(scanning e〗ectr〇n micr〇sc〇pe,$εμ) 试樣台上,然後以約1〇 nm的厚度濺鑛金(Au)後使用 掃描式電子顯微鏡(Philips公司製造,製品名:XL2〇), 於加速電壓為7.00 kV,作動距離為31 mm的條件下觀察 纖維剖面,測定單纖維的纖維剖面的長徑及短徑。 3. 纖維束的股線物性評價」 製備含浸有樹脂的碳纖維束的股線試驗體,依據耵s R 7601來測疋強度並進行評價。其中,彈性模數是使用依據 ASTM的應變範圍來實施計算。 「4.碳纖維束的結節強度的測定」 以如下方式來實施結節強度的測定。 於150麵長的碳纖維束的兩端安裝長度為25 mm的 抓持部作為試賴。製作試驗财,施加Q 1x1q_3職_ 的負載而將碳纖維束對齊。於該試驗體的大致中央部形成 二個結,二拉伸時的夹具“刪^。速度為i〇〇mm/min ^條件下實&敎。錢數是對12根碳纖維束實施試驗, 除去最小值及最大值,以1G㈣平均值作為測定值。 「5.碳纖維束的破壞表面產生能量的測定」 將碳纖維的單纖維切斷為2〇 cm,將該單纖維 :貝占附固定於職鳩6中所示的1〇咖長試樣用的單纖 維拉伸試驗的贼上,將自钱露出的多餘的部分切斷除 25 201107547 去而製作樣品。 繼而’對固定於襯紙上的該些樣品照射雷射,藉此形 成半球狀缺陷。雷射介面系統使用Photonic Instruments公 司製造的Micropoim (脈衝能為300 uJ)。雷射聚光所必需 的光學顯微鏡使用Nikon公司製造的ECLIPSE LV100。光 學顯微鏡的孔徑光闌(aperture stop)設定為最小,物鏡設 定為100倍。於該條件下,對樣品的纖維軸方向的中央部' 且與纖維軸為垂直方向的中央部,照射利用衰減器 (attenuator)使雷射強度衰減1〇%後的波長435 nm的雷 射1脈衝,形成半球狀缺陷而獲得樣品。 將貼附於襯紙上的狀態的樣品進一步用薄膜(film) 夾持,以使作為樣品的碳纖維不產生收縮破壞,使薄膜内 充滿黏性液體而進行拉伸試驗。具體而言’準備寬度約5 mm、長度約15 mm的薄膜,使用接著材料將上述薄膜貼 附於樣品的襯紙的兩面的上部,以覆蓋樣品的方式用上述 薄膜將襯紙一起包裹。以甘油水溶液(相對於甘油丨水為 2的比例)充滿該薄膜間,於拉伸速度為α5軸/論下進 行拉伸試驗,測定斷裂負載。The size of the Lx, Ly _ X γ plane. Further, when measuring by an atomic force microscope, the presence or absence of a concave-convex structure having a length of 0.6 μm or more and a length of a concave-convex structure having a length of 3 〇〇 nm or less were measured. "2. Evaluation of cross-sectional shape of single fiber" The ratio of the long diameter to the short diameter (long diameter/short diameter) of the fiber cross section of the single fiber constituting the carbon fiber bundle was determined by the following method. 24 201107547 After the carbon fiber bundle for measurement was passed through a tube made of vinyl chloride resin having an inner diameter of 1 mm, the carbon fiber bundle was cut into a disk with a knife to prepare a sample. Then, the sample is placed on the sample stage of the scanning electron microscope (scanning e ectr〇n micr〇sc〇pe, $εμ) with the fiber profile facing upward, and then has a thickness of about 1 〇 nm. After splashing gold (Au), a scanning electron microscope (manufactured by Philips, product name: XL2 〇) was used, and the fiber profile was observed under an acceleration voltage of 7.00 kV and an actuation distance of 31 mm, and the fiber profile of the single fiber was measured. Long diameter and short diameter. 3. Evaluation of strand physical properties of fiber bundles A strand test body in which a carbon fiber bundle impregnated with a resin was prepared, and the strength was measured and evaluated based on 耵s R 7601. Among them, the elastic modulus is calculated using the strain range according to ASTM. "4. Measurement of Nodule Strength of Carbon Fiber Bundle" The measurement of the knot strength was carried out as follows. A 25 mm long grip is attached to both ends of a 150-length carbon fiber bundle as a test. Make a test, and apply a load of Q 1x1q_3 _ to align the carbon fiber bundles. Two knots were formed in the substantially central portion of the test body, and the clamps at the time of two stretching were "cut down. The speed was i 〇〇 mm / min ^ under the condition of real & 敎. The number of money was tested on 12 carbon fiber bundles. The minimum value and the maximum value are removed, and the average value of 1 G (four) is used as the measured value. "5. Measurement of energy generated on the surface of the carbon fiber bundle." The single fiber of the carbon fiber was cut into 2 cm, and the single fiber: In the thief of the single-fiber tensile test for the one-length coffee sample shown in the job 6, the excess portion exposed from the money is cut off and the sample is produced. Then, the samples fixed to the liner are irradiated with a laser, thereby forming a hemispherical defect. The laser interface system uses Micropoim (300 uJ pulse energy) manufactured by Photonic Instruments. The optical microscope necessary for laser concentrating uses ECLIPSE LV100 manufactured by Nikon Corporation. The aperture stop of the optical microscope is set to a minimum and the objective lens is set to 100 times. Under this condition, a laser beam having a wavelength of 435 nm after attenuating the laser intensity by attenuator is irradiated to the central portion of the sample in the central portion of the fiber axis direction and perpendicular to the fiber axis. Pulses form a hemispherical defect to obtain a sample. The sample attached to the backing paper was further sandwiched by a film so that the carbon fiber as a sample did not undergo shrinkage failure, and the film was filled with a viscous liquid to carry out a tensile test. Specifically, a film having a width of about 5 mm and a length of about 15 mm was prepared, and the film was attached to the upper portion of both sides of the liner of the sample using an adhesive material, and the liner was wrapped together with the film in such a manner as to cover the sample. The film was filled with an aqueous glycerin solution (ratio with respect to glycerin water of 2), and a tensile test was carried out at a tensile speed of α5 axis/axis to measure the breaking load.

繼而’將拉伸試驗中分割成兩半的樣品對自概紙中取 出’用水仔細清洗後,自然乾燥。織,以樣品的斷裂面 方式’用碳糊(Μ— 將樣品固定於SEM 製作SEM觀察樣品。細日本電子公司製造 電壓為10kv〜15kv’倍率為画〜 15000)對所獲得的随觀察樣品的斷裂面進行麵觀 26 201107547^. / ν/ριίThen, the sample which was divided into two halves in the tensile test was taken out from the master paper, and was carefully washed with water, and then naturally dried. Weaving, in the form of the fracture surface of the sample 'with carbon paste (Μ - the sample is fixed in SEM to make SEM observation sample. Fine Japanese electronics company manufacturing voltage is 10kv~15kv' magnification is drawn ~ 15000) on the obtained observation sample The fracture surface is made to look at 26 201107547^. / ν/ριί

將所獲得的SEM圖 分析軟體進行圖像分析, 面積。 像輪入至個人電腦中,使用圖像 測定半球狀缺陷的大小及纖維剖 ^著’將斷裂負載/纖維剖面積=斷裂強度(σ)與半 球狀缺陷的大小⑻繪圖,計算出所得資料的斜度。 (2Ε/π〇 1/2x (破壞表面產生能量”2 ⑴ …根據式⑴,藉由所計算出的斜度及碳纖維束的超音 波彈性模數(Ε)而求出破壞表面產生能量。 「6.碳纖維束的ipa值的測定」 藉由如下方法來測定ipa值。 電解液使用5%磷酸水溶液將pH值調整為3,使氮氣 起泡以消除溶氧的影響。將試樣的碳纖維作為一個 電極而 ’貝於電解液中’相對電極(counter electrode )使用具有 充为的表面積的鉑電極。於此,參照電極採用Ag/AgCl電 極。試樣形態為長度50 mm的12000根的絲束(filament tow)。施加於碳纖維電極與鉑電極之間的電位的掃描範圍 設為-0.2 V至+〇·8 V ’掃描速度設為2.0 mV/sec。使用Χ-.γ 記錄器(X-Y recorder)繪製電流-電壓曲線,掃描三次以 上,於曲線穩定的階段,以相對於Ag/AgCl參照電極的+0.4 V的電位為基準電位而讀取電流值i,依據下式(3)計算 出ipa值。 ipa=l (μΑ) /試樣長度(cm) χ{4πχ單位面積重量 (g/cm) X單絲數/密度(g/cm3) }1/2 (3) 27 201107547 由試樣長度、藉由JIS R7601所記載之;5*法而求出的 試樣密度及單位面積重量計算出表觀表面積,除以電流值 i而獲得ipa值。該測定是使用柳本製作所製造的循環伏安 分析儀P-ι 1〇〇型而進行。 「7.碳纖維束的Si量的測定」 將碳纖維束的試樣放入至空重已知的鉑坩堝中,於 600 C〜700 C的蒙烊爐(muffle furnace)中灰化,測定翻 坩堝的重量而求出灰分。接著加入規定量的碳酸鈉,於燃 燒爐(burner)中熔融,一面以去離子水溶解一面於別㈤ 的聚乙烯量瓶中定容。藉由ICP原子發射光譜分析法來對 該試樣的Si定量。 (前驅體纖維束的製造例1〜製造例7) 前驅體纖維(1) 將組成為丙烯腈98 wt%、曱基丙烯酸2 wt%的丙烯腈 系聚合物溶解於二曱基曱醯胺中,製備23 5 wt%的紡絲原 液。 將該紡絲原液自配置有直徑〇.15mm、數目為2000個 的噴出孔的紡絲噴嘴中紡出,進行乾濕式紡絲。亦即紡出 至空氣中並於約5 mm的空間中通過後,於充滿調溫為 1 〇°C的含有79.0 wt〇/〇二曱基甲醯胺的水溶液的凝固液中凝 固’抽取凝固絲。然後於空氣中延伸1.1倍後,於充滿調 溫為6(TC的含有35 wt%二曱基曱醯胺的水溶液的延伸糟 中延伸2.5倍。延伸後,用清潔的水來清洗含有溶劑的步 驟纖維束,繼而’於95。〇的熱水中延伸1.4倍。接著’對 28 201107547 *;TO ! \J\Jli 纖維束以達到1.1 wt%的方式賦Μ胺基改㈣氧作為主 成分的㈣,並乾舰密化。將乾舰密織的纖維束於 加熱親間延伸2.6倍,而進—步提高配向及進行緻密化 後,捲取碰4㈣腈緣__維束。賴維的纖度為 0.77 dtex。 前驅體纖維(2) 除了將水清洗處理前的延伸倍率變更為29倍,清洗 後的熱水巾岐伸倍率變更為1>2倍以外,於與前驅體纖 維束(1)相同的條件下獲得前驅體纖維束⑺。 前驅體纖維(3) 除了將刖驅體纖維的纖度變更為〇 67dtex以外,於與 前驅體纖絲(2)相同的條件下獲得前賴齡束⑴。 前驅體纖維(4) 除了將刖驅體纖維的纖度變更為〇 9〇dtex以外,於與 前驅體纖維束⑺相同的條件下獲得前驅體纖維束⑷。 前驅體纖維(5) 除了將水清洗處理前的延伸倍率變更為41倍,清洗 後的熱水中的延伸倍率變更為〇.99倍,且於加熱^間=伸 2.4倍以外,於與前驅體纖維束(1)相同的條件下獲得前. 驅體纖維束(5)。 前驅體纖維(6) 除了將水清洗處理前的延伸倍率變更為丨9倍,清洗 後的熱水中的延伸倍率變更為2.0倍以外,於與前驅體纖. 維束(1)相同的條件下獲得前驅體纖維束(6)。 29 201107547 前驅體纖維(7) 除了將前驅體纖維的纖度變更為1.0 dtex以外,於與 前驅體纖維束(2)相同的條件下獲得前驅體纖維束(7)。 前驅體纖維束(1)〜(7)的製造條件示於表1。 30 201107547 表1 前驅體纖 維 紡絲條件 前驅 體纖 維 凝H ]浴 空氣 中 延伸槽 熱水 中 乾熱 延伸 纖度 溫度 (°C) 濃度 (%) 延伸 倍率 溫度 (°c ) 濃度 (%) 延伸 倍率 延伸 倍率 倍率 dtex 前驅體(1) 10 79.0 1.1 60 35 2.5 1.4 2.6 0.77 前驅體(2) 10 79.0 1.1 60 35 2.9 1.2 2.6 0.77 前驅體(3) 10 79.0 1.1 60 35 2.9 1.2 2.6 0 67 前驅體C 4 ) 10 79.0 1.1 60 35 2.9 1.2 2.6 0 90 如馬5體Q 5 ) 10 79.0 1.1 60 35 4.1 0.99 2.4 0 77 刖驅猫 10 79.0 1.1 60 35 1.9 2.0 2.4 0.77 前驅體(7 ) -it- VIST ΟΑ/1 η \ 10 79.0 1.1 60 35 2.9 1.2 2.6 1 00 則無5體(8夕 5 77.0 1.3 60 0 2.0 2.0 1.9 0.77 (貫例1〜實例7、比較例1〜比較例4 ) (碳纖維束的製備) 將多個前驅體纖維束(1)、(2)、(3)、(4)、(5)、(6) 或(7)以平行對齊的狀態而導入至防焰化爐中,對前驅體 纖維束吹附加熱為22(rc〜28(rc的空氣,藉此對前驅體纖 維束進行防焰化處理,獲得密度為丨345 g/em3的防焰纖維 束。伸長率設為6%,防焰化處理時間設為7〇分鐘。 一山繼而,於氮氣中、具有300。〇〜7〇〇。〇的溫度梯度的第 一石反化,中,一面對防焰纖維束施加4.5%的伸長一面使其 通過^第;^化爐。溫度梯度設定為線性梯度。處理時間 設為2·0分鐘。 然後,於氮氣環境中使用可設定為100(TC〜1_。(:的 31 201107547 下、的第一奴化爐於表2或表3所示的規定的溫度 )編=、處理。接著’於氮氣環境中使用可設定為1200〜 的/皿度梯度的第三碳倾,於表2絲3所示的規 =溫度下進行熱處理’獲得碳纖維束。第二碳化爐及第 二兔化爐的合計伸長率為_4 G%,處理時間為3 5分鐘。 山Μ而,使碳纖維束於碳酸氫銨1〇水溶液中通過, 將奴纖維$作為陽極,以相對於每丨㈣處理碳纖維為4〇 Coul的電畺的方式,在碳纖維束與相對電極之間進行通電 處理,用90¾的溫水加以清洗後乾燥。 ,然後’於碳纖維束上附著〇 5 wt%的HydranN320 (以 下稱為「上漿劑1」),捲取於筒管(b〇bbin)上,獲得碳 纖維束。 (單向預浸體(prepreg)的製作) 於塗佈有經B階段化的環氧樹脂#4i〇 (180〇C硬化型) (三菱麗陽(Mitsubishi Rayon)股份有限公司製造)的脫 模紙上’將自筒管抽出的156根碳纖維束對齊配置,通過 加熱壓接輥而使該碳纖維束含浸該環氧樹脂。於其上積層 保濩膜’藉此製作樹脂含量約為33 wt% ’碳纖維單位面積 重量為125 g/m2,寬度為500 mm的單向對齊預浸體(以 下稱為「UD預浸體」)。 (積層板的成型及機械性能評價) 使用上述UD預浸體來成形積層板,藉由依據ASTM D3039的評價法來測定積層板的0°拉伸強度。 碳纖維束的製造條件及評價結果示於表2及表3。 32 201107547 另外,於任一實例中,於單纖維的表面均無沿纖維的 長度方向延伸且長度為0.6 μιη以上的表面凹凸結構,且確 認到長度為300 nm以下的微小尺寸的凹凸結構。 33 201107547 <Ν<The obtained SEM image analysis software was subjected to image analysis and area. For example, by wheeling into a personal computer, the image is used to measure the size of the hemispherical defect and the fiber section is used to plot the fracture load/fiber cross-sectional area = breaking strength (σ) and the size of the hemispherical defect (8). Slope. (2Ε/π〇1/2x (breaking surface generates energy) 2 (1) ... According to the formula (1), the energy generated by the fracture surface is obtained by the calculated slope and the ultrasonic elastic modulus (Ε) of the carbon fiber bundle. 6. Measurement of ipa value of carbon fiber bundle" The ipa value was measured by the following method: The electrolyte was adjusted to a pH of 3 using a 5% phosphoric acid aqueous solution, and nitrogen gas was bubbled to eliminate the influence of dissolved oxygen. One electrode and 'being in the electrolyte' counter electrode uses a platinum electrode having a charged surface area. Here, the reference electrode is an Ag/AgCl electrode. The sample is in the form of a 12,000 tow having a length of 50 mm. (filament tow) The scanning range of the potential applied between the carbon fiber electrode and the platinum electrode was set to -0.2 V to +〇·8 V 'the scanning speed was set to 2.0 mV/sec. Using the Χ-.γ recorder (XY recorder) The current-voltage curve is plotted and scanned three times or more. At the stage where the curve is stable, the current value i is read with respect to the potential of +0.4 V of the Ag/AgCl reference electrode as a reference potential, and ipa is calculated according to the following formula (3). Value. ipa=l (μΑ) / sample length ( Cm) χ{4πχ unit area weight (g/cm) X filament number/density (g/cm3) }1/2 (3) 27 201107547 From the length of the sample, as described in JIS R7601; 5* method The apparent surface area was calculated from the obtained sample density and unit area weight, and the ipa value was obtained by dividing the current value i. This measurement was carried out using a cyclic voltammetric analyzer P-ι 1 type manufactured by Ryumoto Seisakusho Co., Ltd. 7. Measurement of the amount of Si in the carbon fiber bundle" A sample of the carbon fiber bundle was placed in a platinum crucible having a known empty weight, and was ashed in a muffle furnace of 600 C to 700 C to measure the twisting. The ash is determined by weight, and then a predetermined amount of sodium carbonate is added, melted in a burner, and dissolved in deionized water while being fixed in a polyethylene measuring flask of (5) by ICP atomic emission spectrometry. The Si content of the sample was quantified. (Preparation Example 1 to Production Example 7 of the precursor fiber bundle) Precursor fiber (1) An acrylonitrile-based polymer having a composition of 98 wt% of acrylonitrile and 2 wt% of mercaptoacrylic acid Dissolved in dimethyl decylamine to prepare 23 5 wt% of the spinning dope. The spinning dope was self-configured with a diameter. .15mm, a number of 2000 injection nozzles are spun in a spinning nozzle for dry-wet spinning, that is, after being spun out into the air and passing through a space of about 5 mm, the temperature is 1 充满. The coagulation solution of the aqueous solution containing 79.0 wt〇/〇 dimercaptocarboxamide in °C was solidified 'extracted coagulated silk. Then it was extended 1.1 times in air, and then filled with tempering temperature of 6 (TC containing 35 wt% The extended solution of the aqueous solution of decylamine was extended 2.5 times. After stretching, the step fiber bundle containing the solvent is washed with clean water, and then '95. The hot water of the crucible extends 1.4 times. Then, on the 28 201107547 *; TO ! \J\Jli fiber bundles, the amines were changed to (4) oxygen as the main component (4) in a manner of 1.1 wt%, and the ship was densified. The densely woven fiber bundles of the dry ship are extended 2.6 times in the heating zone, and after further stepwise adjustment and densification, the 4 (tetra) nitrile edge __ dimensional bundle is taken up. Lai Wei's fineness is 0.77 dtex. The precursor fiber (2) was changed to 29 times in addition to the stretching ratio before the water washing treatment, and the hot water towel stretching ratio after washing was changed to 1 > twice, under the same conditions as the precursor fiber bundle (1). A precursor fiber bundle (7) is obtained. Precursor fiber (3) A pre-Lengling bundle (1) was obtained under the same conditions as the precursor filament (2) except that the fineness of the ruthenium fiber was changed to 〇 67 dtex. Precursor fiber (4) A precursor fiber bundle (4) was obtained under the same conditions as the precursor fiber bundle (7) except that the fineness of the ruthenium fiber was changed to 〇 9 〇 dtex. Precursor fiber (5) In addition to changing the stretching ratio before the water washing treatment to 41 times, the stretching ratio in the hot water after washing was changed to 〇.99 times, and the heating ratio was 2.4 times. The precursor fiber bundle (5) is obtained under the same conditions as the bulk fiber bundle (1). In the precursor fiber (6), the stretching ratio before the water washing treatment was changed to 丨9 times, and the stretching ratio in the hot water after washing was changed to 2.0 times, and the same conditions as in the precursor fiber bundle (1). The precursor fiber bundle (6) is obtained. 29 201107547 Precursor fiber (7) A precursor fiber bundle (7) was obtained under the same conditions as the precursor fiber bundle (2) except that the fineness of the precursor fiber was changed to 1.0 dtex. The manufacturing conditions of the precursor fiber bundles (1) to (7) are shown in Table 1. 30 201107547 Table 1 Precursor fiber spinning conditions Precursor fiber condensation H] Bath air in the extension tank hot water dry heat extension fineness temperature (°C) Concentration (%) Extension ratio temperature (°c) Concentration (%) Extension ratio Extension ratio magnification dtex precursor (1) 10 79.0 1.1 60 35 2.5 1.4 2.6 0.77 precursor (2) 10 79.0 1.1 60 35 2.9 1.2 2.6 0.77 precursor (3) 10 79.0 1.1 60 35 2.9 1.2 2.6 0 67 precursor C 4) 10 79.0 1.1 60 35 2.9 1.2 2.6 0 90 such as horse 5 body Q 5 ) 10 79.0 1.1 60 35 4.1 0.99 2.4 0 77 刖 drive cat 10 79.0 1.1 60 35 1.9 2.0 2.4 0.77 precursor (7 ) -it- VIST ΟΑ/1 η \ 10 79.0 1.1 60 35 2.9 1.2 2.6 1 00 No 5 body (8 eve 5 77.0 1.3 60 0 2.0 2.0 1.9 0.77 (Case 1 to Example 7, Comparative Example 1 to Comparative Example 4) (Carbon fiber bundle) Preparation) Introducing a plurality of precursor fiber bundles (1), (2), (3), (4), (5), (6), or (7) into a flameproof furnace in a state of being aligned in parallel The additional heat of the precursor fiber bundle is 22 (rc~28 (rc air), thereby preventing the precursor fiber bundle from being flame-proofed to obtain a density of防 345 g/em3 of flame-proof fiber bundle. The elongation is set to 6%, and the flame-proof treatment time is set to 7 〇 minutes. One mountain, then, in nitrogen, has a temperature gradient of 300 〇 〇〇 7 〇〇. In the first stone reversal, one of the flame-retardant fiber bundles is applied with a 4.5% elongation to pass through the furnace, and the temperature gradient is set to a linear gradient. The processing time is set to 2.0 minutes. In a nitrogen atmosphere, it can be set to 100 (TC~1_. (: 31 201107547, the first sin furnace, the specified temperature shown in Table 2 or Table 3) is programmed and processed. Then in a nitrogen atmosphere. The carbon fiber bundle was obtained by heat treatment using a third carbon tilt which can be set to a gradient of 1200 deg / cc, and the total elongation of the second carbonization furnace and the second rabbit furnace. _4 G%, the treatment time is 35 minutes. In the mountains, the carbon fiber bundle is passed through an aqueous solution of ammonium hydrogencarbonate, and the slave fiber is used as the anode, and the carbon fiber is treated as 4 〇Coul per 丨 (four). The electric raft is energized between the carbon fiber bundle and the opposite electrode, and is heated with 902⁄4 of warm water. Washed and dried. Then, 5 wt% of Hydran N320 (hereinafter referred to as "sizing agent 1") was attached to the carbon fiber bundle, and wound up on a bobbin (b〇bbin) to obtain a carbon fiber bundle. (Preparation of a unidirectional prepreg) The release of a B-staged epoxy resin #4i〇 (180〇C hardened type) (manufactured by Mitsubishi Rayon Co., Ltd.) was released. On the paper, 156 carbon fiber bundles drawn from the bobbin are aligned, and the carbon fiber bundle is impregnated with the epoxy resin by heating the crimping rolls. A unidirectionally aligned prepreg (hereinafter referred to as "UD prepreg" having a resin content of about 33 wt%" having a carbon fiber basis weight of 125 g/m2 and a width of 500 mm is formed thereon. ). (Formation of Laminates and Evaluation of Mechanical Properties) The laminate was formed by using the above UD prepreg, and the 0° tensile strength of the laminate was measured by an evaluation method according to ASTM D3039. The production conditions and evaluation results of the carbon fiber bundle are shown in Tables 2 and 3. Further, in any of the examples, the surface of the single fiber has no surface uneven structure extending in the longitudinal direction of the fiber and having a length of 0.6 μm or more, and a minute-sized uneven structure having a length of 300 nm or less is confirmed. 33 201107547 <Ν<

Jao/,οο寸 ε 實例8 前驅體(2) 1050-1250 1 寸 1.005 1 0.035 1 6350 260 1250 v〇 0.18 | 0.13 o 3240 實例7 前驅體(2) 1200-1500 1550-1800 寸 1 1.005 1_ 0.035 1 6050 910 0.09 1 0.07 | CN o 3020 實例6 前驅體(2) 1100-1301 1300-1501 w-j 寸 1.005 1_ 0.035 6500 (N 1100 0.16 d S o 3300 實例5 前驅體(2) 1050-1250 1250-1450 in 寸 1.005 0.035 6700 S 1200 cn 0.17 ! 0.11 S o 3400 實例4 前驅體(4) 1250-1300 1350-1550 寸 1.005 0.041 6100 325 1000 cn 0.15 ! 0.09 o 3100 實例3 前驅體(3) 1250-1300 1350-1550 寸 1.005 0.030 6400 m 1100 苤 0.15 I 0.09 ! o o 3180 i 實例2 前驅體(2) 1250-1300 1350-1550 寸 1.005 0.035 6300 335 1040 ro m 0.15 i 0.09 ! 120 o 3150 實例1 前驅體(1) 1250-1300 1350-1550 CO 1.005 0.035 6050 330 950 (N 0.15 i 0.09 o 3000 碳纖維束 前驅體纖維束類型 第2碳化爐溫度條件(°C) 第3碳化爐溫度條件(°C) 高低差(Rp-V) (nm) /-N I CO eti 剖面的長徑/短徑 單纖維單位面積重量(mg/m) 股線強度(MPa) 股線彈性模數(GPa) 結節強度(N/mm2) 破壞產生能量(N/m) iPa (μΑ/cm2) | OIS/CIS i Si 量(ppm) 金屬含量(ppm) 積層板的〇°拉伸強度(60 vol% 換算)MPa 寸e 201107547 jno / upii 表3 碳纖維束 比較例1 比較例2 比較例3 比較例4 比較例5 前驅體纖維束類型 前驅體 (5) 前驅體 (6) 前驅體 ⑺ 前驅體 (6) 前驅體 (8) 第2碳化爐溫度條件 (°C) 1250-1300 1250-1300 1250-1300 1200-1500 1250-1300 第3碳化爐溫度條件 α) 1350-1550 1350-1550 1350-1550 1550-1800 1350-1550 高低差(Rp-v ) (nm) 29 13 23 13 8 Ra (nm) 8 3 6 3 2 剖面的長徑/短徑 1.005 1.005 1.005 1.005 1.005 單纖維單位面積重 量(mg/m) 0.035 0.035 0.045 0.045 0.045 股線強度(MPa) 5400 5700 5750 5200 5950 股線彈性模數(GPa) 330 330 315 355 325 結節強度(N/mm2) 650 750 850 630 790 破壞產生能量 (N/m) 29 30 30 28 29 iPa (μΑ/cm2) 0.18 0.15 0.15 0.09 0.15 OIS/CIS 0.12 0.10 0.09 0.07 0.11 Si 量(ppm) 300 220 160 210 230 金屬含量(ppm) 40 40 40 40 40 積層板的0°拉伸強 度(60 vol%換算) MPa 2650 2700 2700 2400 2850 (前驅體纖維束的製造例8) 使用以與製造例1相同的方式所製備的紡絲原液,自 配置有直徑為0.13 mm,數目為2000的喷出孔的紡絲喷嘴 中紡出,進行乾濕式紡絲。亦即紡出至空氣中並於約5 mm 35 201107547 的空間中通過後,於充滿調溫為5°C的含有77.0 wt%二甲 基曱醯胺的水溶液的凝固液中凝固,抽取凝固絲。繼而於 空氣中延伸1·3倍後,於充滿調溫為60°C的水溶液的延伸 槽中延伸2.0倍。延伸後,用清潔的水來清洗步驟纖維束, 繼而於95°C的熱水中延伸2.0倍。接著,對纖維束以達到 1.0 w t %的方式賦予以胺基改質矽氧作為主成分的油劑,並 乾燥緻密化。將乾燥緻密化後的纖維束於加熱輥間延伸1.9 倍,而進一步提高配向及進行緻密化後,捲取而獲得前驅 體纖維束。該纖維的纖度為0.77 dtex。 (實例8) 除了不使用第3碳化爐以外,於與實例5同樣的煅燒 條件下製作碳纖維束。另外,同樣地製作積層板,實施機 械性能評價’獲得表2的結果。而且,於單纖維的表面無 沿纖維的長度方向延伸且長度為0.6 μιη以上的表面凹凸 結構,且確認到長度為300 nm以下的微小尺寸的凹凸結 構。 (實例9〜實例11、比較例6〜比較例8) 除了變更煅燒條件以外,以與實例2相同的方式獲得 碳纖維束。評價結果示於表4。另外’於任一實例中,於 單纖維的表面均無沿纖維的長度方向延伸且長度為0.6 μιη 以上的表面凹凸結構,且嫁認到長度為300 nm以下的微 小尺寸的凹凸結構。 表4 36 201107547 JU0卜8寸ε 比較例8 jj i 、丨1 ,1诛 城:硪 -6.5% 寸 1.005 0.035 5500 〇 1—Η CO o OO 0.15 0.09 o 2600 實例11 奪 Δ3 5 'Ί Μ硃 城:< -5.2% 寸 1.005 0.035 6050 m g 0.15 0.09 o 2980 比較例7 ♦ 5 1 7.2% 寸 1.005 0.033 5400 CO m o 00 cs 0.15 0.09 o 2500 實例10 Ιΐφί 奪 Λ3 5 1 城:硃 6.5% 寸 1.005 0.034 5900 Ό m cn o OS 0.15 0.09 o 2950 比較例6 防焰化伸長率| _i 10.5% CN 寸 1.005 0.033 5300 O m o o 0.15 0.09 o 2550 實例9 防焰化伸 長率 8.0% 寸 1.005 0.034 6000 00 CO 〇\ 0.15 0.09 o 3000 碳纖維束 不同於實例2的變更條件項目 高低差(Rp-v) (nm) 1 «3 Pi 剖面的長徑/短徑 單纖維單位面積重量(mg/m) 股線強度(MPa) 股線彈性模數(GPa) 破壞產生能量(N/m) 結節強度(N/mm2) iPa (μΑ/cm2) 01S/C1S Si 量(ppm) 金屬含量(ppm) > δ 4 〇 ,2 忘:§ _ Ϊ妹 卜ε 201107547 JT〇 / vpif (實例12及實例13) 除了變更表面處理條件以外,以與實例5相同的方式 獲得碳纖維束。評價結果示於表5。而且,於任一實例中, 於單纖維的表面均無沿纖維的長度方向延伸且長度為0.6 μιη以上的表面凹凸結構,且確認到長度為300 nm以下的 微小尺寸的凹凸結構。 (實例14〜實例16) 除了變更上漿劑的種類及附著量以外,以與實例5相 同的方式獲得碳纖維束。評價結果示於表5。於任一實例 中’於單纖維的表面均無沿纖維的長度方向延伸且長度為 〇.6 μηι以上的表面凹凸結構,且確認到長度為3〇〇 nm以 下的微小尺寸的凹凸結構。 另外,上漿劑2、上漿劑3及上漿劑4是以如下方式 來製備。 (上漿劑2) 將作為主劑的日本環氧樹脂股份有限公司製造< 「EPik〇te 828」80重量份、作為乳化劑的旭電化股 =司製造的「JMunrniem」20重量份混合,藉由轉相⑽ 來製備水分散液。 (上漿劑3) 於燒瓶中投入由雙酚A的環氧丙炫 莫耳、三經甲基丙烷〇·8莫耳、 、耳加成物1. 成的多元醇3.2莫耳,然後添加作^ ^酸G.6莫耳无 (第三丁基)4·曱基苯盼(BHT) ^反f抑制劑的冰: g作為反應觸媒的二 38 201107547. j^to /υριι 丁基二月桂酸錫0.2 g,攪拌直至該些混合物達到均勻為 止。於此,視需要添加作為黏度調整劑的甲基乙基酮 (methyl ethyl ketone)。於均勻溶解的混合物中滴加添加 間。二甲苯二異氰酸酯3.4莫耳,一面攪拌一面於反應溫度 50C、反應時間2小時的條件下實施胺基甲酸酯預聚物的 聚合。接著,添加Epikote 834 ( JER股份有限公司製)0.25 莫耳,使其與位於胺基甲酸酯預聚物的末端的異氰酸酯基 反應,藉此獲得環氧改質胺基曱酸酯樹脂。 將該環氧改質胺基曱酸酯樹脂90重量份與作為乳化 劑的旭電化股份有限公司製造的rPlur〇nicF88」1〇重量份 混合’製備水分散液。 (上漿劑4 ) 於燒瓶中投入聚乙二醇400 2.5莫耳、Epikote 834( JER 月又伤有限公司製)0.7莫耳,然後添加作為反應抑制劑的 2,6-二(第三丁基)4_曱基苯酚(BHT) 〇 25 g、作為反應觸 媒的二丁基二月桂酸錫0.1 g,攪拌直至該些混合物達到均 句為止。於此’視需要添加作為黏度調整劑的曱基乙基酮。 於均勻溶解的混合物中滴加添加間二曱苯二異氰酸酯2 7 莫耳,一面攪拌一面於反應溫度4〇〇c、反應時間2小時的 條件下反應而獲得環氧改質胺基曱酸酯樹脂。 將該環氧改質胺基甲酸酯樹脂8〇重量部與作為乳化 劑的旭電化股份有限公司製造的r plur〇nic F88」2〇重量份 現合’製備水分散液。 39 201107547 JU0Z-8 寸 e 實例16 上漿劑 上漿劑4 (附著量為0.4 wt%) 〇 0.17 r—Η r-H o 3350 實例15 上漿劑 1 |上漿劑3(附著量為0.4 wt% ) ο 0.17 0.11 1 3410 實例14 上漿劑 上漿劑2(附 著量為0.4 wt% ) ο ι> vcT 0.17 0.11 3050 實例13 表面處理 碳酸氫敍 200 Coul/g ο ο ν〇 0.24 0.16 3280 實例12 表面處理 硝酸銨 8% 20 Coul/g ο 寸Λ νο" 0.40 0.19 3000 碳纖維束 冢απ CE奉 κ- 股線強度(MPa) iPa (μΑ/cm2) OIS/CIS 考r H 4郏 O Np 〇 0s* 201107547 JHO /νριι [產業上的可利用性] 材料 本發明的碳纖維束可用作《、高速移動體等的結構 雖然本發明已以較佳實施例揭露如上,然其 限定本發明,任何熟習此技藝者,在残離本發明之 和靶圍内,當可作些許之更動與 7砷 範圍當視後附之申請專利範圍所 本發明之保護 【圖式簡單說明】 無 【主要元件符號說明】Jao/, οο inch ε Example 8 Precursor (2) 1050-1250 1 inch 1.005 1 0.035 1 6350 260 1250 v〇0.18 | 0.13 o 3240 Example 7 Precursor (2) 1200-1500 1550-1800 inch 1 1.005 1_ 0.035 1 6050 910 0.09 1 0.07 | CN o 3020 Example 6 Precursor (2) 1100-1301 1300-1501 wj Inch 1.005 1_ 0.035 6500 (N 1100 0.16 d S o 3300 Example 5 Precursor (2) 1050-1250 1250-1450 In inch 1.005 0.035 6700 S 1200 cn 0.17 ! 0.11 S o 3400 Example 4 Precursor (4) 1250-1300 1350-1550 Inch 1.005 0.041 6100 325 1000 en 0.15 ! 0.09 o 3100 Example 3 Precursor (3) 1250-1300 1350 -1550 inch 1.005 0.030 6400 m 1100 苤0.15 I 0.09 ! oo 3180 i Example 2 Precursor (2) 1250-1300 1350-1550 Inch 1.005 0.035 6300 335 1040 ro m 0.15 i 0.09 ! 120 o 3150 Example 1 Precursor (1 1250-1300 1350-1550 CO 1.005 0.035 6050 330 950 (N 0.15 i 0.09 o 3000 Carbon fiber bundle precursor fiber bundle type 2nd carbonization furnace temperature condition (°C) 3rd carbonization furnace temperature condition (°C) Height difference ( Rp-V) (nm) /-NI CO eti profile long diameter / short diameter single fiber unit area weight (mg/m) Strand strength (MPa) Strand elastic modulus (GPa) Nodule strength (N/mm2) Destruction energy (N/m) iPa (μΑ/cm2) | OIS/CIS i Si amount (ppm) Metal content (ppm) 〇° tensile strength of laminated sheets (60 vol% conversion) MPa inch e 201107547 jno / upii Table 3 Carbon fiber bundles Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Precursor fiber bundle type Precursor (5) Precursor (6) Precursor (7) Precursor (6) Precursor (8) 2nd carbonization furnace temperature condition (°C) 1250-1300 1250-1300 1250-1300 1200-1500 1250-1300 3 Carbonization furnace temperature conditions α) 1350-1550 1350-1550 1350-1550 1550-1800 1350-1550 Height difference (Rp-v ) (nm) 29 13 23 13 8 Ra (nm) 8 3 6 3 2 Long diameter of the profile / Short diameter 1.005 1.005 1.005 1.005 1.005 Single fiber basis weight (mg/m) 0.035 0.035 0.045 0.045 0.045 Strand strength (MPa) 5400 5700 5750 5200 5950 Strand elastic modulus (GPa) 330 330 315 355 325 Nodule strength (N /mm2) 650 750 850 630 790 Destruction energy (N/m) 29 30 30 28 29 iPa (μΑ/cm2) 0.18 0.15 0.15 0.09 0.15 OIS/CIS 0.12 0.10 0.09 0. 07 0.11 Si amount (ppm) 300 220 160 210 230 Metal content (ppm) 40 40 40 40 40 0° tensile strength of laminate (60 vol% conversion) MPa 2650 2700 2700 2400 2850 (Production example of precursor fiber bundle) 8) A spinning dope prepared in the same manner as in Production Example 1 was spun from a spinning nozzle equipped with a discharge hole having a diameter of 0.13 mm and a number of 2000, and dry-wet spinning was carried out. That is, it is spun out into the air and passed through a space of about 5 mm 35 201107547, and then solidified in a coagulating liquid containing an aqueous solution containing 77.0 wt% of dimethylguanamine at a temperature of 5 ° C to extract a coagulated wire. . Then, after extending 1.3 times in the air, it was extended 2.0 times in an extension tank filled with an aqueous solution adjusted to a temperature of 60 °C. After extension, the step fiber bundle was washed with clean water and then extended 2.0 times in hot water at 95 °C. Next, an oil agent containing an amine-based modified oxime as a main component was applied to the fiber bundle at a rate of 1.0 w t %, and dried and densified. The dried densified fiber bundle was extended 1.9 times between the heating rolls to further increase the alignment and densification, and then taken up to obtain a precursor fiber bundle. The fiber has a fineness of 0.77 dtex. (Example 8) A carbon fiber bundle was produced under the same calcination conditions as in Example 5 except that the third carbonization furnace was not used. Further, a laminate was produced in the same manner, and mechanical performance evaluation was performed to obtain the results of Table 2. Further, the surface of the single fiber did not have a surface uneven structure extending in the longitudinal direction of the fiber and having a length of 0.6 μm or more, and a small-sized uneven structure having a length of 300 nm or less was confirmed. (Example 9 to Example 11, Comparative Example 6 to Comparative Example 8) A carbon fiber bundle was obtained in the same manner as in Example 2 except that the calcination conditions were changed. The evaluation results are shown in Table 4. Further, in any of the examples, the surface of the single fiber has no surface uneven structure extending in the longitudinal direction of the fiber and having a length of 0.6 μm or more, and a small-sized uneven structure having a length of 300 nm or less is grafted. Table 4 36 201107547 JU0 Bu 8 inch ε Comparative Example 8 jj i , 丨 1 , 1 诛 city: 硪 -6.5% inch 1.005 0.035 5500 〇 1 - Η CO o OO 0.15 0.09 o 2600 Example 11 Δ Δ3 5 'Ί Μ Μ Zhu City: < -5.2% Inch 1.005 0.035 6050 mg 0.15 0.09 o 2980 Comparative Example 7 ♦ 5 1 7.2% Inch 1.005 0.033 5400 CO mo 00 cs 0.15 0.09 o 2500 Example 10 Ιΐφί Capture 3 5 1 City: Zhu 6.5% Inch 1.005 0.034 5900 Ό m cn o OS 0.15 0.09 o 2950 Comparative Example 6 Flame Resistance Elongation | _i 10.5% CN Inch 1.005 0.033 5300 O moo 0.15 0.09 o 2550 Example 9 Flame Resistance Elongation 8.0% Inch 1.05 0.034 6000 00 CO 〇 \ 0.15 0.09 o 3000 Carbon fiber bundle is different from the change condition of example 2 Project height difference (Rp-v) (nm) 1 «3 Pi section long diameter / short diameter single fiber unit area weight (mg / m) strand strength ( MPa) Strand elastic modulus (GPa) Destruction energy (N/m) Nodule strength (N/mm2) iPa (μΑ/cm2) 01S/C1S Si amount (ppm) Metal content (ppm) > δ 4 〇, 2 Forget: § _ sister ε ε 201107547 JT〇 / vpif (Example 12 and Example 13) In addition to changing the surface treatment conditions, The same manner as Example 5 to obtain a carbon fiber bundle. The evaluation results are shown in Table 5. Further, in any of the examples, the surface of the single fiber has no surface uneven structure extending in the longitudinal direction of the fiber and having a length of 0.6 μm or more, and a fine-sized uneven structure having a length of 300 nm or less has been confirmed. (Examples 14 to 16) A carbon fiber bundle was obtained in the same manner as in Example 5 except that the kind and the amount of the sizing agent were changed. The evaluation results are shown in Table 5. In any of the examples, the surface of the single fiber did not have a surface uneven structure extending in the longitudinal direction of the fiber and having a length of 〇.6 μηι or more, and a small-sized uneven structure having a length of 3 〇〇 nm or less was confirmed. Further, the sizing agent 2, the sizing agent 3, and the sizing agent 4 were prepared in the following manner. (Sizing agent 2) 80 parts by weight of "EPik〇te 828" manufactured by Japan Epoxy Resin Co., Ltd. as a main component, and 20 parts by weight of "JMunrniem" manufactured by Asahi Kasei Co., Ltd. as an emulsifier, The aqueous dispersion was prepared by phase inversion (10). (Sizing agent 3) Into the flask, a mixture of bisphenol A, propylene glycol, trimethyl methacrylate 8 8 mol, and an ear adduct 1. Polyol 3.2 mol, and then added ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 0.2 g of sodium dilaurate was stirred until the mixtures reached homogeneity. Here, methyl ethyl ketone as a viscosity adjuster is added as needed. The addition zone was added dropwise to the homogeneously dissolved mixture. The xylene diisocyanate was 3.4 mol, and the polymerization of the urethane prepolymer was carried out while stirring at a reaction temperature of 50 C and a reaction time of 2 hours. Then, 0.25 mol of Epikote 834 (manufactured by JER Co., Ltd.) was added to react with an isocyanate group at the terminal of the urethane prepolymer, whereby an epoxy-modified amine phthalate resin was obtained. 90 parts by weight of the epoxy-modified amine phthalate resin was mixed with 1 part by weight of rPlur〇nic F88" manufactured by Asahi Kasei Co., Ltd. as an emulsifier, to prepare an aqueous dispersion. (Sizing agent 4) Into the flask, polyethylene glycol 400 2.5 m, Epikote 834 (manufactured by JER Yuehe Co., Ltd.) 0.7 mol was charged, and then 2,6-di (third butyl) as a reaction inhibitor was added. 4) Nonylphenol (BHT) 〇 25 g, 0.1 g of dibutyltin dilaurate as a reaction catalyst, and stirred until the mixture reached a uniform sentence. Here, the mercaptoethyl ketone as a viscosity adjuster is added as needed. An epoxy modified amino phthalate was obtained by dropwise addition of m-xylylene diisocyanate 2 7 mol to the uniformly dissolved mixture, and reacting at a reaction temperature of 4 〇〇c and a reaction time of 2 hours while stirring. Resin. The weight of the epoxy modified urethane resin was adjusted to 8 parts by weight of r plur〇nic F88" manufactured by Asahi Kasei Co., Ltd. as an emulsifier. 39 201107547 JU0Z-8 inch e Example 16 Sizing agent sizing agent 4 (with an adhesion of 0.4 wt%) 〇0.17 r—Η rH o 3350 Example 15 Sizing agent 1 | Sizing agent 3 (with an adhesion of 0.4 wt%) ο 0.17 0.11 1 3410 Example 14 Sizing agent sizing agent 2 (adhesion amount 0.4 wt%) ο ι> vcT 0.17 0.11 3050 Example 13 Surface treatment hydrogencarbonate 200 Coul/g ο ο ν 〇 0.24 0.16 3280 Example 12 Surface treatment of ammonium nitrate 8% 20 Coul/g ο inch Λ νο" 0.40 0.19 3000 carbon fiber bundle 冢απ CE 奉κ-strand strength (MPa) iPa (μΑ/cm2) OIS/CIS test r H 4郏O Np 〇0s * 201107547 JHO /νριι [Industrial Applicability] Material The carbon fiber bundle of the present invention can be used as a structure of "high-speed moving body, etc. Although the present invention has been disclosed as a preferred embodiment as above, the present invention is limited to any familiarity. The skilled person, in the residual target range of the present invention, can make some modifications and 7 arsenic range. The protection of the invention is attached to the patent application scope [Simple description of the drawing] No [Main component symbol description 】

Claims (1)

1 1201107547 七、申請專利範園: 1. 一種碳纖維束,其包含如下所述的碳纖維的單纖 維’即於該單纖維的表面無沿纖維的長度方向延伸且長度 為0.6 μηι以上的表面凹凸結構,而具有單纖維表面的最高 部與最低部的高低差(Rp_v)為 5 nrn〜25 nm,平均凹凸 度Ra為2 nm〜6 nm的凹凸結構,且單纖維的纖維剖面的 長徑與短徑的比(長徑/短徑)為1⑻〜1〇1 ’並且,該碳 纖維的單纖維的每單位長度的重量在〇〇3〇 mg/m〜〇〇42 mg/m的範圍内,股線強度為5900 MPa以上,以ASTM法 所測定的股線彈性模數為25〇GPa〜38〇GPa,結節強度為 900 N/mm2 以上。 2. —種碳纖維束,其包含如下所述的碳纖維的單纖 維,即於該單纖維的表面,無沿纖維的長度方向延伸且長 度為0.6 μηι以上的凹凸結構,而具有長度為3〇〇nm以下, 單纖維表面的最高部與最低部的高低差(Rp_v)為5 nm〜 25 nm,平均凹凸度Ra為2 nm〜6 nm的凹凸結構,且單 纖維的纖維剖面的長徑與短徑的比(長徑/短徑)為1⑻ 〜1.01,並且,該碳纖維的單纖維的每單位長度的重量在 0.030 mg/m〜0.042 mg/m的範圍内,股線強度為59〇〇 Mpa 以上’以ASTM法所測定的股線彈性模數為25〇 Gpa〜38〇 GPa,結節強度為9〇〇 N/mm2以上。 3.如申請專利範圍第!項或第2項所述之碳纖維束, 其中利用雷射於上述單纖維表面形成具有規定範圍的大小 的半球狀缺陷,藉由拉伸試驗使上述纖維於上述半球狀缺 42 201107547 jio / υμιϋ Π:: ’ ί上述纖維的斷裂強度及半球狀缺陷的大 產生能量為3GN/m以上: 财㈣破壞表面 =(2Ε/π〇 1/2X (破壞表面產生能量)1/2⑴ 數,Γ為半為碳纖維束的超音波彈性模 齡4炎如:Γ專利範圍第1項至第3項中任-項所述之碳 H 用電化學測定法(循環伏安法)所求出的 ipa 值為 〇 〇5 |^A/Cm2 η i 2 μ /em ’利用X射線光電子光 ,的上述碳纖維表面的含氧官能基量(01S/C1S) 在0.05〜0.15的範圍内。 5·如申叫專利範圍第1項至第4項中任一項所述之碳 纖維束’其中利用1CP原子發射光譜分析法所測定的Si 量為200 ppm以下。 6.如申請專利範圍第丨項至第5項中任一項所述之碳 =維束’其經下述上漿劑組成物上紧,該上聚劑組成物包 含:(a)具有經基的環氧樹脂、(b)多羥基化合物及(c) 含有芳香環的二異氰酸酯的反應產物即胺基曱酸酯改質環 氧樹脂;或者包含:該胺基甲酸酯改質環氧樹脂與(a)具 有經基的環氧樹脂及/或(d)不具有羥基的環氧樹脂的混 合物。 7·如申請專利範圍第6項所述之碳纖維束,其中上述 (a)具有經基的環氧樹脂為雙酚型環氧樹脂。 8.如申請專利範圍第6項或第7項所述之碳纖維束, 43 201107547 其中上述(b)多羥基化合物為雙酚A的環氧烷加成物、 脂肪族多經基化合物、及多經基單叛基化合物中的任一種 或者該些化合物的混合物。 9. 如申請專利範圍第6項至第8項中任一項所述之碳 纖維束,其中上述(c)含有芳香環的二異氰酸酯為曱苯二 異氰酸酯或二甲苯二異氰酸酯。 10. 如申請專利範圍第1項至第9項中任一項所述之 碳纖維束,其中包含驗金屬、驗土金屬、鋅、鐵、銘的金 屬以總量計所含的量為50 ppm以下。 44 201107547 四、 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明: 無 五、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 無 201107547 爲弟咖被中文_書___ .........*-¾¾ 修正弓期啡年10用4$ j -7- '.t 法獲付優異的複合材料而且 '、-----------———-一^一^ 擴大,纖維不齡^ A \ ,由於表面的石墨結晶尺寸 <合材料的90。^ ^、基質樹腊的接著性降低,導致複 ii =。N;。㈣料9°。Nw以上。上舰節強度更 〇 上,進—步更佳為m請酿2以上。 維軸方向以外的纖咖 处;^可谷易地看出與纖維軸垂直的方向的性 藉由準等向積層而形成材料,形成複雜的 I、’,除纖維軸方向的拉伸、壓縮應力以外,亦 ,維軸方向的應力。另外,於如衝擊試驗等賦予相 、间、、、、應k的情況’材料内部的產生應力狀態非常複 、雜,與纖軸方向不_額的強度㈣十分重要。因此, 〇 若結節強度未達900 NW,則準等向材料無法發現充分 的機械性能。另-方面,當結節強度超過3〇〇〇跑瓜2時, 需要降低纖維轴方向的配向。因此,結節強度應為3_ N/mm2以下。 另外,本發明的碳纖維束較佳為破壞表面產生能量為 30 N/m以上。對於破壞表面產生能量,可利用雷射(丨奶沉) 於單纖維表面形成具有規定範圍的大小的半球狀缺陷,藉 由拉伸試驗使該纖維於該半球狀缺陷部位斷裂,由纖維的 斷裂強度及半球狀缺陷的大小,利用以下的葛里菲斯 11 201107547 修IE日期:99年1〇月4臼 爲第99118900號中文說明書無劃線修正胃 (Griffith)式⑴而求出。 σ= (2Ε/π〇 1/2χ (破壞表面產生能量)1/2 (1) ,、中σ為斷裂強度,£為礙纖、維束的超音波彈_ 數,C為半球狀缺陷的大小。破壞表面產生能量 = N/m以上’進一步更佳為32]S[/m以上。 … 一其中,破壞產生能量是碳纖維破損難易度的指標,表 示基體強度(matrix stmigth)。碳_^_跪性:壞^ 材料’其拉伸強度受缺陷點的影響。當韻維具有相同的 缺陷時’碳纖維的基體強度越高,則破壞強度越高 ^ 合材湘的基料财與錢_接著性較 商,、、、口果作為應力傳遞的指標的臨界纖維長度變短。由此, =卞!的強度反映的是更短長度下的強度,基體 強又二重要的指標。另—方面,當破壞表面產生能量 壞產生能量應為ϋ 於本^中’利用電化學測定法(循環伏安 〜該-值受 ^變。㈣^凹凸度及碳纖維表面的微細的石墨結構的 層受到較大程度祕刻(etehing)的碳纖 門化1物_,子(aniGn)進人至石墨結晶的層間的層 間化口物的兔纖維具有較大的的 存在•的含氧官綠,且職釣、的電偶層的 201107547 修正日期:99年10月4曰 爲第99118900號中文說明書無劃線修正頁 含有芳香環的二異氰酸醋(以下適宜稱為(c)成分)的反 應產物即胺基曱酸酯改質環氧樹脂。另外可列舉:藉由將 ,反應所需之數量過剩之(a )成分導人至反應系統中而獲 得的反應絲即胺基甲酸§旨改f環氧樹脂與⑷成分的未 反應物的混合物。 〜 此外’亦可列舉使用不具有經基的環氧樹脂(以下適 宜稱為⑷成分)而獲得的胺基曱酸醋改質環氧樹脂盘⑷ 〇 ❹ it的混合物。另外,可列舉胺基曱酸酿改質環氧樹脂、U) 成为及(d)成分的混合物。 環氧基與錢絲面的含氧官能基的相互作用非常 可使上漿劑成分牢固地接著於碳纖維表面。而且,藉 脸基化合物及含有芳香環的二異氰酸醋製造的 可軒柔軟性,且可利用胺基甲酸 相曰互作::ί所具有之極性而賦予與碳纖維表面的較強的 結單元的胺基子Ιΐ有環氧基及上述胺基甲酸醋鍵 碳義砉而:目次酉曰改質裱氧樹脂是一種可強力地附著於 有柔軟性的化合物。亦即,此種上毁劑組 也接著於碳纖維表面且柔軟的界面層,因 具有:二:ί酬樹脂並硬化所獲得的複_ 醇(_)、;、‘氣成f例如 型環⑽炉、錐*基氧醇(m yi giydd〇i)、雙酚f a a型環氧樹脂、經酸縮水甘油醋環氧樹 201107547 修正日期:99年10月4曰 爲第99118900號中文說明書無劃線修正頁 月旨等。特佳為雙齡型環氧樹脂。該些化合物由於具有芳香 環’故而與礙纖維表面的相互作用強。此外原因在於,就 耐熱性、,直性的觀點而言,用於複合材料的基質樹脂多 使用具有芳香環的環氧樹脂,上述化合物與該些基質 的相容性優異。 (a)成分亦可使用兩種以上的環氧樹脂。 另外,(b)《分較佳為雙紛纟的環氧烧加成物、脂肪 族夕減化合物、多祕單縣化合物切任—種, θ 由該些化合物的混合物所構成。賴在於,該些化合物 使上述胺基甲酸自旨改質環氧樹脂變得柔軟。且體 二:二的:袁氧乙烧4莫耳〜14莫耳加成物、雙紛A的環 =莫:加成物,A的環氧乙院、環氧 丙说敗&絲物加成物,紅二醇(崎她細吻⑽、 二經甲基狀㈤methyl。丨卿罐)、二經甲基丙酸等。 另外,對⑷成分並無特別限制。特佳為甲苯二 馱酯(toluene diisocyanate)或-甲 diisocy减)。 m本—異級自旨Uylene ❹ 中具有兩個以上壤乳基的樹脂。原因在於 ^面與環氧基的相互作用強,該些化合物可牢as 表面。對縣基的麵並無_ φ) , ® A ^ j才木用細水甘油基 f月日—4基等。_的環氧翻旨可❹ :樹脂、雙酚A型環氧樹脂、酚醛清漆 :: ( dicydopenta^ene type ) ^ 22 201107547 ΕΠ寸叹2 玢 66^1113:礬 Μ3Ι_ 塵細戡 _1«佧黯 006ΟΟΙ 166 派賴 〇 ' >ο, ΙΡΚ 比車交例8 拿 Λ3 5 '丨1 Ί ^ -6.5% 寸 1.005 ίΤ) S 〇 5500 〇 ΓΛ 〇 00 0.15 0.09 Ο 2600 實例11 5 'Ί Ί ^ 城:峭 -5.2% m 寸 1 1.005 ί_ 0.035 6050 m 窆 ON o 0.09 ο 2980 比較例7 Ulj>i 5 1 城:跻 7.2% cn 寸 1.005 0.033 5400 m ro o in 00 CN vn o 0.09 ο 2500 實例10 拿 JJ 5 1 城:齋 6.5% 寸 1.005 0.034 5900 vo m cn 〇 ON 0.15 L^O—9 ο 2950 比較例6 防焰化伸長率 10.5% CN 寸 1.005 0.033 5300 o m o 卜 0.15 0.09 < ο 2550 實例9 8.0% CO 寸 1.005 0.034 6000 00 m ON 0.15 0.09 ^"4 ο 3000 碳纖維束 不同於實例2的變更條件項目 高低差(Rp-V) (nm) Ra (nm) 剖面的長徑/短徑 單纖維單位面積重量(mg/m) 股線強度(MPa) 股線彈性模數(GPa) 結節強度(N/mm2) 破壞產生能量(N/m) iPa (μΑ/cm2) 01S/C1S Si 量(ppm) 金屬含量(ppm) 1 .想 拿 4 〇 ^ ° 201107547 修正日期:99年10月4日 爲第99118900號中文說明書無劃線修正頁 (實例12及實例13) 卜除了變更表面處理條件以外,以與實例5相同的方式 獲f碳纖維束。評價結果示於表5。而且,於任一實例中, 於單纖維的表面均無沿纖維的長度方向延伸且長度為〇 6 μΠ1以上的表面凹凸結構,且確認到長度為300 nm以下的 微小尺寸的凹凸結構。 (實例14〜實例16) _除了1更上漿劑的種類及附著量以外,以與實例5相 同的方式獲得碳纖維束。評價結果示於表5。於任一實例 中’於單纖維的表面均無沿纖維的長度方向延伸且長度為 〇·6 μιη以上的表面凹凸結構,且確認到長度為· 以 下的微小尺寸的凹凸結構。 Φ制^外上水劑2、上衆劑3及上襞劑4是以如下方式 來備。 (上漿劑2) ^乍為主劑的日本環氧樹脂股份有限公司製造的 八二。Γ!2「8」8G重讀、作為乳化劑的旭電化股份有限 來製備水分散液。 重里U合,藉由轉相乳化 (上漿劑3 ) 莫耳於由雙盼A的環氧秘8莫耳加成物L8 成的夕烷〇.8莫耳、二羥甲基丙酸〇.6莫耳形 (第一夕H莫耳’然後添加作歧應抑咖的2,6-二 (第二丁基)4_曱基苯紛(酣)Q 5g、作為反應觸媒的二 38 201107547 [產業上的可利用性] 本發明的錢維束可用作飛機 材料。 叼迷移動體等的結構 雖然本發明已以較佳實施例揭露 限定本發明,杯钮外羽LL斗—土 如 然其並非用以 釦r= \ 習技蟄者,在不脫離本發明之精神 圍内,^可作些許之更動與潤飾,因此本發明之 範圍當視後附之申請專利範圍所界定者為準。 ’、叹 Ο 【圖式簡單說明】 益 【主要元件符號說明】 益 t Ο 41 201107547 修正曰期:99年l〇月4日1 1201107547 VII. Patent application: 1. A carbon fiber bundle comprising a single fiber of carbon fiber as described below, that is, a surface uneven structure having a length of 0.6 μηι or more extending on the surface of the single fiber without extending along the longitudinal direction of the fiber The height difference (Rp_v) between the highest part and the lowest part of the surface of the single fiber is 5 nrn~25 nm, the average unevenness Ra is 2 nm~6 nm, and the long diameter and shortness of the fiber cross section of the single fiber The ratio of the diameter (long diameter/short diameter) is 1 (8) to 1 〇 1 ', and the weight per unit length of the single fiber of the carbon fiber is in the range of 〇3〇mg/m~〇〇42 mg/m, The wire strength is 5900 MPa or more, and the strand elastic modulus measured by the ASTM method is 25 〇 GPa to 38 〇 GPa, and the knot strength is 900 N/mm 2 or more. 2. A carbon fiber bundle comprising a single fiber of carbon fiber as described below, that is, a surface of the single fiber having no uneven structure extending in the longitudinal direction of the fiber and having a length of 0.6 μm or more, and having a length of 3〇〇 Below nm, the height difference (Rp_v) between the highest part and the lowest part of the surface of the single fiber is 5 nm to 25 nm, the average unevenness Ra is 2 nm to 6 nm, and the long diameter and shortness of the fiber cross section of the single fiber The ratio of the diameter (long diameter/short diameter) is 1 (8) to 1.01, and the weight per unit length of the single fiber of the carbon fiber is in the range of 0.030 mg/m to 0.042 mg/m, and the strand strength is 59 〇〇Mpa. The above-mentioned strand elastic modulus measured by the ASTM method is 25 〇Gpa~38〇GPa, and the knot strength is 9〇〇N/mm2 or more. 3. If you apply for a patent scope! The carbon fiber bundle according to Item 2, wherein a hemispherical defect having a predetermined range is formed on the surface of the single fiber by a laser, and the fiber is subjected to the hemispherical defect by a tensile test 42 201107547 jio / υμιϋ Π :: ' ί The fiber's breaking strength and hemispherical defects have a large energy of 3 GN/m or more: (4) Destructive surface = (2Ε/π〇1/2X (breaking surface energy) 1/2(1) number, Γ half The ultrasonic value of the carbon fiber bundle is 4 inflammatory. For example, the ipa value obtained by electrochemical measurement (cyclic voltammetry) of carbon H as described in any of items 1 to 3 of the patent range is hereinafter. 〇〇5 |^A/Cm2 η i 2 μ /em 'Using X-ray photoelectron light, the amount of oxygen-containing functional groups (01S/C1S) on the surface of the above carbon fiber is in the range of 0.05 to 0.15. The carbon fiber bundle according to any one of the items 1 to 4, wherein the amount of Si measured by 1CP atomic emission spectrometry is 200 ppm or less. 6. In the scope of the patent application, items 5 to 5 Any of the carbons as described in the present invention, which are tightened by the following sizing agent composition, The polymerization agent composition comprises: (a) an amino phthalate modified epoxy resin having a transbasic epoxy resin, (b) a polyhydroxy compound, and (c) a diisocyanate containing an aromatic ring; Or comprising: a mixture of the urethane-modified epoxy resin and (a) an epoxy resin having a trans-base group and/or (d) an epoxy resin having no hydroxyl group. The carbon fiber bundle, wherein the (a) epoxy group having a warp group is a bisphenol type epoxy resin. 8. The carbon fiber bundle according to claim 6 or claim 7, 43 201107547 wherein b) the polyhydroxy compound is any one of an alkylene oxide adduct of bisphenol A, an aliphatic poly-based compound, and a poly-based mono-reactive compound or a mixture of such compounds. The carbon fiber bundle according to any one of the items 6 to 8, wherein the (c) aromatic ring-containing diisocyanate is toluene diisocyanate or xylene diisocyanate. 10. The scope of claims 1 to 9 A carbon fiber bundle according to any one of the preceding claims, wherein The metal containing the test metal, soil test metal, zinc, iron and metal shall be less than 50 ppm in total. 44 201107547 IV. Designation of representative drawings: (1) The representative representative of the case is: None (2) A brief description of the symbol of the representative figure: No. 5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: No 201107547 For the younger brother is Chinese_书___ .........*-3⁄43⁄4 Modified bowing period of 10 years to use 4$ j -7- '.t method to obtain excellent composite materials and ',---------------一一一^ Enlarge, fiber age ^ A \ , due to the graphite crystal size of the surface < 90 of the composite material. ^ ^, the adhesion of the matrix tree wax is reduced, resulting in complex ii =. N;. (4) Material 9°. Nw or more. The intensity of the upper ship section is more 〇, and the better the step is to make 2 or more. The fiber outside the direction of the axis of the axis; ^ can easily see the direction perpendicular to the fiber axis by quasi-isotropic lamination to form a material, forming a complex I, ', in addition to the fiber axis direction of the stretching, compression In addition to stress, also the stress in the direction of the dimension axis. In addition, in the case where phase, interstitial, and/or k are applied as in the impact test, the state of stress generated inside the material is very complex and heterogeneous, and the strength (4) which is not in the direction of the fiber axis is important. Therefore, if the knot strength is less than 900 NW, the quasi-isotropic material cannot find sufficient mechanical properties. On the other hand, when the knot strength exceeds 3 〇〇〇 running melon 2, it is necessary to reduce the orientation of the fiber axis direction. Therefore, the knot strength should be 3_N/mm2 or less. Further, the carbon fiber bundle of the present invention preferably has a breaking surface generating energy of 30 N/m or more. For the energy generated by the damage surface, a hemispherical defect having a predetermined range can be formed on the surface of the single fiber by using a laser, and the fiber is broken at the hemispherical defect portion by a tensile test, and the fiber is broken. The strength and the size of the hemispherical defect are obtained by using the following Griffith 11 201107547 IE date: 99 years, 1 month, 4th, and the 99118900 Chinese manual without the slash correction stomach (Griffith) formula (1). σ= (2Ε/π〇1/2χ (breaking surface energy) 1/2 (1), medium σ is the breaking strength, £ is the ultrasonic _ number of the fiber and the beam, and C is a hemispherical defect. The size of the damaged surface generates energy = N / m or more 'further better than 32] S [ / m or more ... ... one of which, the energy generated by the damage is an indicator of the difficulty of carbon fiber damage, indicating the matrix strength (matrix stmigth). Carbon _ ^ _跪: Bad ^ Material's tensile strength is affected by the defect point. When the rhyme dimension has the same defect, the higher the matrix strength of the carbon fiber, the higher the damage strength. Then, the critical fiber length of the fruit, which is the index of stress transmission, becomes shorter. Thus, the intensity of =卞! reflects the strength at a shorter length, and the strength of the matrix is two important indicators. On the other hand, when the surface is destroyed, the energy generated by the bad surface should be 利用 中 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用 利用a large degree of engraving (ethehing) of carbon fiber door 1 aniGn) The rabbit fiber that enters the interlayer of the graphite crystal layer has a large presence of oxygen-containing green, and the occupational fishing, the galvanic layer 201107547 Revision date: October 4, 1999 Japanese Patent No. 99118900 No-line correction page Amino phthalate-modified epoxy resin which is a reaction product of an aromatic ring-containing diisocyanate (hereinafter referred to as component (c)). The reaction filament obtained by introducing the excess amount of the component (a) required for the reaction into the reaction system, that is, the amino acid formic acid, is a mixture of the epoxy resin and the unreacted material of the component (4). A mixture of an amine phthalic acid-modified epoxy resin disc (4) 〇❹ it obtained by using an epoxy resin having no warp group (hereinafter referred to as a component (4) as appropriate) is exemplified. Epoxy resin, U) as a mixture of (d) components. The interaction of the epoxy group with the oxygen-containing functional group of the cotton surface makes it possible to firmly adhere the sizing agent component to the surface of the carbon fiber. And containing aromatic rings The isocyanic acid produced by the diisocyanate vinegar can be made to interact with each other by using the amino carboxylic acid phase :: the amine group having the polarity of the carbon fiber surface and the epoxy group having the polar group and the above Amino carboxylic acid ketone bond 砉 :: 目 酉曰 酉曰 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 裱 : Because of: two: ̄ 酬 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂 树脂Epoxy resin, acid glycidyl vinegar epoxy tree 201107547 Revision date: October 4, 1999 is the 99118900 Chinese manual without a slash correction page. It is especially suitable for double age epoxy resin. These compounds have strong interaction with the surface of the fiber due to the aromatic ring. Further, in view of heat resistance and straightness, an epoxy resin having an aromatic ring is often used as a matrix resin for a composite material, and the above compound is excellent in compatibility with the substrates. Two or more epoxy resins may be used as the component (a). Further, (b) "different is an epoxidized calcined adduct, a fatty sulphate compound, a multi-secret single compound, and θ is composed of a mixture of these compounds. It is the fact that these compounds make the above-mentioned aminocarboxylic acid soft from the epoxy resin which is intended to be modified. And body two: two: Yuan Oxygen Boiler 4 Moule ~ 14 Moer Additives, Double Fracture A Ring = Mo: Additives, A's Epoxy Institute, Ethylene Acetate & Lose & Silk Addition, red diol (saki her kiss (10), two methyl (5) methyl. 丨 罐 )), dimethopropionate and so on. Further, the component (4) is not particularly limited. Particularly preferred is toluene diisocyanate or - diisocy minus). m - a resin with more than two lobe based on Uylene 异. The reason is that the interaction between the surface and the epoxy group is strong, and the compounds are strong on the surface. There is no _ φ) for the surface of the county base, and ® A ^ j is used for the chlorohydrin group. _ Epoxy Reversible: Resin, Bisphenol A Type Epoxy Resin, Novolac:: ( dicydopenta^ene type ) ^ 22 201107547 ΕΠ 叹 2 2 玢66^1113: 矾Μ3Ι_ Dust 戡_1«佧黯006ΟΟΙ 166 派赖〇' >ο, ΙΡΚ than car example 8 take Λ 3 5 '丨1 Ί ^ -6.5% inch 1.005 Τ S S 500 500 500 500 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 City: --5.2% m inch 1 1.005 ί_ 0.035 6050 m 窆ON o 0.09 ο 2980 Comparative Example 7 Ulj>i 5 1 City: 跻7.2% cn inch 1.005 0.033 5400 m ro o in 00 CN vn o 0.09 ο 2500 Example 10 Take JJ 5 1 City: Fast 6.5% Inch 1.005 0.034 5900 vo m cn 〇 ON 0.15 L^O—9 ο 2950 Comparative Example 6 Flameproofing elongation 10.5% CN Inch 1.005 0.033 5300 omo Bu 0.15 0.09 < ο 2550 Example 9 8.0% CO Inch 1.005 0.034 6000 00 m ON 0.15 0.09 ^"4 ο 3000 Carbon fiber bundle is different from the change condition of Example 2 Item height difference (Rp-V) (nm) Ra (nm) Profile length/short Single fiber per unit area Weight (mg/m) Strand strength (MPa) Strand elastic modulus (GPa) Nodule strength (N/mm2) Destruction energy Quantity (N/m) iPa (μΑ/cm2) 01S/C1S Si amount (ppm) Metal content (ppm) 1. Want to take 4 〇 ^ ° 201107547 Revision date: October 4, 1999 is the 99118900 Chinese manual Scribing correction page (Example 12 and Example 13) A carbon fiber bundle was obtained in the same manner as in Example 5 except that the surface treatment conditions were changed. The evaluation results are shown in Table 5. Further, in any of the examples, the surface of the single fiber has no surface uneven structure extending in the longitudinal direction of the fiber and having a length of 〇 6 μΠ1 or more, and a fine-sized uneven structure having a length of 300 nm or less has been confirmed. (Example 14 to Example 16) A carbon fiber bundle was obtained in the same manner as in Example 5 except that the type and the amount of the sizing agent were changed. The evaluation results are shown in Table 5. In any of the examples, the surface of the single fiber has no surface uneven structure extending in the longitudinal direction of the fiber and having a length of 〇·6 μm or more, and a small-sized uneven structure having a length of less than . The Φ external watering agent 2, the uppering agent 3, and the sputum agent 4 are prepared as follows. (Sizing agent 2) ^ 乍 manufactured by Japan Epoxy Resin Co., Ltd. as the main agent. Γ! 2 "8" 8G rereading, Asahi Chemical Co., Ltd. as an emulsifier is limited to prepare an aqueous dispersion.重 U , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .6 Mo's shape (first day H Mo' and then added 2,6-di (second butyl) 4_mercaptobenzene (酣) Q 5g as a reaction catalyst 38 201107547 [Industrial Applicability] The money beam of the present invention can be used as an aircraft material. Structure of a moving body or the like Although the present invention has been disclosed in a preferred embodiment, the cup button outer feather LL bucket - soil However, it is not intended to be used in the context of the invention, and may be modified and retouched without departing from the spirit of the invention, and thus the scope of the invention is defined by the scope of the appended claims. Quasi. ', sigh [Simplified description of the schema] Benefit [main component symbol description] Yi t Ο 41 201107547 Revision period: 99 years l 〇 4 爲第號中文專利範___ 七、申請專利範圍: 種碳纖維束’其包含如下所述的碳纖維的單纖 么P ;該單齡的表面無沿纖維的長度方向延伸且長度 ㈣./Γ以上的表面凹凸結構,而具有單纖維表面的最高 部與最低部的高低差(Κρ·ν)為5 _〜25 nm,平均凹凸 二為2nm〜6 _的凹凸結構,且單纖維的纖維剖面的 徑的比(長徑/短徑)㈣〜1.01,並且,該碳 纖維的早齡的每單位長度的重量在G細mg/m〜0042For the Chinese patent model No. ___ VII, the scope of application for patent: a carbon fiber bundle 'containing a single fiber of the carbon fiber as described below; the surface of the single age does not extend along the length of the fiber and the length (four). / Γ The surface uneven structure, and the height difference (Κρ·ν) of the highest part and the lowest part of the surface of the single fiber is 5 _~25 nm, the average unevenness 2 is a concave-convex structure of 2 nm 〜6 _, and the fiber cross-section of the single fiber The ratio of the diameter (long diameter/short diameter) (four) to 1.01, and the weight per unit length of the carbon fiber in the early age is in the fine G/m~0042 mg/m的範圍内,股線強度為5900 MPa以上,以ASTM法 =則定⑽線彈性模數為,咖〜獨哪,結節強度為 900 N/mm 以上。 ^種喊維束,其包含如下所述的雜維的單纖 於該單纖維的表面,無沿纖維的長度方向延伸且長In the range of mg/m, the strand strength is 5900 MPa or more, and the ASTM method = then the (10) line elastic modulus is used, and the nodule strength is 900 N/mm or more. A type of shunting bundle comprising a heterogeneous single fiber as described below on the surface of the monofilament, without extending along the length of the fiber and long Ϊ為6 μΠ1以上的凹凸結構’而具有長度為300 rnn以下, 早纖維表_最高部與最低部的高低差(Rp_v)為5nm〜 25 nm ’平均凹凸度以為2 nm〜6 _的凹凸結構,且單 ^維的纖維剖面的長徑與短徑的比(長徑/短徑)為1.00 1.01並且’邊碳纖維的單纖維的每單位長度的重量在 0.030 mg/m〜〇.042 mg/m的範圍内,股線強度為 5900 MPa 以上,以AS™法所測定的股線彈性模數為250 GPa〜380 GPa,結節強度為900 N/mm2以上。 甘士3.如申5月專利㈣第1項或第2項所述之碳纖維束, ”中利用雷射於上述單_表面形成具錢定範圍的大小 的半球狀缺陷,藉由拉伸試驗使上述纖維於上述半球狀缺 42 201107547 爲第991腦0號中文專利範圍無劃線修正本 修正日期·· 99年10月4日 陷部位斷,,由上述纖維的斷裂強度及半球狀缺陷的大 J利用葛里菲斯(Griffith)式⑴所求出的破壞表面 ' 產生能量為30 N/m以上: σ= (2E/?tC) 1/2Χ (破壞表面產生能量)1/2 ⑴ 其中,σ為斷裂強度,Ε為碳纖維束的超音波彈性模 , 數,C為半球狀缺陷的大小。 4.如申叫專利範圍第i項或第2項所述之碳纖維束, ❹=利用電化學測定法(循環伏安法)所求出的ipa值為 + μΑ/=〜〇·25 _/cm2 ’利帛χ射線光電子光譜法所求 、述碳纖維表面的含氧官能基量(〇ls/cls)在〇〇5 〜〇·15的範圍内。 1 申請專利範圍第1項或第2項所述之碳纖維束, ' ^pm以下。1〇>原子發射光譜分析法所測定的Si量為200 其經6下miin1 2項所^纖維束’ 環;多歸化合物及⑷含有芳香 或者包人反應產物即胺基甲㈣旨改f環氧樹脂; 7 , 不,、有匕基的%氧樹脂的混合物。 (a)具有1 圍第6項所述之碳纖維束,其中上述 • 8:、f二皇3樹脂為雙酚型環氧樹脂。 ' (b)多_灵^匕入^圍第6項所述之碳纖維束,其中上述 )夕祕化合物為雙驗A的環氧燒加成物、脂肪族多 43 201107547 爲第99118900號中文專利範圍無劃線修正本修正日期:99年10月4日 經基化合物、及多羧基單叛基化合物中的任一種或者該些 化合物的混合物。 9. 如申請專利範圍第6項所述之碳纖維束,其中上述 (c)含有芳香環的二異氰酸酯為曱苯二異氰酸酯或二曱笨 二異氰酸酯。 10. 如申請專利範圍第1項或第2項所述之碳纖維 束,其中包含鹼金屬、驗土金屬、鋅、鐵、銘的金屬以總 量計所含的量為50 ppm以下。Ϊ is a concavo-convex structure of 6 μΠ1 or more and has a length of 300 rnn or less, and the height difference (Rp_v) of the highest and the lowest part of the early fiber table is 5 nm to 25 nm. The average unevenness is 2 nm to 6 _. And the ratio of the long diameter to the short diameter (long diameter/minor diameter) of the single-dimensional fiber section is 1.00 1.01 and the weight per unit length of the single fiber of the edge carbon fiber is 0.030 mg/m~〇.042 mg/ In the range of m, the strand strength is 5900 MPa or more, the strand elastic modulus measured by the ASTM method is 250 GPa to 380 GPa, and the knot strength is 900 N/mm 2 or more. Gans 3. For example, the carbon fiber bundle described in the first or second item of the May patent (4) uses a laser to form a hemispherical defect of a size in the range of a single surface, by a tensile test. The above-mentioned fibers are in the above-mentioned hemispherical shape. 42 201107547 is the 119th brain No. 0 Chinese patent range without a slash correction. The correction date is on October 4, 1999, and the rupture strength and hemispherical defects of the above fibers are broken. The large J uses the fracture surface obtained by Griffith's formula (1) to generate energy of 30 N/m or more: σ = (2E/?tC) 1/2Χ (breaking surface generates energy) 1/2 (1) , σ is the breaking strength, Ε is the ultrasonic elastic modulus of the carbon fiber bundle, and C is the size of the hemispherical defect. 4. If the carbon fiber bundle is referred to in item i or item 2 of the patent scope, ❹=use electrification The ipa value obtained by the method of measurement (cyclic voltammetry) is + μΑ/=~〇·25 _/cm2 'The amount of oxygen-containing functional group on the surface of the carbon fiber is determined by the ray-ray photoelectron spectroscopy method (〇ls /cls) is in the range of 〇〇5 to 〇·15. 1 Apply for the carbon described in item 1 or 2 of the patent scope. Dimensional beam, ' ^pm below. 1〇> Atomic emission spectrometry determined the amount of Si is 200. After 6 times miin1 2 items of fiber bundle 'ring; multi-homed compound and (4) contains aromatic or inclusion reaction product That is, the amine group (4) is intended to modify the epoxy resin; 7 , a mixture of the oxy group-containing oxy-resin. (a) The carbon fiber bundle of the ninth item, wherein the above-mentioned 8:, f 2 The Huang 3 resin is a bisphenol type epoxy resin. ' (b) The carbon fiber bundle described in Item 6 of the above, wherein the above-mentioned compound is a double-test A epoxy burnt adduct, Aliphatic poly 43 201107547 is the Chinese patent scope of No. 99118900. There is no slash correction. This revision date: any one of the base compound and the polycarboxy mono-rebel compound on October 4, 1999 or a mixture of these compounds. The carbon fiber bundle according to claim 6, wherein the (c) aromatic ring-containing diisocyanate is toluene diisocyanate or diterpene diisocyanate. 10. According to claim 1 or 2 Carbon fiber bundle, which comprises alkali metal, soil test metal, zinc, iron Ming the total amount of metal contained in the gauge is less than 50 ppm. 4444
TW099118900A 2009-06-10 2010-06-10 Carbon fiber strand exhibiting excellent mechanical property TWI396786B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009139336 2009-06-10

Publications (2)

Publication Number Publication Date
TW201107547A true TW201107547A (en) 2011-03-01
TWI396786B TWI396786B (en) 2013-05-21

Family

ID=43308936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099118900A TWI396786B (en) 2009-06-10 2010-06-10 Carbon fiber strand exhibiting excellent mechanical property

Country Status (10)

Country Link
US (2) US20120088103A1 (en)
EP (1) EP2441866B1 (en)
JP (1) JP4908636B2 (en)
KR (1) KR101340225B1 (en)
CN (1) CN102459728B (en)
BR (1) BRPI1012996A2 (en)
CA (1) CA2764662C (en)
ES (1) ES2534650T3 (en)
TW (1) TWI396786B (en)
WO (1) WO2010143681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633227B (en) * 2016-11-16 2018-08-21 日商三菱瓦斯化學股份有限公司 Manufacturing method of molded article

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708965B2 (en) * 2009-06-10 2015-04-30 三菱レイヨン株式会社 Acrylonitrile-based precursor fiber bundle and method for producing carbon fiber bundle
JP2012122164A (en) * 2010-12-08 2012-06-28 Mitsubishi Rayon Co Ltd Carbon fiber excellent in exhibiting mechanical characteristics
JP5592906B2 (en) 2012-02-08 2014-09-17 トヨタ自動車株式会社 GAS DIFFUSION LAYER FOR FUEL CELL AND FUEL CELL, AND METHOD FOR PRODUCING GAS DIFFUSION LAYER FOR FUEL CELL
EP2824235B1 (en) * 2012-03-09 2018-08-01 Teijin Limited Carbon fiber bundle and process for producing same
KR20140129311A (en) 2012-03-29 2014-11-06 미쯔비시 레이온 가부시끼가이샤 Carbon fibre thermoplastic resin prepreg, carbon fibre composite material and manufacturing method
TWI620843B (en) * 2012-04-18 2018-04-11 三菱化學股份有限公司 Carbon fiber bundle,method of manufacturing carbon fiber bundle and resin composite material
JP2013249562A (en) * 2012-06-01 2013-12-12 Dic Corp Fiber sizing agent and bundled glass fiber and carbon fiber
CN103790019B (en) * 2012-10-26 2016-05-04 中国石油化工股份有限公司 A kind of epoxy radicals carbon fiber sizing agent emulsion and preparation and application
CN103788322B (en) * 2012-10-26 2016-09-14 中国石油化工股份有限公司 The bisphenol A epoxide resin compositions modified by polyurethane structural and preparation thereof and application
CN103790020B (en) * 2012-10-26 2016-06-29 中国石油化工股份有限公司 Epoxy resin sizing agent emulsion that polyurethane structural is modified and preparation thereof and application
CN103772638B (en) * 2012-10-26 2016-05-04 中国石油化工股份有限公司 By bisphenol F epoxy resin composition and preparation and the application of polyurethane structural modification
DE102013206983A1 (en) * 2013-04-18 2014-10-23 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for producing unidirectional carbon fiber fabrics
JP6105427B2 (en) * 2013-07-26 2017-03-29 東邦テナックス株式会社 Carbon fiber
WO2015016199A1 (en) * 2013-07-30 2015-02-05 東レ株式会社 Carbon fiber bundle and flameproofed fiber bundle
JP5766864B2 (en) * 2013-10-24 2015-08-19 三菱エンジニアリングプラスチックス株式会社 Resin composition, resin molded product, and method for producing resin molded product
JP5900663B2 (en) * 2013-12-03 2016-04-06 三菱レイヨン株式会社 Fiber reinforced resin laminate
JP2015161056A (en) * 2014-02-28 2015-09-07 三菱レイヨン株式会社 Acrylonitrile precursor fiber bundle for carbon fiber and production method thereof
US10792194B2 (en) 2014-08-26 2020-10-06 Curt G. Joa, Inc. Apparatus and methods for securing elastic to a carrier web
EP3204542A4 (en) * 2014-10-08 2018-04-11 Georgia Tech Research Corporation High strength and high modulus carbon fibers
CN104390996A (en) * 2014-11-12 2015-03-04 吉林大学 Test analysis method for elementary composition and structure on carbon fiber surface
JP5963063B2 (en) * 2014-12-15 2016-08-03 三菱レイヨン株式会社 Carbon fiber bundle
ES2880376T3 (en) * 2014-12-29 2021-11-24 Cytec Ind Inc Densification of polyacrylonitrile fibers
US10082166B2 (en) * 2015-03-12 2018-09-25 Ut-Battelle, Llc Laser nanostructured surface preparation for joining materials
JP2016196711A (en) * 2015-04-03 2016-11-24 Dic株式会社 Fiber sizing agent and sized glass fiber and carbon fiber
DE102015111491A1 (en) * 2015-07-15 2017-01-19 Schott Ag Method and device for separating glass or glass ceramic parts
JP5999462B2 (en) * 2016-03-07 2016-09-28 三菱レイヨン株式会社 Carbon fiber with excellent mechanical properties
CN109154109B (en) * 2016-05-24 2021-08-17 东丽株式会社 Carbon fiber bundle and method for producing same
JP6229209B2 (en) * 2016-06-23 2017-11-15 三菱ケミカル株式会社 Carbon fiber bundle
US10787755B2 (en) * 2017-06-05 2020-09-29 The Boeing Company Method and apparatus for manufacturing carbon fibers
WO2019026724A1 (en) * 2017-07-31 2019-02-07 東レ株式会社 Sheet molding compound, prepreg, and fiber-reinforced composite material
CN110997264A (en) * 2017-08-01 2020-04-10 沙特基础工业全球技术有限公司 Method and system for producing unidirectional carbon fiber tape and method for surface treating carbon fibers
CN110997763A (en) * 2017-08-01 2020-04-10 沙特基础工业全球技术有限公司 Carbon fiber tow with improved processability
JP6477821B2 (en) * 2017-10-11 2019-03-06 三菱ケミカル株式会社 Carbon fiber bundle
CN111263834B (en) * 2017-10-31 2021-02-12 东丽株式会社 Carbon fiber bundle and method for producing same
CN109957969B (en) * 2017-12-25 2022-01-07 比亚迪股份有限公司 Carbon fiber sizing agent, preparation method thereof, reinforced carbon fiber and carbon fiber composite material
CA3088550A1 (en) 2018-01-29 2019-08-01 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product
EP3553132A1 (en) * 2018-04-13 2019-10-16 SABIC Global Technologies B.V. Fiber reinforced composition with good impact performance and flame retardance
JP6729665B2 (en) * 2018-11-16 2020-07-22 三菱ケミカル株式会社 Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
US11925538B2 (en) 2019-01-07 2024-03-12 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product
US11173072B2 (en) 2019-09-05 2021-11-16 Curt G. Joa, Inc. Curved elastic with entrapment
TWI767796B (en) * 2021-07-22 2022-06-11 臺灣塑膠工業股份有限公司 Manufacturing method of carbon fiber and carbon fiber composite bottle
US20230087214A1 (en) * 2021-09-22 2023-03-23 Hao-Chia WU Method for splitting carbon fiber tow

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187625A (en) * 1983-04-01 1984-10-24 Asahi Chem Ind Co Ltd Preparation of fiber having thin and sharp tip
US4603157A (en) * 1984-05-23 1986-07-29 Mitsubishi Rayon Co., Ltd. Intermediate for composite material
DE3684317D1 (en) * 1985-12-19 1992-04-16 Mitsubishi Rayon Co CARBON FIBER FOR COMPOSITE MATERIALS.
GB8727410D0 (en) * 1987-11-23 1987-12-23 Ici Plc Inorganic oxide fibres
JPH04240220A (en) * 1991-01-21 1992-08-27 Mitsubishi Rayon Co Ltd Precursor for carbon fiber
TW214575B (en) * 1991-02-25 1993-10-11 Toray Industries
IT1252680B (en) 1991-11-13 1995-06-23 Sviluppo Settori Impiego Srl PROCEDURE FOR THE PRODUCTION OF POLYMERIC MATERIAL BODIES INCLUDING A CORE OF EXPANDED MATERIAL ENCLOSED BY AN EXTERNAL SHELL, AND A DEVICE USED IN SUCH PROCEDURE
US5436275A (en) 1993-11-30 1995-07-25 Japan Exlan Company Limited Porous acrylonitrile polymer fiber
US5858486A (en) * 1995-02-27 1999-01-12 Sgl Carbon Composites, Inc. High purity carbon/carbon composite useful as a crucible susceptor
JPH11124744A (en) 1997-10-20 1999-05-11 Toray Ind Inc Production of carbon fiber precursor fiber and carbon fiber
JP3737969B2 (en) * 2000-05-09 2006-01-25 三菱レイヨン株式会社 Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same
TW591157B (en) * 2001-05-25 2004-06-11 Mitsubishi Rayon Co Sizing agent for carbon fiber, its water dispersing solution, carbon fiber with sizing handling, sheet matter with using the carbon fiber and carbon fiber reinforced composite
JP4278970B2 (en) * 2002-12-16 2009-06-17 三菱レイヨン株式会社 Carbon fiber bundle and chopped carbon fiber bundle for fiber reinforced resin and carbon fiber reinforced resin composition exhibiting high mechanical properties and low electrical conductivity
JP2004211240A (en) * 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP2005133274A (en) * 2003-10-10 2005-05-26 Mitsubishi Rayon Co Ltd Carbon fiber and composite material containing the same
JP4543922B2 (en) * 2004-12-27 2010-09-15 東レ株式会社 Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame-resistant fiber, carbon fiber and production method thereof
EP1837424B1 (en) * 2004-12-27 2011-02-02 Toray Industries, Inc. Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
EP1961847B1 (en) * 2005-12-13 2018-02-07 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP2009046770A (en) * 2007-08-16 2009-03-05 Mitsubishi Rayon Co Ltd Acrylonitrile-based precursor fiber for carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633227B (en) * 2016-11-16 2018-08-21 日商三菱瓦斯化學股份有限公司 Manufacturing method of molded article

Also Published As

Publication number Publication date
CN102459728A (en) 2012-05-16
CA2764662A1 (en) 2010-12-16
JP4908636B2 (en) 2012-04-04
KR101340225B1 (en) 2013-12-10
BRPI1012996A2 (en) 2018-01-16
ES2534650T3 (en) 2015-04-27
US20120088103A1 (en) 2012-04-12
WO2010143681A1 (en) 2010-12-16
KR20120024954A (en) 2012-03-14
CN102459728B (en) 2013-09-18
CA2764662C (en) 2013-07-30
US20190040549A1 (en) 2019-02-07
TWI396786B (en) 2013-05-21
JPWO2010143681A1 (en) 2012-11-29
EP2441866A1 (en) 2012-04-18
EP2441866A4 (en) 2013-05-22
EP2441866B1 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
TW201107547A (en) Carbon fiber strand exhibiting excellent mechanical property
JP5708965B2 (en) Acrylonitrile-based precursor fiber bundle and method for producing carbon fiber bundle
TWI504501B (en) Carbon fiber prepreg and method of making same, carbon fiber reinforced composite material
KR101902087B1 (en) Carbon fibre thermoplastic resin prepreg, carbon fibre composite material and manufacturing method
CN104937150B (en) It is coated with sizing agent carbon fiber bundle, the manufacture method of carbon fiber bundle and prepreg
JP5963063B2 (en) Carbon fiber bundle
JP6175936B2 (en) Carbon fiber coated with sizing agent and production method thereof, carbon fiber reinforced composite material
JP2010057462A (en) Prepreg for fishing rod tip, fiber-reinforced composite material for fishing rod tip, solid body for fishing rod tip, tubular body for fishing rod tip, and fishing rod tip
JP7414000B2 (en) Fiber-reinforced resin prepreg, molded body, fiber-reinforced thermoplastic resin prepreg
JP2012122164A (en) Carbon fiber excellent in exhibiting mechanical characteristics
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP6477821B2 (en) Carbon fiber bundle
JP6229209B2 (en) Carbon fiber bundle
WO2019208040A1 (en) Epoxy resin composition for carbon-fiber-reinforced composite materials, prepreg, and carbon-fiber-reinforced composite material
JP5999462B2 (en) Carbon fiber with excellent mechanical properties
JP6590040B2 (en) Carbon fiber with excellent mechanical properties
JP2006183173A (en) Carbon fiber and method for producing the same
JP5821052B2 (en) Composite material laminate
JP5821051B2 (en) Composite material laminate
JP2016194191A (en) Carbon fiber excellent in mechanical property appearance
JP2023010616A (en) Carbon fiber bundle containing sizing agent and manufacturing method thereof
JP2016125173A (en) Carbon fiber bundle and manufacturing method therefor