JP2016125173A - Carbon fiber bundle and manufacturing method therefor - Google Patents

Carbon fiber bundle and manufacturing method therefor Download PDF

Info

Publication number
JP2016125173A
JP2016125173A JP2015001280A JP2015001280A JP2016125173A JP 2016125173 A JP2016125173 A JP 2016125173A JP 2015001280 A JP2015001280 A JP 2015001280A JP 2015001280 A JP2015001280 A JP 2015001280A JP 2016125173 A JP2016125173 A JP 2016125173A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundle
gpa
flameproofing
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015001280A
Other languages
Japanese (ja)
Inventor
喬昭 山下
Takaaki Yamashita
喬昭 山下
孝幸 四方
Takayuki Shikata
孝幸 四方
文彦 田中
Fumihiko Tanaka
文彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015001280A priority Critical patent/JP2016125173A/en
Publication of JP2016125173A publication Critical patent/JP2016125173A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber bundle having excellent tensile strength, tensile elasticity and shear elasticity even with large average single fiber fineness and high hydrophilicity and a manufacturing method therefor.SOLUTION: There is provided a carbon fiber bundle satisfying σ/GPa≥10.6-0.75d/μm (1) and E/GPa≥420-25d/μm (2), where d (μm) is average single fiber diameter of single fibers and E (GPa) is resin impregnated strand tensile elasticity of the carbon fiber and σ (GPa) is resin impregnated strand tensile strength in the carbon fiber consisting of a plurality of single fibers and having nitrogen content of 8 to 18 mass% at d=7.5 to 9.0 μm.SELECTED DRAWING: None

Description

本発明は、優れた引張強度・引張弾性率・剪断弾性率を満足し、水との親和性に優れる、毛羽の少ない高品位な高性能炭素繊維束、ならびにそれを製造する方法に関するものである。   The present invention relates to a high-quality, high-performance carbon fiber bundle that satisfies excellent tensile strength, tensile modulus, and shear modulus, has excellent affinity with water, and has less fluff, and a method for producing the same. .

炭素繊維は、環境問題の高まりから複合材料の強化繊維として、例えば、水を製造工程で使用するタイヤコードなど、強化繊維それ自体に親水性が求められる用途への展開、加えて、更なる高性能・高品位化が強く求められている。炭素繊維の力学特性を高めることは圧力容器などの部材軽量化に寄与するため、引張強度、引張弾性率、剪断弾性率といった力学特性をバランス良く高めることと、それと同時に最終部材を低コスト化する観点から毛羽などで生産性を低下させることのない炭素繊維の品位の高さが重要な課題となっている。   Carbon fiber is used as a reinforcing fiber for composite materials due to increasing environmental problems.For example, tire fibers that use water in the manufacturing process are used for applications where the reinforcing fiber itself requires hydrophilicity. There is a strong demand for higher performance and quality. Increasing the mechanical properties of carbon fiber contributes to reducing the weight of components such as pressure vessels. Therefore, the mechanical properties such as tensile strength, tensile modulus, and shear modulus are improved in a balanced manner, and at the same time, the cost of the final component is reduced. From the point of view, the high quality of the carbon fiber that does not reduce the productivity due to fuzz and the like is an important issue.

炭素繊維のような脆性材料においては、グリフィスの式に従って欠陥サイズを小さくするか、破壊靱性値を高めることで、例えば引張強度を高めることができる。特に破壊靱性値の改善は、欠陥サイズの状態に依存せずに高引張強度化が可能である点で有効である(特許文献1)。   In a brittle material such as carbon fiber, for example, the tensile strength can be increased by reducing the defect size according to the Griffith equation or increasing the fracture toughness value. In particular, the improvement of the fracture toughness value is effective in that a high tensile strength can be achieved without depending on the state of the defect size (Patent Document 1).

引張強度、引張弾性率といった力学特性をバランス良く高めるためには、単繊維断面に存在する内外構造差を解消することが重要となる。これまで単繊維断面の内外構造差を抑制しつつ力学特性を向上させる方法として、例えば、耐炎化において液相中で耐炎化を行うことにより耐炎化時間を短時間化し、炭素繊維の高性能化をする方法が提案されている(特許文献2)。また、特許文献3の提案では、耐炎化工程の温度制御領域を2〜3にし、耐炎化時間に対する比重増加率を制御することにより、耐炎化繊維の内外構造差制御を行っている。特許文献4の提案では、耐炎化炉内の酸素雰囲気、および耐炎化温度を耐炎化繊維比重に合わせて制御をしており、酸素供給不足による内外構造差の抑制を行っている。   In order to enhance the mechanical properties such as tensile strength and tensile modulus in a well-balanced manner, it is important to eliminate the difference between the inner and outer structures existing in the cross section of the single fiber. As a method to improve the mechanical properties while suppressing the difference between the inner and outer structures of the single fiber cross-section so far, for example, by making flame resistance in the liquid phase in flame resistance, the flame resistance time is shortened and the performance of the carbon fiber is improved. The method of doing is proposed (patent document 2). Moreover, in the proposal of patent document 3, the temperature control area | region of a flameproofing process is made into 2-3, and the internal / external structure difference control of a flameproofing fiber is performed by controlling the specific gravity increase rate with respect to flameproofing time. In the proposal of Patent Document 4, the oxygen atmosphere in the flameproofing furnace and the flameproofing temperature are controlled in accordance with the specific gravity of the flameproofing fiber, and the difference between the internal and external structures due to insufficient oxygen supply is suppressed.

また、圧縮強度を向上させるためにねじり弾性率を高める手法が知られている(特許文献5〜7)。   Moreover, in order to improve compressive strength, the method of raising torsional elastic modulus is known (patent documents 5-7).

また、飽和水分率が高く、水への親和性が高いために、水を使用する製造工程を経て得られるもの、例えば、レゾルシンホルマリンラテックスを付着させたタイヤコード、紙、セメント強化材を製造するにあたり好適に使用される炭素繊維について、炭素化温度を低下させることで炭素繊維の引張弾性率を低減する技術が知られている(特許文献8および9)。   Also, because it has a high saturated moisture content and a high affinity for water, it manufactures tire cords, papers, and cement reinforcements that have been obtained through a manufacturing process using water, such as resorcin formalin latex. As for carbon fibers that are preferably used in this case, techniques for reducing the tensile elastic modulus of carbon fibers by lowering the carbonization temperature are known (Patent Documents 8 and 9).

国際公開第97/45576号パンフレットWO97 / 45576 pamphlet 特開2004−300600号公報JP 2004-300600 A 特開2006−283225号公報JP 2006-283225 A 特開平10−251923号公報JP-A-10-251923 特開平09−170170号公報JP 09-170170 A 特開平05−214614号公報JP 05-214614 A 特開2013−202803号公報JP 2013-202803 A 特開昭61−119717号公報Japanese Patent Laid-Open No. 61-119717 特開昭62−265329号公報JP-A 62-265329

全般的に炭素繊維の高性能化を達成しようとする場合には、平均単繊維繊度を小さくすることで達成を試みることが多いが、平均単繊維繊度を小さくすると毛羽などの問題で品位が低下しやすくなる。一方で、平均単繊維繊度を大きくすると耐炎化工程で内外構造差が生じ、性能が著しく低下することが知られている。平均単繊維繊度を大きくしながら高性能化を達成するため、従来技術の中でも内外構造差を小さくしようとする技術はあったが、内外構造差を小さくしようとして他の共重合成分を入れることにより、毛羽が多く発生し、品位のみならず性能の低下も引き起こしていた。引張強度向上を目的とした特許文献1の提案では、シリコーン油剤・単繊維繊度・内外構造差を制御しているが、実施例においては共重合成分を3.5〜5.7mol%と多く入れているため、引張弾性率が235〜270GPaと低い水準のままであり、これを高めようと炭素化温度を上げると引張強度が大きく低下し、剪断弾性率も低い水準であった。   In general, when trying to achieve higher performance of carbon fiber, attempts are often made by reducing the average single fiber fineness, but if the average single fiber fineness is reduced, the quality deteriorates due to problems such as fluff. It becomes easy to do. On the other hand, it is known that when the average single fiber fineness is increased, an internal / external structure difference is generated in the flameproofing process, and the performance is significantly reduced. In order to achieve high performance while increasing the average single fiber fineness, there was a technology that tried to reduce the difference between the inner and outer structures in the prior art, but by adding other copolymer components to reduce the difference between the inner and outer structures A lot of fluff was generated, and not only the quality but also the performance was lowered. In the proposal of Patent Document 1 for the purpose of improving the tensile strength, the silicone oil agent, the single fiber fineness, and the inner / outer structure difference are controlled, but in the examples, a large amount of the copolymer component is added as 3.5 to 5.7 mol%. Therefore, the tensile elastic modulus remained at a low level of 235 to 270 GPa, and when the carbonization temperature was raised to increase this, the tensile strength was greatly reduced, and the shear elastic modulus was also at a low level.

内外構造差抑制を検討した特許文献2の提案では、液相耐炎化技術により、大幅な耐炎化時間の短縮と高い引張強度と引張弾性率を達成しているが、耐炎化繊維断面の内外構造差は改善されておらず、剪断弾性率も改善には至っていない。また、特許文献3の提案では、内外構造差の定量的な制御には及んでおらず、弾性率ポテンシャルの発現は限定的なものであった。特許文献4の提案では、酸素供給による内外構造抑制効果は小さいものであり、引張強度、引張弾性率ともに大きな改善には至らなかった。このように、特許文献2〜4の提案では、内外構造差を制御しようとしているものの、定量的な制御に及んでおらず、引張弾性率を改善できた例はあるものの、引張強度、剪断弾性率を同時に高い水準で満たすものではなかった。   In the proposal of Patent Document 2 which studied the suppression of the difference between the inner and outer structures, the liquid phase flameproofing technology has achieved a significant reduction in flameproofing time and high tensile strength and tensile modulus. The difference has not improved, and the shear modulus has not improved. In addition, the proposal of Patent Document 3 does not reach the quantitative control of the internal / external structural difference, and the expression of the elastic modulus potential is limited. In the proposal of Patent Document 4, the effect of suppressing the inner and outer structures by supplying oxygen is small, and neither the tensile strength nor the tensile elastic modulus has been greatly improved. As described above, the proposals in Patent Documents 2 to 4 attempt to control the difference between the inner and outer structures, but have not reached the quantitative control, and although there are examples in which the tensile elastic modulus can be improved, the tensile strength, the shear elasticity The rate was not high at the same time.

また、特許文献5〜7の提案においては、剪断弾性率の一種としてねじり弾性率を規定し、これを高めることによって、剪断弾性率向上を試みている。特許文献5または6では、ねじり弾性率を高めるためにイオン注入や電子線照射を用いており、共有結合を切断して再配列をさせているために格子欠陥を含むためか剪断弾性率は満足するものとはならない。その上、実施例においては、比較的直径の小さい炭素繊維を処理しており、表面からのイオン注入距離が短いため、直径が大きいものに対しては効果が限定的となる。特許文献7では、通常よりも単繊維繊度が大きくても通常品同等の炭素繊維物性を発現することを記載しており、剪断弾性率が4GPa以上と規定しているが、全く満足できるレベルにはない。   In the proposals of Patent Documents 5 to 7, the torsional elastic modulus is defined as one type of shearing elastic modulus, and attempts are made to improve the shearing elastic modulus by increasing this. In Patent Document 5 or 6, ion implantation or electron beam irradiation is used to increase the torsional elastic modulus, and the shear elastic modulus is satisfactory because it includes lattice defects because the covalent bonds are cut and rearranged. It is not something to do. In addition, in the examples, carbon fibers having a relatively small diameter are treated, and the ion implantation distance from the surface is short, so that the effect is limited for those having a large diameter. Patent Document 7 describes that even if the single fiber fineness is larger than usual, the carbon fiber physical properties equivalent to those of a normal product are expressed, and the shear elastic modulus is specified to be 4 GPa or more, but at a completely satisfactory level. There is no.

このように、引張弾性率、剪断弾性率をそれぞれ単独で向上させる技術は見られるものの、引張弾性率および剪断弾性率を高い水準で満足し、かつ低コスト化を達成している技術は見られない。   As described above, although techniques for improving the tensile modulus and shear modulus independently can be seen, there are techniques for satisfying the tensile modulus and shear modulus at a high level and achieving low costs. Absent.

また、特許文献8および9の提案では、炭素繊維の飽和水分率が高く、水への親和性が高いものの、内外構造差が解消されていないため、引張弾性率が180〜200GPaと低く、一般的に市販されている炭素繊維の代替とはなりえない。   Further, in the proposals of Patent Documents 8 and 9, the saturated moisture content of carbon fiber is high and the affinity for water is high, but the difference in internal and external structures is not eliminated, so that the tensile elastic modulus is as low as 180 to 200 GPa. Cannot be a substitute for commercially available carbon fiber.

本発明は、このような状況に鑑み、平均単繊維繊度が大きくても引張強度、引張弾性率、剪断弾性率が高く、水との親和性に優れた炭素繊維束とその製造方法を提供することを目的とする。   In view of such circumstances, the present invention provides a carbon fiber bundle having a high tensile strength, tensile elastic modulus and shear elastic modulus even when the average single fiber fineness is large, and a method for producing the same. For the purpose.

上記の目的を達成するため、本発明の炭素繊維束は、次のいずれかの構成を有するものである。
[1]複数本の単繊維から構成されている炭素繊維束において、単繊維の平均単繊維径をd(μm)とし、炭素繊維束の樹脂含浸ストランド引張弾性率をE(GPa)、樹脂含浸ストランド引張強度をσ(GPa)としたとき、
σ/GPa≧10.6−0.75d/μm ・・・(1)
E/GPa≧420−25d/μm ・・・(2)
を満足し、dが7.5〜9.0μmで、窒素含有率が8〜18質量%である炭素繊維束。
[2]剪断弾性率が13〜20GPaである[1]に記載の炭素繊維束。
[3]炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みが3.2μm以上である[1]または[2]に記載の炭素繊維束。
In order to achieve the above object, the carbon fiber bundle of the present invention has one of the following configurations.
[1] In a carbon fiber bundle composed of a plurality of single fibers, the average single fiber diameter of the single fibers is d (μm), the resin-impregnated strand tensile elastic modulus of the carbon fiber bundle is E (GPa), and the resin impregnation When the strand tensile strength is σ (GPa),
σ / GPa ≧ 10.6−0.75 d / μm (1)
E / GPa ≧ 420−25d / μm (2)
, A carbon fiber bundle having d of 7.5 to 9.0 μm and a nitrogen content of 8 to 18% by mass.
[2] The carbon fiber bundle according to [1], wherein the shear elastic modulus is 13 to 20 GPa.
[3] The carbon fiber bundle according to [1] or [2], wherein the blackened thickness of the outer peripheral portion of the cross section perpendicular to the fiber axis direction of the carbon fiber single fiber is 3.2 μm or more.

また、本発明の炭素繊維束の製造方法は、次のいずれかの構成を有するものである。
[4]ポリアクリロニトリルを99.1〜99.99質量%、共重合成分を0.01質量%以上含むポリアクリロニトリル系前駆体繊維束を耐炎化処理して、次いで炭素化処理する炭素繊維束の製造方法であって、共重合成分はそのホモポリマーのTgが50〜250℃であり、耐炎化処理においては、耐炎化処理時間が30分の時点でのニトリル消費率が10〜20%、耐炎化処理終了時点でのニトリル消費率が50〜95%、炭素化処理温度が800〜1150℃である炭素繊維束の製造方法。
[5]ニトリル消費率が20%から60%に至る間の耐炎化処理時間を6〜25分とする[4]に記載の炭素繊維束の製造方法。
Moreover, the manufacturing method of the carbon fiber bundle of this invention has either of the following structures.
[4] A carbon fiber bundle in which a polyacrylonitrile-based precursor fiber bundle containing 99.1 to 99.99% by mass of polyacrylonitrile and 0.01% by mass or more of a copolymer component is flameproofed and then carbonized. In the production method, the copolymer component has a Tg of the homopolymer of 50 to 250 ° C., and the flame resistance treatment has a nitrile consumption rate of 10 to 20% when the flame resistance treatment time is 30 minutes, and flame resistance. A method for producing a carbon fiber bundle having a nitrile consumption rate of 50 to 95% and a carbonization temperature of 800 to 1150 ° C. at the end of the carbonization treatment.
[5] The method for producing a carbon fiber bundle according to [4], wherein the flameproofing treatment time during which the nitrile consumption rate is 20% to 60% is 6 to 25 minutes.

本発明によれば、単繊維断面における内外構造差が効果的に抑制されることにより優れた引張弾性率を発現するほか、炭素化処理温度が低いことにより水との親和性が高い炭素繊維束が得られる。このため、平均単繊維繊度を高めることが容易であり、高品位で、高性能であるほか、水を使用する樹脂系をマトリックス樹脂として用いる場合に、高性能な炭素繊維束の製造方法を提供することができる。   According to the present invention, a carbon fiber bundle exhibiting excellent tensile elastic modulus by effectively suppressing a difference in inner and outer structures in a single fiber cross section and having high affinity with water due to low carbonization treatment temperature. Is obtained. For this reason, it is easy to increase the average single fiber fineness, provides high quality, high performance, and provides a method for producing high-performance carbon fiber bundles when water-based resin systems are used as matrix resins. can do.

本発明の炭素繊維束の構成と、本発明を実施するのに好適な形態に関して以下に詳述する。   The configuration of the carbon fiber bundle of the present invention and the preferred form for carrying out the present invention will be described in detail below.

本発明の炭素繊維束は、窒素含有率が8〜18質量%であり、好ましくは10〜16質量%であり、より好ましくは12〜15質量%である。8質量%未満である場合は、水との親和性が不足し、18質量%を超える場合は、引張弾性率を満足し得ない。水との親和性の高い本発明の炭素繊維束は、複合材料とする際に水を用いる樹脂系で高い物性を示す。窒素含有率は元素分析試験により測定することができ、炭素化温度、炭素化時間により制御することが可能である。炭素化温度は、概ね1000℃付近に制御することが好ましい。   The carbon fiber bundle of the present invention has a nitrogen content of 8 to 18% by mass, preferably 10 to 16% by mass, and more preferably 12 to 15% by mass. When it is less than 8% by mass, the affinity with water is insufficient, and when it exceeds 18% by mass, the tensile elastic modulus cannot be satisfied. The carbon fiber bundle of the present invention having a high affinity with water exhibits a high physical property in a resin system using water when making a composite material. The nitrogen content can be measured by an elemental analysis test and can be controlled by the carbonization temperature and the carbonization time. It is preferable to control the carbonization temperature to approximately 1000 ° C.

本発明の炭素繊維束を構成する単繊維の平均単繊維径d(μm)は、7.5〜9.0μmであり、好ましくは7.5〜8.5μmであり、さらに好ましくは8.0〜8.5μmである。かかる平均単繊維径が小さいほど樹脂含浸ストランド引張弾性率(以下、単に「引張弾性率」と称する場合がある。)・剪断弾性率が向上傾向となる一方で、平均単繊維径が7.5μm以上の場合、毛羽なく高品位となり、9.0μm以下の場合、炭素繊維束のしなやかさを維持できて複合材料とする際の毛羽発生を少なくできる。平均単繊維径は、炭素繊維束の単位長さ当たりの質量と比重と単繊維本数から計算できる。また、平均単繊維径は、ポリアクリロニトリル系前駆体繊維の単繊維繊度を調整することによって制御できる。   The average single fiber diameter d (μm) of the single fibers constituting the carbon fiber bundle of the present invention is 7.5 to 9.0 μm, preferably 7.5 to 8.5 μm, and more preferably 8.0. -8.5 [mu] m. The smaller the average single fiber diameter, the more the resin-impregnated strand tensile elastic modulus (hereinafter sometimes simply referred to as “tensile elastic modulus”) / shear elastic modulus tends to improve, while the average single fiber diameter is 7.5 μm. In the above case, it becomes high quality without fluff, and when it is 9.0 μm or less, the flexibility of the carbon fiber bundle can be maintained, and the occurrence of fluff when making a composite material can be reduced. The average single fiber diameter can be calculated from the mass per unit length of the carbon fiber bundle, the specific gravity, and the number of single fibers. The average single fiber diameter can be controlled by adjusting the single fiber fineness of the polyacrylonitrile-based precursor fiber.

本発明では、炭素繊維束の樹脂含浸ストランド引張強度(以後、単に引張強度とも記載する。)をσ(GPa)としたとき、下式
σ/GPa≧10.6−0.75d/μm ・・・(1)
を満足する。一般的に炭素繊維の平均単繊維径が大きいほど、低い炭素繊維内層物性の影響で炭素繊維全体の物性も低下してくる。本発明の炭素繊維における単繊維は内外構造差が抑制されているため、同一平均単繊維径において、炭素繊維の引張強度と引張弾性率と剪断弾性率を高い水準で満足する。本発明の式(1)においては、「σ/GPa≧11.0−0.75d/μm」が好ましく、「σ/GPa≧11.5−0.75d/μm」がより好ましい。本発明の炭素繊維の引張強度は高ければ複合材料引張強度を満足でき、特に上限はないが経験的には8GPa程度である。測定方法は後述するJISで規定される樹脂含浸ストランド引張試験法により測定を行う。本発明の引張強度を満足させるためには、内外構造差を抑制しつつ、剪断弾性率を高めることがポイントである。かかる炭素繊維束の製造方法について詳細は後述する。
In the present invention, when the tensile strength of the resin-impregnated strand of the carbon fiber bundle (hereinafter, also simply referred to as tensile strength) is σ (GPa), the following formula σ / GPa ≧ 10.6−0.75 d / μm.・ (1)
Satisfied. Generally, the larger the average single fiber diameter of the carbon fiber, the lower the physical properties of the entire carbon fiber due to the lower physical properties of the carbon fiber inner layer. Since the single fiber in the carbon fiber of the present invention has a suppressed difference in internal and external structures, the carbon fiber has a high level of tensile strength, tensile modulus, and shear modulus at the same average single fiber diameter. In the formula (1) of the present invention, “σ / GPa ≧ 11.0-0.75 d / μm” is preferable, and “σ / GPa ≧ 11.5-0.75 d / μm” is more preferable. If the tensile strength of the carbon fiber of the present invention is high, the composite material tensile strength can be satisfied, and although there is no particular upper limit, it is about 8 GPa empirically. The measurement is performed by a resin impregnated strand tensile test method specified by JIS described later. In order to satisfy the tensile strength of the present invention, it is important to increase the shear elastic modulus while suppressing the difference between the inner and outer structures. Details of the method for producing such a carbon fiber bundle will be described later.

本発明の炭素繊維束は、樹脂含浸ストランド引張弾性率をE(GPa)としたとき、下式(2)を満足する。
E/GPa≧420−25d/μm ・・・(2)。
The carbon fiber bundle of the present invention satisfies the following formula (2) when the resin-impregnated strand tensile elastic modulus is E (GPa).
E / GPa ≧ 420−25 d / μm (2).

炭素繊維束の引張弾性率においては、簡単な複合則が成り立つため、低物性の内層の割合が大きいほど線形に引張弾性率は低下する。そのため、平均単繊維径が大きいほど、引張弾性率の発現は限定的になりがちである。本発明の炭素繊維束においては、内外構造差が大きく抑制されているため、引張弾性率の低下が少なく、高い水準で引張弾性率を発現する。本発明の式(2)においては、「E/GPa≧420−20d/μm」が好ましく、より好ましくは「E/GPa≧420−15d/μm」である。本発明の炭素繊維束の引張弾性率は、内外構造差が抑制されているため、平均単繊維繊度が大きい領域でも発現しやすい。測定方法は、後述するJISで規定される樹脂含浸ストランド引張試験法により測定を行う。かかる炭素繊維束の製造方法について詳細は後述する。   In the tensile elastic modulus of the carbon fiber bundle, since a simple compound rule is established, the tensile elastic modulus decreases linearly as the proportion of the inner layer having low physical properties increases. Therefore, as the average single fiber diameter is larger, the expression of the tensile elastic modulus tends to be limited. In the carbon fiber bundle of the present invention, since the difference between the inner and outer structures is largely suppressed, the tensile elastic modulus is hardly lowered and the tensile elastic modulus is expressed at a high level. In the formula (2) of the present invention, “E / GPa ≧ 420−20 d / μm” is preferable, and “E / GPa ≧ 420−15 d / μm” is more preferable. The tensile elastic modulus of the carbon fiber bundle of the present invention is easily expressed even in a region where the average single fiber fineness is large because the difference between the inner and outer structures is suppressed. The measurement is performed by a resin impregnated strand tensile test method defined by JIS described later. Details of the method for producing such a carbon fiber bundle will be described later.

本発明の炭素繊維束は剪断弾性率が好ましくは13〜20GPaであり、より好ましくは14〜20GPaであり、さらに好ましくは15〜20GPaである。炭素化温度を1000℃付近から高めていくと剪断弾性率は高まりやすいが、水との親和性が低下してしまうため、剪断弾性率のレベルの低い状態でなるべく剪断弾性率を高めることが必要である。高い水との親和性を維持しつつ、かかる高い剪断弾性率を達成するには、内外構造差が抑制されていることが必要であり、後述する黒化厚みの割合が大きいことが必要となる。炭素繊維束の剪断弾性率の評価手法は種々あるが、本発明では樹脂含浸ストランドを引張試験して得た応力−歪み曲線から計算する手法を用いる。すなわち、かかる応力σ(GPa)−歪みε(−) 曲線を応力0〜3GPaの範囲で式(2)にフィッティングするように係数を求め、そして、配向関数<cosψ>を用いて剪断弾性率gと初期引張弾性率Eを算出する。 The carbon fiber bundle of the present invention preferably has a shear elastic modulus of 13 to 20 GPa, more preferably 14 to 20 GPa, and further preferably 15 to 20 GPa. If the carbonization temperature is increased from around 1000 ° C, the shear modulus tends to increase, but the affinity with water decreases, so it is necessary to increase the shear modulus as much as possible in a state where the shear modulus is low. It is. In order to achieve such a high shear modulus while maintaining a high affinity with water, it is necessary that the difference between the inner and outer structures is suppressed, and the ratio of the blackening thickness described later is required to be large. . Although there are various methods for evaluating the shear modulus of the carbon fiber bundle, in the present invention, a method of calculating from a stress-strain curve obtained by performing a tensile test on the resin-impregnated strand is used. That is, a coefficient is obtained so that the stress σ (GPa) −strain ε (−) curve is fitted to the equation (2) in the range of stress 0 to 3 GPa, and shear elasticity is obtained using the orientation function <cos 2 ψ>. to calculate the rate g and the initial tensile modulus of elasticity E 0.

Figure 2016125173
Figure 2016125173

この式は、Carbon, 1991, 29, 1267-79の式(5)とCarbon, 1994, 32, 615-619の式(9)から本発明者らが導出したものである。この式からも分かるように、引張応力がかかるほど引張歪みの変化が鈍く(引張弾性率が増加し)、圧縮応力がかかるほど圧縮歪みの変化が大きくなる(圧縮弾性率が減少する)傾向にあり、剪断弾性率との関係で言えば、剪断弾性率が大きいほど引張応力に対する引張弾性率増加が弱くなる。言い換えれば、剪断弾性率を高めながら、引張弾性率を同時に高めることは難しいということがいえる。剪断弾性率を制御するためには、内外構造差を解消するとともにポリアクリロニトリル系共重合体と耐炎化工程の条件設定による耐炎化構造制御が重要となる。炭素繊維の剪断弾性率および引張弾性率を制御する炭素繊維束の具体的な製造方法については後述する。   This equation is derived by the present inventors from Equation (5) of Carbon, 1991, 29, 1267-79 and Equation (9) of Carbon, 1994, 32, 615-619. As can be seen from this equation, the tensile strain changes more slowly as the tensile stress is applied (the tensile elastic modulus increases), and the compressive strain changes larger (the compressive elastic modulus decreases) as the compressive stress is applied. In terms of the relationship with the shear modulus, the greater the shear modulus, the weaker the increase in tensile modulus against tensile stress. In other words, it can be said that it is difficult to simultaneously increase the tensile elastic modulus while increasing the shear elastic modulus. In order to control the shear modulus, it is important to control the flameproof structure by eliminating the difference between the internal and external structures and setting the conditions for the polyacrylonitrile copolymer and the flameproofing process. A specific method for producing a carbon fiber bundle that controls the shear modulus and tensile modulus of carbon fiber will be described later.

本発明の炭素繊維束は、炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みが好ましくは3.2μm以上であり、より好ましくは3.3μm以上である。炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みは結晶部分の配向度が高く、引張弾性率が高い領域である。この黒化厚みを厚くできるほど、平均単繊維繊度を大きくした場合に内外構造差を抑制しやすく、引張弾性率・剪断弾性率ともに発現しやすい。   In the carbon fiber bundle of the present invention, the blackened thickness of the outer peripheral portion of the cross section perpendicular to the fiber axis direction of the carbon fiber single fiber is preferably 3.2 μm or more, more preferably 3.3 μm or more. The blackened thickness of the outer peripheral portion of the cross section perpendicular to the fiber axis direction of the single carbon fiber is a region where the degree of orientation of the crystal portion is high and the tensile modulus is high. The thicker the blackened thickness, the more easily the difference between the inner and outer structures is increased when the average single fiber fineness is increased, and both the tensile modulus and shear modulus are more likely to be exhibited.

引張弾性率に関しては、炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚み部分の断面全体に対する面積比率(%)で定義される外層比率に比例して引張弾性率が発現する。外層比率を制御することにより、繊度の異なる炭素繊維束であっても引張弾性率を制御することが可能であり、本発明の炭素繊維束においては、外層比率が90面積%以上であることにより、内外構造差が大きく抑制できることから引張弾性率を効率的に発現できるほか、引張強度低減を防ぐことができるため、好ましい。また、外層比率は黒化厚みの厚さと、単繊維の直径とによって制御可能であり、外層比率が100面積%となる場合には内外構造差が存在しない。   Regarding the tensile modulus, the tensile modulus is expressed in proportion to the outer layer ratio defined by the area ratio (%) of the blackened thickness portion of the outer peripheral portion of the cross section perpendicular to the fiber axis direction of the carbon fiber monofilament to the entire cross section. To do. By controlling the outer layer ratio, it is possible to control the tensile modulus even for carbon fiber bundles having different finenesses. In the carbon fiber bundle of the present invention, the outer layer ratio is 90 area% or more. Since the difference between the inner and outer structures can be largely suppressed, it is preferable because the tensile elastic modulus can be efficiently expressed and the reduction of the tensile strength can be prevented. Further, the outer layer ratio can be controlled by the thickness of the blackened thickness and the diameter of the single fiber. When the outer layer ratio is 100% by area, there is no difference between the inner and outer structures.

剪断弾性率に関しては、あるところまでは黒化厚みに比例して剪断弾性率が増大する傾向にあり、3.2μmもあれば10GPa以上の十分高い剪断弾性率を満足し、直径d(μm)が8〜9μmの繊度の大きい炭素繊維であっても、引張弾性率を損なうことなく、高剪断弾性率を達成することが可能である。かかる炭素繊維単繊維の黒化厚みは、耐炎化反応の進行度を反応時間に対して制御することにより達成可能であり、また黒化厚みは炭素繊維束を樹脂中に包埋し、繊維軸方向と垂直な横断面を研磨し、該断面を光学顕微鏡により観察することにより、測定可能である(詳細は後述する)。   Regarding the shear modulus, up to a certain point, the shear modulus tends to increase in proportion to the blackening thickness, and if it is 3.2 μm, a sufficiently high shear modulus of 10 GPa or more is satisfied, and the diameter d (μm) Even if the carbon fiber has a fineness of 8 to 9 μm, a high shear modulus can be achieved without impairing the tensile modulus. The blackened thickness of such a carbon fiber monofilament can be achieved by controlling the progress of the flameproofing reaction with respect to the reaction time, and the blackened thickness is obtained by embedding a carbon fiber bundle in a resin and It can be measured by polishing a cross section perpendicular to the direction and observing the cross section with an optical microscope (details will be described later).

次に、本発明の炭素繊維束の製造方法について説明する。   Next, the manufacturing method of the carbon fiber bundle of this invention is demonstrated.

本発明の炭素繊維束を製造する方法において、ポリアクリロニトリル系前駆体繊維束を耐炎化、好ましくは予備炭素化、炭素化して、炭素繊維束を得る。本発明において、耐炎化とは空気中の酸素雰囲気濃度±5質量%の酸素雰囲気濃度で200〜400℃で熱処理することをいい、その好ましい実施態様は後述するニトリル消費率と耐炎化処理時間に依存する。   In the method for producing a carbon fiber bundle of the present invention, the polyacrylonitrile-based precursor fiber bundle is flame-resistant, preferably pre-carbonized and carbonized to obtain a carbon fiber bundle. In the present invention, flame resistance refers to heat treatment at an oxygen atmosphere concentration of ± 5 mass% in air at 200 to 400 ° C., and preferred embodiments thereof are the nitrile consumption rate and flame resistance treatment time described below. Dependent.

まず、耐炎化処理の際にポリアクリロニトリル系前駆体繊維束を、耐炎化処理時間が30分の時点でニトリル消費率が10〜20%となるように耐炎化処理を行った後に、ニトリル消費率を50〜95%となるところまで耐炎化処理する。本発明でニトリル消費率とは、後述するように耐炎化処理をした際、反応により消費されるポリアクリロニトリル系前駆体繊維中のニトリル基量の割合のことであり、耐炎化反応の進行率と考えることができる。ニトリル基の初期の消費を抑制しつつ、酸素拡散速度を高めることで、酸素を単繊維断面中心部まで通して耐炎化反応を起こすことが可能である。耐炎化温度領域は十分高温であるため、酸素拡散量は耐炎化時間によって制御することが可能であり、30分あれば断面内に内外構造差のない耐炎化繊維束が得られる。30分未満である場合には耐炎化処理中の酸素透過が不十分となりやすく、断面に内外構造差が観測されやすい。かかる時間、ニトリル消費を抑制しつつ、耐炎化反応を進行させる必要がある。そのため、耐炎化処理時間が30分時点でのニトリル消費率が10〜20%であれば、未反応のニトリル基が80〜90%と多く残存しているため、十分な酸素透過を保ちながらニトリル消費を促すことが可能である。ニトリル消費率が20%を超える場合にはニトリル基の消費挙動に対して酸素透過が間に合わず、耐炎化繊維断面に内外構造差が観測されやすくなる。ニトリル消費率が10%未満である場合には、この後の耐炎化構造変化に伴う繊維長手方向の収縮に耐え切れず、毛羽が発生しやすい。かかるニトリル消費率は、赤外スペクトル測定によるニトリル基由来のピーク強度の相対値により評価することが可能であり、詳細な測定方法については後述する。   First, the polyacrylonitrile-based precursor fiber bundle during the flameproofing treatment is subjected to flameproofing treatment so that the nitrile consumption rate becomes 10 to 20% when the flameproofing treatment time is 30 minutes, and then the nitrile consumption rate Is flame-proofed to 50-95%. The nitrile consumption rate in the present invention is the ratio of the amount of nitrile groups in the polyacrylonitrile-based precursor fiber consumed by the reaction when flameproofing treatment is performed as described later, and the rate of progress of the flameproofing reaction and Can think. By suppressing the initial consumption of the nitrile group and increasing the oxygen diffusion rate, it is possible to cause the flameproofing reaction by passing oxygen to the center of the cross section of the single fiber. Since the flameproofing temperature region is sufficiently high, the amount of oxygen diffusion can be controlled by the flameproofing time, and if it is 30 minutes, a flameproofed fiber bundle having no difference in internal and external structures in the cross section can be obtained. If it is less than 30 minutes, oxygen permeation during the flameproofing treatment tends to be insufficient, and a difference in internal and external structure is easily observed in the cross section. It is necessary to advance the flameproofing reaction while suppressing nitrile consumption for such time. Therefore, if the nitrile consumption rate is 10 to 20% when the flameproofing treatment time is 30 minutes, a large amount of unreacted nitrile groups remain as 80 to 90%, so that the nitrile is maintained while maintaining sufficient oxygen permeation. It is possible to encourage consumption. When the nitrile consumption rate exceeds 20%, oxygen permeation is not in time for the consumption behavior of the nitrile group, and a difference in structure between the inside and outside of the flame-resistant fiber is easily observed. When the nitrile consumption rate is less than 10%, it cannot withstand the contraction in the longitudinal direction of the fiber accompanying the subsequent change in the flameproof structure, and fluff is likely to occur. Such a nitrile consumption rate can be evaluated by a relative value of peak intensity derived from a nitrile group by infrared spectrum measurement, and a detailed measurement method will be described later.

そして、30分の時点でニトリル消費率が10〜20%となるように耐炎化処理を行った後、ニトリル消費率を50〜95%、好ましくは60〜95%、より好ましくは75〜95%となるように耐炎化処理する。炭素化前の耐炎化繊維束のニトリル消費率をかかる範囲とすることにより、炭素化収率を高めることが可能となる。炭素化温度が低い条件でニトリル消費率が50%以上であれば、炭素化収率として55%以上が得られるが、ニトリル消費率が95%を超えると、耐炎化が進行しすぎており、脆く剪断弾性率の低い炭素繊維となる。   And after performing a flameproofing process so that a nitrile consumption rate will be 10 to 20% at the time of 30 minutes, a nitrile consumption rate is 50 to 95%, preferably 60 to 95%, more preferably 75 to 95%. Flame-resistant treatment is performed so that By setting the nitrile consumption rate of the flameproof fiber bundle before carbonization within such a range, the carbonization yield can be increased. If the nitrile consumption rate is 50% or more under a low carbonization temperature, a carbonization yield of 55% or more can be obtained, but if the nitrile consumption rate exceeds 95%, flame resistance has progressed too much, The carbon fiber is brittle and has a low shear modulus.

本発明の炭素繊維束の製造する方法において、ポリアクリロニトリル系前駆体繊維束を耐炎化処理する工程において、ニトリル消費率が20%から60%に至る間の耐炎化処理時間を6〜25分として、耐炎化処理を行うことが好ましい。耐炎化処理の誘導期間後の耐炎化処理時間をかかる範囲にすることによって、耐炎化反応中の分解反応量を抑止できるため、高剪断弾性率である炭素繊維を得やすい。かかる耐炎化処理時間は25分以内であれば、通常の耐炎化条件に対して剪断弾性率が高まりやすく、6分未満である場合は、耐炎化進行度を制御することが困難であり、内外構造差につながりやすい。ニトリル消費率は耐炎化繊維束の赤外スペクトル測定により測定される。耐炎化処理量、耐炎化処理時間については、後述する共重合成分の種類と量に応じて耐炎化処理温度を調整して制御することが可能である。   In the method for producing the carbon fiber bundle of the present invention, in the step of flameproofing the polyacrylonitrile-based precursor fiber bundle, the flameproofing treatment time is 6 to 25 minutes while the nitrile consumption rate reaches 20% to 60%. It is preferable to perform flameproofing treatment. By setting the flameproofing treatment time after the induction period of the flameproofing treatment to such a range, the amount of decomposition reaction during the flameproofing reaction can be suppressed, so that carbon fibers having a high shear modulus can be easily obtained. If the flameproofing treatment time is within 25 minutes, the shear elastic modulus is likely to increase with respect to the normal flameproofing conditions, and if it is less than 6 minutes, it is difficult to control the progress of flameproofing. Easy to lead to structural differences. The nitrile consumption rate is measured by measuring the infrared spectrum of the flame-resistant fiber bundle. The flameproofing treatment amount and the flameproofing treatment time can be controlled by adjusting the flameproofing treatment temperature in accordance with the type and amount of the copolymer component described later.

本発明において、ポリアクリロニトリル系前駆体繊維束の製造に供する原料としてはポリアクリロニトリル系重合体を用いる。なお、本発明においてポリアクリロニトリル系重合体としては、重合体末端の重合開始剤や連鎖移動剤成分を除いたアクリロニトリル共重合体のうちの99.1〜99.99質量%はアクリロニトリルを重合してなるものを用いる。かかる割合は、より好ましくは99.5〜99.99質量%、さらに好ましくは99.9〜99.99質量%である。アクリロニトリル共重合体に占めるアクリロニトリルモノマーの割合が100質量%に近いほど内外構造差がなくなり物性を高めることができるが、99.99質量%を超えると、共重合成分による耐炎化促進効果を得られず、剪断弾性率が低下する。また、99.1質量%未満であると、満足できる内外構造差と剪断弾性率の両立ができない。   In the present invention, a polyacrylonitrile-based polymer is used as a raw material for the production of a polyacrylonitrile-based precursor fiber bundle. In the present invention, as the polyacrylonitrile-based polymer, 99.1 to 99.99% by mass of the acrylonitrile copolymer excluding the polymerization initiator and chain transfer agent component at the end of the polymer is obtained by polymerizing acrylonitrile. Use what The ratio is more preferably 99.5 to 99.99% by mass, and still more preferably 99.9 to 99.99% by mass. The closer the proportion of the acrylonitrile monomer in the acrylonitrile copolymer is to 100% by mass, the more the internal and external structural differences disappear and the physical properties can be improved. However, if it exceeds 99.99% by mass, the effect of promoting flame resistance by the copolymer component can be obtained. However, the shear modulus decreases. Further, if it is less than 99.1% by mass, satisfactory internal / external structure difference and shear elastic modulus cannot be achieved.

また、本発明の炭素繊維束を製造する方法において、ポリアクリロニトリル系前駆体繊維束の製造に供するポリアクリロニトリル共重合体中の0.01質量%以上含まれる共重合成分において、その共重合成分を単独でポリマーとしたときのガラス転移温度(ポリマーTg)を50〜250℃、好ましくは100〜200℃、より好ましくは120〜160℃とする。かかるポリマーTgをかかる範囲とすることにより、製糸性とポリアクリロニトリル系前駆体繊維束への酸素拡散性を損なわずに耐炎化処理を行うことが可能である。このため、250℃を超える場合には、ポリアクリロニトリルとの融点の差が大きくなるため、スチーム延伸時に毛羽を発生しやすくなり、引張強度が低下する。一方、かかるポリマーTgが50℃を下回る場合には、ポリアクリロニトリル系前駆体繊維の結晶性が高くなるため、炭素化した際に剪断弾性率が低下しやすくなる。   Further, in the method for producing a carbon fiber bundle of the present invention, in the copolymer component contained in 0.01% by mass or more in the polyacrylonitrile copolymer used for producing the polyacrylonitrile-based precursor fiber bundle, the copolymer component is The glass transition temperature (polymer Tg) when the polymer is used alone is 50 to 250 ° C, preferably 100 to 200 ° C, more preferably 120 to 160 ° C. By setting the polymer Tg in such a range, it is possible to perform flameproofing treatment without impairing the spinning property and the oxygen diffusibility into the polyacrylonitrile-based precursor fiber bundle. For this reason, when it exceeds 250 degreeC, since the difference of melting | fusing point with a polyacrylonitrile becomes large, it becomes easy to generate | occur | produce a fluff at the time of steam extending | stretching, and tensile strength falls. On the other hand, when the polymer Tg is lower than 50 ° C., the crystallinity of the polyacrylonitrile-based precursor fiber is increased, and thus the shear elastic modulus is easily lowered when carbonized.

かかるポリマーTgは、DSC測定によるポリマーの比容量−温度曲線の変曲点として観測可能であり、商品のカタログに記載されている場合も多いのでその値を使っても良い。ポリマーTgを制御するためには、分子の主鎖および側鎖骨格を調整すれば良いが、(メタ)アクリレートにおいてアルキル鎖を含むものはTgが低くなる傾向がある。   Such a polymer Tg can be observed as an inflection point of the specific capacity-temperature curve of the polymer by DSC measurement, and since it is often described in a product catalog, the value may be used. In order to control the polymer Tg, the main chain and side chain skeleton of the molecule may be adjusted, but those containing an alkyl chain in (meth) acrylate tend to have a low Tg.

ポリマーTgが50℃未満であり、共重合成分として適さないモノマーの例としてはメタクリル酸イソブチル(ポリマーTg:48℃)、アクリル酸nブチル(ポリマーTg:−54℃)、ジエチルアクリルアミド(ポリマーTg:45℃)アクリル酸エチル(ポリマーTg:−22℃)、メタクリル酸ラウリル(ポリマーTg:−65℃)、メタクリル酸イソデシル(ポリマーTg:−41℃)、アクリル酸イソブチル(ポリマーTg:−24℃)、アクリル酸2−ヒドロキシエチル(ポリマーTg:−15℃)、アクリル酸2−ヒドロキシプロピル(ポリマーTg:−7℃)、ポリエチレングリコールモノメタクリレート(ポリマーTg:−62℃、)アクリル酸ラウリル(ポリマーTg:−3℃)、メタクリル酸n−ブチル(ポリマーTg:20℃)などが挙げられる。   Examples of monomers having a polymer Tg of less than 50 ° C. and not suitable as a copolymerization component include isobutyl methacrylate (polymer Tg: 48 ° C.), n-butyl acrylate (polymer Tg: −54 ° C.), diethyl acrylamide (polymer Tg: 45 ° C) ethyl acrylate (polymer Tg: -22 ° C), lauryl methacrylate (polymer Tg: -65 ° C), isodecyl methacrylate (polymer Tg: -41 ° C), isobutyl acrylate (polymer Tg: -24 ° C) 2-hydroxyethyl acrylate (polymer Tg: −15 ° C.), 2-hydroxypropyl acrylate (polymer Tg: −7 ° C.), polyethylene glycol monomethacrylate (polymer Tg: −62 ° C.), lauryl acrylate (polymer Tg) : -3 ° C), n-butyl methacrylate (polymer) g: 20 ℃) and the like.

一方で、ポリマーTgが50〜250℃であり、共重合成分として適するモノマーの例としては、イタコン酸(ポリマーTg:130℃)、メタクリル酸テトラヒドロフルフリル(ポリマーTg:60℃)、メタクリル酸t−ブチル(ポリマーTg:107℃)、4−ビニルピリジン(ポリマーTg:142℃)、2−ビニルピリジン(ポリマーTg:112℃)、アクリロイルモルホリン(ポリマーTg:145℃)、メタクリル酸イソボルニル(ポリマーTg:180℃)、メタクリル酸(ポリマーTg:228℃)、アクリルアミド(ポリマーTg:165℃)などが挙げられるが、これにより本発明の共重合成分における規定を何ら限定するものではない。特に、ポリアクリロニトリル系重合体に含まれる共重合成分としては、耐炎化促進成分として不飽和カルボン酸を含むことが好ましく、不飽和カルボン酸としてはアクリル酸、メタクリル酸、イタコン酸などが好ましく挙げられる。   On the other hand, the polymer Tg is 50 to 250 ° C., and examples of monomers suitable as a copolymerization component include itaconic acid (polymer Tg: 130 ° C.), tetrahydrofurfuryl methacrylate (polymer Tg: 60 ° C.), and methacrylic acid t. -Butyl (polymer Tg: 107 ° C), 4-vinylpyridine (polymer Tg: 142 ° C), 2-vinylpyridine (polymer Tg: 112 ° C), acryloylmorpholine (polymer Tg: 145 ° C), isobornyl methacrylate (polymer Tg) : 180 ° C), methacrylic acid (polymer Tg: 228 ° C), acrylamide (polymer Tg: 165 ° C) and the like, but this does not limit the definition of the copolymerization component of the present invention. In particular, the copolymer component contained in the polyacrylonitrile-based polymer preferably includes an unsaturated carboxylic acid as the flame retardant component, and examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, and itaconic acid. .

ポリアクリロニトリル系前駆体繊維束の製造において、ポリアクリロニトリル系重合体の製造方法としては、公知の重合方法の中から選択することができる。本発明の炭素繊維束を得るのに好適なポリアクリロニトリル系前駆体繊維束の製造において、紡糸原液は、前記したポリアクリロニトリル系重合体を、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどのポリアクリロニトリルが可溶な溶媒に溶解したものである。   In the production of the polyacrylonitrile-based precursor fiber bundle, the production method of the polyacrylonitrile-based polymer can be selected from known polymerization methods. In the production of a polyacrylonitrile-based precursor fiber bundle suitable for obtaining the carbon fiber bundle of the present invention, the spinning dope can be prepared from the polyacrylonitrile-based polymer described above, and polyacrylonitrile such as dimethylsulfoxide, dimethylformamide, and dimethylacetamide. It is dissolved in a soluble solvent.

本発明の炭素繊維束を得るのに好適なポリアクリロニトリル系前駆体繊維束の製造方法について述べる。   A method for producing a polyacrylonitrile-based precursor fiber bundle suitable for obtaining the carbon fiber bundle of the present invention will be described.

ポリアクリロニトリル系前駆体繊維束を製造するに当たり、製糸方法は乾湿式紡糸法および湿式紡糸法のいずれを用いてもよいが、得られる炭素繊維束の剪断弾性率に有利な乾湿式紡糸法を用いるのが好ましい。製糸工程は、乾湿式紡糸法により紡糸口金から紡糸原液を吐出させ紡糸する紡糸工程と、該紡糸工程で得られた繊維を水浴中で洗浄する水洗工程と、該水洗工程で得られた繊維を水浴中で延伸する水浴延伸工程と、該水浴延伸工程で得られた繊維を乾燥熱処理する乾燥熱処理工程からなり、必要に応じて、該乾燥熱処理工程で得られた繊維をスチーム延伸するスチーム延伸工程を含んでもよい。   In producing the polyacrylonitrile-based precursor fiber bundle, either a dry-wet spinning method or a wet-spinning method may be used as the spinning method, but a dry-wet spinning method advantageous to the shear elastic modulus of the obtained carbon fiber bundle is used. Is preferred. The spinning process includes a spinning process in which a spinning solution is discharged from a spinneret by a dry-wet spinning method and spinning, a water washing process in which fibers obtained in the spinning process are washed in a water bath, and a fiber obtained in the water washing process. It consists of a water bath stretching step for stretching in a water bath and a drying heat treatment step for subjecting the fibers obtained in the water bath stretching step to a dry heat treatment, and if necessary, a steam stretching step for steam stretching of the fibers obtained in the dry heat treatment step. May be included.

ポリアクリロニトリル系前駆体繊維束の製造において、前記凝固浴には、紡糸原液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどの溶媒と、いわゆる凝固促進成分を含ませることが好ましい。凝固促進成分としては、前記ポリアクリロニトリル系重合体を溶解せず、かつ紡糸溶液に用いる溶媒と相溶性があるものを使用することができる。具体的には、凝固促進成分として水を使用することが好ましい。   In the production of the polyacrylonitrile-based precursor fiber bundle, it is preferable that the coagulation bath contains a solvent such as dimethyl sulfoxide, dimethylformamide, and dimethylacetamide used as a solvent for the spinning dope and a so-called coagulation promoting component. As the coagulation accelerating component, a component that does not dissolve the polyacrylonitrile polymer and is compatible with the solvent used in the spinning solution can be used. Specifically, it is preferable to use water as a coagulation promoting component.

ポリアクリロニトリル系前駆体繊維束の製造において、水洗工程における水浴温度は30〜98℃の複数段からなる水洗浴を用い水洗することが好ましい。   In the production of the polyacrylonitrile-based precursor fiber bundle, the water bath temperature in the water washing step is preferably washed using a water bath having a plurality of stages of 30 to 98 ° C.

また、水浴延伸工程における延伸倍率は、2〜6倍であることが好ましく、より好ましくは2〜4倍である。   Moreover, it is preferable that the draw ratio in a water bath extending process is 2-6 times, More preferably, it is 2-4 times.

水浴延伸工程の後、単繊維同士の接着を防止する目的から、糸条にシリコーン等からなる油剤を付与することが好ましい。かかるシリコーン油剤は、変性されたシリコーンを用いることが好ましく、耐熱性の高いアミノ変性シリコーンを含有するものを用いることが好ましい。   After the water bath stretching step, it is preferable to apply an oil agent made of silicone or the like to the yarn for the purpose of preventing adhesion between single fibers. As such a silicone oil agent, it is preferable to use a modified silicone, and it is preferable to use one containing an amino-modified silicone having high heat resistance.

乾燥熱処理工程は、公知の方法を利用することができる。例えば、乾燥温度は100〜200℃が例示される。   A known method can be used for the drying heat treatment step. For example, the drying temperature is exemplified by 100 to 200 ° C.

前記した水洗工程、水浴延伸工程、油剤付与工程、公知の方法で行われた乾燥熱処理工程の後、必要に応じ、スチーム延伸を行うことにより、本発明の炭素繊維束を得るのに好適なポリアクリロニトリル系前駆体繊維束が得られる。本発明において、スチーム延伸は、加圧スチーム中において、少なくとも3倍以上、より好ましくは4倍以上、さらに好ましくは5倍以上延伸するのがよい。   After the water washing step, the water bath stretching step, the oil agent applying step, and the drying heat treatment step performed by a publicly known method, if necessary, by performing steam stretching, a polymer suitable for obtaining the carbon fiber bundle of the present invention is obtained. An acrylonitrile-based precursor fiber bundle is obtained. In the present invention, the steam stretching is preferably performed at least 3 times, more preferably 4 times or more, and still more preferably 5 times or more in the pressurized steam.

炭素繊維束の製造において、前記耐炎化に引き続いて、予備炭素化を行うことが好ましい。予備炭素化工程においては、得られた耐炎化繊維を、不活性雰囲気中、最高温度500〜800℃において、比重が1.5〜1.8になるまで熱処理することが好ましい。   In the production of the carbon fiber bundle, it is preferable to perform preliminary carbonization following the flame resistance. In the preliminary carbonization step, it is preferable to heat-treat the obtained flame-resistant fiber in an inert atmosphere at a maximum temperature of 500 to 800 ° C. until the specific gravity becomes 1.5 to 1.8.

本発明では、炭素繊維束の製造において、得られた耐炎化繊維束を不活性雰囲気中、最高温度800〜1150℃において炭素化する。炭素繊維束の製造において、炭素化工程の温度は、得られる炭素繊維の引張弾性率を高める観点からは、高い方が好ましいが、高すぎると窒素含有率が低下して水との親和性が低下するため、両者を勘案して設定するのが良い。好ましい温度範囲は900〜1050℃である。   In the present invention, in the production of a carbon fiber bundle, the obtained flame-resistant fiber bundle is carbonized at a maximum temperature of 800 to 1150 ° C. in an inert atmosphere. In the production of a carbon fiber bundle, the temperature of the carbonization step is preferably higher from the viewpoint of increasing the tensile modulus of the obtained carbon fiber, but if it is too high, the nitrogen content decreases and the affinity for water is low. Since it decreases, it is better to set it in consideration of both. A preferred temperature range is 900-1050 ° C.

以上のようにして得られた炭素繊維束は、マトリックス樹脂との接着性を向上させるために、酸化処理が施され、酸素含有官能基が導入される。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。液相電解酸化の方法については特に指定はなく、公知の方法で行えばよい。   The carbon fiber bundle obtained as described above is subjected to an oxidation treatment to introduce an oxygen-containing functional group in order to improve adhesion with the matrix resin. As the oxidation treatment method, vapor phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used. From the viewpoint of high productivity and uniform treatment, liquid phase electrolytic oxidation is preferably used. The method of liquid phase electrolytic oxidation is not particularly specified, and may be performed by a known method.

かかる電解処理の後、得られた炭素繊維束に集束性を付与するため、サイジング処理をすることもできる。サイジング剤には、複合材料に使用されるマトリックス樹脂の種類に応じて、マトリックス樹脂との相溶性の良いサイジング剤を適宜選択することができる。   After the electrolytic treatment, a sizing treatment can also be performed in order to impart a focusing property to the obtained carbon fiber bundle. As the sizing agent, a sizing agent having good compatibility with the matrix resin can be appropriately selected according to the type of the matrix resin used in the composite material.

本発明において用いられる各種物性値の測定方法は、次のとおりである。   The measuring method of various physical property values used in the present invention is as follows.

<炭素繊維束の引張強度と引張弾性率、剪断弾性率>
炭素繊維束の引張強度と引張弾性率は、JIS−R−7608(2004)の樹脂含浸ストランド試験法に準拠し、次の手順に従い求める。樹脂処方としては、“セロキサイド(登録商標)”2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いる。炭素繊維束の樹脂含浸ストランド10本を測定し、その平均値を引張強度とする。歪みは伸び計を用いて評価する。得られた応力σ(GPa)−歪みε(−) 曲線を応力0〜3GPaの範囲で式(1)にフィッティングするように係数を求め、そして、配向関数<cos ψ>を用いて剪断弾性率gと初期引張弾性率Eを算出する。引張弾性率Eは歪み範囲0.5〜0.8%の値を用いる。
<Tensile strength, tensile modulus and shear modulus of carbon fiber bundle>
The tensile strength and tensile modulus of the carbon fiber bundle are determined according to the following procedure in accordance with the resin impregnated strand test method of JIS-R-7608 (2004). As the resin formulation, “Celoxide (registered trademark)” 2021P (manufactured by Daicel Chemical Industries) / 3 boron trifluoride monoethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) / Acetone = 100/3/4 (part by mass) is used. As curing conditions, normal pressure, temperature of 125 ° C., and time of 30 minutes are used. Ten resin-impregnated strands of the carbon fiber bundle are measured, and the average value is taken as the tensile strength. Strain is evaluated using an extensometer. The obtained stress σ (GPa) −strain ε (−) curve is obtained by fitting a coefficient to the formula (1) in the range of stress 0 to 3 GPa, and shear elasticity is obtained using the orientation function <cos 2 ψ>. to calculate the rate g and the initial tensile modulus of elasticity E 0. As the tensile modulus E, a value in the strain range of 0.5 to 0.8% is used.

Figure 2016125173
Figure 2016125173

<炭素繊維束の配向関数>
測定に供する炭素繊維束を引き揃え、コロジオン・アルコール溶液を用いて固めることにより、長さ4cm、1辺の長さが1mmの四角柱の測定試料を用意する。用意された測定試料について、広角X線回折装置を用いて、次の条件により測定を行う。
<Orientation function of carbon fiber bundle>
By aligning the carbon fiber bundles used for measurement and solidifying them with a collodion / alcohol solution, a square column measurement sample having a length of 4 cm and a side length of 1 mm is prepared. The prepared measurement sample is measured under the following conditions using a wide-angle X-ray diffractometer.

・X線源:CuKα線(管電圧40kV、管電流30mA)
・検出器:ゴニオメーター+モノクロメーター+シンチレーションカウンター
・走査範囲:2θ=10〜40°
・走査モード:ステップスキャン、ステップ単位0.02°、計数時間2秒。
-X-ray source: CuKα ray (tube voltage 40 kV, tube current 30 mA)
-Detector: Goniometer + Monochromator + Scintillation counter-Scanning range: 2θ = 10-40 °
Scan mode: Step scan, step unit 0.02 °, counting time 2 seconds.

配向関数<cosψ>の測定については以下のとおり行った。得られた回折パターンにおける2θ=25〜26°付近に現れるピークを円周方向にスキャンして得られる回折強度分布をガウス分布でフィッティングし、フィッティング後の回折強度分布σ(ψ)から次式を用いて計算して求める。 The orientation function <cos 2 ψ> was measured as follows. The diffraction intensity distribution obtained by scanning the peak appearing in the vicinity of 2θ = 25 to 26 ° in the obtained diffraction pattern in the circumferential direction is fitted with a Gaussian distribution, and the following expression is obtained from the diffraction intensity distribution σ (ψ) after the fitting. Use to calculate.

Figure 2016125173
Figure 2016125173

<比重測定>
1.0〜3.0gの炭素繊維を採取し、120℃で2時間絶乾する。次に絶乾質量A(g)を測定した後、エタノールに含浸させ十分脱泡してから、溶媒浴中の繊維質量B(g)を測定し、繊維比重=(A×ρ)/(A−B)により繊維比重を求める。
<Specific gravity measurement>
1.0 to 3.0 g of carbon fiber is collected and dried at 120 ° C. for 2 hours. Next, after measuring the absolute dry mass A (g), it was impregnated with ethanol and sufficiently defoamed, and then the fiber mass B (g) in the solvent bath was measured, and the fiber specific gravity = (A × ρ) / (A The fiber specific gravity is determined by -B).

<窒素含有率測定>
測定試料は細かくカットした炭素繊維(2mg)とする。CHN分析装置(DKSH社 vario EL cube)を用いて炭素繊維のCHN量を評価し窒素量を算出する。
<Measurement of nitrogen content>
The measurement sample is finely cut carbon fiber (2 mg). The amount of nitrogen is calculated by evaluating the CHN amount of the carbon fiber using a CHN analyzer (DKSH vario EL cube).

<炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みおよび外層比率>
測定を行う炭素繊維束を樹脂中に包埋し、繊維軸方向と垂直な横断面を研磨し、該断面を光学顕微鏡の100倍の対物レンズを用いて観察する。研磨面の断面顕微鏡画像から内外構造差の黒化厚みを測定する。解析は画像解析ソフトウェアImage Jを用いて行う。まず、単繊維断面像において、黒と白の領域分割を二値化によって行う。単繊維断面内の輝度分布に対し、分布の平均値を閾値として設定し、二値化を行う。得られた二値化像を、繊維直径dの方向に対し、表層の一点から、黒から白への線入り領域までの最短距離として測定する。これを同一単繊維の周内5点に対して測定し、平均値をその水準における黒化厚みとして算出する。また、炭素繊維単繊維の繊維軸方向に垂直な断面全体に対する黒化厚み部分の面積比率(%)から外層比率を算出する。
<Blackening thickness and outer layer ratio of outer peripheral portion of cross section perpendicular to fiber axis direction of carbon fiber single fiber>
A carbon fiber bundle to be measured is embedded in a resin, a cross section perpendicular to the fiber axis direction is polished, and the cross section is observed using an objective lens having a magnification of 100 times that of an optical microscope. The blackening thickness of the difference between the inner and outer structures is measured from the cross-sectional microscopic image of the polished surface. The analysis is performed using image analysis software Image J. First, in a single fiber cross-sectional image, black and white area division is performed by binarization. For the luminance distribution in the single fiber cross section, the average value of the distribution is set as a threshold value and binarization is performed. The obtained binarized image is measured as the shortest distance from one point on the surface layer to the lined region from black to white in the direction of the fiber diameter d. This is measured for five points within the circumference of the same single fiber, and the average value is calculated as the blackening thickness at that level. Further, the outer layer ratio is calculated from the area ratio (%) of the blackened thickness portion with respect to the entire cross section perpendicular to the fiber axis direction of the single carbon fiber.

<炭素繊維の平均単繊維径>
測定する多数本の炭素フィラメントからなる炭素繊維束について、単位長さ当たりの質量A(g/m)および密度B(g/cm)を求める。測定する炭素繊維束のフィラメント数をCとし、炭素繊維の平均単繊維径(μm)を、下記式で算出を行う。
<Average single fiber diameter of carbon fiber>
A mass A f (g / m) and a density B f (g / cm 3 ) per unit length are determined for a carbon fiber bundle composed of a large number of carbon filaments to be measured. The number of filaments of the carbon fiber bundle to be measured is C f, and the average single fiber diameter (μm) of the carbon fiber is calculated by the following formula.

炭素繊維の平均単繊維径(μm)
=((A/B/C)/π)(1/2)×2×10
Average single fiber diameter of carbon fiber (μm)
= ((A f / B f / C f ) / π) (1/2) × 2 × 10 3 .

<ニトリル消費率>
測定に供する耐炎化繊維は、凍結粉砕後に2mgを精秤して採取し、それをKBr300mgと良く混合して、成形用治具に入れてプレス機を用いて40MPaで2分間加圧することで測定用錠剤を作製する。この錠剤をフーリエ変換赤外分光光度計にセットし、1500〜2500cm−1の範囲でスペクトルを測定する。なお、バックグラウンド補正は、1700〜2000cm−1の範囲における最小値が0になるようにその最小値を各強度から差し引くことで行う。なお、上記フーリエ変換赤外分光光度計として、パーキンエルマー製Paragon1000を用いた。ポリアクリロニトリル系前駆体繊維は2240cm−1にニトリル基由来のピークが観察される。かかるピークの積分強度の減少率は耐炎化進行度の指標に適用できる。かかる減少率は、かかる2240cm−1に現れるスペクトルの積分強度を用いる。ポリアクリロニトリル系前駆体繊維を耐炎化処理していない状態を基準値として、耐炎化繊維から得られたスペクトルの2240cm−1ピークの積分強度との比をニトリル残存量と定義し、100%から差し引くことにより、ある耐炎化処理時間におけるニトリル消費率と定義する。耐炎化処理量の違う耐炎化繊維の、ニトリル消費率の差を耐炎化時間の差によって割った値を平均ニトリル消費速度として概算を行った。耐炎化が進むとピークの横にショルダーができるが含まないこととする。
<Nitrile consumption rate>
Flame-resistant fiber used for measurement is measured by accurately weighing 2 mg after freezing and grinding, mixing it well with 300 mg of KBr, placing it in a molding jig, and pressurizing at 40 MPa for 2 minutes using a press. Make a tablet. The tablet is set in a Fourier transform infrared spectrophotometer, and the spectrum is measured in the range of 1500 to 2500 cm −1 . The background correction is performed by subtracting the minimum value from each intensity so that the minimum value in the range of 1700 to 2000 cm −1 becomes zero. As the Fourier transform infrared spectrophotometer, Parakin 1000 manufactured by PerkinElmer was used. A peak derived from a nitrile group is observed at 2240 cm −1 in the polyacrylonitrile-based precursor fiber. The rate of decrease in the integrated intensity of the peak can be applied as an index of the progress of flame resistance. For this reduction rate, the integrated intensity of the spectrum appearing at 2240 cm −1 is used. Using the state in which the polyacrylonitrile-based precursor fiber is not flameproofed as a reference value, the ratio of the spectrum obtained from the flameproofed fiber to the integrated intensity of the 2240 cm −1 peak is defined as the residual amount of nitrile and subtracted from 100%. Therefore, it is defined as the nitrile consumption rate in a certain flameproofing treatment time. A value obtained by dividing the difference in the nitrile consumption rate by the difference in the flameproofing time between the flameproofing fibers having different flameproofing treatment amounts was estimated as the average nitrile consumption rate. As flame resistance progresses, a shoulder is formed next to the peak, but it is not included.

<擦過毛羽>
毛羽の発生しやすさを表す指標として、次に示す擦過毛羽の測定を行った。表面の中心線平均粗さ(Ra)がRa≒0.17μmである直径10mmのステンレス棒5本を50mm間隔で、それぞれ平行にかつ炭素繊維糸条が120°の角度で接触しながら通過するようにジグザグに配置した。炭素繊維糸条走行時の入り側から1、2、4、5本目のステンレス棒に、初期張力650gを付加しながらフィラメント数24,000本の炭素繊維糸条を3m/分の速度で通過させ、炭素繊維糸条に対して直角方向からレーザー光線を照射する。レーザー光線が遮蔽される回数を発生した毛羽個数としてカウントし、個/mで表示する。毛羽個数が10個/m未満の場合を◎、10個/m以上20個/m未満の場合を○、20個/m以上30個/m未満の場合を△、30個/m以上の場合を×とした。◎、○が本発明において好ましい範囲である。
<Abrasion fluff>
As an index indicating the ease of occurrence of fluff, the following rubbing fluff was measured. 5 stainless steel rods of 10 mm in diameter with a surface centerline average roughness (Ra) of Ra≈0.17 μm are passed in parallel at 50 mm intervals and carbon fiber yarns in contact with each other at an angle of 120 °. Arranged in a zigzag. The carbon fiber yarn with 24,000 filaments is passed at a speed of 3 m / min while adding 650 g of initial tension to the first, second, fourth and fifth stainless steel rods from the entry side when the carbon fiber yarn is running. The laser beam is irradiated from a direction perpendicular to the carbon fiber yarn. The number of times the laser beam is shielded is counted as the number of fluffs generated and displayed in number / m. When the number of fluff is less than 10 / m, ◎, when 10 / m or more and less than 20 / m, △ when 20 / m or more and less than 30 / m, or when 30 / m or more Was marked with x. ◎ and ○ are preferable ranges in the present invention.

<吸水率>
炭素繊維束を2.0g秤量し、130℃に熱したオーブン内で2時間絶乾する。絶乾した炭素繊維束を、飽和硫酸アンモニウム水溶液を入れたデシケーター中に炭素繊維束が飽和硫酸アンモニウム水溶液に触れないように25℃で16時間保管し吸湿させる。保管前の炭素繊維束の質量に対する保管前後の炭素繊維束の質量変化から吸水率を求める。
<Water absorption rate>
Weigh 2.0 g of the carbon fiber bundle and dry it in an oven heated to 130 ° C. for 2 hours. The completely dried carbon fiber bundle is stored in a desiccator containing a saturated ammonium sulfate aqueous solution for 16 hours at 25 ° C. so that the carbon fiber bundle does not touch the saturated ammonium sulfate aqueous solution to absorb moisture. The water absorption is obtained from the mass change of the carbon fiber bundle before and after storage with respect to the mass of the carbon fiber bundle before storage.

(実施例1〜4、比較例1〜6)
表1に示す共重合組成(アクリロニトリルを99.5質量%、イタコン酸(ポリマーTg:130℃)を0.5質量%)からなるポリアクリロニトリル系共重合体を、ジメチルスルホキシドを溶媒として溶液重合法により重合させ、ポリアクリロニトリル系共重合体を製造した。さらに重合体濃度が20質量%になるように調製して、紡糸溶液を得た。得られた紡糸溶液を、紡糸口金から一旦空気中に吐出し、3℃にコントロールした35%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条とした。この凝固糸条を、常法により水洗した後、2槽の温水浴中で、3.5倍の延伸を行った。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行い、単繊維本数12000本としてから、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、結晶配向度93%、単繊維本数12000本のポリアクリロニトリル系前駆体繊維束を得た。ポリアクリロニトリル系前駆体繊維束の単繊維繊度が表1に示すものとなるように、紡糸溶液の口金からの吐出量を調整した。次に、表1に示す第1耐炎化炉(1耐)、第2耐炎化炉(2耐)の耐炎化温度・耐炎化時間の条件を用いて、空気雰囲気のオーブン中でポリアクリロニトリル系前駆体繊維束を延伸比1で延伸しながらで耐炎化処理し、耐炎化繊維束を得た。
(Examples 1-4, Comparative Examples 1-6)
A solution polymerization method using a polyacrylonitrile-based copolymer having a copolymer composition shown in Table 1 (99.5% by mass of acrylonitrile and 0.5% by mass of itaconic acid (polymer Tg: 130 ° C.)) using dimethyl sulfoxide as a solvent. To prepare a polyacrylonitrile copolymer. Furthermore, the polymer concentration was adjusted to 20% by mass to obtain a spinning solution. The obtained spinning solution was once discharged into the air from the spinneret, and was made into a coagulated yarn by a dry and wet spinning method introduced into a coagulation bath composed of an aqueous solution of 35% dimethyl sulfoxide controlled at 3 ° C. The coagulated yarn was washed with water by a conventional method, and then stretched 3.5 times in two warm water baths. Subsequently, an amino-modified silicone-based silicone oil agent is applied to the fiber bundle after stretching in the water bath, a drying densification treatment is performed using a heating roller at 160 ° C., and the number of single fibers is set to 12,000, and then pressurization is performed. By drawing 3.7 times in steam, the yarn drawing total draw ratio was 13 times, and a polyacrylonitrile-based precursor fiber bundle having a crystal orientation of 93% and a single fiber number of 12,000 was obtained. The discharge amount of the spinning solution from the die was adjusted so that the single fiber fineness of the polyacrylonitrile-based precursor fiber bundle was as shown in Table 1. Next, using the conditions of the flame resistance temperature and flame resistance time of the first flame resistance furnace (1 resistance) and the second flame resistance furnace (2 resistance) shown in Table 1, a polyacrylonitrile-based precursor in an air atmosphere oven The body fiber bundle was flameproofed while being stretched at a stretch ratio of 1, to obtain a flameproof fiber bundle.

なお、ニトリル消費量が20%から60%に至る間の耐炎化処理時間は、30分耐炎化処理時点、および最終時点でのニトリル消費率を用いて計算を行った。すなわち、0分耐炎化処理時点(ニトリル消費量0%)〜30分耐炎化処理時点、30分耐炎化処理時点〜最終時点に対して、それぞれ耐炎化処理時間とニトリル消費量に関して直線近似を行い、ニトリル消費量が20%から60%に至る間の耐炎化処理時間を計算した。   It should be noted that the flameproofing treatment time during which the nitrile consumption amount was 20% to 60% was calculated using the nitrile consumption rate at the 30 minute flameproofing treatment time point and the final time point. In other words, a linear approximation is performed with respect to the flameproofing time and the nitrile consumption for the 0 minute flameproofing time point (nitrile consumption 0%) to the 30 minute flameproofing time point and the 30 minute flameproofing time point to the final time point, respectively. The flameproofing treatment time during which the nitrile consumption was 20% to 60% was calculated.

得られた耐炎化繊維束を、表1に示す最高炭素化温度1000〜1200℃の窒素雰囲気中において、炭素化処理を行った。得た炭素繊維束に、表面処理およびサイジング剤塗布処理を行って最終的な炭素繊維束とした。なお、得られた炭素繊維束の吸水率は5.2質量%であった。表2に得られた炭素繊維束の窒素含有率、単繊維径、炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みおよび外層比率、引張強度σ、引張弾性率E、剪断弾性率G、式(1)の右辺である10.6−0.75d/μm、式(2)の右辺である420−25d/μm、擦過毛羽について示す。   The obtained flame-resistant fiber bundle was carbonized in a nitrogen atmosphere having a maximum carbonization temperature of 1000 to 1200 ° C. shown in Table 1. The obtained carbon fiber bundle was subjected to surface treatment and sizing agent coating treatment to obtain a final carbon fiber bundle. In addition, the water absorption rate of the obtained carbon fiber bundle was 5.2 mass%. Table 2 shows the nitrogen content of the carbon fiber bundle, the single fiber diameter, the blackened thickness and the outer layer ratio of the outer periphery of the cross section perpendicular to the fiber axis direction of the carbon fiber single fiber, the tensile strength σ, the tensile elastic modulus E, The shear elastic modulus G, 10.6 to 0.75 d / μm which is the right side of the formula (1), 420 to 25 d / μm which is the right side of the formula (2), and fuzzing fluff are shown.

通常、炭素繊維は単繊維径の減少に比例して、引張弾性率、引張強度が増加しやすくなる。すなわち、請求項1において定義する式は、単繊維径に対応した引張強度と引張弾性率に関し、その基準を示す。   Usually, carbon fiber tends to increase in tensile modulus and tensile strength in proportion to the decrease in single fiber diameter. That is, the formula defined in claim 1 shows the standard regarding the tensile strength and the tensile modulus corresponding to the single fiber diameter.

比較例1では、実施例1と同じ耐炎化条件で、単繊維繊度のみを0.7dと細くしたため、高性能な炭素繊維となったが、単繊維径に対応した引張強度、引張弾性率は基準を満たさなかった。また、複合材料化して使用する際には毛羽が出やすく、外観品位を損ねた。   In Comparative Example 1, since only the single fiber fineness was reduced to 0.7 d under the same flameproofing conditions as in Example 1, it became a high-performance carbon fiber, but the tensile strength and tensile modulus corresponding to the single fiber diameter were The standard was not met. Further, when used as a composite material, fluff was likely to occur and the appearance quality was impaired.

比較例2では、第2耐炎化炉の温度を250℃と低くしたため、ニトリル消費量が十分ではなく、また単繊維径を7.1μmと細くなったため、複合材料化した際に毛羽が発生し、実施例1、2に比べ外観品位が大きく損なわれた。   In Comparative Example 2, since the temperature of the second flameproofing furnace was lowered to 250 ° C., the nitrile consumption was not sufficient, and the single fiber diameter was thinned to 7.1 μm, so fluff was generated when the composite material was made. In comparison with Examples 1 and 2, the appearance quality was greatly impaired.

比較例3では、実施例3と比べて、第1耐炎化炉の温度を245℃と高くしたため、30分時点でのニトリル消費量が40%となったため、内外構造差が大きくなり、引張弾性率が大きく低減した。このため、単繊維径に対応した引張弾性率、引張強度の基準を満たさなかった。炭素繊維の外観品位も好ましいものではなく、擦過毛羽が多く見られた。   In Comparative Example 3, compared with Example 3, the temperature of the first flameproofing furnace was increased to 245 ° C., so the nitrile consumption at 30 minutes was 40%, so the difference between the inner and outer structures became larger, and the tensile elasticity The rate was greatly reduced. For this reason, the criteria of the tensile modulus and tensile strength corresponding to the single fiber diameter were not satisfied. The appearance quality of the carbon fiber was not preferable, and a lot of fuzz was observed.

比較例4では、比較例2でニトリル消費量が十分ではなかったため、イタコン酸量を1.0質量%と多く入れることで、第2耐炎化炉の温度を250℃と低くし、最終時点でのニトリル消費量を61%としたが、30分時点でのニトリル消費量も大きいため、内外構造差が大きくなり、引張強度および剪断弾性率が低下した。また、炭素繊維の外観品位も好ましいものではなく、擦過毛羽が多く見られた。   In Comparative Example 4, since the nitrile consumption was not sufficient in Comparative Example 2, the temperature of the second flameproofing furnace was lowered to 250 ° C. by adding a large amount of itaconic acid as 1.0% by mass, and at the final time point Although the nitrile consumption was 61%, the nitrile consumption at 30 minutes was also large, so the difference between the inner and outer structures became larger, and the tensile strength and shear modulus decreased. Further, the appearance quality of the carbon fiber was not preferable, and many fuzzed fluffs were observed.

比較例5では、イタコン酸量を1.0質量%と多くし、イソブチルメタクリレートを1.0質量%加えたため、内外構造差は解消したものの引張強度および剪断弾性率が低下した。なお、得られた炭素繊維束の吸水率は5.2質量%と実施例1と変わらない値であった。炭素繊維の外観品位も好ましいものではなく、擦過毛羽が多く見られた。   In Comparative Example 5, the amount of itaconic acid was increased to 1.0% by mass, and 1.0% by mass of isobutyl methacrylate was added. Therefore, the tensile strength and shear modulus were reduced although the internal and external structural differences were eliminated. In addition, the water absorption rate of the obtained carbon fiber bundle was 5.2% by mass, which was the same value as in Example 1. The appearance quality of the carbon fiber was not preferable, and a lot of fuzz was observed.

実施例4では、炭素化温度を1100℃とした。得られた炭素繊維束の吸水率は1.2質量%であり、親水性は減少した。   In Example 4, the carbonization temperature was 1100 ° C. The water absorption of the obtained carbon fiber bundle was 1.2% by mass, and the hydrophilicity decreased.

比較例6では、炭素化温度を1200℃として炭素化を行なったため、高い引張強度、引張弾性率および剪断弾性率が得られたが、窒素含有量が低減した。得られた炭素繊維束の吸水率は0.4質量%まで減少し、親水性が大きく減少した。   In Comparative Example 6, since carbonization was performed at a carbonization temperature of 1200 ° C., high tensile strength, tensile modulus, and shear modulus were obtained, but the nitrogen content was reduced. The water absorption of the obtained carbon fiber bundle was reduced to 0.4% by mass, and the hydrophilicity was greatly reduced.

Figure 2016125173
Figure 2016125173

Figure 2016125173
Figure 2016125173

本発明における炭素繊維束は航空機部材、宇宙機部材、自動車部材および船舶部材をはじめとして、ゴルフシャフトや釣竿等のスポーツ用途およびその他一般産業用途に好適に用いられる。特に、水への親和性が高いために、タイヤコード、紙、セメント強化材を製造するにあたり好適に使用される。
The carbon fiber bundle in the present invention is suitably used for aircraft members, spacecraft members, automobile members, ship members, sports applications such as golf shafts and fishing rods, and other general industrial applications. In particular, since it has a high affinity for water, it is preferably used in the production of tire cords, paper, and cement reinforcing materials.

Claims (5)

複数本の単繊維から構成されている炭素繊維束において、単繊維の平均単繊維径をd(μm)とし、炭素繊維束の樹脂含浸ストランド引張弾性率をE(GPa)、樹脂含浸ストランド引張強度をσ(GPa)としたとき、
σ/GPa≧10.6−0.75d/μm ・・・(1)
E/GPa≧420−25d/μm ・・・(2)
を満足し、d=7.5〜9.0μmで、窒素含有率が8〜18質量%である炭素繊維束。
In a carbon fiber bundle composed of a plurality of single fibers, the average single fiber diameter of the single fibers is d (μm), the resin-impregnated strand tensile elastic modulus of the carbon fiber bundle is E (GPa), and the resin-impregnated strand tensile strength Is σ (GPa),
σ / GPa ≧ 10.6−0.75 d / μm (1)
E / GPa ≧ 420−25d / μm (2)
, A carbon fiber bundle having d = 7.5 to 9.0 μm and a nitrogen content of 8 to 18% by mass.
剪断弾性率が13〜20GPaである請求項1に記載の炭素繊維束。 The carbon fiber bundle according to claim 1, wherein the shear elastic modulus is 13 to 20 GPa. 炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みが3.2μm以上である請求項1または2に記載の炭素繊維束。 The carbon fiber bundle according to claim 1 or 2, wherein a blackened thickness of an outer peripheral portion of a cross section perpendicular to the fiber axis direction of the single carbon fiber is 3.2 µm or more. ポリアクリロニトリルを99.1〜99.99質量%、共重合成分を0.01質量%以上含むポリアクリロニトリル系前駆体繊維束を耐炎化処理して、次いで炭素化処理する炭素繊維束の製造方法であって、共重合成分はそのホモポリマーのTgが50〜250℃であり、耐炎化処理においては、耐炎化処理時間が30分の時点でのニトリル消費率が10〜20%、耐炎化処理終了時点でのニトリル消費量を50〜95%に進めた耐炎化繊維束を用いて800〜1150℃の最高炭素化温度で炭素化処理する炭素繊維束の製造方法。 In a method for producing a carbon fiber bundle, a polyacrylonitrile-based precursor fiber bundle containing 99.1 to 99.99% by mass of polyacrylonitrile and 0.01% by mass or more of a copolymer component is flameproofed, and then carbonized. The copolymer component has a Tg of the homopolymer of 50 to 250 ° C., and in the flameproofing treatment, the nitrile consumption rate is 10 to 20% when the flameproofing treatment time is 30 minutes, and the flameproofing treatment is completed. A method for producing a carbon fiber bundle, wherein carbonization treatment is performed at a maximum carbonization temperature of 800 to 1150 ° C. using a flameproof fiber bundle whose nitrile consumption at the time is advanced to 50 to 95%. ニトリル消費率が20%から60%に至る間の耐炎化処理時間を6〜25分とする請求項4に記載の炭素繊維束の製造方法。
The method for producing a carbon fiber bundle according to claim 4, wherein the flameproofing treatment time during which the nitrile consumption rate is 20% to 60% is 6 to 25 minutes.
JP2015001280A 2015-01-07 2015-01-07 Carbon fiber bundle and manufacturing method therefor Pending JP2016125173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001280A JP2016125173A (en) 2015-01-07 2015-01-07 Carbon fiber bundle and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001280A JP2016125173A (en) 2015-01-07 2015-01-07 Carbon fiber bundle and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2016125173A true JP2016125173A (en) 2016-07-11

Family

ID=56356716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001280A Pending JP2016125173A (en) 2015-01-07 2015-01-07 Carbon fiber bundle and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2016125173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128614A (en) * 2019-02-12 2020-08-27 東レ株式会社 Carbon fiber bundle and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128614A (en) * 2019-02-12 2020-08-27 東レ株式会社 Carbon fiber bundle and method for producing the same
JP7286987B2 (en) 2019-02-12 2023-06-06 東レ株式会社 Carbon fiber bundle and its manufacturing method

Similar Documents

Publication Publication Date Title
JP6885109B2 (en) Carbon fiber bundle and its manufacturing method
KR101841407B1 (en) Carbon fiber bundle and method for manufacturing same
KR101902087B1 (en) Carbon fibre thermoplastic resin prepreg, carbon fibre composite material and manufacturing method
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
US20190040549A1 (en) Carbon fiber bundle that develops high mechanical performance
JP6950526B2 (en) Carbon fiber bundle and its manufacturing method
EP2905364A1 (en) Flame-proofed fiber bundle, carbon fiber bundle, and processes for producing these
US20100266827A1 (en) Carbon fiber and composite material using the same
JP2017066580A (en) Carbon fiber bundle and manufacturing method therefor
JP5907321B1 (en) Carbon fiber bundle and method for producing the same
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
JP6304046B2 (en) Carbon fiber bundle and method for producing the same
WO2019203088A1 (en) Carbon fiber bundle, manufacturing method therefor, prepeg, and carbon-fiber-reinforced composite material
JP2016125173A (en) Carbon fiber bundle and manufacturing method therefor
US20170067187A1 (en) Carbon fibers, and production method therefor
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JP7447788B2 (en) Carbon fiber bundle and its manufacturing method
JP5667380B2 (en) Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2010111957A (en) Carbon fiber, composite material, and method for producing carbon fiber
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP4715386B2 (en) Carbon fiber bundle manufacturing method
JP2020143226A (en) Carbon fiber reinforced vinyl ester resin composition and manufacturing method thereof