JPWO2010143681A1 - Carbon fiber bundle with excellent mechanical performance - Google Patents

Carbon fiber bundle with excellent mechanical performance Download PDF

Info

Publication number
JPWO2010143681A1
JPWO2010143681A1 JP2010524014A JP2010524014A JPWO2010143681A1 JP WO2010143681 A1 JPWO2010143681 A1 JP WO2010143681A1 JP 2010524014 A JP2010524014 A JP 2010524014A JP 2010524014 A JP2010524014 A JP 2010524014A JP WO2010143681 A1 JPWO2010143681 A1 JP WO2010143681A1
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
fiber bundle
strength
single fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010524014A
Other languages
Japanese (ja)
Other versions
JP4908636B2 (en
Inventor
杉浦 直樹
直樹 杉浦
奥屋 孝浩
孝浩 奥屋
橋本 弘
弘 橋本
勲 大木
勲 大木
宏子 松村
宏子 松村
昌宏 畑
昌宏 畑
巧己 若林
巧己 若林
明人 畑山
明人 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2010524014A priority Critical patent/JP4908636B2/en
Application granted granted Critical
Publication of JP4908636B2 publication Critical patent/JP4908636B2/en
Publication of JPWO2010143681A1 publication Critical patent/JPWO2010143681A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • D02J3/02Modifying the surface by abrading, scraping, scuffing, cutting, or nicking
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

高い機械的特性を有する繊維強化樹脂を得るための炭素繊維束を提供する。単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造が無く、単繊維の表面の最高部と最低部の高低差(Rp−v)が5〜25nmで平均凹凸度Raが2〜6nmの凹凸構造を有し、かつ単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.01である炭素繊維の単繊維からなり、単繊維の単位長さ当たりの質量が0.030〜0.042mg/mの範囲にあり、ストランド強度が5900MPa以上、ASTM法で測定されるストランド弾性率が250〜380GPaであり、結節強さが900N/mm2以上の炭素繊維である炭素繊維束。A carbon fiber bundle for obtaining a fiber reinforced resin having high mechanical properties is provided. There is no surface irregular structure with a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and the average unevenness degree is 5-25 nm in height difference (Rp-v) between the highest and lowest parts of the surface of the single fiber. Ra has a concavo-convex structure of 2 to 6 nm, and comprises a single fiber of carbon fiber having a ratio of a long diameter to a short diameter (long diameter / short diameter) of a single fiber of 1.00 to 1.01. The mass per unit length of the single fiber is in the range of 0.030 to 0.042 mg / m, the strand strength is 5900 MPa or more, the strand elastic modulus measured by the ASTM method is 250 to 380 GPa, and the knot strength is A carbon fiber bundle that is a carbon fiber of 900 N / mm 2 or more.

Description

本発明は、優れた機械特性を有し、特に航空機用途の高靭性、耐熱性樹脂をマトリックスとした繊維強化樹脂を得るための炭素繊維束に関する。   The present invention relates to a carbon fiber bundle having excellent mechanical properties, particularly for obtaining a fiber reinforced resin having a high toughness and heat resistant resin for use in aircraft as a matrix.

従来、樹脂系成型品の機械特性を向上させる目的で、繊維を強化材として樹脂と複合化することが一般的に行われている。特に、比強度、比弾性に優れた炭素繊維を高性能樹脂と複合化した成形材料は、非常に優れた機械特性を発現することから、航空機、高速移動体などの構造材料として、使用することが積極的に進められている。また、より高強度化、高剛性化の要請、更には比強度、比剛性に優れた材料の要請もあり、炭素繊維の性能もより高強度、高弾性率化の実現が求められている。   Conventionally, for the purpose of improving the mechanical properties of a resin-based molded product, it has been generally performed to combine a fiber with a resin as a reinforcing material. In particular, molding materials made by combining carbon fibers with excellent specific strength and specific elasticity with high-performance resins exhibit very excellent mechanical properties, so they should be used as structural materials for aircraft, high-speed moving bodies, etc. Is being actively promoted. In addition, there is a demand for higher strength and higher rigidity, and further there is a demand for a material excellent in specific strength and specific rigidity, and the realization of higher strength and higher elastic modulus is required for carbon fiber performance.

たとえば、炭素繊維用前駆体アクリル繊維束を乾湿式紡糸法により得る際、溶剤を含有したままの凝固糸を、溶剤含有延伸浴中で延伸することで構造と配向の均一性を向上させる方法が特許文献1において提案されている。溶剤を含有する浴槽中で凝固糸を延伸させることは溶剤延伸技術として一般に知られた方法であり、溶剤可塑化により、安定な延伸処理を可能とさせる手法である。したがって、構造と配向の均一性の高い繊維を得る手法としては非常に優れたものと考えられる。しかしながら、溶剤を含有して膨潤状態にある繊維束を延伸させることにより、フィラメント内部に存在する溶剤が延伸とともに急激にフィラメント内部から絞り出されることから、得られるフィラメントは疎な構造を形成し易く、目的とする緻密な構造を有するものとすることができない。   For example, when a precursor acrylic fiber bundle for carbon fiber is obtained by a dry-wet spinning method, there is a method for improving the uniformity of structure and orientation by drawing a coagulated yarn containing a solvent in a solvent-containing drawing bath. This is proposed in Patent Document 1. Stretching the solidified yarn in a bath containing a solvent is a method generally known as a solvent stretching technique, and is a technique that enables a stable stretching process by solvent plasticization. Therefore, it is considered that the technique for obtaining fibers with high uniformity in structure and orientation is very excellent. However, by stretching a fiber bundle that contains a solvent and is in a swollen state, the solvent present inside the filament is rapidly squeezed out of the filament as it is stretched, so that the resulting filament can easily form a sparse structure. , It cannot have the intended dense structure.

さらに、特許文献2には、凝固糸の細孔分布に着目し、高い緻密化構造を有する凝固糸を乾燥緻密化することにより、強度発現性に優れた前駆体繊維を得る技術が提案されている。水銀圧入法により得られる細孔分布は、フィラメントの表層から内部を含むバルクの性状を反映しているものであり、繊維の全体的な構造の緻密性を評価するには非常に優れた手法である。全体的な緻密性があるレベル以上にある前駆体繊維束からは、欠陥点形成が抑制された高強度の炭素繊維が得られる。しかしながら、炭素繊維の破断状態を観察すると、表層付近を破断開始とするものが非常に高い割合で存在する。これは、表層近傍に欠陥点が存在することを意味する。即ち、この技術は、表層近傍の緻密性が優れた前駆体繊維束を製造するには不十分である。   Further, Patent Document 2 proposes a technique for obtaining a precursor fiber excellent in strength development by paying attention to the pore distribution of the coagulated yarn and drying and densifying the coagulated yarn having a high densified structure. Yes. The pore distribution obtained by the mercury intrusion method reflects the bulk properties including the inside from the surface of the filament, and is a very excellent method for evaluating the denseness of the overall structure of the fiber. is there. High-strength carbon fibers with suppressed defect point formation can be obtained from precursor fiber bundles having an overall denseness level or higher. However, when the rupture state of the carbon fiber is observed, there is a very high ratio of the rupture start in the vicinity of the surface layer. This means that a defect point exists in the vicinity of the surface layer. That is, this technique is insufficient for producing a precursor fiber bundle having excellent denseness in the vicinity of the surface layer.

特許文献3には、繊維全体として緻密性が高いとともに表層部の緻密性が極めて高いアクリロニトリル系前駆体繊維束を製造する方法が提案されている。また特許文献4には、油剤が繊維表層部に浸入して緻密化を阻害することから、表層部のミクロ空隙に注目し、油剤の浸透を抑制する技術が提案されている。しかしながら、油剤浸入を抑制する技術、欠陥点形成を抑制する技術は共に大変複雑な工程が必要であることから実用化が難しい。このために、検討されている技術ではその表層部への油剤浸入を安定に抑制させる効果が不十分であり、炭素繊維の高強度化効果もまだ十分なレベルとはいえない状況であった。   Patent Document 3 proposes a method for producing an acrylonitrile-based precursor fiber bundle that has high density as a whole and extremely high density in the surface layer portion. Patent Document 4 proposes a technique that suppresses the penetration of the oil agent by focusing on the micro voids in the surface layer portion because the oil agent enters the fiber surface layer portion to inhibit densification. However, both the technology for suppressing the intrusion of oil and the technology for suppressing defect point formation are difficult to put into practical use because they require very complicated processes. For this reason, in the technique currently examined, the effect which suppresses the oil agent penetration | invasion to the surface layer part stably is inadequate, and it was the situation which cannot be said that the high-strength effect of carbon fiber is still a sufficient level.

特開平5−5224号公報JP-A-5-5224 特開平4−91230号公報JP-A-4-91230 特公平6−15722号公報Japanese Patent Publication No. 6-15722 特開平11−124744号公報Japanese Patent Laid-Open No. 11-124744

本発明の目的は、高い機械的特性を有する繊維強化樹脂を得るための炭素繊維束を提供することにある。   An object of the present invention is to provide a carbon fiber bundle for obtaining a fiber reinforced resin having high mechanical properties.

前記課題は、以下の本発明によって解決される。
本発明は、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造が無く、単繊維の表面の最高部と最低部の高低差(Rp−v)が5〜25nmで平均凹凸度Raが2〜6nmの凹凸構造を有し、かつ単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.01である炭素繊維の単繊維からなり、単繊維の単位長さ当たりの質量が0.030〜0.042mg/mの範囲にあり、ストランド強度が5900MPa以上、ASTM法で測定されるストランド弾性率が250〜380GPaであり、結節強さが900N/mm以上の炭素繊維である炭素繊維束である。
なお、結節強さは、炭素繊維束を結節したものの引張破断応力を繊維束の断面積(単位長さ当たりの質量と密度)で除して求められる。
The said subject is solved by the following this invention.
In the present invention, the surface of the single fiber does not have a surface uneven structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber, and the height difference (Rp-v) between the highest part and the lowest part of the surface of the single fiber is 5 to 25 nm. The carbon fiber has a concavo-convex structure with an average roughness Ra of 2 to 6 nm, and the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber section of the single fiber is 1.00 to 1.01. It consists of fibers, the mass per unit length of a single fiber is in the range of 0.030 to 0.042 mg / m, the strand strength is 5900 MPa or more, the strand elastic modulus measured by the ASTM method is 250 to 380 GPa, The carbon fiber bundle is a carbon fiber having a knot strength of 900 N / mm 2 or more.
The knot strength is obtained by dividing the tensile breaking stress of a carbon fiber bundle knotted by the cross-sectional area (mass and density per unit length) of the fiber bundle.

本発明の炭素繊維束によれば、高い機械的特性を有する繊維強化樹脂を提供することができる。   According to the carbon fiber bundle of the present invention, it is possible to provide a fiber reinforced resin having high mechanical properties.

また、破壊表面生成エネルギーが、30N/m以上にすることにより、より優れた性能を有する炭素繊維束となる。   Further, when the fracture surface generation energy is 30 N / m or more, a carbon fiber bundle having more excellent performance is obtained.

さらにまた、電気化学的測定法(サイクリック・ボルタ・メトリー)により求められるipa値が0.05〜0.25μA/cmであり、X線光電子分光法により求められる炭素繊維表面の酸素含有官能基量(O1S/C1S)が0.05〜0.10の範囲にあるような表面を有する炭素繊維束とすることにより、非常に高い機械的性能を有する炭素繊維複合材料を得ることができる。Furthermore, the ipa value calculated | required by the electrochemical measuring method (cyclic voltammetry) is 0.05-0.25 microampere / cm < 2 >, and the oxygen containing functional property of the carbon fiber surface calculated | required by X ray photoelectron spectroscopy By using a carbon fiber bundle having a surface such that the base amount (O1S / C1S) is in the range of 0.05 to 0.10, a carbon fiber composite material having very high mechanical performance can be obtained.

炭素繊維の表面に存在する繊維の長手方向に延びる表面凹凸構造や表面に付着させたサイジング剤は、炭素繊維を強化材とする繊維強化樹脂材料の機械特性発現に非常に重要な役割を果たす。前記表面凹凸構造と表面に付着させたサイジング剤は、炭素繊維と樹脂の界面相形成とその特性に直接係わるものであるからである。繊維強化樹脂材料の機械的性能は、構成する3つの要素である繊維、マトリックス樹脂および界面相のそれぞれの性能に影響を受ける。これら3要素の内の一つでもその性能が悪ければ、繊維強化樹脂材料は、優れた機械的性能を発現することができない。   The surface uneven structure extending in the longitudinal direction of the fiber existing on the surface of the carbon fiber and the sizing agent attached to the surface play a very important role in expressing the mechanical properties of the fiber reinforced resin material using the carbon fiber as a reinforcing material. This is because the surface concavo-convex structure and the sizing agent attached to the surface are directly related to the formation of the interfacial phase between the carbon fiber and the resin and the characteristics thereof. The mechanical performance of the fiber reinforced resin material is affected by the performance of each of the three elements constituting the fiber, matrix resin, and interfacial phase. If even one of these three elements has poor performance, the fiber-reinforced resin material cannot exhibit excellent mechanical performance.

(単繊維の表面に繊維の長手方向に延びる表面凹凸構造)
炭素繊維束の一般的な製造方法から、通常の炭素繊維には繊維軸方向にほぼ平行な表面凹凸構造が存在する。この凹凸構造は、繊維軸とほぼ平行で、繊維軸方向に伸びたうねり構造を有している。凹凸の深さは、通常50nm〜数百nm程度であり、その長さは通常0.6μm〜数μm程度で、場合により数十μmである。この表面凹凸構造は、通常、表面皺と称されている。
本発明の炭素繊維束は、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造を有していないものである。
(Uneven surface structure extending in the longitudinal direction of the fiber on the surface of the single fiber)
Due to the general manufacturing method of carbon fiber bundles, ordinary carbon fibers have a surface uneven structure substantially parallel to the fiber axis direction. This concavo-convex structure has a wavy structure that is substantially parallel to the fiber axis and extends in the fiber axis direction. The depth of the unevenness is usually about 50 nm to several hundred nm, and the length is usually about 0.6 μm to several μm, and in some cases, several tens of μm. This surface concavo-convex structure is usually referred to as a surface defect.
The carbon fiber bundle of the present invention does not have an uneven surface structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber.

その一方、本発明の炭素繊維束は、このような凹凸構造よりもよりもサイズが小さい凹凸構造を単繊維の表面に有している。この炭素繊維の単繊維に存在する表面凹凸構造の深さは、円周長さ1.0μm、繊維軸方向長さ1.0μmで囲まれる範囲での繊維表面の最高部と最低部の高低差(Rp−v)および、平均凹凸度Raによって規定される。この(Rp−v)およびRaは、走査型原子間力顕微鏡(AFM)を用いて単繊維の表面を走査して得られる。高低差(Rp−v)は5〜25nm、平均凹凸度Raは2〜6nmであることが望ましい。より好ましくは、(Rp−v)は、5〜18nm、Raは2〜5nmである。   On the other hand, the carbon fiber bundle of the present invention has a concavo-convex structure having a smaller size than the concavo-convex structure on the surface of the single fiber. The depth of the surface uneven structure existing in the single fiber of the carbon fiber is the difference in height between the highest part and the lowest part of the fiber surface in a range surrounded by a circumferential length of 1.0 μm and a length in the fiber axis direction of 1.0 μm. It is defined by (Rp-v) and average unevenness Ra. The (Rp-v) and Ra are obtained by scanning the surface of a single fiber using a scanning atomic force microscope (AFM). It is desirable that the height difference (Rp-v) is 5 to 25 nm and the average roughness Ra is 2 to 6 nm. More preferably, (Rp-v) is 5 to 18 nm, and Ra is 2 to 5 nm.

本発明では、炭素繊維を構成する各単繊維は、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造を有しないものである。複合材料の界面相においては、このような大きいサイズの表面凹凸構造は応力集中部となりやすい。さらにこの凹凸構造近傍の炭素繊維組織は破壊靭性が低くなっている。したがって、このサイズの表面凹凸構造は、複合材料に負荷される応力レベルがあまり大きくない状態においても、その凹凸構造近傍が界面破壊の起点となりやすい。その結果複合材料の機械的性能は大きく低下してしまう。   In the present invention, each single fiber constituting the carbon fiber does not have a surface uneven structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber. In the interfacial phase of the composite material, such a large-sized surface uneven structure tends to be a stress concentration portion. Furthermore, the carbon fiber structure near the concavo-convex structure has low fracture toughness. Therefore, in the surface uneven structure of this size, even in the state where the stress level applied to the composite material is not so high, the vicinity of the uneven structure is likely to be the starting point of interface fracture. As a result, the mechanical performance of the composite material is greatly reduced.

本発明の炭素繊維を構成する各単繊維の表面の凹凸構造の、より具体的な態様は以下の通りである。
通常炭素繊維表面には、数個のフィブリルの集合体を単位とする繊維の長手方向に伸びる長さ0.6μm以上の皺状構造である凹凸構造とこの皺状構造である凹凸構造よりもサイズが小さく、各フィブリル体の自体に存在する微小な凹凸構造を有する。
即ち、本発明の炭素繊維を構成する各単繊維の表面には、繊維の長手方向に延びる長さ0.6μm以上の凹凸構造が存在せず、このような凹凸構造よりもよりもサイズが小さい、各フィブリル体の自体に存在する微小な凹凸構造のみが存在するものである。さらに、その微小な凹凸構造は、長さ300nm以下のものとなっている。この凹凸構造は前記の(Rp−v)及びRaによって表示される。即ち、単繊維の表面の円周長さ1.0μm、繊維軸方向長さ1.0μmで囲まれる範囲で、高低差(Rp−v)が5〜25nm、平均凹凸度Raが2〜6nmの起伏である。好ましくは、(Rp−v)は5〜18nm、Raは2〜5nmである。この微小サイズの凹凸構造の方向には特に限定はなく、繊維軸方向に平行、あるいは垂直、あるいはある角度を有する。
A more specific aspect of the uneven structure on the surface of each single fiber constituting the carbon fiber of the present invention is as follows.
Usually, the surface of the carbon fiber has a concavo-convex structure that is a ridge-like structure with a length of 0.6 μm or more extending in the longitudinal direction of the fiber, and a size larger than the concavo-convex structure that is this cocoon-like structure. Is small, and has a fine concavo-convex structure existing in each fibril body itself.
That is, the surface of each single fiber constituting the carbon fiber of the present invention does not have an uneven structure with a length of 0.6 μm or more extending in the longitudinal direction of the fiber, and the size is smaller than such an uneven structure. Only the minute uneven structure existing in each fibril body is present. Further, the minute uneven structure has a length of 300 nm or less. This uneven structure is indicated by the above (Rp-v) and Ra. In other words, the height difference (Rp-v) is 5 to 25 nm and the average roughness Ra is 2 to 6 nm within the range surrounded by the circumferential length of 1.0 μm and the fiber axis direction length of 1.0 μm. It is undulating. Preferably, (Rp-v) is 5 to 18 nm and Ra is 2 to 5 nm. There is no particular limitation on the direction of the minute concavo-convex structure, and it is parallel to, perpendicular to, or at a certain angle to the fiber axis direction.

(単繊維の繊維断面)
また、単繊維の繊維断面の長径と短径との比(長径/短径)は1.00〜1.01である、真円或いは真円に近い断面を有する単繊維であることが必要である。真円であることにより、繊維表面近傍の構造均一性が優れているために、応力集中を低減させることができるからである。この比は好ましくは1.00〜1.005である。さらに、同様な理由から、単繊維の単位長さ当たりの質量は、0.030〜0.042mg/mである。繊維の単位長さ当たりの質量(単繊維目付け)が小さいことは、繊維径が小さく、断面方向に存在する構造の不均一性が小さく、繊維軸と垂直な方向の機械的性能が高いことを意味する。したがって、複合材料において、繊維軸に垂直な方向の応力に対する耐性が向上し、複合材料としての機械的性能を高くすることができる。
(Fiber cross section of single fiber)
Further, the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is required to be a single fiber having a perfect circle or a cross section close to a perfect circle. is there. This is because, due to the perfect circle, the structural uniformity in the vicinity of the fiber surface is excellent, so that stress concentration can be reduced. This ratio is preferably 1.00 to 1.005. Furthermore, for the same reason, the mass per unit length of the single fiber is 0.030 to 0.042 mg / m. The small mass per unit length of the fiber (single fiber basis weight) means that the fiber diameter is small, the non-uniformity of the structure existing in the cross-sectional direction is small, and the mechanical performance in the direction perpendicular to the fiber axis is high. means. Therefore, in the composite material, resistance to stress in a direction perpendicular to the fiber axis is improved, and the mechanical performance as the composite material can be increased.

(炭素繊維束)
本発明において、優れた機械物性を有する繊維強化樹脂を得るには、炭素繊維束のストランド強度は5900MPa以上であることが必要である。炭素繊維束のストランド強度は、好ましくは6000MPa以上、より好ましくは6100MPa以上である。ストランド強度は高い方が好ましいが、複合材料として、圧縮強度とのバランスを考えると、10000MPaあれば十分である。また、本発明において、優れた機械物性を有する繊維強化樹脂を得るには、炭素繊維束のストランド弾性率はASTM法で測定される数値で250〜380GPaであることが必要である。弾性率が250GPa未満では、炭素繊維束としての弾性率が不足し、十分な機械物性を発現させることができない。一方、弾性率が380GPaを超えると、炭素繊維の表面及び内部の黒鉛結晶サイズが大きくなり、それに伴い繊維断面方向強度および繊維軸方向の圧縮強度が低下し、複合材料としての引張と圧縮の性能バランスがうまく付かず、その結果として、優れた複合材料を得ることができなくなる。さらに、表面の黒鉛結晶サイズの拡大により不活性化が進み、マトリックス樹脂との接着性が低下することになり、複合材料の90°方向の引張強度、層間剪断強度、面内剪断強度や0°圧縮強度などの機械的性能の低下が顕著に現れる。
(Carbon fiber bundle)
In the present invention, in order to obtain a fiber reinforced resin having excellent mechanical properties, the strand strength of the carbon fiber bundle needs to be 5900 MPa or more. The strand strength of the carbon fiber bundle is preferably 6000 MPa or more, more preferably 6100 MPa or more. Higher strand strength is preferable, but 10,000 MPa is sufficient as a composite material in consideration of the balance with compressive strength. In the present invention, in order to obtain a fiber reinforced resin having excellent mechanical properties, the strand elastic modulus of the carbon fiber bundle needs to be 250 to 380 GPa as measured by the ASTM method. If the elastic modulus is less than 250 GPa, the elastic modulus as a carbon fiber bundle is insufficient, and sufficient mechanical properties cannot be expressed. On the other hand, when the elastic modulus exceeds 380 GPa, the surface and internal graphite crystal sizes of the carbon fibers increase, and the fiber cross-sectional direction strength and fiber axis direction compressive strength decrease accordingly, and the tensile and compression performance as a composite material The balance is not good and as a result, an excellent composite material cannot be obtained. Furthermore, the inactivation progresses due to the enlargement of the surface graphite crystal size, and the adhesiveness with the matrix resin decreases, and the tensile strength, interlaminar shear strength, in-plane shear strength and 0 ° of the composite material are reduced. A significant decrease in mechanical performance such as compressive strength appears.

更に、本発明において炭素繊維束を結節したものの引張破断応力を繊維束の断面積(単位長さ当たりの質量と密度)で除した結節強さが900N/mm以上であることが重要である。より好ましくは1000N/mm以上、更に好ましくは1100N/mm以上であることが望ましい。結節強さは、繊維軸方向以外の繊維束の機械的な性能を反映させる指標となりうるものであり、特に繊維軸に垂直な方向の性能を簡易的に見ることができる。複合材料においては、擬似等方積層により材料を形成することが多く、複雑な応力場を形成する。その際、繊維軸方向の引張、圧縮応力の他に、繊維軸方向の応力も発生している。さらに、衝撃試験のような比較的高速なひずみを付与した場合、材料内部の発生応力状態はかなり複雑であり、繊維軸方向と異なる方向の強度が重要となる。したがって、結節強さが900N/mm未満では、擬似等方材料において十分な機械的性能が発現しない。一方、3000N/mmを超える場合、繊維軸方向の配向を低下させる必要が生じる。したがって、結節強度は、3000N/mm以下とすべきである。Furthermore, in the present invention, it is important that the knot strength obtained by dividing the tensile breaking stress of the carbon fiber bundles knotted by the cross-sectional area (mass and density per unit length) of the fiber bundle is 900 N / mm 2 or more. . More preferably, it is 1000 N / mm 2 or more, and still more preferably 1100 N / mm 2 or more. The knot strength can be an index reflecting the mechanical performance of the fiber bundle other than in the fiber axis direction, and particularly the performance in the direction perpendicular to the fiber axis can be easily seen. In a composite material, a material is often formed by quasi-isotropic lamination, and a complex stress field is formed. At that time, in addition to tensile and compressive stresses in the fiber axis direction, stresses in the fiber axis direction are also generated. Furthermore, when a relatively high-speed strain is applied as in an impact test, the stress state generated in the material is quite complicated, and the strength in a direction different from the fiber axis direction is important. Therefore, when the knot strength is less than 900 N / mm 2 , sufficient mechanical performance is not exhibited in the pseudo-isotropic material. On the other hand, when it exceeds 3000 N / mm 2 , it is necessary to lower the orientation in the fiber axis direction. Therefore, the nodule strength should be 3000 N / mm 2 or less.

また、本発明の炭素繊維束は、破壊表面生成エネルギーが30N/m以上であることが好ましい。破壊表面生成エネルギーは、単繊維表面にレーザーにて所定範囲の大きさを有する半球状欠陥を形成し、この繊維を引張試験によりその半球状欠陥部位で破断させ、繊維の破断強度と半球状欠陥の大きさから、以下のグリフィス式(1)より求められる。   The carbon fiber bundle of the present invention preferably has a fracture surface generation energy of 30 N / m or more. The fracture surface generation energy is determined by forming a hemispherical defect having a size within a predetermined range with a laser on the surface of a single fiber, and breaking the fiber at the hemispherical defect site by a tensile test. Is obtained from the following Griffith equation (1).

σ=(2E/πC)1/2×(破壊表面生成エネルギー)1/2 ・・・(1)
ここで、σは破断強度、Eは炭素繊維束の超音波弾性率、cは半球状欠陥の大きさである。破壊表面生成エネルギーは、より好ましくは、31N/m以上、さらに好ましくは32N/m以上である。
σ = (2E / πC) 1/2 × (Fracture surface generation energy) 1/2 (1)
Here, σ is the breaking strength, E is the ultrasonic elastic modulus of the carbon fiber bundle, and c is the size of the hemispherical defect. The fracture surface generation energy is more preferably 31 N / m or more, and even more preferably 32 N / m or more.

ここで、破壊生成エネルギーは炭素繊維の壊れ難さの指標であり、基質強度を表している。炭素繊維は、脆性的な破壊を示す材料であり、その引張強度は欠陥点の支配を受けている。炭素繊維が同じ欠陥点を有する場合、その基質強度が高い程、破壊強度は高くなる。また、高性能複合材料用のマトリックス樹脂は、炭素繊維と接着性が高いものが多く、その結果、応力伝達の指標となる臨界繊維長が短くなる。その結果、複合材料の強度は、より短い長さでの強度が反映されることとなり、基質強度が重要な指標となると考えられる。一方、50N/mを超える場合、繊維軸方向の配向を低下させる必要が生じる。したがって、破壊生成エネルギーは、50N/m以下とすべきである。   Here, the fracture generation energy is an index of the difficulty of breaking the carbon fiber, and represents the substrate strength. Carbon fiber is a material that exhibits brittle fracture, and its tensile strength is governed by defect points. When the carbon fiber has the same defect point, the higher the substrate strength, the higher the breaking strength. In addition, many matrix resins for high-performance composite materials have high adhesion to carbon fibers, and as a result, the critical fiber length that serves as an index of stress transmission is shortened. As a result, the strength of the composite material reflects the strength at a shorter length, and the substrate strength is considered to be an important index. On the other hand, when it exceeds 50 N / m, it is necessary to lower the orientation in the fiber axis direction. Therefore, the fracture generation energy should be 50 N / m or less.

本発明において、電気化学的測定法(サイクリック・ボルタ・メトリー)により求められるipa値が0.05〜0.25μA/cmであることが好ましい。このipa値は、炭素繊維の酸素含有官能基数量と電気二重層形成に関与する表面凹凸度と炭素繊維表面の微細なグラファイト構造の影響を受ける。特に表層のエッチングを大きく受けた炭素繊維や、アニオンイオンが黒鉛結晶の層間に入り込んだ層間化合物を形成している炭素繊維は、大きな値を有する。優れた機械的性能を発現する複合材料において、炭素繊維と樹脂との界面は重要であり、特に適当な酸素含有官能基が存在し、かつ小さな電気二重層を形成する表面を有する炭素繊維が最適な界面を形成することがわかった。ipa値が0.05μA/cm以上の場合、十分な酸素含有官能基が表面に存在していることを示していて、十分な界面接着性を有するものとなる。一方、ipa値が0.25μA/cm以下の場合、表面のエッチングが過剰に生じている状態ではなく、さらに層間化合物が形成されているものでもない。このような表面は、マトリックス樹脂と強固に接着が可能となり、その結果樹脂との十分な界面接着性を有するものとすることができる。より好ましくは、0.07〜0.20μA/cm、さらに好ましくは0.10〜0.18μA/cmである。In the present invention, the ipa value obtained by an electrochemical measurement method (cyclic voltammetry) is preferably 0.05 to 0.25 μA / cm 2 . This ipa value is influenced by the number of oxygen-containing functional groups of the carbon fiber, the degree of surface unevenness involved in forming the electric double layer, and the fine graphite structure on the surface of the carbon fiber. In particular, carbon fibers that have undergone large etching of the surface layer and carbon fibers that form an intercalation compound in which anion ions enter between graphite crystals have large values. In composite materials that exhibit excellent mechanical performance, the interface between carbon fiber and resin is important, especially carbon fiber with a suitable oxygen-containing functional group and a surface that forms a small electric double layer is optimal. It was found to form a new interface. When the ipa value is 0.05 μA / cm 2 or more, it indicates that sufficient oxygen-containing functional groups are present on the surface, and has sufficient interfacial adhesion. On the other hand, when the ipa value is 0.25 μA / cm 2 or less, the surface is not excessively etched, and no intercalation compound is formed. Such a surface can be firmly bonded to the matrix resin, and as a result, has sufficient interfacial adhesion to the resin. More preferably, it is 0.07-0.20 microampere / cm < 2 >, More preferably, it is 0.10-0.18 microampere / cm < 2 >.

さらに、本発明において、X線光電子分光法により求められる炭素繊維表面の酸素含有官能基量(O1S/C1S)が0.05〜0.15の範囲にある炭素繊維であることが望ましい。適度なマトリックス樹脂との界面接着性を有することが重要だからである。   Furthermore, in the present invention, it is desirable that the carbon fiber has an oxygen-containing functional group amount (O1S / C1S) on the surface of the carbon fiber determined by X-ray photoelectron spectroscopy in the range of 0.05 to 0.15. This is because it is important to have an appropriate interfacial adhesion with the matrix resin.

また、本発明において、ICP発光分析法によって測定されるSi量が、200ppm以下であることが望ましい。高強度炭素繊維を製造するためには、通常前駆体繊維束にシリコーンオイル含有油剤を付着させる。シリコーンオイルは耐熱性に非常に優れ、また優れた離型性を付与できる。このために、フィラメント径が非常に小さく、これらフィラメントを多数集合して形成されるマルチフィラメント束の形態を有し、さらに高温で数十分から数時間200℃以上の高温化での処理に供される炭素繊前躯体繊維束の油剤に最適なものと考えられる。しかし、耐炎化処理の後に実施される炭素化処理においては、これらシリコーンオイルは、大部分は分解、飛散し、炭素繊維の表面に残存するシリコーン化合物量は非常に少ないものとなっている。また、この残存したシリコーン化合物は、炭素繊維の表層近傍に存在し、ボイド形成の要因となることがわかっている。したがって、このようなシリコーン化合物を可能な限り少なくすることにより、ボイドの少ない炭素繊維を製造することができ、その結果、炭素繊維束の強度を高くすることができる。より好ましいSi量は150ppm以下であり、さらに好ましいSi量は100ppm以下である。   In the present invention, the Si amount measured by ICP emission analysis is desirably 200 ppm or less. In order to produce a high-strength carbon fiber, a silicone oil-containing oil agent is usually adhered to the precursor fiber bundle. Silicone oil is very excellent in heat resistance and can provide excellent release properties. For this reason, the filament diameter is very small, it has a form of a multifilament bundle formed by aggregating many of these filaments, and is further subjected to processing at a high temperature of 200 ° C. or more for several tens of minutes to several hours. It is considered to be the most suitable for the oil agent of the carbon fiber precursor fiber bundle. However, in the carbonization treatment performed after the flameproofing treatment, most of these silicone oils are decomposed and scattered, and the amount of the silicone compound remaining on the surface of the carbon fiber is very small. Further, it is known that the remaining silicone compound is present in the vicinity of the surface layer of the carbon fiber and causes void formation. Therefore, by reducing such a silicone compound as much as possible, carbon fibers with few voids can be produced, and as a result, the strength of the carbon fiber bundle can be increased. A more preferable amount of Si is 150 ppm or less, and a more preferable amount of Si is 100 ppm or less.

(前駆体繊維束およびその製造方法)
本発明の炭素繊維束を得る出発原料としては特に制限はないが、機械的性能発現の観点で、アクリロニトリル系前駆体繊維(以下適宜「前駆体繊維」という)から得られるものが好ましい。
この前駆体繊維を構成するアクリロニトリル系共重合体は96質量%以上のアクリロニトリルと数種の共重合可能なモノマーより得られるものである。より好ましくはアクリロニトリルの組成比は97質量%以上である。アクリロニトリル以外の共重合成分としては例えばアクリル酸、メタクリル酸、イタコン酸、アクリル酸メチル、メタクリル酸メチル等のアクリル酸誘導体、アクリルアミド、メタクリルアミド、N−メチロ−ルアクリルアミド、N、N−ジメチルアクリルアミド等のアクリルアミド誘導体、酢酸ビニルなどが適する。これらは単独でも組合せでも良い。好ましい共重合体は、一つ以上のカルボキシル基有するモノマーを必須成分として共重合させたアクリロニトリル系共重合体である。
(Precursor fiber bundle and manufacturing method thereof)
Although there is no restriction | limiting in particular as a starting raw material which obtains the carbon fiber bundle of this invention, The thing obtained from an acrylonitrile type | system | group precursor fiber (henceforth "precursor fiber" suitably) is preferable from a viewpoint of mechanical performance expression.
The acrylonitrile copolymer constituting the precursor fiber is obtained from 96% by mass or more of acrylonitrile and several kinds of copolymerizable monomers. More preferably, the composition ratio of acrylonitrile is 97% by mass or more. Examples of copolymer components other than acrylonitrile include acrylic acid derivatives such as acrylic acid, methacrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, acrylamide, methacrylamide, N-methylol acrylamide, N, N-dimethylacrylamide, and the like. Suitable are acrylamide derivatives and vinyl acetate. These may be used alone or in combination. A preferred copolymer is an acrylonitrile-based copolymer obtained by copolymerizing a monomer having one or more carboxyl groups as an essential component.

モノマーの混合物を共重合する適当な方法は、例えば水溶液におけるレドックス重合または不均一系における懸濁重合および分散剤を使用した乳化重合、その他どのような重合方法であってもよく、これら重合方法の相違によって本発明が制約されるものではない。前駆体繊維は、上述のアクリロニトリル系重合体をジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等の有機溶剤に溶解して紡糸原液を調製するのが好ましい。これら有機溶剤は、金属成分を含まないため、得られる炭素繊維束の金属成分の含有量を下げることができる。紡糸原液の固形分濃度は、20質量%以上が好ましく、より好ましくは21質量%以上である。   A suitable method for copolymerizing the monomer mixture may be, for example, redox polymerization in an aqueous solution or suspension polymerization in a heterogeneous system and emulsion polymerization using a dispersing agent, or any other polymerization method. The present invention is not limited by the differences. The precursor fiber is preferably prepared by dissolving the acrylonitrile-based polymer described above in an organic solvent such as dimethylacetamide, dimethylsulfoxide, dimethylformamide or the like to prepare a spinning dope. Since these organic solvents do not contain a metal component, the content of the metal component in the obtained carbon fiber bundle can be lowered. The solid concentration of the spinning dope is preferably 20% by mass or more, and more preferably 21% by mass or more.

紡糸方法は、湿式紡糸、乾湿紡糸いずれでもよい。より好ましくは乾湿式紡糸である。乾湿式紡糸においては、調製した紡糸原液を吐出孔が多数配置された紡糸口金から一旦空気中に紡出した後、調温した有機溶剤と水の混合溶液を満たした凝固液中に吐出し凝固させ、その凝固糸を引取り、次いで洗浄、延伸を行う。洗浄方法は脱溶剤することが出来ればいかなる方法でもよい。尚、引き取った凝固糸を洗浄する前に、凝固液よりも溶剤濃度が低く、温度の高い前延伸槽中にて、延伸をすることにより、フィブリル構造を形成させることができる。凝固糸を延伸する際、延伸槽の温度は40〜80℃の範囲が好ましい。温度が40℃未満では、延伸性が確保できず無理な延伸となり、均一なフィブリル構造形成ができない。一方、80℃を超えると熱による可塑化作用が大きくなりすぎること、糸条表面での脱溶剤が急速に進み延伸が不均一なものとなることなどから、前駆体繊維束として品質が悪くなる。より好ましい温度は、50〜75℃である。また、延伸槽の濃度は30〜60質量%が好ましい。これは30質量%未満では安定な延伸性が確保できず、60質量%超では可塑化効果が大きくなりすぎ安定な延伸性が損なわれる。より好適な濃度は、35〜55質量%である。   The spinning method may be either wet spinning or wet and wet spinning. More preferred is dry and wet spinning. In dry and wet spinning, the prepared spinning solution is spun into air from a spinneret with a large number of discharge holes, and then discharged into a coagulating liquid filled with a mixed solution of temperature-controlled organic solvent and water for coagulation. The coagulated yarn is taken out and then washed and stretched. Any cleaning method may be used as long as the solvent can be removed. In addition, a fibril structure can be formed by extending | stretching in the pre-drawing tank with a solvent concentration lower than coagulation liquid and high temperature before wash | cleaning the taken-up coagulated yarn. When the coagulated yarn is drawn, the temperature of the drawing tank is preferably in the range of 40 to 80 ° C. If the temperature is less than 40 ° C., the stretchability cannot be ensured and the stretching becomes impossible, and a uniform fibril structure cannot be formed. On the other hand, when the temperature exceeds 80 ° C., the plasticizing action due to heat becomes too large, the solvent removal on the surface of the yarn proceeds rapidly, and the stretching becomes uneven, and the quality of the precursor fiber bundle deteriorates. . A more preferable temperature is 50 to 75 ° C. The concentration of the stretching tank is preferably 30 to 60% by mass. If it is less than 30% by mass, stable stretchability cannot be ensured, and if it exceeds 60% by mass, the plasticizing effect becomes too large and the stable stretchability is impaired. A more preferable concentration is 35 to 55% by mass.

この延伸槽中での延伸倍率は2〜4倍が好ましい。2倍未満では延伸不足であり、所望のフィブリル構造を形成させることができない。一方、4倍を超える延伸を行うと、フィブリル構造自体の破断が生じ、非常に疎な構造形態よりなる前駆体繊維束となってしまう。より好ましい延伸倍率は2.2〜3.8倍であり、更に好ましくは2.5〜3.5倍である。   The stretching ratio in this stretching tank is preferably 2 to 4 times. If it is less than 2 times, the stretching is insufficient, and a desired fibril structure cannot be formed. On the other hand, if the stretching exceeds 4 times, the fibril structure itself is broken, resulting in a precursor fiber bundle having a very sparse structural form. A more preferable draw ratio is 2.2 to 3.8 times, and further preferably 2.5 to 3.5 times.

また、洗浄後、溶剤分の無い膨潤状態にある工程繊維束を熱水中で延伸することで繊維の配向を更に高めることも可能であり、若干の緩和を入れることで前工程での延伸の歪みを取ることも可能である。好ましくはトータルの延伸倍率を上げて繊維の配向を上げる目的で、熱水中で、1.1〜2.0倍の延伸を行う。   In addition, after washing, it is possible to further enhance the fiber orientation by stretching the process fiber bundle in a swollen state with no solvent content in hot water. It is also possible to remove distortion. Preferably, the stretching is performed 1.1 to 2.0 times in hot water for the purpose of increasing the total stretching ratio and increasing the fiber orientation.

次に、シリコーン系化合物からなる油剤を0.8〜1.6質量%となるよう付着処理を行い、乾燥緻密化する。乾燥緻密化は公知の乾燥法により乾燥、緻密化させれば良く、特に制限はない。好ましくは、複数の加熱ロールを通過させる方法である。
乾燥緻密化後のアクリル繊維束は、必要に応じて130〜200℃の加圧スチームや、100〜200℃の乾熱熱媒中、あるいは、150〜220℃の加熱ロール間や加熱板上で1.8〜6.0倍延伸して、更なる配向の向上と緻密化を行った後に巻き取って前駆体繊維束を得る。
Next, an adhesion treatment is performed so that the oil agent composed of the silicone compound becomes 0.8 to 1.6% by mass, and the resultant is dried and densified. Dry densification is not particularly limited as long as it is dried and densified by a known drying method. A method of passing a plurality of heating rolls is preferable.
The acrylic fiber bundle after the drying and densification may be performed in a pressurized steam of 130 to 200 ° C., in a dry heat heating medium of 100 to 200 ° C., between heating rolls of 150 to 220 ° C. or on a heating plate as necessary. The film is stretched by 1.8 to 6.0 times, further improved in orientation and densified, and then wound up to obtain a precursor fiber bundle.

さらに上記前駆体繊維束から本発明の炭素繊維は次のようにして製造することができる。前駆体繊維束を220〜260℃の熱風循環型の耐炎化炉に30〜100分間通過せしめて耐炎化糸密度1.335〜1.360g/cmの耐炎化糸を得る。その際、0〜10%の伸長操作を施す。耐炎化反応には、熱による環化反応と酸素による酸化反応があり、この2つの反応をバランスさせること重要である。この2つの反応をバランスさせるためには、耐炎化処理時間は30〜100分が好適である。30分未満の場合、酸化反応が十分に生じていない部分が単繊維の内側に存在し、単繊維の断面方向で大きな構造斑が生じる。その結果、得られる炭素繊維は不均一な構造を有するものとなってしまい、高い機械的性能は発現しない。一方、100分を超える場合は、単繊維の表面に近い部分により多くの酸素が存在するようになり、その後の高温での熱処理により過剰の酸素が消失する反応が生じ、欠陥点を形成する。このために高強度が得られない。より好ましい耐炎化処理時間は、40〜80分である。Further, the carbon fiber of the present invention can be produced from the precursor fiber bundle as follows. The precursor fiber bundle is passed through a hot air circulation type flameproofing furnace at 220 to 260 ° C. for 30 to 100 minutes to obtain a flameproofed yarn having a flameproofing yarn density of 1.335 to 1.360 g / cm 3 . At that time, an elongation operation of 0 to 10% is performed. The flameproofing reaction includes a cyclization reaction by heat and an oxidation reaction by oxygen, and it is important to balance these two reactions. In order to balance these two reactions, the flameproofing treatment time is preferably 30 to 100 minutes. In the case of less than 30 minutes, a portion where the oxidation reaction has not sufficiently occurred exists inside the single fiber, and a large structural spot is generated in the cross-sectional direction of the single fiber. As a result, the obtained carbon fiber has a non-uniform structure and does not exhibit high mechanical performance. On the other hand, when it exceeds 100 minutes, more oxygen comes to exist in the part near the surface of the single fiber, and a reaction in which excess oxygen disappears by a subsequent heat treatment at a high temperature occurs to form a defect point. For this reason, high strength cannot be obtained. A more preferable flameproofing treatment time is 40 to 80 minutes.

耐炎化糸密度が1.335g/cm未満の場合、耐炎化が不十分となり、その後の高温での熱処理により分解反応が生じ、欠陥点を形成するために、高強度が得られない。耐炎化糸密度が1.360g/cmを超える場合、繊維の酸素含有量が増えるために、その後の高温での熱処理により過剰の酸素が消失する反応が生じ、欠陥点を形成するために、高強度が得られない。より好ましい耐炎化糸密度の範囲は、1.340〜1.350g/cmである。When the flame resistant yarn density is less than 1.335 g / cm 3 , the flame resistance becomes insufficient, and a decomposition reaction occurs due to the subsequent heat treatment at a high temperature, and a defect point is formed, so that high strength cannot be obtained. When the flameproof yarn density exceeds 1.360 g / cm 3 , because the oxygen content of the fiber increases, a reaction in which excess oxygen disappears due to the subsequent heat treatment at a high temperature occurs to form a defect point. High strength cannot be obtained. A more preferable range of flameproof yarn density is 1.340 to 1.350 g / cm 3 .

耐炎化炉での適度の伸長は、繊維を形成しているフィブリル構造の配向を維持、向上させるために必要である。0%未満の伸長では、フィブリル構造の配向が維持できず、炭素繊維の構造形成における繊維軸での配向が十分でなく、優れた機械的性能が発現できない。一方、10%を超える伸長では、フィブリル構造自体の破断が生じ、その後の炭素繊維の構造形成を損ない、また破断点が欠陥点となり、高強度の炭素繊維を得ることができない。より好ましい伸長率は、3〜8%である。   Proper elongation in the flameproofing furnace is necessary to maintain and improve the orientation of the fibril structure forming the fibers. If the elongation is less than 0%, the orientation of the fibril structure cannot be maintained, the orientation at the fiber axis in the formation of the carbon fiber structure is not sufficient, and excellent mechanical performance cannot be exhibited. On the other hand, if the elongation exceeds 10%, the fibril structure itself breaks, and the subsequent formation of the carbon fiber structure is impaired. Further, the breaking point becomes a defect point, and a high-strength carbon fiber cannot be obtained. A more preferable elongation rate is 3 to 8%.

次に耐炎化繊維を窒素などの不活性雰囲気中300〜800℃の温度勾配を有する第一炭素化炉にて2〜7%の伸長を加えながら通過させる。好適な処理温度は300から800℃であり、直線的な勾配で処理する。耐炎化工程の温度を考えると開始温度は300℃以上が好ましい。最高温度が800℃を超えると、工程糸が非常に脆くなり、次の工程への移行が困難になる。より好適な温度範囲は、300〜750℃である。温度勾配については特に制限はないが、直線的な勾配を設定するのが好ましい。   Next, the flame-resistant fiber is passed through an inert atmosphere such as nitrogen in a first carbonization furnace having a temperature gradient of 300 to 800 ° C. while applying elongation of 2 to 7%. A suitable processing temperature is 300 to 800 ° C., and processing is performed with a linear gradient. Considering the temperature of the flameproofing process, the starting temperature is preferably 300 ° C. or higher. When the maximum temperature exceeds 800 ° C., the process yarn becomes very brittle and it is difficult to shift to the next process. A more preferable temperature range is 300 to 750 ° C. The temperature gradient is not particularly limited, but it is preferable to set a linear gradient.

2%未満の伸長では、フィブリル構造の配向が維持できず、炭素繊維の構造形成における繊維軸での配向が十分でなく、優れた機械的性能が発現できない。一方、7%を超える伸長では、フィブリル構造自体の破断が生じ、その後の炭素繊維の構造形成を損ない、また破断点が欠陥点となり、高強度の炭素繊維を得ることができない。より好ましい伸長率は3〜5%である。   If the elongation is less than 2%, the orientation of the fibril structure cannot be maintained, the orientation at the fiber axis in the formation of the carbon fiber structure is not sufficient, and excellent mechanical performance cannot be exhibited. On the other hand, if the elongation exceeds 7%, the fibril structure itself breaks, and the subsequent formation of the carbon fiber structure is impaired, and the break point becomes a defect point, and a high-strength carbon fiber cannot be obtained. A more preferable elongation rate is 3 to 5%.

第一炭素化炉での好適な熱処理時間は1.0〜3.0分である。1.0分未満の処理では、急激な温度上昇に伴う激しい分解反応が生じ、高強度の炭素繊維を得ることができない。3.0分を超えると、工程前期の可塑化の影響が発生し、結晶の配向度が低下する傾向が生じ、その結果得られる炭素繊維の機械的性能が損なわれる。より好適な熱処理時間は、1.2〜2.5分である。   A suitable heat treatment time in the first carbonization furnace is 1.0 to 3.0 minutes. In the treatment for less than 1.0 minute, a violent decomposition reaction accompanying a rapid temperature rise occurs, and a high-strength carbon fiber cannot be obtained. If it exceeds 3.0 minutes, the influence of plasticization in the first stage of the process occurs, and the orientation of crystals tends to be lowered, resulting in the deterioration of the mechanical performance of the resulting carbon fiber. A more preferable heat treatment time is 1.2 to 2.5 minutes.

更に窒素などの不活性雰囲気中1000〜1600℃の温度勾配を有する第二炭素化炉にて緊張下で熱処理を行って炭素繊維とする。また、必要ならば、追加で所望する温度勾配を有する第三炭素化炉にて不活性雰囲気中、緊張下で熱処理を行う。   Furthermore, it heat-processes under tension in the 2nd carbonization furnace which has a temperature gradient of 1000-1600 degreeC in inert atmosphere, such as nitrogen, and is set as carbon fiber. Further, if necessary, heat treatment is performed under tension in an inert atmosphere in a third carbonization furnace having an additional desired temperature gradient.

炭素化処理の温度は、炭素繊維の所望弾性率により設定する。高い強度特性を有する炭素繊維を得るためには、炭素化処理の最高温度は低いことが好ましい。また処理時間を長くすることにより弾性率を高くすることができるため、その結果、最高温度を下げることができる。更に、処理時間を長くすることにより、温度勾配を緩やかに設定することが可能となり、欠陥点形成を抑制するのに効果がある。第二炭素化炉は、第一炭素化炉の温度設定にもよるが、1000℃以上であればよい。好ましくは1050℃以上である。温度勾配については特に制限はないが、直線的な勾配を設定するのが好ましい。   The temperature of the carbonization treatment is set according to the desired elastic modulus of the carbon fiber. In order to obtain carbon fibers having high strength characteristics, it is preferable that the maximum carbonization temperature is low. Further, since the elastic modulus can be increased by extending the treatment time, the maximum temperature can be lowered as a result. Furthermore, by increasing the processing time, the temperature gradient can be set gently, which is effective in suppressing defect point formation. Although a 2nd carbonization furnace is based also on the temperature setting of a 1st carbonization furnace, what is necessary is just 1000 degreeC or more. Preferably it is 1050 degreeC or more. The temperature gradient is not particularly limited, but it is preferable to set a linear gradient.

第二炭素化炉での熱処理時間は、1.3〜5.0分が好適である。より好ましくは、2.0〜4.2分である。本熱処理において、工程繊維は大きな収縮を伴うために、緊張下で熱処理をすることが重要である。   The heat treatment time in the second carbonization furnace is preferably 1.3 to 5.0 minutes. More preferably, it is 2.0 to 4.2 minutes. In this heat treatment, since the process fibers are accompanied by a large shrinkage, it is important to perform the heat treatment under tension.

伸長は、−6.0〜0.0%が好適である。−6.0%未満では結晶の繊維軸方向での配向が悪く、十分な性能が得られない。一方、0.0%を超える場合は、これまで形成されてきた構造そのものの破壊が生じ、欠陥点形成が顕著となり、強度の大幅な低下が生じる。より好適な伸長は、−5.0%から−1.0%の範囲である。   The elongation is preferably -6.0 to 0.0%. If it is less than -6.0%, the crystal orientation in the fiber axis direction is poor, and sufficient performance cannot be obtained. On the other hand, when it exceeds 0.0%, the structure itself that has been formed is destroyed, the formation of defect points becomes remarkable, and the strength is greatly reduced. A more preferred elongation is in the range of -5.0% to -1.0%.

次に炭素繊維束は、表面酸化処理に供される。表面処理方法としては、公知の方法、即ち、電解酸化、薬剤酸化及び空気酸化などによる酸化処理が挙げられ、いずれでも良い。工業的に広く実施されている電解酸化処理は、安定な表面酸化処理が可能でありより、好適である。また、本発明で好適な表面処理状態を表すipaを既述範囲に制御するためには、電解酸化処理を用いて、電気量を変えて行うのが最も簡便な方法である。この場合、同一電気量であっても、用いる電解質及びその濃度によってipaは大きく異なってくる。本発明においては、pHが7より大きいアルカリ性水溶液中で炭素繊維を陽極として10〜200クーロン/gの電気量を流して電解酸化処理を行うことが好ましい。その酸化処理によりipaを0.05〜0.25μA/cm2とすることができる。電解質としては、炭酸アンモニウム、重炭酸アンモニウム、水酸化カルシウム、水酸化ナトリウム、水酸化カリウムなどを用いるのが好適である。Next, the carbon fiber bundle is subjected to a surface oxidation treatment. Examples of the surface treatment method include a known method, that is, an oxidation treatment such as electrolytic oxidation, chemical oxidation, and air oxidation. The electrolytic oxidation treatment that is widely practiced industrially is more preferable because stable surface oxidation treatment is possible. In order to control the ipa representing the surface treatment state suitable for the present invention within the above-described range, the simplest method is to use electrolytic oxidation treatment and change the amount of electricity. In this case, even if the amount of electricity is the same, ipa varies greatly depending on the electrolyte used and its concentration. In the present invention, it is preferable to carry out the electrolytic oxidation treatment in an alkaline aqueous solution having a pH higher than 7 by using a carbon fiber as an anode and flowing an electric quantity of 10 to 200 coulomb / g. By the oxidation treatment, ipa can be 0.05 to 0.25 μA / cm 2 . As the electrolyte, it is preferable to use ammonium carbonate, ammonium bicarbonate, calcium hydroxide, sodium hydroxide, potassium hydroxide, or the like.

次に本発明の炭素繊維束はサイジング処理に供される。サイジング剤は、有機溶剤に溶解させたものや、乳化剤などで水に分散させたエマルジョン液を、ローラー浸漬法、ローラー接触法等によって炭素繊維束に付与する。次いで、これを乾燥することによってサイジング処理を行うことができる。なお、炭素繊維の表面へのサイジング剤の付着量の調節は、サイジング剤液の濃度調整や絞り量調整によって行うことができる。又、乾燥は、熱風、熱板、加熱ローラー、各種赤外線ヒーターなどを利用して行うことができる。   Next, the carbon fiber bundle of the present invention is subjected to a sizing treatment. A sizing agent imparts to a carbon fiber bundle a solution dissolved in an organic solvent or an emulsion liquid dispersed in water with an emulsifier or the like by a roller dipping method, a roller contact method or the like. Subsequently, the sizing process can be performed by drying this. The amount of the sizing agent attached to the surface of the carbon fiber can be adjusted by adjusting the concentration of the sizing agent solution or adjusting the amount of drawing. Moreover, drying can be performed using hot air, a hot plate, a heating roller, various infrared heaters, and the like.

本発明の炭素繊維の表面に付与されるサイジング剤組成物として最適なものは、(a)ヒドロキシ基を有するエポキシ樹脂(以下適宜(a)成分という)、(b)ポリヒドロキシ化合物(以下適宜(b)成分という)及び(c)芳香環を含むジイソシアネ−ト(以下適宜(c)成分という)の反応生成物であるウレタン変性エポキシ樹脂が挙げられる。また、(a)成分を反応に必要な数量より過剰に反応系に導入することにより得られる、反応性生物であるウレタン変性エポキシ樹脂と(a)成分の未反応物との混合物が挙げられる。
さらに、ヒドロキシ基を有しないエポキシ樹脂(以下適宜(d)成分という)を使用して得られる、ウレタン変性エポキシ樹脂と(d)成分との混合物が挙げられる。また更に、ウレタン変性エポキシ樹脂、(a)成分と(d)成分との混合物が挙げられる。
The most suitable sizing agent composition applied to the surface of the carbon fiber of the present invention is (a) an epoxy resin having a hydroxy group (hereinafter referred to as component (a) as appropriate), (b) a polyhydroxy compound (hereinafter referred to as appropriate ( b) component) and (c) urethane-modified epoxy resin which is a reaction product of diisocyanate containing an aromatic ring (hereinafter referred to as component (c) as appropriate). Moreover, the mixture of the urethane modified epoxy resin which is a reactive organism obtained by introduce | transducing (a) component into a reaction system more than the quantity required for reaction, and the unreacted material of (a) component is mentioned.
Furthermore, a mixture of a urethane-modified epoxy resin and a component (d) obtained by using an epoxy resin having no hydroxy group (hereinafter referred to as “component (d)” as appropriate) can be mentioned. Furthermore, a urethane-modified epoxy resin and a mixture of the component (a) and the component (d) can be mentioned.

エポキシ基は、炭素繊維表面の酸素含有官能基との相互作用が非常に強く、サイジング剤成分を炭素繊維表面に強固に接着させることができる。また、ポリヒドロキシ化合物と芳香環を含むジイソシアネ−トから製造されるウレタン結合ユニットを有することにより、柔軟性の付与と、ウレタン結合と芳香環の有する極性による炭素繊維表面との強い相互作用の付与が可能となる。したがって、分子中にエポキシ基と上記ウレタン結合ユニットを有するウレタン変性エポキシ樹脂は、炭素繊維表面に強く付着可能でかつ柔軟性を有する化合物である。即ち、このようなサイジング剤組成物は、炭素繊維表面に強固に接着した柔軟な界面層を形成するので、炭素繊維にマトリックス樹脂を含浸、硬化させて得られる複合材料の機械的性能を優れたものとすることができる。   The epoxy group has a very strong interaction with the oxygen-containing functional group on the surface of the carbon fiber, and can firmly adhere the sizing agent component to the surface of the carbon fiber. In addition, by having a urethane bond unit produced from a polyhydroxy compound and a diisocyanate containing an aromatic ring, it is possible to impart flexibility and strong interaction with the carbon fiber surface due to the polarity of the urethane bond and the aromatic ring. Is possible. Therefore, the urethane-modified epoxy resin having an epoxy group and the urethane bond unit in the molecule is a compound that can adhere strongly to the carbon fiber surface and has flexibility. That is, since such a sizing agent composition forms a flexible interface layer firmly bonded to the carbon fiber surface, the mechanical performance of the composite material obtained by impregnating and curing the matrix resin in the carbon fiber is excellent. Can be.

ここで、(a)成分は、特に制限はなく、(a)成分に含まれるヒドロキシ基の数は限定されない。たとえばグリシドール、メチルグリシドール、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、オキシカルボン酸グリシジルエステルエポキシ樹脂などを用いることができる。特に好ましいものは、ビスフェノール型エポキシ樹脂である。これらは、芳香環を有することから、炭素繊維表面との相互作用が強い。また複合材料に用いられるマトリックス樹脂が、耐熱性、剛直性の観点から、芳香環を有するエポキシ樹脂を用いる場合が多く、これらマトリックス樹脂との相溶性に優れることによる。
(a)成分として2種以上のエポキシ樹脂を用いることもできる。
Here, the component (a) is not particularly limited, and the number of hydroxy groups contained in the component (a) is not limited. For example, glycidol, methyl glycidol, bisphenol F type epoxy resin, bisphenol A type epoxy resin, oxycarboxylic acid glycidyl ester epoxy resin and the like can be used. Particularly preferred are bisphenol type epoxy resins. Since these have an aromatic ring, the interaction with the carbon fiber surface is strong. In addition, the matrix resin used for the composite material is often an epoxy resin having an aromatic ring from the viewpoint of heat resistance and rigidity, and is excellent in compatibility with these matrix resins.
As the component (a), two or more epoxy resins can be used.

また、(b)成分は、ビスフエノ−ルAのアルキレンオキサイド付加物、脂肪族ポリヒドロキシ化合物、ポリヒドロキシモノカルボキシ化合物のいずれか、あるいはこれら混合物より構成されるものであることが好ましい。これらの化合物は、前記のウレタン変性エポキシ樹脂を柔軟にすることができるからである。具体的には、ビスフエノ−ルAのエチレンオキサイド4モル〜14モル付加物、ビスフエノ−ルAのプロピレンオキサイド2〜14モル付加物、ビスフエノ−ルAのエチレンオキサイド、プロピレンオキサイドブッロク共重合体付加物、ポリエチレングリコール、トリメチロールプロパン、ジメチロールプロピオン酸などが挙げられる。   Moreover, it is preferable that (b) component is comprised from either the alkylene oxide adduct of bisphenol A, an aliphatic polyhydroxy compound, a polyhydroxymonocarboxy compound, or these mixtures. This is because these compounds can soften the urethane-modified epoxy resin. Specifically, bisphenol A ethylene oxide 4 mol to 14 mol adduct, bisphenol A propylene oxide 2 to 14 mol adduct, bisphenol A ethylene oxide, propylene oxide block copolymer adduct , Polyethylene glycol, trimethylolpropane, dimethylolpropionic acid and the like.

また、(c)成分、は特に制限されない。特に好ましいのは、トルエンジイソシアネートあるいはキシレンジイソシアネートである。   Further, the component (c) is not particularly limited. Particularly preferred is toluene diisocyanate or xylene diisocyanate.

また、(d)成分のエポキシ樹脂は、特に制限はされない。好ましくは、分子中に2つ以上のエポキシ基を有するものがよい。これは、炭素繊維の表面とエポキシ基の相互作用が強く、これら化合物が表面に強固に付着するからである。エポキシ基の種類には特に制限はなく、グリシジルタイプ、脂環エポキシ基などを採用することができる。好ましいエポキシ樹脂としては、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂(エピクロン HP−7200シリーズ:大日本インキ化学工業株式会社)、トリスヒドロキシンフェニルメタン型エポキシ樹脂(エピコート1032H60、1032S50:ジャパンエポキシレジン株式会社)、DPPノボラック型エポキシ樹脂(エピコート157S65、157S70:ジャパンエポキシレジン株式会社)、ビスフェノールAアルキレンオキサイド付加エポキシ樹脂などを用いることができる。   Further, the epoxy resin as the component (d) is not particularly limited. Preferably, what has two or more epoxy groups in a molecule | numerator is good. This is because the interaction between the surface of the carbon fiber and the epoxy group is strong, and these compounds adhere firmly to the surface. There is no restriction | limiting in particular in the kind of epoxy group, A glycidyl type, an alicyclic epoxy group, etc. are employable. Preferred epoxy resins include bisphenol F type epoxy resin, bisphenol A type epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin (Epiclon HP-7200 series: Dainippon Ink and Chemicals, Inc.), trishydroxyn phenylmethane. Type epoxy resin (Epicoat 1032H60, 1032S50: Japan Epoxy Resin Co., Ltd.), DPP novolac type epoxy resin (Epicoat 157S65, 157S70: Japan Epoxy Resin Co., Ltd.), bisphenol A alkylene oxide-added epoxy resin, and the like can be used.

(d)成分を含む前記混合物の製造時においては、(a)成分、(b)成分、(c)成分を反応させるときに(a)成分と同時に(d)成分を投入しても良いし、またウレタン化反応終了後、(d)成分を投入してもよい。このような化合物からなる水分散液としては、ハイドランN320(DIC株式会社製)などが挙げられる。   In the production of the mixture containing the component (d), the component (d) may be added simultaneously with the component (a) when the component (a), the component (b), and the component (c) are reacted. Further, after completion of the urethanization reaction, component (d) may be added. Examples of the aqueous dispersion composed of such a compound include Hydran N320 (manufactured by DIC Corporation).

本発明の炭素繊維は、ストランド弾性率が250GPa以上であるため、比較的高温で焼成されて得られる。したがって、金属などの不純物を極力含まない前駆体繊維から得ることが有利である。その結果、得られる炭素繊維束の含有する金属成分は小さいものが好適である。特に、アルカリ金属、アルカリ土類金属、亜鉛、鉄、アルミニウムなどの金属成分が、総量で50ppm以下のものが好ましい。これら金属は、1000℃を超える温度において、炭素と反応したり、溶融あるいは蒸発を生じたりして、欠陥点形成の原因となり、高強度の炭素繊維が製造できない。   Since the carbon fiber of the present invention has a strand elastic modulus of 250 GPa or more, it is obtained by firing at a relatively high temperature. Therefore, it is advantageous to obtain from precursor fibers containing as little impurities as possible, such as metals. As a result, the metal component contained in the obtained carbon fiber bundle is preferably small. In particular, the total amount of metal components such as alkali metal, alkaline earth metal, zinc, iron and aluminum is preferably 50 ppm or less. These metals react with carbon at temperatures exceeding 1000 ° C., cause melting or evaporation, and cause the formation of defect points, making it impossible to produce high-strength carbon fibers.

以下、本発明を実施例により具体的に説明する。なお、本実施例における炭素繊維束の性能の測定、評価は、以下の方法によって行った。   Hereinafter, the present invention will be specifically described by way of examples. In addition, the measurement of the performance of the carbon fiber bundle in a present Example and evaluation were performed with the following method.

「1.単繊維の表面凹凸構造の測定」
表面形状を基に、以下のようにして計測できる。
炭素繊維束の単繊維を数本、試料台上にのせ、両端を固定し、さらに周囲にドータイトを塗り、測定サンプルとする。原子間力顕微鏡(セイコーインスツルメンツ(株)製、SPI3700/SPA−300(商品名))によりシリコンナイトライド製のカンチレバーを使用し、AFMモードにて単繊維の円周方向に1000nmの範囲を繊維軸方向長さ1000nmに渡り少しずつづらしながら繰り返し走査し、得られた測定画像を二次元フーリエ変換にて低周波成分をカットしたのち逆変換を行う。そうして得られた単繊維の曲率を除去した断面の平面画像より、円周長さ1.0μm、繊維軸方向長さ1.0μmで囲まれる範囲での最高部と最低部の高低差を読み取り、さらに下記式(2)で算出されるRaを測定する。
"1. Measurement of surface uneven structure of single fiber"
Based on the surface shape, it can be measured as follows.
Place several single fibers of a carbon fiber bundle on a sample table, fix both ends, and apply dotite around the sample to make a measurement sample. Using a silicon nitride cantilever with an atomic force microscope (Seiko Instruments Inc., SPI3700 / SPA-300 (trade name)), in the AFM mode, the fiber axis has a range of 1000 nm in the circumferential direction of the single fiber. The scanning is repeated while gradually shifting over a direction length of 1000 nm, and the obtained measurement image is subjected to inverse transformation after the low-frequency component is cut by two-dimensional Fourier transformation. From the plane image of the cross section obtained by removing the curvature of the single fiber thus obtained, the difference in height between the highest part and the lowest part in a range surrounded by a circumferential length of 1.0 μm and a length of 1.0 μm in the fiber axis direction is obtained. Further, Ra calculated by the following formula (2) is measured.

Ra={1/(Lx×Ly)}・∫Ly LX |f(x,y)|dxdy ・・・(2)
中央面:実表面との高さの偏差が最小となる平面に平行で、かつ実表面を等しい体積で2分割する平面、即ち、その平面と実表面で囲まれた部分であって、その平面の両側の部分の体積V1とV2が等しい平面、
f(x,y):実表面と中央面との高低差、
Lx、Ly:XY平面の大きさ。
Ra = {1 / (Lx × Ly)} · ∫ Ly 0 ∫ LX 0 | f (x, y) | dxdy ··· (2)
Center plane: A plane that is parallel to a plane that has a minimum height deviation from the actual surface and that divides the actual surface into two equal parts, that is, a portion that is surrounded by the plane and the actual surface. Planes with equal volumes V1 and V2 on both sides of
f (x, y): difference in height between the actual surface and the central surface,
Lx, Ly: XY plane size.

また、原子間力顕微鏡による測定の際に、長さ0.6μm以上の凹凸構造の有無、及び長さ300nm以下の凹凸構造の長さを測定した。   Further, during measurement with an atomic force microscope, the presence or absence of a concavo-convex structure having a length of 0.6 μm or more and the length of a concavo-convex structure having a length of 300 nm or less were measured.

「2.単繊維の断面形状の評価」
炭素繊維束を構成する単繊維の繊維断面の長径と短径との比(長径/短径)は、以下のようにして決定した。
内径1mmの塩化ビニル樹脂製のチューブ内に測定用の炭素繊維束を通した後、これをナイフで輪切りにして試料を準備した。ついで、前記試料を繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、走査型電子顕微鏡(フィリップス社製、製品名:XL20)により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径及び短径を測定した。
"2. Evaluation of cross-sectional shape of single fiber"
The ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber constituting the carbon fiber bundle was determined as follows.
A carbon fiber bundle for measurement was passed through a tube made of vinyl chloride resin having an inner diameter of 1 mm, and this was then cut into round pieces with a knife to prepare a sample. Next, the sample was bonded to the SEM sample stage with the fiber cross-section facing upward, and Au was further sputtered to a thickness of about 10 nm, and then scanned with a scanning electron microscope (product name: XL20, manufactured by Philips). The fiber cross section was observed under the conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm, and the major axis and minor axis of the fiber cross section of the single fiber were measured.

「3.炭素繊維束のストランド物性評価」
樹脂含浸炭素繊維束のストランド試験体の調製および強度の測定は、JIS R7601に準拠し測定し評価した。ただし、弾性率の算出はASTMに準じたひずみ範囲を用いて実施した。
“3. Strand property evaluation of carbon fiber bundles”
Preparation of strand test pieces of resin-impregnated carbon fiber bundles and measurement of strength were measured and evaluated according to JIS R7601. However, the elastic modulus was calculated using a strain range according to ASTM.

「4.炭素繊維束の結節強さの測定」
結節強さの測定は以下のように実施した。
150mm長の炭素繊維束の両端に長さ25mmの掴み部を取り付け試験体とした。試験体の作製の際、0.1×10−3N/デニールの荷重を掛けて炭素繊維束の引き揃えを行った。この試験体に結び目を1つ、ほぼ中央部に形成し、引張時のクロスヘッド速度は100mm/minで実施した。試験数は12本で実施し、最小と最大値を取り除き、10本の平均値で測定値とした。
“4. Measurement of knot strength of carbon fiber bundles”
The nodule strength was measured as follows.
A grip part having a length of 25 mm was attached to both ends of a carbon fiber bundle having a length of 150 mm to obtain a test specimen. During the preparation of the test body, a carbon fiber bundle was aligned by applying a load of 0.1 × 10 −3 N / denier. A single knot was formed on the test body at almost the center, and the crosshead speed during tension was 100 mm / min. The number of tests was 12 and the minimum and maximum values were removed, and the average value of 10 was used as the measurement value.

「5.炭素繊維束の破壊表面生成エネルギーの測定」
炭素繊維の単繊維を20cmに切断し、この単繊維の中央部をJIS R7606に示される試料長10mm用の単繊維引張試験の台紙に貼り付け固定し、台紙からはみ出た余分な部分を切断して取り除いたサンプルを作製した。
"5. Measurement of fracture surface formation energy of carbon fiber bundle"
Cut a single fiber of carbon fiber into 20 cm, and attach and fix the center of this single fiber to a single fiber tensile test mount for a sample length of 10 mm shown in JIS R7606, and cut off the excess part protruding from the mount. A sample was removed.

次いで、台紙に固定したこれらのサンプルに対し、レーザーを照射することで半球状欠陥を形成した。レーザー・インターフェース・システムには、フォトニックインストゥルメンツ社製のマイクロポイント(パルスエネルギー300uJ)を使用した。レーザーの集光に必要な光学顕微鏡には、ニコン社製のECLIPSE LV100を使用した。光学顕微鏡の開口絞りは最小に、対物レンズは100倍に設定した。この条件で、サンプルの繊維軸方向の中央部で、かつ、繊維軸に垂直方向の中央部に対して、アッテネータでレーザー強度を10%減衰させた波長435nmのレーザーを1パルス照射して、半球状欠陥を形成したサンプルを得た。   Next, hemispherical defects were formed by irradiating these samples fixed to the mount with a laser. The laser interface system used was a micropoint (pulse energy 300 uJ) manufactured by Photonic Instruments. An ECLIPSE LV100 manufactured by Nikon Corporation was used as an optical microscope necessary for condensing the laser. The aperture stop of the optical microscope was set to the minimum, and the objective lens was set to 100 times. Under this condition, one pulse of a laser beam having a wavelength of 435 nm, which is attenuated by 10% of the laser intensity with an attenuator, is applied to the central portion in the fiber axis direction of the sample and the central portion in the direction perpendicular to the fiber axis. A sample in which a defect was formed was obtained.

サンプルである炭素繊維が収縮破壊を起こさないように、台紙に貼り付けた状態のサンプルをさらにフィルムで挟み、フィルム内を粘性液体で満たして引張試験を行った。具体的には、幅約5mm、長さ約15mmのフィルムを用意して、サンプルの台紙の両面の上部に前記フィルムを接着材で貼り付け、サンプルを覆うように台紙ごと前記フィルムで挟み込んだ。このフィルム間をグリセリン水溶液(グリセリン1に対して水2の割合)で満たした上で、引張速度0.5mm/minで引張試験を行い、破断荷重を測定した。   In order to prevent the carbon fiber as a sample from causing shrinkage failure, the sample attached to the mount was further sandwiched between films, and the film was filled with a viscous liquid to conduct a tensile test. Specifically, a film having a width of about 5 mm and a length of about 15 mm was prepared, the film was attached to the upper part of both sides of the sample mount, and the entire mount was sandwiched between the films so as to cover the sample. The space between the films was filled with a glycerin aqueous solution (the ratio of water 2 to glycerin 1), and then a tensile test was performed at a tensile speed of 0.5 mm / min to measure the breaking load.

次いで、引張試験で2つに分割されたサンプル対を台紙から取り出し、水で慎重に洗浄した後、自然乾燥させた。次いで、サンプルの破断面が上になるように、SEM試料台にカーボンペーストで固定してSEM観察サンプルを作製した。得られたSEM観察サンプルを、日本電子社製のJSM6060(加速電圧10〜15kV、倍率10000〜15000)にて破断面をSEM観察した。   Then, the sample pair divided into two in the tensile test was taken out from the mount, carefully washed with water, and then air-dried. Next, an SEM observation sample was prepared by fixing it to the SEM sample stage with carbon paste so that the fracture surface of the sample was on top. The fracture surface of the obtained SEM observation sample was observed with JSM 6060 (acceleration voltage 10 to 15 kV, magnification 10000 to 15000) manufactured by JEOL Ltd.

得られたSEM画像をパソコンに取り込み、画像解析ソフトにより画像解析して、半球状欠陥の大きさと繊維断面積を測定した。   The obtained SEM image was taken into a personal computer and image analysis was performed with image analysis software, and the size of the hemispherical defect and the fiber cross-sectional area were measured.

次に、破断荷重/繊維断面積=破断強度(σ)と半球状欠陥の大きさ(C)をプロットし、そのデータの傾きを算出した。   Next, breaking load / fiber cross-sectional area = breaking strength (σ) and hemispherical defect size (C) were plotted, and the slope of the data was calculated.

σ=(2E/πC)1/2×(破壊表面生成エネルギー)1/2 ・・・(1)
式(1)より、算出した傾きと炭素繊維束の超音波弾性率(E)により破壊表面生成エネルギーを求めた。
σ = (2E / πC) 1/2 × (Fracture surface generation energy) 1/2 (1)
From the formula (1), the fracture surface generation energy was determined from the calculated slope and the ultrasonic elastic modulus (E) of the carbon fiber bundle.

「6.炭素繊維束のipaの測定」
ipa値は次の方法により測定した。
電解液は5%りん酸水溶液でpH3とし、窒素をバブリングさせ溶存酸素の影響を除く。試料である炭素繊維を一方の電極として電解液に浸漬し、対極として充分な表面積を有する白金電極を用いる。ここで、参照電極としてはAg/AgCl電極を採用した。試料形態は長さ50mmの12000フイラメントトウとした。炭素繊維電極と白金電極の間にかける電位の走査範囲は−0.2Vから+0.8Vとし、走査速度は2.0mV/secとした。X−Yレコーダーにより電流−電圧曲線を描き、3回以上掃引させ曲線が安定した段階で、Ag/AgCl参照電極に対して+0.4Vでの電位を基準電位として電流値iを読み取り、次式(3)に従ってipaを算出した。
“6. Measurement of ipa of carbon fiber bundle”
The ipa value was measured by the following method.
The electrolyte is adjusted to pH 3 with a 5% phosphoric acid aqueous solution, and nitrogen is bubbled to eliminate the influence of dissolved oxygen. A carbon electrode as a sample is immersed in an electrolytic solution as one electrode, and a platinum electrode having a sufficient surface area is used as a counter electrode. Here, an Ag / AgCl electrode was employed as the reference electrode. The sample form was 12000 filament tow with a length of 50 mm. The scanning range of the potential applied between the carbon fiber electrode and the platinum electrode was −0.2 V to +0.8 V, and the scanning speed was 2.0 mV / sec. Draw a current-voltage curve with an XY recorder, and when the curve is stabilized by sweeping three or more times, read the current value i with the potential at +0.4 V as the reference potential with respect to the Ag / AgCl reference electrode. Ipa was calculated according to (3).

ipa=1(μA)/試料長(cm)×{4π×目付(g/cm)×フィラメント数/密度(g/cm)}1/2 ・・・(3)ipa = 1 (μA) / sample length (cm) × {4π × weight per unit area (g / cm) × number of filaments / density (g / cm 3 )} 1/2 (3)

試料長とJIS R7601に記載されている方法によって求められた試料密度と目付から見掛けの表面積を算出し、電流値iを除してipaとした。本測定は柳本製作所製のサイクリック・ボルタ・メトリー・アナライザーP−1100型を用いて行った。   The apparent surface area was calculated from the sample length and the sample density and the basis weight determined by the method described in JIS R7601, and the current value i was divided into ipa. This measurement was performed using a cyclic voltametry analyzer model P-1100 manufactured by Yanagimoto Seisakusho.

「7.炭素繊維束のSi量の測定」
炭素繊維束の試料を風袋既知の白金るつぼに入れ600〜700℃マッフル炉で灰化し、その質量を測定して灰分を求めた。次に炭酸ナトリウムを規定量加え、バーナーで溶融し、脱イオン水で溶解しながら50mlポリメスフラスコに定容した。本試料をICP発光分析法によりSiを定量した。
“7. Measurement of Si content in carbon fiber bundles”
A sample of the carbon fiber bundle was put in a platinum crucible known as a tare and ashed in a muffle furnace at 600 to 700 ° C., and its mass was measured to obtain an ash content. Next, a prescribed amount of sodium carbonate was added, melted with a burner, and fixed in a 50 ml polymeas flask while dissolving with deionized water. This sample was quantified for Si by ICP emission spectrometry.

(前駆体繊維束の製造例1〜7)
前駆体繊維(1)
組成がアクリロニトリル98質量%、メタクリル酸2質量%のアクリロニトリル系重合体をジメチルホルムアミドに溶解し23.5質量%の紡糸原液を調製した。
この紡糸原液を直径0.15mm、数2000の吐出孔を配置した紡糸口金から紡出させて乾湿式紡糸した。即ち空気中に紡出させて約5mmの空間を通過させた後、10℃に調温した79.0質量%ジメチルホルムアミドを含有する水溶液を満たした凝固液中で凝固させ、凝固糸を引き取った。次いで空気中で1.1倍延伸した後、60℃に調温した35質量%ジメチルホルムアミドを含有する水溶液を満たした延伸槽中にて2.5倍延伸した。延伸後、溶剤を含有している工程繊維束を清浄な水で洗浄し、次に、95℃の熱水中で1.4倍の延伸を行った。引き続き、繊維束にアミノ変性シリコーンを主成分とする油剤を1.1質量%となるよう付与し乾燥緻密化した。乾燥緻密化後の繊維束を、加熱ロール間で2.6倍延伸して、更なる配向の向上と緻密化を行った後に巻き取ってアクリロニトリル系前駆体繊維束を得た。この繊維の繊度は、0.77dtexであった。
(Precursor fiber bundle production examples 1 to 7)
Precursor fiber (1)
An acrylonitrile polymer having a composition of 98% by mass of acrylonitrile and 2% by mass of methacrylic acid was dissolved in dimethylformamide to prepare a spinning stock solution of 23.5% by mass.
This spinning dope was spun from a spinneret having a discharge hole having a diameter of 0.15 mm and several thousands, and was subjected to dry and wet spinning. That is, it was spun into air and passed through a space of about 5 mm, and then coagulated in a coagulation liquid filled with an aqueous solution containing 79.0% by mass dimethylformamide adjusted to 10 ° C., and the coagulated yarn was taken up. . Next, the film was stretched 1.1 times in air, and then stretched 2.5 times in a stretching tank filled with an aqueous solution containing 35 mass% dimethylformamide adjusted to 60 ° C. After stretching, the process fiber bundle containing the solvent was washed with clean water, and then stretched 1.4 times in 95 ° C. hot water. Subsequently, an oil agent containing amino-modified silicone as a main component was applied to the fiber bundle so as to be 1.1% by mass, followed by drying and densification. The fiber bundle after drying and densification was stretched 2.6 times between heated rolls, and after further improving the orientation and densification, it was wound up to obtain an acrylonitrile-based precursor fiber bundle. The fineness of this fiber was 0.77 dtex.

前駆体繊維(2)
水洗浄処理前の延伸倍率を2.9倍、洗浄後の熱水中の延伸倍率を1.2倍にした以外は、前駆体繊維束(1)と同じ条件で前駆体繊維束(2)を得た。
Precursor fiber (2)
The precursor fiber bundle (2) under the same conditions as the precursor fiber bundle (1) except that the draw ratio before the water washing treatment was 2.9 times and the draw ratio in the hot water after washing was 1.2 times. Got.

前駆体繊維(3)
前駆体繊維の繊度を0.67dtexとした以外は、前駆体繊維束(2)と同じ条件で前駆体繊維束(3)を得た。
Precursor fiber (3)
A precursor fiber bundle (3) was obtained under the same conditions as the precursor fiber bundle (2) except that the fineness of the precursor fiber was 0.67 dtex.

前駆体繊維(4)
前駆体繊維の繊度を0.90dtexとした以外は、前駆体繊維束(2)と同じ条件で前駆体繊維束(4)を得た。
Precursor fiber (4)
A precursor fiber bundle (4) was obtained under the same conditions as the precursor fiber bundle (2) except that the fineness of the precursor fiber was 0.90 dtex.

前駆体繊維(5)
水洗浄処理前の延伸倍率を4.1倍、洗浄後の熱水中の延伸倍率を0.99倍、加熱ロール間で2.4倍延伸にした以外は、前駆体繊維束(1)と同じ条件で前駆体繊維束(5)を得た。
Precursor fiber (5)
The precursor fiber bundle (1) except that the draw ratio before washing with water was 4.1 times, the draw ratio in hot water after washing was 0.99 times, and the drawing ratio was 2.4 times between heating rolls. A precursor fiber bundle (5) was obtained under the same conditions.

前駆体繊維(6)
水洗浄処理前の延伸倍率を1.9倍、洗浄後の熱水中の延伸倍率を2.0倍にした以外は、前駆体繊維束(1)と同じ条件で前駆体繊維束(6)を得た。
Precursor fiber (6)
The precursor fiber bundle (6) under the same conditions as the precursor fiber bundle (1) except that the draw ratio before the water washing treatment was 1.9 times and the draw ratio in the hot water after washing was 2.0 times. Got.

前駆体繊維(7)
前駆体繊維の繊度を1.0dtexとした以外は、前駆体繊維束(2)と同じ条件で前駆体繊維束(7)を得た。
前駆体繊維束(1)〜(7)の製造条件を表1に示した。
Precursor fiber (7)
A precursor fiber bundle (7) was obtained under the same conditions as the precursor fiber bundle (2) except that the fineness of the precursor fiber was 1.0 dtex.
The production conditions of the precursor fiber bundles (1) to (7) are shown in Table 1.

Figure 2010143681
Figure 2010143681

(実施例1〜7、比較例1〜4)
(炭素繊維束の調製)
複数の前駆体繊維束(1)、(2)、(3)、(4)、(5)、(6)または(7)を平行に揃えた状態で耐炎化炉に導入し、220〜280℃に加熱された空気を前駆体繊維束に吹き付けることによって、前駆体繊維束を耐炎化処理して密度1.345g/cmの耐炎化繊維束を得た。伸長率は6%とし、耐炎化処理時間は70分とした。
(Examples 1-7, Comparative Examples 1-4)
(Preparation of carbon fiber bundle)
A plurality of precursor fiber bundles (1), (2), (3), (4), (5), (6) or (7) are introduced into a flameproofing furnace in a state of being aligned in parallel, 220 to 280 The precursor fiber bundle was flameproofed by blowing air heated to 0 ° C. onto the precursor fiber bundle to obtain a flameproof fiber bundle having a density of 1.345 g / cm 3 . The elongation rate was 6%, and the flameproofing treatment time was 70 minutes.

次に耐炎化繊維束を窒素中300〜700℃の温度勾配を有する第一炭素化炉にて4.5%の伸長を加えながら通過させた。温度勾配は直線的になるように設定した。処理時間は2.0分とした。
更に窒素雰囲気中で1000〜1600℃の温度勾配を設定可能な第二炭素化炉を用いて、表2または表3に示した所定の温度にて熱処理した。引き続き、窒素雰囲気中1200〜2400℃の温度勾配の設定可能な第三炭素化炉を用いて、表2または表3に示した所定の温度にて熱処理を行い、炭素繊維束を得た。第二炭素化炉および第三炭素化炉を合わせた伸長率は、−4.0%、処理時間は3.5分とした。
引き続いて、重炭酸アンモニウム10質量%水溶液中を走行せしめ、炭素繊維束を陽極として、被処理炭素繊維1g当たり40クーロンの電気量となる様に対極との間で通電処理を行い、温水90℃で洗浄した後、乾燥した。
次に、ハイドランN320(以下「サイジング剤1」という)を0.5質量%付着させ、ボビンに巻きとり、炭素繊維束を得た。
Next, the flame-resistant fiber bundle was passed through nitrogen in a first carbonization furnace having a temperature gradient of 300 to 700 ° C. while adding 4.5% elongation. The temperature gradient was set to be linear. The processing time was 2.0 minutes.
Furthermore, it heat-processed at the predetermined | prescribed temperature shown in Table 2 or Table 3 using the 2nd carbonization furnace which can set the temperature gradient of 1000-1600 degreeC in nitrogen atmosphere. Subsequently, using a third carbonization furnace capable of setting a temperature gradient of 1200 to 2400 ° C. in a nitrogen atmosphere, heat treatment was performed at a predetermined temperature shown in Table 2 or Table 3 to obtain a carbon fiber bundle. The elongation ratio of the second carbonization furnace and the third carbonization furnace was -4.0%, and the treatment time was 3.5 minutes.
Subsequently, it was run in an aqueous solution of 10% by weight of ammonium bicarbonate, and with the carbon fiber bundle as the anode, an electric current treatment was carried out with the counter electrode so that the amount of electricity was 40 coulombs per 1 g of carbon fiber to be treated. And then dried.
Next, 0.5% by mass of hydran N320 (hereinafter referred to as “sizing agent 1”) was adhered and wound around a bobbin to obtain a carbon fiber bundle.

(一方向プリプレグの製作)
Bステージ化したエポキシ樹脂#410(180℃硬化タイプ)(三菱レイヨン株式会社製)を塗布した離型紙上に、ボビンから巻き出した炭素繊維束の156本を引き揃えて配置して、加熱圧着ローラーを通して、このエポキシ樹脂を含浸した。その上に保護フィルムを積層して、樹脂含有量約33質量%、炭素繊維目付125g/m2 、幅500mmの一方向引揃えプリプレグ(以下「UDプリプレグ」という)を作製した。
(Production of unidirectional prepreg)
156 carbon fiber bundles unwound from a bobbin are arranged on a release paper coated with B-staged epoxy resin # 410 (180 ° C curing type) (Mitsubishi Rayon Co., Ltd.), and thermocompression bonded. The epoxy resin was impregnated through a roller. A protective film was laminated thereon to produce a unidirectionally aligned prepreg (hereinafter referred to as “UD prepreg”) having a resin content of about 33% by mass, a carbon fiber basis weight of 125 g / m 2 , and a width of 500 mm.

(積層板の成型および機械的性能評価)
前記UDプリプレグを使用して積層板を成形し、積層板の0°引張強度をASTM D3039に準拠した評価法により測定した。
炭素繊維束の製造条件と評価結果を表2及び表3に示した。
尚、いずれの実施例においても、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造は無く、長さ300nm以下の微小サイズの凹凸構造が確認された。
(Molding of laminates and mechanical performance evaluation)
A laminate was molded using the UD prepreg, and the 0 ° tensile strength of the laminate was measured by an evaluation method based on ASTM D3039.
Tables 2 and 3 show the production conditions and evaluation results of the carbon fiber bundle.
In any of the examples, there was no surface uneven structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and a minute size uneven structure having a length of 300 nm or less was confirmed.

Figure 2010143681
Figure 2010143681

Figure 2010143681
Figure 2010143681

(前駆体繊維束の製造例8)
製造例1と同様に調製した紡糸原液を用いて、直径0.13mm、数2000の吐出孔を配置した紡糸口金から紡出させて乾湿式紡糸した。即ち空気中に紡出させて約5mmの空間を通過させた後、5℃に調温した77.0質量%ジメチルホルムアミドを含有する水溶液を満たした凝固液中で凝固させ、凝固糸を引取った。次いで空気中で1.3倍延伸した後、60℃に調温した水溶液を満たした延伸槽中にて2.0倍延伸した。延伸後、工程繊維束を清浄な水で洗浄し、次に、95℃の熱水中で2.0倍の延伸を行った。引き続き、繊維束にアミノ変性シリコーンを主成分とする油剤を1.0質量%となるよう付与し乾燥緻密化した。乾燥緻密化後の繊維束を、加熱ロール間で1.9倍延伸して、更なる配向の向上と緻密化を行った後に巻き取って前駆体繊維束を得た。この繊維の繊度は、0.77dtexであった。
(Precursor fiber bundle production example 8)
Using the spinning stock solution prepared in the same manner as in Production Example 1, spinning was performed from a spinneret in which discharge holes having a diameter of 0.13 mm and several 2,000 were arranged, and dry and wet spinning was performed. That is, it was spun into air and passed through a space of about 5 mm, and then coagulated in a coagulation liquid filled with an aqueous solution containing 77.0% by mass dimethylformamide adjusted to 5 ° C., and the coagulated yarn was taken up. It was. Next, the film was stretched 1.3 times in air and then stretched 2.0 times in a stretching tank filled with an aqueous solution adjusted to 60 ° C. After stretching, the process fiber bundle was washed with clean water, and then stretched 2.0 times in 95 ° C. hot water. Subsequently, an oil agent containing amino-modified silicone as a main component was applied to the fiber bundle so as to be 1.0% by mass, followed by drying and densification. The fiber bundle after drying and densification was drawn 1.9 times between heating rolls, and after further improving the orientation and densification, it was wound up to obtain a precursor fiber bundle. The fineness of this fiber was 0.77 dtex.

(実施例8)
第3炭素化炉を用いなかったことを除いて、実施例5と同様な焼成条件にて炭素繊維束を作製した。また、同様に積層板を作製し、機械的性能評価を実施し、表2の結果を得た。尚、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造は無く、長さ300nm以下の微小サイズの凹凸構造が確認された。
(Example 8)
A carbon fiber bundle was produced under the same firing conditions as in Example 5 except that the third carbonization furnace was not used. Moreover, the laminated board was produced similarly and mechanical performance evaluation was implemented and the result of Table 2 was obtained. In addition, there was no surface uneven structure with a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and a minute uneven structure with a length of 300 nm or less was confirmed.

(実施例9〜11、比較例6〜8)
焼成条件を変更したこと以外は実施例2と同様にして炭素繊維束を得た。評価結果を表4に示した。尚、いずれの実施例においても、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造は無く、長さ300nm以下の微小サイズの凹凸構造が確認された。
(Examples 9-11, Comparative Examples 6-8)
A carbon fiber bundle was obtained in the same manner as in Example 2 except that the firing conditions were changed. The evaluation results are shown in Table 4. In any of the examples, there was no surface uneven structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and a minute size uneven structure having a length of 300 nm or less was confirmed.

Figure 2010143681
Figure 2010143681

(実施例12及び13)
表面処理条件を変更したこと以外は実施例5と同様にして炭素繊維束を得た。評価結果を表5に示した。尚、いずれの実施例においても、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造は無く、長さ300nm以下の微小サイズの凹凸構造が確認された。
(Examples 12 and 13)
A carbon fiber bundle was obtained in the same manner as in Example 5 except that the surface treatment conditions were changed. The evaluation results are shown in Table 5. In any of the examples, there was no surface uneven structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and a minute size uneven structure having a length of 300 nm or less was confirmed.

(実施例14〜16)
サイジング剤の種類と付着量を変更したこと以外は実施例5と同様にして炭素繊維束を得た。評価結果を表5に示した。いずれの実施例においても、単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造は無く、長さ300nm以下の微小サイズの凹凸構造が確認された。
尚、サイジング剤2、サイジング3及びサイジング4は、以下のように調製した。
(Examples 14 to 16)
A carbon fiber bundle was obtained in the same manner as in Example 5 except that the type of sizing agent and the amount of adhesion were changed. The evaluation results are shown in Table 5. In any of the examples, there was no surface uneven structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and a minute size uneven structure having a length of 300 nm or less was confirmed.
Sizing agent 2, sizing 3 and sizing 4 were prepared as follows.

(サイジング剤2)
主剤として、ジャパンエポキシレジン(株)製「エピコート828」を80質量部、乳化剤として旭電化(株)製「プルロニックF88」20質量部を混合し、転相乳化により水分散液を調製した。
(Sizing agent 2)
80 parts by mass of “Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd. as the main agent and 20 parts by mass of “Pluronic F88” manufactured by Asahi Denka Co., Ltd. as the emulsifier were mixed, and an aqueous dispersion was prepared by phase inversion emulsification.

(サイジング剤3)
フラスコにビスフェノールAのプロピレンオキサイド8モル付加物1.8モル、トリメチロールプロパン0.8モル、ジメチロールプロピオン酸0.6モルよりなるポリオール3.2モルを投入し、さらに、反応禁止剤として2,6−ジ(t−ブチル)4−メチルフェノール(BHT)0.5g、反応触媒としてジブチルスズジラウレート0.2gを添加しこれら混合物が均一になるまで撹拌した。ここで、必要に応じて粘度調整剤としてメチルエチルケトンを加えた。均一に溶解した混合物にメタキシレンジイソシアネート3.4モルを滴下して加え、攪拌をしながら反応温度50℃、反応時間2時間でウレタンプレポリマーの重合を実施した。次にエピコート834(JER(株)製)を0.25モル加え、ウレタンプレポリマーの末端にあるイソシアネート基を反応させることによりエポキシ変性ウレタン樹脂を得た。
このエポキシ変性ウレタン樹脂90質量部と乳化剤として旭電化(株)製「プルロニックF88」10質量部を混合し、水分散液を調製した。
(Sizing agent 3)
The flask is charged with 1.8 mol of a bisphenol A propylene oxide 8 mol adduct, 0.8 mol of trimethylolpropane, and 3.2 mol of a polyol composed of 0.6 mol of dimethylolpropionic acid. , 6-Di (t-butyl) 4-methylphenol (BHT) 0.5 g and dibutyltin dilaurate 0.2 g as a reaction catalyst were added and stirred until the mixture became homogeneous. Here, methyl ethyl ketone was added as a viscosity modifier as needed. The urethane prepolymer was polymerized at a reaction temperature of 50 ° C. and a reaction time of 2 hours while stirring and adding 3.4 mol of metaxylene diisocyanate dropwise to the uniformly dissolved mixture. Next, 0.25 mol of Epikote 834 (manufactured by JER Co., Ltd.) was added, and an isocyanate group at the end of the urethane prepolymer was reacted to obtain an epoxy-modified urethane resin.
90 parts by mass of this epoxy-modified urethane resin and 10 parts by mass of “Pluronic F88” manufactured by Asahi Denka Co., Ltd. were mixed as an emulsifier to prepare an aqueous dispersion.

(サイジング剤4)
フラスコにポリエチレングリコール400を2.5モル、エピコート834(JER(株)製)0.7モルを投入し、さらに、反応禁止剤として2,6−ジ(t−ブチル)4−メチルフェノール(BHT)0.25g、反応触媒としてジブチルスズジラウレート0.1gを添加しこれら混合物が均一になるまで撹拌した。ここで、必要に応じて粘度調整剤としてメチルエチルケトンを加えた。均一に溶解した混合物にメタキシレンジイソシアネート2.7モルを滴下して加え、攪拌をしながら反応温度40℃、反応時間2時間でエポキシ変性ウレタン樹脂を得た。
このエポキシ変性ウレタン樹脂80質量部と乳化剤として旭電化(株)製「プルロニックF88」20質量部を混合し、水分散液を調製した。
(Sizing agent 4)
The flask was charged with 2.5 mol of polyethylene glycol 400 and 0.7 mol of Epicoat 834 (manufactured by JER Co., Ltd.), and 2,6-di (t-butyl) 4-methylphenol (BHT) as a reaction inhibitor. ) 0.25 g, dibutyltin dilaurate 0.1 g was added as a reaction catalyst, and the mixture was stirred until uniform. Here, methyl ethyl ketone was added as a viscosity modifier as needed. To the uniformly dissolved mixture, 2.7 mol of metaxylene diisocyanate was added dropwise, and an epoxy-modified urethane resin was obtained at a reaction temperature of 40 ° C. and a reaction time of 2 hours while stirring.
80 parts by mass of this epoxy-modified urethane resin and 20 parts by mass of “Pluronic F88” manufactured by Asahi Denka Co., Ltd. were mixed as an emulsifier to prepare an aqueous dispersion.

Figure 2010143681
Figure 2010143681

本発明の炭素繊維束は、航空機、高速移動体などの構造材料として使用することができる。   The carbon fiber bundle of the present invention can be used as a structural material for aircraft, high-speed moving bodies, and the like.

Claims (10)

単繊維の表面に繊維の長手方向に延びる長さ0.6μm以上の表面凹凸構造が無く、単繊維の表面の最高部と最低部の高低差(Rp−v)が5〜25nmで平均凹凸度Raが2〜6nmの凹凸構造を有し、かつ単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.01である炭素繊維の単繊維からなり、単繊維の単位長さ当たりの質量が0.030〜0.042mg/mの範囲にあり、ストランド強度が5900MPa以上、ASTM法で測定されるストランド弾性率が250〜380GPaであり、結節強さが900N/mm以上の炭素繊維である炭素繊維束。There is no surface uneven structure with a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and the average unevenness is 5-25 nm in height difference (Rp-v) between the highest and lowest parts of the surface of the single fiber. Ra has a concavo-convex structure of 2 to 6 nm, and consists of a single fiber of carbon fiber having a ratio of a long diameter to a short diameter (long diameter / short diameter) of a single fiber of 1.00 to 1.01. The mass per unit length of the single fiber is in the range of 0.030 to 0.042 mg / m, the strand strength is 5900 MPa or more, the strand elastic modulus measured by the ASTM method is 250 to 380 GPa, and the knot strength is A carbon fiber bundle which is a carbon fiber of 900 N / mm 2 or more. 単繊維の表面に、繊維の長手方向に延びる長さ0.6μm以上の凹凸構造が無く、長さ300nm以下の凹凸構造であって、単繊維の表面の最高部と最低部の高低差(Rp−v)が5〜25nm、平均凹凸度Raが2〜6nmの凹凸構造を有し、かつ単繊維の繊維断面の長径と短径との比(長径/短径)が1.00〜1.01である炭素繊維の単繊維からなり、単繊維の単位長さ当たりの質量が0.030〜0.042mg/mの範囲にあり、ストランド強度が5900MPa以上、ASTM法で測定されるストランド弾性率が250〜380GPaであり、結節強さが900N/mm以上の炭素繊維である炭素繊維束。There is no concavo-convex structure having a length of 0.6 μm or more extending in the longitudinal direction of the fiber on the surface of the single fiber, and a concavo-convex structure having a length of 300 nm or less, and the height difference (Rp) -V) has a concavo-convex structure with an average concavoconvexity Ra of 2-6 nm, and the ratio of the major axis to the minor axis (major axis / minor axis) of the single fiber is 1.00-1. The strand elastic modulus is measured by the ASTM method, which is composed of a single carbon fiber of 01, the mass per unit length of the single fiber is in the range of 0.030 to 0.042 mg / m, the strand strength is 5900 MPa or more. Is a carbon fiber bundle having a knot strength of 900 N / mm 2 or more. 単繊維表面にレーザーにて所定範囲の大きさを有する半球状欠陥を形成し、前記繊維を引張試験により前記半球状欠陥部位で破断させ、前記繊維の破断強度と半球状欠陥の大きさからグリフィス式(1)より求められる破壊表面生成エネルギーが、30N/m以上である請求項1または2に記載の炭素繊維束。
σ=(2E/πC)1/2×(破壊表面生成エネルギー)1/2 ・・・(1)
ここで、σは破断強度、Eは炭素繊維束の超音波弾性率、cは半球状欠陥の大きさである。
A hemispherical defect having a size within a predetermined range is formed on the surface of a single fiber with a laser, the fiber is broken at the hemispherical defect site by a tensile test, and Griffith is determined from the breaking strength of the fiber and the size of the hemispherical defect. The carbon fiber bundle according to claim 1 or 2, wherein the fracture surface generation energy obtained from the formula (1) is 30 N / m or more.
σ = (2E / πC) 1/2 × (Fracture surface generation energy) 1/2 (1)
Here, σ is the breaking strength, E is the ultrasonic elastic modulus of the carbon fiber bundle, and c is the size of the hemispherical defect.
電気化学的測定法(サイクリック・ボルタ・メトリー)により求められるipa値が0.05〜0.25μA/cmであり、X線光電子分光法により求められる炭素繊維表面の酸素含有官能基量(O1S/C1S)が0.05〜0.15の範囲にある請求項1〜3のいずれかに記載の炭素繊維束。The amount of oxygen-containing functional groups on the surface of the carbon fiber determined by X-ray photoelectron spectroscopy has an ipa value determined by an electrochemical measurement method (cyclic voltametry) of 0.05 to 0.25 μA / cm 2 ( The carbon fiber bundle according to any one of claims 1 to 3, wherein O1S / C1S) is in a range of 0.05 to 0.15. ICP発光分析法によって測定されるSi量が、200ppm以下である請求項1〜4のいずれかに記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 4, wherein the amount of Si measured by ICP emission analysis is 200 ppm or less. (a)ヒドロキシ基を有するエポキシ樹脂、(b)ポリヒドロキシ化合物及び(c)芳香環を含むジイソシアネ−トの反応生成物であるウレタン変性エポキシ樹脂を含むサイジング剤組成物、または、該ウレタン変性エポキシ樹脂と(a)ヒドロキシ基を有するエポキシ樹脂及び又は(d)ヒドロキシ基を有しないエポキシ樹脂との混合物を含むサイジング剤組成物でサイジングされた請求項1〜5のいずれかに記載の炭素繊維束。 (A) an epoxy resin having a hydroxy group, (b) a sizing agent composition comprising a urethane-modified epoxy resin which is a reaction product of a polyhydroxy compound and (c) a diisocyanate containing an aromatic ring, or the urethane-modified epoxy The carbon fiber bundle according to any one of claims 1 to 5, which is sized with a sizing agent composition containing a mixture of a resin and (a) an epoxy resin having a hydroxy group and / or (d) an epoxy resin having no hydroxy group. . (a)ヒドロキシ基を有するエポキシ樹脂が、ビスフェノール型エポキシ樹脂である請求項6に記載の炭素繊維束。   The carbon fiber bundle according to claim 6, wherein (a) the epoxy resin having a hydroxy group is a bisphenol type epoxy resin. (b)ポリヒドロキシ化合物が、ビスフエノ−ルAのアルキレンオキサイド付加物、脂肪族ポリヒドロキシ化合物、及びポリヒドロキシモノカルボキシ化合物のいずれか、又はこれら混合物である請求項6または7に記載の炭素繊維束。   The carbon fiber bundle according to claim 6 or 7, wherein the polyhydroxy compound is any one of an alkylene oxide adduct of bisphenol A, an aliphatic polyhydroxy compound, a polyhydroxy monocarboxy compound, or a mixture thereof. . (c)芳香環を含むジイソシアネ−トが、トルエンジイソシアネートあるいはキシレンジイソシアネートである請求項6〜8のいずれかに記載の炭素繊維束。   (C) The carbon fiber bundle according to any one of claims 6 to 8, wherein the diisocyanate containing an aromatic ring is toluene diisocyanate or xylene diisocyanate. アルカリ金属、アルカリ土類金属、亜鉛、鉄、アルミニウムを含む金属が総量として含有する量が50ppm以下である請求項1〜9のいずれかに記載の炭素繊維束。
The carbon fiber bundle according to any one of claims 1 to 9, wherein a total amount of metals including alkali metal, alkaline earth metal, zinc, iron, and aluminum is 50 ppm or less.
JP2010524014A 2009-06-10 2010-06-10 Carbon fiber bundle with excellent mechanical performance Active JP4908636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010524014A JP4908636B2 (en) 2009-06-10 2010-06-10 Carbon fiber bundle with excellent mechanical performance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009139336 2009-06-10
JP2009139336 2009-06-10
PCT/JP2010/059828 WO2010143681A1 (en) 2009-06-10 2010-06-10 Carbon fiber bundle that develops excellent mechanical performance
JP2010524014A JP4908636B2 (en) 2009-06-10 2010-06-10 Carbon fiber bundle with excellent mechanical performance

Publications (2)

Publication Number Publication Date
JP4908636B2 JP4908636B2 (en) 2012-04-04
JPWO2010143681A1 true JPWO2010143681A1 (en) 2012-11-29

Family

ID=43308936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010524014A Active JP4908636B2 (en) 2009-06-10 2010-06-10 Carbon fiber bundle with excellent mechanical performance

Country Status (10)

Country Link
US (2) US20120088103A1 (en)
EP (1) EP2441866B1 (en)
JP (1) JP4908636B2 (en)
KR (1) KR101340225B1 (en)
CN (1) CN102459728B (en)
BR (1) BRPI1012996A2 (en)
CA (1) CA2764662C (en)
ES (1) ES2534650T3 (en)
TW (1) TWI396786B (en)
WO (1) WO2010143681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216883A (en) * 2016-06-23 2016-12-22 三菱レイヨン株式会社 Carbon fiber bundle

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708965B2 (en) * 2009-06-10 2015-04-30 三菱レイヨン株式会社 Acrylonitrile-based precursor fiber bundle and method for producing carbon fiber bundle
JP2012122164A (en) * 2010-12-08 2012-06-28 Mitsubishi Rayon Co Ltd Carbon fiber excellent in exhibiting mechanical characteristics
JP5592906B2 (en) 2012-02-08 2014-09-17 トヨタ自動車株式会社 GAS DIFFUSION LAYER FOR FUEL CELL AND FUEL CELL, AND METHOD FOR PRODUCING GAS DIFFUSION LAYER FOR FUEL CELL
JP5606650B2 (en) * 2012-03-09 2014-10-15 帝人株式会社 Carbon fiber bundle and manufacturing method thereof
JP5842916B2 (en) * 2012-03-29 2016-01-13 三菱レイヨン株式会社 Carbon fiber thermoplastic resin prepreg, carbon fiber composite material, and production method
TW201802315A (en) * 2012-04-18 2018-01-16 三菱化學股份有限公司 Carbon fiber bundle
JP2013249562A (en) * 2012-06-01 2013-12-12 Dic Corp Fiber sizing agent and bundled glass fiber and carbon fiber
CN103790019B (en) * 2012-10-26 2016-05-04 中国石油化工股份有限公司 A kind of epoxy radicals carbon fiber sizing agent emulsion and preparation and application
CN103790020B (en) * 2012-10-26 2016-06-29 中国石油化工股份有限公司 Epoxy resin sizing agent emulsion that polyurethane structural is modified and preparation thereof and application
CN103788322B (en) * 2012-10-26 2016-09-14 中国石油化工股份有限公司 The bisphenol A epoxide resin compositions modified by polyurethane structural and preparation thereof and application
CN103772638B (en) * 2012-10-26 2016-05-04 中国石油化工股份有限公司 By bisphenol F epoxy resin composition and preparation and the application of polyurethane structural modification
DE102013206983A1 (en) * 2013-04-18 2014-10-23 Bayerische Motoren Werke Aktiengesellschaft Method and apparatus for producing unidirectional carbon fiber fabrics
JP6105427B2 (en) * 2013-07-26 2017-03-29 東邦テナックス株式会社 Carbon fiber
JP5708896B1 (en) * 2013-07-30 2015-04-30 東レ株式会社 Carbon fiber bundle and flameproof fiber bundle
JP5766864B2 (en) * 2013-10-24 2015-08-19 三菱エンジニアリングプラスチックス株式会社 Resin composition, resin molded product, and method for producing resin molded product
EP3078486B1 (en) * 2013-12-03 2019-10-30 Mitsubishi Chemical Corporation Fiber-reinforced resin laminate
JP2015161056A (en) * 2014-02-28 2015-09-07 三菱レイヨン株式会社 Acrylonitrile precursor fiber bundle for carbon fiber and production method thereof
US10792194B2 (en) 2014-08-26 2020-10-06 Curt G. Joa, Inc. Apparatus and methods for securing elastic to a carrier web
EP3204542A4 (en) * 2014-10-08 2018-04-11 Georgia Tech Research Corporation High strength and high modulus carbon fibers
CN104390996A (en) * 2014-11-12 2015-03-04 吉林大学 Test analysis method for elementary composition and structure on carbon fiber surface
JP5963063B2 (en) * 2014-12-15 2016-08-03 三菱レイヨン株式会社 Carbon fiber bundle
US10344403B2 (en) * 2014-12-29 2019-07-09 Cytec Industries Inc. Densification of polyacrylonitrile fiber
US10082166B2 (en) * 2015-03-12 2018-09-25 Ut-Battelle, Llc Laser nanostructured surface preparation for joining materials
JP2016196711A (en) * 2015-04-03 2016-11-24 Dic株式会社 Fiber sizing agent and sized glass fiber and carbon fiber
DE102015111491A1 (en) * 2015-07-15 2017-01-19 Schott Ag Method and device for separating glass or glass ceramic parts
JP5999462B2 (en) * 2016-03-07 2016-09-28 三菱レイヨン株式会社 Carbon fiber with excellent mechanical properties
EP3467165B1 (en) 2016-05-24 2020-07-15 Toray Industries, Inc. Carbon fiber bundle and method for manufacturing same
CN108473691B (en) * 2016-11-16 2019-04-05 三菱瓦斯化学株式会社 The manufacturing method of molded product
US10787755B2 (en) 2017-06-05 2020-09-29 The Boeing Company Method and apparatus for manufacturing carbon fibers
EP3663338A4 (en) * 2017-07-31 2021-07-07 Toray Industries, Inc. Sheet molding compound, prepreg, and fiber-reinforced composite material
WO2019026011A1 (en) * 2017-08-01 2019-02-07 Sabic Global Technologies B.V. Carbon fiber tow with improved processability
EP3661712A1 (en) * 2017-08-01 2020-06-10 SABIC Global Technologies B.V. Method and system for producing unidirctional carbon fiber tape as well as method for surface treating carbon fibers
JP6477821B2 (en) * 2017-10-11 2019-03-06 三菱ケミカル株式会社 Carbon fiber bundle
US20200385892A1 (en) * 2017-10-31 2020-12-10 Toray Industries, Inc. Carbon fiber bundle and method for producing the same
CN109957969B (en) * 2017-12-25 2022-01-07 比亚迪股份有限公司 Carbon fiber sizing agent, preparation method thereof, reinforced carbon fiber and carbon fiber composite material
EP3746021B1 (en) 2018-01-29 2024-01-31 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product
EP3553132A1 (en) * 2018-04-13 2019-10-16 SABIC Global Technologies B.V. Fiber reinforced composition with good impact performance and flame retardance
JP6729665B2 (en) * 2018-11-16 2020-07-22 三菱ケミカル株式会社 Acrylonitrile precursor fiber bundle for carbon fiber and method for producing the same
US11925538B2 (en) 2019-01-07 2024-03-12 Curt G. Joa, Inc. Apparatus and method of manufacturing an elastic composite structure for an absorbent sanitary product
US11173072B2 (en) 2019-09-05 2021-11-16 Curt G. Joa, Inc. Curved elastic with entrapment
TWI767796B (en) * 2021-07-22 2022-06-11 臺灣塑膠工業股份有限公司 Manufacturing method of carbon fiber and carbon fiber composite bottle
US20230087214A1 (en) * 2021-09-22 2023-03-23 Hao-Chia WU Method for splitting carbon fiber tow

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187625A (en) * 1983-04-01 1984-10-24 Asahi Chem Ind Co Ltd Preparation of fiber having thin and sharp tip
US4603157A (en) * 1984-05-23 1986-07-29 Mitsubishi Rayon Co., Ltd. Intermediate for composite material
EP0252985B1 (en) * 1985-12-19 1992-03-11 Mitsubishi Rayon Co., Ltd. Carbon fiber for composite materials
GB8727410D0 (en) * 1987-11-23 1987-12-23 Ici Plc Inorganic oxide fibres
JPH04240220A (en) * 1991-01-21 1992-08-27 Mitsubishi Rayon Co Ltd Precursor for carbon fiber
KR920016649A (en) * 1991-02-25 1992-09-25 산요 가세이 고교 가부시키가이샤 Sizing Agent for Carbon Fiber and Carbon Fiber Treated with Sizing Agent
IT1252680B (en) 1991-11-13 1995-06-23 Sviluppo Settori Impiego Srl PROCEDURE FOR THE PRODUCTION OF POLYMERIC MATERIAL BODIES INCLUDING A CORE OF EXPANDED MATERIAL ENCLOSED BY AN EXTERNAL SHELL, AND A DEVICE USED IN SUCH PROCEDURE
US5436275A (en) 1993-11-30 1995-07-25 Japan Exlan Company Limited Porous acrylonitrile polymer fiber
US5858486A (en) * 1995-02-27 1999-01-12 Sgl Carbon Composites, Inc. High purity carbon/carbon composite useful as a crucible susceptor
JPH11124744A (en) 1997-10-20 1999-05-11 Toray Ind Inc Production of carbon fiber precursor fiber and carbon fiber
GB2378918B (en) * 2000-05-09 2003-12-24 Mitsubishi Rayon Co Acrylonitrile-based fiber bundle for carbon fiber precursor and method for preparation thereof
TW591157B (en) * 2001-05-25 2004-06-11 Mitsubishi Rayon Co Sizing agent for carbon fiber, its water dispersing solution, carbon fiber with sizing handling, sheet matter with using the carbon fiber and carbon fiber reinforced composite
JP4278970B2 (en) * 2002-12-16 2009-06-17 三菱レイヨン株式会社 Carbon fiber bundle and chopped carbon fiber bundle for fiber reinforced resin and carbon fiber reinforced resin composition exhibiting high mechanical properties and low electrical conductivity
JP2004211240A (en) * 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd Carbon fiber, acrylonitrile-based precursor fiber for the same, and method for producing the carbon fiber and the precursor fiber
JP2005133274A (en) * 2003-10-10 2005-05-26 Mitsubishi Rayon Co Ltd Carbon fiber and composite material containing the same
EP1837424B1 (en) * 2004-12-27 2011-02-02 Toray Industries, Inc. Oil agent for carbon fiber precursor fiber, carbon fiber and method for producing carbon fiber
JP4543922B2 (en) * 2004-12-27 2010-09-15 東レ株式会社 Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame-resistant fiber, carbon fiber and production method thereof
CN101316956B (en) * 2005-12-13 2012-11-28 东丽株式会社 Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP2009046770A (en) 2007-08-16 2009-03-05 Mitsubishi Rayon Co Ltd Acrylonitrile-based precursor fiber for carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216883A (en) * 2016-06-23 2016-12-22 三菱レイヨン株式会社 Carbon fiber bundle

Also Published As

Publication number Publication date
KR20120024954A (en) 2012-03-14
EP2441866A1 (en) 2012-04-18
KR101340225B1 (en) 2013-12-10
TWI396786B (en) 2013-05-21
CA2764662C (en) 2013-07-30
EP2441866B1 (en) 2015-02-18
US20120088103A1 (en) 2012-04-12
EP2441866A4 (en) 2013-05-22
CN102459728B (en) 2013-09-18
CN102459728A (en) 2012-05-16
TW201107547A (en) 2011-03-01
ES2534650T3 (en) 2015-04-27
US20190040549A1 (en) 2019-02-07
JP4908636B2 (en) 2012-04-04
BRPI1012996A2 (en) 2018-01-16
CA2764662A1 (en) 2010-12-16
WO2010143681A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP4908636B2 (en) Carbon fiber bundle with excellent mechanical performance
JP5708965B2 (en) Acrylonitrile-based precursor fiber bundle and method for producing carbon fiber bundle
JP5963063B2 (en) Carbon fiber bundle
JP4945684B2 (en) Acrylonitrile swelling yarn for carbon fiber, precursor fiber bundle, flame-resistant fiber bundle, carbon fiber bundle, and methods for producing them
EP2080775B1 (en) Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber
EP1961847B1 (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
WO2016068034A1 (en) Carbon fiber bundle and method for manufacturing same
JP7414000B2 (en) Fiber-reinforced resin prepreg, molded body, fiber-reinforced thermoplastic resin prepreg
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
JP6477821B2 (en) Carbon fiber bundle
JP2012122164A (en) Carbon fiber excellent in exhibiting mechanical characteristics
JP6229209B2 (en) Carbon fiber bundle
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JP5999462B2 (en) Carbon fiber with excellent mechanical properties
JP4726102B2 (en) Carbon fiber and method for producing the same
JP6590040B2 (en) Carbon fiber with excellent mechanical properties
JP2023146344A (en) Carbon fiber bundle and method for manufacturing carbon fiber bundle
CN113597484B (en) Carbon fiber bundle and method for producing same
JP2016194191A (en) Carbon fiber excellent in mechanical property appearance
JP2011122255A (en) Carbon fiber precursor fiber bundle, carbon fiber bundle, and method for producing them
JP4715386B2 (en) Carbon fiber bundle manufacturing method
EP4431647A1 (en) Carbon fibers, carbon fiber bundle, and production method for carbon fiber bundle
JP2014141763A (en) Carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4908636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250