TW201107259A - Exhaust vent box - Google Patents

Exhaust vent box Download PDF

Info

Publication number
TW201107259A
TW201107259A TW099127977A TW99127977A TW201107259A TW 201107259 A TW201107259 A TW 201107259A TW 099127977 A TW099127977 A TW 099127977A TW 99127977 A TW99127977 A TW 99127977A TW 201107259 A TW201107259 A TW 201107259A
Authority
TW
Taiwan
Prior art keywords
exhaust gas
cooling gas
cooling
gas
discharge device
Prior art date
Application number
TW099127977A
Other languages
Chinese (zh)
Other versions
TWI482741B (en
Inventor
Kevin D Branscum
Gilbert De Angelis
Raymond Eugene Fraley
John Jerry Kersting
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201107259A publication Critical patent/TW201107259A/en
Application granted granted Critical
Publication of TWI482741B publication Critical patent/TWI482741B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/26Outlets, e.g. drains, siphons; Overflows, e.g. for supplying the float tank, tweels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

An exhaust venting box including an exhaust inlet pipe and a main body comprising a lower part, a middle part connected to the inlet pipe and an upper part. Cooling air is introduced into the main body to mix with the exhaust. By avoiding direct mixing in the inlet pipe, solids accumulation in the inlet pipe is avoided or reduced. Side port and bottom tray can be installed on or into the main body to facilitate servicing and solids removal. The invention is particularly advantageous for venting exhaust from fuel-fired glass melting tanks melting glass materials comprising a volatile component such as B2O3, P2O5 and/or SnO2.

Description

201107259 六、發明說明: 本申請案主張於2009年8月25曰申請的美國臨時申 請案案號61/236557的優先權的益處。 【發明所屬之技術領域】 本發明係關於爐廢氣排出裝置及方法。特定而言,本 發明係關於爐的熱廢氣排出裝置及方法,其具有不容易 被形成於廢氣中或在廢氣中夾帶的固體堵塞的傾向。本 發明係實用的’舉例而言,可用於玻璃熔融槽以熔融玻 璃而製造各種玻璃產品,例如實用作為LCD基材的玻璃 板0 【先前技術】 許多高溫處理產生包含數種固體粒子或粒子形式的氣 體的大量的廢氣,其需要被冷卻下來且適當地被疏通 走。舉例而言,在一爐中熔融一玻璃材料的程序期間(特 別在一燃氣式槽中)會產生大量的廢氣,其可包含大量 的配料粒子、所形成的玻璃材料、及在冷卻之後立即可 凝結的氣體’例如玻璃材料的各種成份。當離開該爐時, 可具有超過1500°C的高溫的熱的廢氣必須在其可導入一 普通排出管之前被冷卻下來。 各種廢氣排出裝置及系統先前已經被設計且使用與各 種玻♦屬熔融槽連接。然而,對於含有大量粒子及可凝結 201107259 物的廢氣而言,許多排出裝置具有容易形成固體、收集 物及沉積物的缺點’其最終造成排出通道的縮窄、排出 效率及效果的減少’導致需經常清理且甚至導致排出系 統的故障及程序關閉《此非所欲的固體收集及沈積有時 稱為堵塞。 本發明滿足有效率且有效果的熱廢氣排出系統的需 求’而不容易被堵塞。 【發明内容】 此處揭示數個本發明的態樣。應瞭解此等態樣可或不 必彼此重疊。因此’ 一個態樣的部份可落入另一態樣的 範疇中,且反之亦然。 各個態樣藉由數個實施例說明,其依次可包括一或多 個特定實施例。應瞭解實施例可或不必彼此重疊^因此, 一個實施例的一部份或特定實施例可或不必落入另一實 施例的領域’或其特定實施例的領域,且反之亦然。 本揭示案的一第一態樣係一廢氣排出裝置(101、201 ) 包含: (Ό 一廢氣入口管(103),其用於從一廢氣來源引入 廢氣氣體(133 );及 (π) 一主要排出管(105、107、109 ; 205、207、209 ) 包含: 一上部份(105、205 ),其在壁面(129)上具有至少 201107259 一個上部冷卻氣體引入孔(u丨),用於將一冷卻氣體 (138)引入該主要排出管,及一上部末端(131)與一 排出導管以流體連通; 一中間部份(107、207),其固定於該入口管(103) 且與該入口管(1〇3)以流體連通;及 一下部份(109、209 ),其具有一下部末端(115)。 在本揭示案的第一態樣的某些實施例中,該裝置(201) 進一步包含: (III) 一下部份冷卻氣體夾套(219),其包覆該主要 排出管的該下部份(209 )及/或該中間部份(207 )的至 少一部份。 在本揭示案的第一態樣的某些實施例中,該下部份冷 卻氣體失套(2 19)係與該主要排出管的該中間部份(2Ό7) 透過該中間部份(207)的該壁面(124)上的一末端孔 ( 235 )以流體連通。 在本揭示案的第一態樣的某些實施例中,該主要排出 管的該下部份(1〇9)在該壁面(12〇)上具有至少一個下 部冷卻氣體引入孔(117),其用於將一冷卻氣體(134)引 入該主要排出管的該下部份(109)。 在本揭示案的第一態樣的某些實施例令,該廢氣排出 裝置(101)’進一步包含: (IV) —下部冷卻氣體引入充氣室(119),其包覆該 至少一個下部冷卻氣體引入孔(117 ),具有至少一個冷 卻氣體入口( 121)使得冷卻氣體透過其進入該下部冷卻 201107259 氣體引入充氣室(119)。 在本揭示案的第一態樣的某些實施例中,廢氣排出裝 置(101、201)進一步包含: (V) —上部冷卻氣體引入充氣室(113),其包覆該至 少一個上部冷卻氣體引入孔(1丨丨),具有之少一個冷卻 氣體入口(115)使得一冷卻氣體(138)透過其進入該 上部冷卻氣體引入充氣室(丨丨3 )。 在本揭示案的第一態樣的某些實施例中,該排出裝置 (101、201 )進一步包含: (vii) —入口冷卻氣體夾套(143),其包覆該入口管 (1 〇 3 )的至少—部份。 在本揭示案的第一態樣的某些實施例中,該入〇冷卻 氣體夹套與該主要排出管透過該主要排出管的該壁面 (124)上的一末端孔(235 )以流體連通。 在本揭不案的第一態樣的某些實施例中,該入口冷卻 氣體夾套包含至少一個葉片或分隔壁,其將該入〇冷卻 氣體夾套的該内部空間劃分為一曲折的通道。 在本揭不案的第一態樣的某些實施例中,該排出裝置 (101、201)進一步包含: 一可移除盤,其安置於該主要排出管的該下部份 (1〇9、209)之中用於收集固體。 在本揭示案的第一態樣的某些實施例中,該主要排出 管的該下部份(109、209)的該下部末端(115)包含— 可開起通口,用於維修該主要排出管。 201107259 在本揭示案的第一態樣的某些實施例中,該主要排出 管的該中間部份(107、207 )包含一可開起側通口(叫 用於維修該主要排出管及/或該入口管(103)β 在本揭示案的第一態樣的某些實施例中該側通口 (127)係位於該主要排出管的該侧邊相反於該入口管 處。 在本揭示案的第一態樣的某些實施例中,該上部份 (105、205 )的該上段在操作期間於該主要排出管中的 該氣流的該方向具有一形成錐形的幾何。 本揭不案的一第二態樣係一種使用具有一廢氣排出裝 置(101、201)的一玻璃熔融爐用於製造一玻璃材料的 程序’該廢氣排出裝置根據前述任何的主張連接至該 爐’用於從該熔融爐排出該廢氣氣流。 在本揭示案的第一態樣的某些實施例中,於該主要排 出管的該上部末端(131)的該氣體壓力比在該熔融爐之 中的該氣體壓力較低。 在本揭示案的第一態樣的某些實施例中,於該主要排 出管的該上部末端(131)的該氣體壓力比用於引入冷卻 氣體的該引入孔(m、117)或冷卻空氣入口( 147、221 ) 之任何一者的氣體壓力較低。 在本揭示案的第一態樣的某些實施例中’於該上部份 (105、205 )的該末端的該氣流(139)的該平均溫度係 低於大約600°C。 在本揭示案的第一態樣的某些實施例中’該玻璃材料 201107259 具有一組成物,包含在該爐中於該玻璃熔融溫度下係可 揮發的至少一個成份》 在本揭示案的第一態樣的某些實施例中,該玻璃材料 具有一組成物包含B2〇3或Sn02或兩者。 在本揭示案的第一態樣的某些實施例中,立即離開該 玻璃熔融爐的該廢氣氣流(133)具有至少1400。(:的― 平均溫度。 在本揭示案的第一態樣的某些實施例中,並無冷卻氣 體被直接導入廢氣入口管(1〇3)中。 在本揭示案的第一態樣的某些實施例中,於固定至主 要排出管的入口管的末端的氣體的平均溫度係至少為 1000〇C。 在本揭示案的第一態樣的某些實施例中,於入口管中 固體物質的沈積係實質地被避免。 在本揭示案的第一態樣的某些實施例中,主要排出管 (105、107、109 ; 205、207、209 )廢氣排出裝置係實 質上直立地被安置。 在本揭示案的第—態樣的某些實施例中,該上部份具 有至少兩個上部冷卻氣體引入孔,其實質上平均地分佈 於上部份的壁面的周圍。 在本揭示案的第—態樣的某些實施例中,該下部份具 $至少兩個下部冷卻氣體引入孔,其在大約相同的高度 實質上平均地分佈於下部份的壁面的周圍。 本揭示案的各種態樣的一或多個實施例具有一多個以 201107259 下優點。ig為避免了在—水平入口管的熱廢氣氣流與冷 卻氣體的混和,所以減少了在此入口管的可凝結成份的 凝結及微塵粒子的沈澱,因而減少固體材料在此區域中 堆建的速度及量,導致排出箱的堵塞整體減少。進一步, 側通口提供維修廢氣入口管及主要排出管的方便,用於 週期性地移除入口管及主要排出管的沈積固體物質。此 外,在普通操作及維修期間,下部通口可作為沈澱的微 塵粒子及冷凝物的一收集器,促進排出管的維修且移除 任何沈澱的固體材料。再者,藉由通過一夾套的冷卻氣 流冷卻的入口管及主要排出管可延長排出箱的壽命,且 使得排出箱的建造可使用具有一相對低的費用的材料。 本發明額外的特性及優點將敘述於以下的詳細說明, 且部份對技藝人士從說明書或如說明說及申請專利範圍 中以及隨附的圖式所寫的來執行本發明,而為顯而易見 的。 應瞭解以上的一般說明及以下的詳細說明僅僅為本發 明的範例,且欲提供概述或框架以暸解所主張的本發明 的性質及特徵。 隨附的圖式被包括以提供對本發明進一步的理解,且 被併入且構成此說明書的一部分。 【實施方式】 如此處所使用,「冷的氣體」、「冷的稀釋氣體」、「稀释201107259 VI. INSTRUCTIONS: This application claims the benefit of priority to U.S. Provisional Application Serial No. 61/236,557, filed on August 25, 2009. TECHNICAL FIELD OF THE INVENTION The present invention relates to a furnace exhaust gas discharge device and method. In particular, the present invention relates to a hot exhaust gas discharge device and method for a furnace which has a tendency to be clogged with solids which are not easily formed in the exhaust gas or entrained in the exhaust gas. The present invention is useful, for example, in glass melting tanks for melting glass to produce various glass products, such as glass sheets useful as LCD substrates. [Prior Art] Many high temperature treatments produce several solid particles or particle forms. A large amount of exhaust gas, which needs to be cooled down and properly dredged away. For example, during the process of melting a glass material in a furnace (especially in a gas tank), a large amount of exhaust gas is produced, which can contain a large amount of the batch particles, the formed glass material, and immediately after cooling. A condensable gas such as various components of a glass material. When leaving the furnace, hot exhaust gases which may have a high temperature in excess of 1500 ° C must be cooled before they can be introduced into a conventional discharge pipe. Various exhaust gas discharge devices and systems have previously been designed and used for connection to a variety of glass bulbs. However, for exhaust gas containing a large amount of particles and condensable 201107259, many discharge devices have the disadvantage of easily forming solids, collections and deposits, which ultimately leads to narrowing of the discharge passage, reduction in discharge efficiency and effect. Frequent cleaning and even failure of the discharge system and program shutdown "This undesired collection and deposition of solids is sometimes referred to as blockage. The present invention satisfies the need for an efficient and effective hot exhaust gas exhaust system&apos; without being easily clogged. SUMMARY OF THE INVENTION Several aspects of the invention are disclosed herein. It should be understood that such aspects may or may not overlap each other. Therefore, the part of one aspect can fall into the category of another, and vice versa. The various aspects are illustrated by a number of embodiments, which in turn may include one or more specific embodiments. It is to be understood that the embodiments may or may not be superimposed on each other. Therefore, a portion or a particular embodiment of one embodiment may or may not fall within the field of another embodiment or a particular embodiment thereof, and vice versa. A first aspect of the present disclosure is an exhaust gas discharge device (101, 201) comprising: (Ό an exhaust gas inlet pipe (103) for introducing exhaust gas (133) from an exhaust gas source; and (π) The main discharge pipe (105, 107, 109; 205, 207, 209) comprises: an upper portion (105, 205) having at least 201107259 an upper cooling gas introduction hole (u丨) on the wall surface (129) Introducing a cooling gas (138) into the main discharge pipe, and an upper end (131) in fluid communication with a discharge conduit; an intermediate portion (107, 207) fixed to the inlet pipe (103) and The inlet tube (1〇3) is in fluid communication; and the lower portion (109, 209) has a lower end (115). In certain embodiments of the first aspect of the present disclosure, the device 201) Further comprising: (III) a portion of the cooling gas jacket (219) covering at least a portion of the lower portion (209) of the main discharge tube and/or the intermediate portion (207). In some embodiments of the first aspect of the present disclosure, the lower portion of the cooling gas loss sleeve (2 19) is associated with the The intermediate portion (2Ό7) of the main discharge tube is in fluid communication through an end hole (235) in the wall surface (124) of the intermediate portion (207). Certain implementations of the first aspect of the present disclosure In the example, the lower portion (1〇9) of the main discharge pipe has at least one lower cooling gas introduction hole (117) on the wall surface (12〇) for introducing a cooling gas (134) into the main The lower portion (109) of the discharge tube. In certain embodiments of the first aspect of the present disclosure, the exhaust gas discharge device (101)' further comprises: (IV) - a lower cooling gas is introduced into the plenum (119) And covering the at least one lower cooling gas introduction hole (117), having at least one cooling gas inlet (121) through which the cooling gas passes into the lower cooling 201107259 gas introduction plenum (119). In some embodiments, the exhaust gas discharge device (101, 201) further comprises: (V) - an upper cooling gas is introduced into the plenum (113), which coats the at least one upper cooling gas introduction hole (1) ), with one less cooling The body inlet (115) causes a cooling gas (138) to pass through the upper cooling gas to the plenum (丨丨3). In certain embodiments of the first aspect of the present disclosure, the discharge device (101, 201) further comprising: (vii) - an inlet cooling gas jacket (143) enveloping at least a portion of the inlet tube (1 〇 3). In certain embodiments of the first aspect of the present disclosure The inlet cooling gas jacket is in fluid communication with the primary discharge tube through an end opening (235) in the wall surface (124) of the primary discharge tube. In some embodiments of the first aspect of the present disclosure, the inlet cooling gas jacket includes at least one vane or dividing wall that divides the interior space of the inlet cooling gas jacket into a tortuous passage . In some embodiments of the first aspect of the present disclosure, the discharge device (101, 201) further comprises: a removable disk disposed in the lower portion of the main discharge pipe (1〇9) Used to collect solids in 209). In certain embodiments of the first aspect of the present disclosure, the lower end (115) of the lower portion (109, 209) of the primary exhaust tube includes - an openable opening for servicing the primary Drain the tube. 201107259 In certain embodiments of the first aspect of the present disclosure, the intermediate portion (107, 207) of the primary exhaust pipe includes a openable side port (referred to for servicing the primary exhaust pipe and/or Or the inlet tube (103) β. In certain embodiments of the first aspect of the present disclosure, the side port (127) is located at the side of the main discharge tube opposite the inlet tube. In some embodiments of the first aspect of the first aspect, the upper portion of the upper portion (105, 205) has a tapered geometry in the direction of the gas flow in the primary exhaust tube during operation. A second aspect of the case is a procedure for manufacturing a glass material using a glass melting furnace having an exhaust gas discharge device (101, 201). The exhaust gas discharge device is connected to the furnace according to any of the foregoing claims. Discharging the exhaust gas stream from the melting furnace. In certain embodiments of the first aspect of the present disclosure, the gas pressure at the upper end (131) of the main exhaust pipe is greater than in the melting furnace The gas pressure is lower. In the first aspect of the present disclosure In some embodiments, the gas pressure at the upper end (131) of the main exhaust pipe is higher than either the introduction hole (m, 117) or the cooling air inlet (147, 221) for introducing the cooling gas. The gas pressure is lower. In certain embodiments of the first aspect of the present disclosure, the average temperature of the gas stream (139) at the end of the upper portion (105, 205) is less than about 600°. C. In certain embodiments of the first aspect of the present disclosure, the glass material 201107259 has a composition comprising at least one component that is volatile in the furnace at the melting temperature of the glass. In certain embodiments of the first aspect, the glass material has a composition comprising B2〇3 or Sn02 or both. In certain embodiments of the first aspect of the present disclosure, the glass is immediately removed from melting The exhaust gas stream (133) of the furnace has an average temperature of at least 1400. In certain embodiments of the first aspect of the present disclosure, no cooling gas is directly introduced into the exhaust gas inlet pipe (1〇3). Some embodiments of the first aspect of the present disclosure The average temperature of the gas at the end of the inlet tube fixed to the main discharge pipe is at least 1000 ° C. In certain embodiments of the first aspect of the present disclosure, the deposition of solid matter in the inlet pipe is Substantially avoided. In certain embodiments of the first aspect of the present disclosure, the primary exhaust pipe (105, 107, 109; 205, 207, 209) exhaust gas discharge device is disposed substantially upright. In certain embodiments of the first aspect of the disclosure, the upper portion has at least two upper cooling gas introduction apertures that are substantially evenly distributed around the wall of the upper portion. In some embodiments of the aspect, the lower portion has at least two lower cooling gas introduction apertures that are substantially evenly distributed around the wall of the lower portion at approximately the same height. One or more embodiments of various aspects of the present disclosure have a plurality of advantages with 201107259. Ig avoids the mixing of the hot exhaust gas stream and the cooling gas in the horizontal inlet pipe, thereby reducing the condensation of the condensable components and the precipitation of the fine dust particles in the inlet pipe, thereby reducing the speed at which solid materials are stacked in this region. And the amount, resulting in a reduction in the overall blockage of the discharge box. Further, the side port provides the convenience of servicing the exhaust gas inlet pipe and the main discharge pipe for periodically removing the deposited solid matter of the inlet pipe and the main discharge pipe. In addition, during normal operation and maintenance, the lower port acts as a collector of precipitated dust particles and condensate, facilitating maintenance of the vent tube and removing any precipitated solid material. Further, the life of the discharge tank can be extended by the inlet pipe and the main discharge pipe which are cooled by a jacketed cooling air flow, and the construction of the discharge tank can use a material having a relatively low cost. The additional features and advantages of the invention are set forth in the description which follows, and in the <RTIgt; . The above general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or a framework to understand the nature and characteristics of the claimed invention. The accompanying drawings are included to provide a further understanding of the invention [Embodiment] As used herein, "cold gas", "cold dilution gas", "diluted"

C 10 201107259 氣體」、「冷卻氣體」及「冷卻稀釋氣體」可交換使用以 代表具有比導入或用於冷卻的氣流較低的一溫度。因 此’「冷的氣體」、「冷的稀釋氣體」、「稀釋氣體」、「冷卻 氣體」或「冷钟稀釋氣體」可為具有比欲冷卻的廢氣氣 飢較低的溫度的一空氣氣流,或可為低溫的、C〇2、 Ηζ〇、〇2 ’或其他氣體,或其混合。 來自一燃油式玻璃熔融爐的廢氣氣流尤其可包含:(〇 氣體的普通成份,例如〇2、N2、c〇2、H2〇; (Η)氮氧化合物 (N〇2、NO及類似者’ N0x的集合);(Hi)在氣相狀態的玻 璃材料的揮發成份,例如B2〇3、Sn〇2、p2〇5及類似者;(iv) 熔融的玻璃的固體粒子;及(v)衝入爐中的各種配料的固 體粒子,例如矽、鋁及類似者。因此,廢氣氣流典型地 在其可安全的被排放至大氣中之前,需要一污染減輕步 驟。此污染減輕可包含但非限於:Ν〇χ的減少、微塵粒 子的收集及類似者。排出管或導管係典型地被利用以疏 通廢氣氣體至遠端污染減輕設備。在此廢氣排出管中可 觀察到的一典型問題係為在内部壁面上微塵粒子的聚集 及揮發成份的凝結,其在一段時間後可導致堵塞且減少 排出的效率及效果,且最終若在爐的普通操作期間堵塞 無法被移除,則得關閉程序。 離開一燃油式玻璃熔融爐的新的廢氣氣體普通係於一 非常咼的溫度,典型的為大於1〇〇〇&lt;t,例如高達大約 1500 c »在廢氣進入一實質上長段的廢氣管之前將其冷 部係為非常理想的,以便減少管的材料及保養費用。此 201107259 冷卻係典型地藉由將一較低溫度的冷卻氣體導入廢氣氣 流而作成。 參照第1圖’圖示根據本發明的—個實施例的一廢氣 排出箱101。排出箱1〇1包含一廢氣入口管1〇3,其具有 一凸緣102於其末端,適以與一廢氣來源連接而用於引 入廢氣氣流133。廢氣氣流133被受限於入口管的内部 壁面104中。在某些特定優點的實施例中,廢氣入口管 103基本上係為水平的,其允許廢氣氣流133以實質上 垂直於重力的方向行進。此安排可減少入口管中粒子收 集的量及此段中堵塞的可能性。入口管的部份或全部可 採取其他方向以適應一特定爐的設計及幾何的需求亦為 可能的。 如上所述’對一燃油式玻璃熔融爐而言,當新的廢氣 氣流133進入入口管1〇3時係於一非常高的溫度。因此, 用於製造入口管103的材料應最好具有抵抗此高溫的能 力。在材料之中’高溫抗氧化不鏽鋼係用於入口管1〇3 的一好的材料選擇。此外,如第1圖所顯示,入口管可 藉由一冷卻氣流147冷卻,該冷卻氣流透過一冷卻氣體 入口管144導入一夾套143,該夾套係由圍繞廢氣入口 管103的一外部夾套壁145來界定。如第1圖所顯示, 冷卻氣流147透過在主要排出管的中間部份的壁面124 上的至少一個孔149而被導入廢氣氣流133 (於以下更 詳細的說明)。如第1圖所顯示,選擇孔149的位置使得 冷卻氣流147並非直接被導入入口,以避免在入口管1〇3 201107259 中的熱廢氣133的查·接混合及冷卻,其可造成入口管ι〇3 中的凝結及堵塞。在其他實施例中,允許冷卻氣流147 離開夾套143進入周圍大氣而不進入廢氣氣流133係為 可能的。冷卻氣流147的一個主要的功能係降低入口管 103的溫度以延長入口管的壽命。在—個有益的實施例 中’冷卻氣體夾套⑷可包括一或多個葉片或分隔壁, 將夾套的内。P工間劃分為一曲折的通道使冷卻氣流通 過,使得入口管103能夠更有效率的冷卻。 廢氣排出箱101進-步包含一主要排出管其包含三 節:-上部份105、一中間部份1〇7及—下部们如 第i圖所顯示,此等三個部份係實質上直立的、同抽(即 三節的轴係彼此平行的)且垂直於入口管1〇3'然而, 二個部份可朝向不同的方向係為可能的,即該等轴可彼 此相夹形成一非零的角度,且該等轴可對入口管⑻的 軸展現-銳角或鈍角。舉例而言,下部份⑽可透過一 :管以從0。至90。的角度連接至中間部份1〇7,例如 於中二〇、45&lt;&gt;、6〇。、及類似者。$而,不論下部份相對 的/部份的方向為何,下部份被放置使得固體粒子、 下U从 文f玍於下部份中(尤其在 卜部伤的下段中)係非常理想的。 軸可實質上被放置為直立的。 、’下部份的 連^間ΓΙ()7係以於廢氣人口管與其以流體 出箱的中:廢氣氣流133與冷卻氣流147 -起進入排 相的中間部份而。一側通口 127被安裝於争間部份 13 201107259 107的側壁124,-上相反或鄰接於入口管103處。在一個 實施例中,側通口包含一窗口,可透過該窗口而觀察中 間部份107及入口管103。在另一實施例中,側通口 m 包含一門’可透過該門而進出且維修(例如聚合微塵粒 子的清理)排出箱及入口管。 在中間部份之下,固定於中間部份且與中間部份流體 連通的係為一下部份109 ’其包括設於一下部冷卻氣體 引入充氣室119之中、具有多個下部冷卻氣體引入孔117 的一壁面120。顯示於第1圖中的冷卻氣體引入孔m 係實質上為圓形的且實質上在壁面12〇上的相同高度。 然而’在其他實施例中’冷卻氣體引入孔丨丨7可採取其 他幾何形狀(例如狹縫的形狀,且可位於不同的高度), 只要冷卻氣流134可以足夠的流速且於所欲的方向被導 入下部份109即可《舉例而言,冷卻氣體引入孔〗17可 為設於充氣室119中的交錯的狹縫。一下部冷卻氣流is# 可透過一下部冷卻氣體入口 121進入充氣室n9。一旦 下部冷卻氣流進入下部份109中之後,其立即形成一氣 流135向上行進。在一上游位置,下部冷卻氣流135與 廢氣氣流133及廢氣入口管冷卻氣流147結合,以形成 一較大氣流137向上行進至排出箱的上部份1〇5。如第j 圖所顯示,下部份1 〇9在冷卻氣體引入孔丨丨7及下部氣 體引入充氣室119之下進一步包含—錐形部份123,其 終結於一下通口 115。在一個實施例中,下通口 115包含 用於收集微塵粒子的一可滑動盤(未顯示因此,在爐 C· 14 201107259 及排出箱的1普通操作期間,盤可作為收集從主要排出管 加速的微塵粒子;或在維修期間,收集移出入口管103 及主要排出管的内部壁面上的沈澱粒子。在另一實施例 中,下通口 115包含一門,可透過該門定時維修直立管。 如所顯示,上部份1〇5包括設於一上部冷卻氣體引入 充氣室113之中、具有多個上部冷卻氣體引入孔1 1 1的 2面129 上部冷卻氣流138透過一側入口 115進 入充氣室113,與氣流137結合以形成一更大的氣流 139 ’而藉由例如一下游泵或風扇建立的一較低壓力I&quot; 驅動,進一步往上行進。如所顯示的,上部份包含一上 游,其具有一漸減的直徑及一凸緣丨3丨適以與下游氣 體管線連接。在其他實施例中,上游段可具有一實質上 圓柱的形狀》 第2圖根據本揭示案的第二實施例,概要的圖示一廢 氣排出箱201,其包含一廢氣入口管1〇3藉由一冷卻氣 體失套143圍繞’實質上與第i圖中的實施例相同。排 出相亦包含實質上與第i圖中的實施例的上部份】〇5相 同的一上部份205 ' —中間部份2〇7及一下部份2〇”排 出箱201及排出箱101之間的主要差異在於下部份及中 間邛伤。如第2圖所顯示,下部份2〇9包括一壁面丨2〇, 其不具有下部冷卻氣體引入孔或一下部冷卻氣體引入充 氣至。取而代之的,下部份2〇9的壁面12〇及中間部份 207的壁面124的絕大多數係藉由一冷卻氣體夾套219 圍繞,其中壁面並非由入口管1〇3及側通口 127佔據。 15 201107259 一冷卻氣流234係透過一入口 221導入夾套219中,向 上行進,且透過壁面124上的一孔23 5進入主要排出管。 類似於對廢氣入口管1 〇3的冷卻氣體夾套丨43,冷卻氣 體夾套2 19可包括一或多個葉片或分隔壁(未顯示),而 將夾套的内部空間劃分為一曲折的通道,使冷卻氣體通 過以便達成一高的冷卻效率。冷卻氣體234的主要功能 係維持主要排出管的下部份及中間部份的一較低的溫 度,以減少氧化且因此降低保養的需求。 如第1及2圖的兩者實施例所顯示,可實質上避免在 入口 103之中直接將熱廢氣氣流I]〗與諸如us及138 的一冷卻氣流混合。此安排在入口管之中維持一相對較 高的溫度’因此減少諸如^、船及秘的可凝結成份 的凝結,及凝結物及其他固體的沈積。與冷卻氣體的混 合及廢氣氣流溫度的減少允許於主要排出管中發生其 中凝結物及落下的微塵粒子可透過下部份中的側通口 12 7及可滑動盤而被收集且移除。 本揭示案的一第二態樣係導向藉由使用包含此處所述 的一廢氣排出裝置的一玻璃熔融爐,而用於熔融一玻璃 材料的程序。歸因於藉由經設計且與減少堵塞的傾向相 關聯的增強的氣流模式,本揭示案的廢氣排出箱係特別 對燃氣式玻璃熔融槽的使用有益處,該熔融槽用於熔融 包含揮發成份的一提昇的級別的材料,諸如易於凝聚且 造成堵塞的B2〇3、Sn〇2及/或pa5。如上述與排出裝置的說 明連接,此程序可有益處的用於玻璃熔融處理,導致廢 16 201107259 氣氣體的排放具有至少1000°c的溫度,甚至高達大約 15 00°C,且甚至更高《此程序於排出裝置的末端,在進 入包含可被高於600°C的溫度損傷的成份的一正常導管 之前’具有將廢氣氣流減少至低於8〇〇°C的溫度(例如 比700°C更低’或比600°C更低)的能力。 對技藝人士而言,對本發明可作各種修改及改變而不 悖離本發明的範疇及精神將為顯而易見的。因此,本發 明欲覆蓋此發明的修改及改變,其含括在隨附的申請專 利範圍及其均等的範疇之中。 【圖式簡單說明】 在隨附的圖式中: 第1圖係根據本揭示案的一個實施例的一廢氣排出箱 的一概要說明。 第2圖係根據本揭示案的另一實施例的一|氣排出箱 的一概要說明。 【主要元件符號說明】 101廢氣排出裝置 102凸緣 103廢氣入口管 104壁面 105上部份 107中間部份 109下部份 111上部冷卻氣體引入孔 113上部冷卻氣體引入充 氣室 17 201107259 115 117 119 氣室 120 121 123 124 127 129 131 133 135 137 138 下部末端 下部冷卻氣體引入孔 下部冷卻氣體引入充 壁面 冷卻氣體入口 錐形部份 壁面 側通口 壁面 上部末端 廢氣氣流 下部冷卻氣流 較大氣流 冷卻氣體 1 3 9 氣流 1 4 1較低壓力 143入口冷卻氣體夾套 144冷卻氣體入口管 145 外部夾套壁 147冷卻氣流 149孔 201廢氣排出裝置 205上部份 207中間部份 209下部份 219夾套 221 冷卻空氣入口 234冷卻氣流 235末端孔 18C 10 201107259 Gas, "Cooling Gas" and "Cooling Dilution Gas" may be used interchangeably to represent a lower temperature than the gas stream introduced or used for cooling. Therefore, '"cold gas", "cold dilution gas", "dilution gas", "cooling gas" or "cold bell dilution gas" may be an air stream having a lower temperature than the exhaust gas to be cooled. Or it may be a low temperature, C〇2, Ηζ〇, 〇2' or other gas, or a mixture thereof. The exhaust gas stream from a fuel-fired glass melting furnace may include, in particular: (common components of helium gas, such as helium 2, N 2 , c 2 , H 2 helium; (Η) nitrogen oxides (N〇2, NO and the like) a collection of N0x); (Hi) a volatile component of a glass material in a gas phase state, such as B2〇3, Sn〇2, p2〇5, and the like; (iv) solid particles of molten glass; and (v) rushing Solid particles of various ingredients in the furnace, such as helium, aluminum, and the like. Therefore, the exhaust gas stream typically requires a pollution mitigation step before it can be safely discharged to the atmosphere. This pollution reduction may include, but is not limited to, : reduction in enthalpy, collection of fine dust particles, and the like. Exhaust tubes or conduits are typically utilized to vent the exhaust gases to the remote pollution mitigation equipment. A typical problem observed in this exhaust vent is The accumulation of fine dust particles on the inner wall surface and the condensation of volatile components can cause clogging and reduce the efficiency and effect of discharge after a period of time, and finally, if the blockage cannot be removed during normal operation of the furnace, the program must be closed. The new exhaust gas leaving a fuel-fired glass melting furnace is typically at a very high temperature, typically greater than 1 〇〇〇 &lt; t, for example up to about 1500 c » in the exhaust gas entering a substantially long section of the exhaust pipe Previously, the cold section was ideally designed to reduce tube material and maintenance costs. This 201107259 cooling system is typically made by introducing a lower temperature cooling gas into the exhaust gas stream. Referring to Figure 1 An exhaust gas discharge tank 101 of an embodiment of the present invention. The discharge tank 1〇1 includes an exhaust gas inlet pipe 1〇3 having a flange 102 at an end thereof for connection with an exhaust gas source for introducing exhaust gas. Gas stream 133. Exhaust gas stream 133 is confined to the inner wall 104 of the inlet tube. In certain particular advantageous embodiments, the exhaust gas inlet tube 103 is substantially horizontal, which allows the exhaust gas stream 133 to be substantially perpendicular to gravity Direction of travel. This arrangement reduces the amount of particles collected in the inlet pipe and the likelihood of blockage in this section. Some or all of the inlet pipe may take other directions to accommodate the design of a particular furnace and Geometric requirements are also possible. As mentioned above, for a fuel-fired glass melting furnace, when a new exhaust gas stream 133 enters the inlet pipe 1〇3, it is at a very high temperature. Therefore, it is used to manufacture the inlet pipe. The material of 103 should preferably have the ability to withstand this high temperature. Among the materials, 'high temperature oxidation resistant stainless steel is a good material choice for the inlet tube 1〇3. In addition, as shown in Figure 1, the inlet tube can be borrowed Cooled by a cooling gas stream 147 that is directed through a cooling gas inlet tube 144 into a jacket 143 that is defined by an outer jacket wall 145 surrounding the exhaust gas inlet tube 103. As shown in Figure 1, Cooling gas stream 147 is introduced into exhaust gas stream 133 through at least one aperture 149 in wall 124 of the intermediate portion of the primary exhaust tube (described in more detail below). As shown in Fig. 1, the position of the aperture 149 is selected such that the cooling airflow 147 is not directly introduced into the inlet to avoid the mixing and cooling of the hot exhaust gas 133 in the inlet pipe 1〇3 201107259, which can cause the inlet pipe ι Condensation and blockage in 〇3. In other embodiments, it is possible to allow the cooling gas stream 147 to exit the jacket 143 into the surrounding atmosphere without entering the exhaust gas stream 133. One of the primary functions of the cooling gas stream 147 is to lower the temperature of the inlet tube 103 to extend the life of the inlet tube. In an advantageous embodiment, the 'cooling gas jacket (4) may include one or more vanes or dividing walls that will be inside the jacket. The P-work is divided into a tortuous path to allow the cooling airflow to pass, allowing the inlet pipe 103 to be cooled more efficiently. The exhaust gas discharge tank 101 further comprises a main discharge pipe comprising three sections: an upper part 105, an intermediate part 1〇7 and a lower part as shown in Fig. i, the three parts are substantially upright And the same pumping (ie, the three-axis shafts are parallel to each other) and perpendicular to the inlet tube 1〇3'. However, the two portions may be oriented in different directions, that is, the axes may be sandwiched to each other to form a non- Zero angles, and the axes can exhibit an acute or obtuse angle to the axis of the inlet tube (8). For example, the lower part (10) can pass through a tube from 0. To 90. The angle is connected to the middle portion 1〇7, for example, in the middle two, 45&lt;&gt;, 6〇. And similar. $, regardless of the direction of the relative/part of the lower part, the lower part is placed so that the solid particles and the lower U are ideally located in the lower part (especially in the lower part of the wound). The shaft can be placed substantially upright. The lower part of the system is connected to the exhaust gas stream tube and the intermediate portion of the exhaust gas stream 133 and the cooling air stream 147. A side port 127 is mounted to the side wall 124 of the intervening portion 13 201107259 107, on the opposite or adjacent to the inlet tube 103. In one embodiment, the side port includes a window through which the intermediate portion 107 and the inlet tube 103 are viewed. In another embodiment, the side port m includes a door&apos; that can be accessed through the door and serviced (e.g., cleaned up by dust particles) and an inlet tube. Below the intermediate portion, fixed to the intermediate portion and in fluid communication with the intermediate portion is a lower portion 109' which includes a lower cooling gas introduction plenum 119 and a plurality of lower cooling gas introduction holes. A wall 120 of 117. The cooling gas introduction holes m shown in Fig. 1 are substantially circular and substantially the same height on the wall surface 12A. However, 'in other embodiments' the cooling gas introduction bore 7 may take other geometries (eg, the shape of the slits, and may be at different heights) as long as the cooling gas stream 134 may be at a sufficient flow rate and in the desired direction. The lower portion 109 can be introduced. For example, the cooling gas introduction hole 17 can be a staggered slit provided in the plenum 119. A lower cooling airflow is# can enter the plenum n9 through the lower cooling gas inlet 121. Once the lower cooling air stream enters the lower portion 109, it immediately forms an air flow 135 that travels upward. In an upstream position, the lower cooling gas stream 135 combines with the exhaust gas stream 133 and the exhaust gas inlet tube cooling gas stream 147 to form a larger gas stream 137 that travels up to the upper portion 1〇5 of the discharge tank. As shown in Fig. j, the lower portion 1 〇 9 further includes a conical portion 123 below the cooling gas introduction port 7 and the lower gas introduction plenum 119, which terminates at the lower port 115. In one embodiment, the lower port 115 includes a slidable disk for collecting fine dust particles (not shown, therefore, during normal operation of the furnace C. 14 201107259 and the discharge tank, the disk can be accelerated as a collection from the main discharge pipe The fine dust particles; or during maintenance, collect the precipitated particles removed from the inlet pipe 103 and the inner wall of the main discharge pipe. In another embodiment, the lower port 115 includes a door through which the upright pipe can be serviced. As shown, the upper portion 1〇5 includes a second surface 129 having a plurality of upper cooling gas introduction holes 1 1 1 disposed in an upper cooling gas introduction plenum 113. The upper cooling air flow 138 enters the plenum through the one side inlet 115. 113, in combination with gas stream 137 to form a larger gas stream 139' and further advanced by a lower pressure I&quot; drive established by, for example, a downstream pump or fan. As shown, the upper portion includes an upstream , having a decreasing diameter and a flange 丨 3 丨 suitable for connection with the downstream gas line. In other embodiments, the upstream section may have a substantially cylindrical shape. According to a second embodiment of the present disclosure, an exhaust gas discharge tank 201 is schematically illustrated, which includes an exhaust gas inlet pipe 1〇3 surrounded by a cooling gas loss sleeve 143 substantially the same as the embodiment of the first embodiment. The discharge phase also includes an upper portion 205 '-the intermediate portion 2〇7 and the lower portion 2〇" which are substantially the same as the upper portion of the embodiment of Fig. i, the discharge box 201 and the discharge box The main difference between 101 is the lower part and the middle of the bruise. As shown in Fig. 2, the lower part 2〇9 includes a wall 丨2〇, which does not have a lower cooling gas introduction hole or a lower cooling gas introduction inflation Instead, most of the wall 12 of the lower portion 2〇9 and the wall 124 of the intermediate portion 207 are surrounded by a cooling gas jacket 219, wherein the wall is not connected by the inlet tube 1〇3 and the side 15 201107259 A cooling airflow 234 is introduced into the jacket 219 through an inlet 221, travels upward, and enters the main discharge pipe through a hole 23 5 in the wall surface 124. Similar to the cooling of the exhaust gas inlet pipe 1 〇3 The gas jacket 丨43, the cooling gas jacket 2 19 may include Or a plurality of blades or partition walls (not shown), and dividing the inner space of the jacket into a meandering passage for passing the cooling gas to achieve a high cooling efficiency. The main function of the cooling gas 234 is to maintain the main discharge pipe. a lower temperature of the lower portion and the intermediate portion to reduce oxidation and thus reduce maintenance requirements. As shown in the two embodiments of Figures 1 and 2, heat directly in the inlet 103 can be substantially avoided. The exhaust gas stream I] is mixed with a cooling gas stream such as us and 138. This arrangement maintains a relatively high temperature in the inlet tube' thus reducing condensation, such as condensate, condensate, and condensate. Deposition of other solids. The mixing with the cooling gas and the reduction of the temperature of the exhaust gas stream allow the condensate and the falling fine dust particles in the main discharge pipe to be collected and removed through the side port 127 and the slidable disk in the lower portion. A second aspect of the present disclosure is directed to a procedure for melting a glass material by using a glass melting furnace comprising an exhaust gas discharge device as described herein. Due to the enhanced airflow pattern that is designed and associated with a reduced tendency to block, the exhaust gas exhaust tank of the present disclosure is particularly advantageous for use with a gas-fired glass melting tank for melting including volatilization An elevated level of material of the composition, such as B2〇3, Sn〇2, and/or pa5 that are prone to agglomeration and cause blockage. As described above in connection with the description of the discharge device, this procedure can be beneficial for glass melt processing, resulting in a waste gas emission of at least 1000 ° C, even up to about 1500 ° C, and even higher. This procedure has a temperature at the end of the discharge device that reduces the exhaust gas flow to below 8 °C before entering a normal conduit containing components that can be damaged by temperatures above 600 °C (eg, 700 ° C) The ability to lower 'or lower than 600 ° C). It will be apparent to those skilled in the art that various modifications and changes can be made without departing from the scope and spirit of the invention. Therefore, the present invention is intended to cover such modifications and alternatives BRIEF DESCRIPTION OF THE DRAWINGS In the accompanying drawings: Fig. 1 is a schematic illustration of an exhaust gas discharge tank according to an embodiment of the present disclosure. Fig. 2 is a schematic illustration of a gas discharge tank in accordance with another embodiment of the present disclosure. [Main component symbol description] 101 Exhaust gas discharge device 102 Flange 103 Exhaust gas inlet pipe 104 Wall 105 Upper portion 107 Intermediate portion 109 Lower portion 111 Upper cooling gas introduction hole 113 Upper cooling gas is introduced into the plenum 17 201107259 115 117 119 Gas Room 120 121 123 124 127 129 131 133 135 137 138 Lower end lower part Cooling gas introduction hole Lower part Cooling gas introduction Filling surface Cooling gas inlet Conical part Wall side Port surface Upper end Exhaust gas flow Lower cooling airflow Large airflow Cooling gas 1 3 9 Airflow 1 4 1 Lower pressure 143 Inlet Cooling gas jacket 144 Cooling gas inlet pipe 145 External jacket wall 147 Cooling airflow 149 Hole 201 Exhaust gas discharge device 205 Upper portion 207 Middle portion 209 Lower portion 219 Jacket 221 Cooling air inlet 234 cooling airflow 235 end opening 18

Claims (1)

201107259 七、申請專利範圍: K 一種廢氣排出裝置(101、201)包含: (1) 一廢氣入口管(W3),其用於從一廢氣來源引入 廢氣氣體(133);及 (Π) —主要排出管(1〇5、1〇7、1〇9 ; 2〇5、2〇7、2〇9) 包含: 一上部份(1〇5、2〇5 ),其在壁面(129 )上具有至少 一個上部冷卻氣體引入孔(111 ),用於將一冷卻氣體 (138)引入該主要排出管,及一上部末端(131)與一 排出導管以流體連通; 一中間部份(107、207 ),其固定於該入口管(103) 且與該入口管(103)以流體連通;及 一下部份(109、209),其具有一下部末端(115)。 2. 如申請專利範圍第1項之廢氣排出裝置(201),進一 步包含: (III) 一下部份冷卻氣體夾套(219),其包覆該主要 排出管的該下部份(209 )及/或該中間部份(207 )的至 少一部份。 3. 如申請專利範圍第2項之廢氣排出裝置(201),其中 該下部份冷卻氣體夾套(219)係與該主要排出管的該中 間部份( 207 )透過該中間部份( 207)的該壁面(124) 201107259 上的一末端孔(235 )以流體連通。 4. 如前述任一項之申請專利範圍的-廢氣排出裝置 (101)’其中該主要排出管的該下部份(1〇9)在該壁面 &quot;20)上具有至少一個下部冷卻氣體引入孔(1⑺其 用於將一冷卻氣體(1341 λ 丨轧瓶、引入該主要排出管的該下部份 (109)。 5. 如申凊專利範圍第4項之廢氣排出裝置(1〇1),進— 步包含: (IV) —下部冷卻氣體引入充氣室(119),其包覆該 至少一個下部冷卻氣體引入孔(117),具有至少—個冷 卻氣體入口(121)使得冷卻氣體透過其進入該下部冷卻 氣體引入充氣室(119) » 6. 如申請專利範圍第1至3項之任一項之廢氣排出裝置 (101、201 ),進一步包含: (V) —上部冷卻氣體引入充氣室(113),其包覆該至 少一個上部冷卻氣體引入孔(111 ),具有之少一個冷卻 氣體入口(115)使得一冷卻氣體(138)透過其進入該 上部冷卻氣體引入充氣室(113)。 7. 如申請專利範圍第1至3項之任一項之廢氣排出裝 置,進一步包含: 20 201107259 (VII) —入口冷卻氣體夾套 (103 )的至少一部份。 (143 ), 其包覆該入口管 8.如申請專利範圍第7項之廢氣排出裴置,直中該入 冷卻氣體夾套與該主要排出管透過該主要排出、管:二 面(124)上的一末端孔(235 )以流體連通。 9.如申請專職圍第8項之廢氣排出裝置其中該“ 冷卻氣體夹套包含至少一個葉片&amp;分隔i,其將該入: 冷卻氣體夾套的該内部空間劃分為一曲折的通道。口 10. 置, 如申請專利範圍第1至3項之任-項之廢氣排出裝 其中該主要排出管的該下部份(109、209 )的該下 部末端(115)包含一可開起通口’用於維修該主要 管0 11. 一種使用具有一廢氣排出裝置(1〇1、2〇1 )的—破 璃熔融爐以製造一玻璃材料的程序,該廢氣排出裝置根 據前述任一項之申請專利範圍連接至該爐用於從該熔融 爐排出該廢氣氣流》 12. 如申請專利範圍第丨丨項之用於製造一玻璃材料的程 序’其中於該上部份(105、205 )的該末端的該氣流(139) 的3亥平均溫度係低於大約6 0 〇。〇。 21 201107259 α如申請專利範圍第u或^項之用於製造一玻璃材 料的程序’其中該玻埤材料具有一组成物,包含在該爐 中於該玻璃㈣溫度下係可揮發的至少—個成份。 14.如申請專利範圍第13項之用於製造一玻璃材料的程 序,其中该玻璃材料具有一組成物包含B2〇3及/或Sn02。 15·如申請專利範圍第11或12項之用於製造一玻璃材 料序’其'中立即離開該玻璃熔融爐的該廢氣氣流 (133)具有至少14〇〇它的一平均溫度。 22201107259 VII. Patent application scope: K An exhaust gas discharge device (101, 201) comprises: (1) an exhaust gas inlet pipe (W3) for introducing exhaust gas (133) from an exhaust gas source; and (Π) - mainly The discharge pipe (1〇5, 1〇7, 1〇9; 2〇5, 2〇7, 2〇9) contains: an upper part (1〇5, 2〇5) on the wall surface (129) Having at least one upper cooling gas introduction hole (111) for introducing a cooling gas (138) into the main discharge pipe, and an upper end (131) in fluid communication with a discharge conduit; an intermediate portion (107, 207) ), which is fixed to the inlet tube (103) and in fluid communication with the inlet tube (103); and a lower portion (109, 209) having a lower end (115). 2. The exhaust gas discharge device (201) of claim 1 further comprising: (III) a portion of a cooling gas jacket (219) covering the lower portion (209) of the main discharge pipe and / or at least a portion of the intermediate portion (207). 3. The exhaust gas discharge device (201) of claim 2, wherein the lower portion of the cooling gas jacket (219) and the intermediate portion (207) of the main discharge pipe pass through the intermediate portion (207) An end hole (235) on the wall (124) 201107259 is in fluid communication. 4. The exhaust gas discharge device (101) of the patent application of any of the preceding claims, wherein the lower portion (1〇9) of the main discharge pipe has at least one lower cooling gas introduction on the wall surface &quot;20) a hole (1 (7) for discharging a cooling gas (1341 λ 丨 rolling bottle into the lower portion (109) of the main discharge pipe. 5. Exhaust gas discharge device (1〇1) as claimed in claim 4 The step further comprises: (IV) - a lower cooling gas is introduced into the plenum (119), which coats the at least one lower cooling gas introduction hole (117), having at least one cooling gas inlet (121) through which the cooling gas passes The lower cooling gas is introduced into the plenum (119). 6. The exhaust gas discharge device (101, 201) according to any one of claims 1 to 3, further comprising: (V) - the upper cooling gas is introduced into the plenum (113), which coats the at least one upper cooling gas introduction hole (111), and has one cooling gas inlet (115) through which a cooling gas (138) is introduced into the upper cooling gas to be introduced into the plenum (113). 7. If applying for a patent The exhaust gas discharge device of any one of items 1 to 3, further comprising: 20 201107259 (VII) - at least a portion of the inlet cooling gas jacket (103). (143), which covers the inlet pipe 8. For example, in the exhaust gas discharge device of claim 7, the in-line cooling gas jacket and the main discharge pipe are in fluid communication with an end hole (235) on the two sides (124) of the main discharge pipe. 9. The exhaust gas discharge device of claim 8, wherein the "cooling gas jacket comprises at least one vane &amp; partition i, which divides the interior space of the cooling gas jacket into a tortuous passage. 10. The lower end (115) of the lower portion (115, 209) of the main discharge tube, wherein the exhaust gas is discharged as in any one of the claims 1 to 3, includes an openable opening 'Use for repairing the main pipe 0 11. A procedure for manufacturing a glass material using a glass melting furnace having an exhaust gas discharge device (1〇1, 2〇1) according to any of the foregoing The patent application scope is connected to the furnace for use from The melting furnace discharges the exhaust gas stream. 12. The procedure for manufacturing a glass material according to the scope of the patent application of the present invention, wherein the gas stream (139) at the end of the upper portion (105, 205) is 3 The average temperature of the sea is less than about 60 〇. 21 201107259 α. The procedure for manufacturing a glass material according to the scope of the application of the invention, wherein the glass material has a composition contained in the furnace. At least one component that is volatile at the temperature of the glass (iv). 14. The process for making a glass material according to claim 13, wherein the glass material has a composition comprising B2〇3 and/or Sn02. 15. The exhaust gas stream (133) for use in the manufacture of a glass material sequence&apos; in its immediate departure from the glass melting furnace as claimed in claim 11 or 12 has an average temperature of at least 14 Torr. twenty two
TW099127977A 2009-08-25 2010-08-20 Exhaust venting device and process for making a glass material TWI482741B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23655709P 2009-08-25 2009-08-25

Publications (2)

Publication Number Publication Date
TW201107259A true TW201107259A (en) 2011-03-01
TWI482741B TWI482741B (en) 2015-05-01

Family

ID=43784016

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099127977A TWI482741B (en) 2009-08-25 2010-08-20 Exhaust venting device and process for making a glass material

Country Status (4)

Country Link
JP (1) JP5855815B2 (en)
KR (1) KR101816925B1 (en)
CN (2) CN201850212U (en)
TW (1) TWI482741B (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756333A (en) * 1980-09-24 1982-04-03 Asahi Fiber Glass Co Ltd Utilizing method for waste gas
BE901542A (en) * 1985-01-22 1985-05-17 Fenaux Lucien DEVICE FOR TREATING FLUE GASES.
CH677356A5 (en) * 1989-03-07 1991-05-15 Asea Brown Boveri
JPH0360402A (en) * 1989-07-25 1991-03-15 Toshiba Corp Fuel cell power generating plant
DE4403432A1 (en) * 1994-02-04 1995-08-10 Abb Research Ltd Exhaust gas routing for a filter dust melting furnace
EP0784189B1 (en) * 1996-01-11 2001-04-04 Incisud, S.L. System for controlled self-combustion of urban solid waste
JP3014981B2 (en) * 1997-03-13 2000-02-28 川崎重工業株式会社 Ash melting furnace exhaust gas treatment equipment
JP3127249B2 (en) * 1999-04-13 2001-01-22 哲人 田村 Dioxin synthesis prevention air cooling system
JP3844941B2 (en) * 2000-03-30 2006-11-15 株式会社神戸製鋼所 Temperature control device and temperature control method for high temperature exhaust gas
JP4600625B2 (en) * 2001-05-02 2010-12-15 東洋製罐株式会社 Liquid nitrogen filling apparatus and filling nozzle assembly thereof
JP3872471B2 (en) 2003-11-05 2007-01-24 株式会社神鋼環境ソリューション Melt processing equipment
JP2006023000A (en) * 2004-07-07 2006-01-26 Takuma Co Ltd Combustion chamber
CN101448559A (en) * 2006-05-23 2009-06-03 拜尔材料科学股份公司 Apparatus for cooling gases (quenchers) to form corrosive condensates
JP4783325B2 (en) * 2007-04-09 2011-09-28 株式会社神戸製鋼所 High temperature exhaust gas treatment method

Also Published As

Publication number Publication date
CN101993186B (en) 2014-07-30
JP5855815B2 (en) 2016-02-09
KR20110021696A (en) 2011-03-04
KR101816925B1 (en) 2018-01-09
TWI482741B (en) 2015-05-01
CN101993186A (en) 2011-03-30
JP2011079731A (en) 2011-04-21
CN201850212U (en) 2011-06-01

Similar Documents

Publication Publication Date Title
EP1142621B1 (en) Exhaust gas treating device
TW200527491A (en) Exhaust conditioning system for semiconductor reactor
JP2001519709A (en) Liquid cooling trap
JP2008272623A (en) Dust removing device for range
TW201743379A (en) Apparatus for exhaust cooling
EP1414545B1 (en) Apparatus for and method of trapping products in exhaust gas
CN105498496B (en) Waste gas cleaning system
CN107051085A (en) One kind spraying waste gas pretreatment system and preprocess method
TW201107259A (en) Exhaust vent box
JP2695764B2 (en) Waste gas treatment equipment for semiconductor manufacturing equipment
JPH04227486A (en) Method of cleaning wall of heat exchanger and heat exchanger having means for said cleaning
TW202033261A (en) Exhaust gas purifier and exhaust gas detoxifier in which same is used
CN107441749B (en) Degassing tower and degassing method
CN108036346A (en) Suitable for the energy saving micro- discharge method of cigarette vapour and device of boiler
CN212492179U (en) Flue gas purification system
JP2021044536A (en) Mist recovery device and substrate processing device
TWI823262B (en) Gas purification device
CN207922269U (en) Boiler smoke vapour energy-saving low-carbon subtracts haze system
CN207412981U (en) Pneumatic emulsifying processing unit
CN206660864U (en) One kind spraying waste gas pretreatment system
CN206463675U (en) Sinter-plate precipitator with explosion-protection equipment
CN205528391U (en) Quartz crucible of reducible crucible deposit founds machine
CN207401295U (en) A kind of refrigerating system
CN215953116U (en) Stifled dehumidification sampling device is prevented to flue gas
CN219964472U (en) Air inlet cavity for tail gas treatment and tail gas treatment device