TW201105569A - Method of forming a metal micro-structure - Google Patents

Method of forming a metal micro-structure Download PDF

Info

Publication number
TW201105569A
TW201105569A TW98126384A TW98126384A TW201105569A TW 201105569 A TW201105569 A TW 201105569A TW 98126384 A TW98126384 A TW 98126384A TW 98126384 A TW98126384 A TW 98126384A TW 201105569 A TW201105569 A TW 201105569A
Authority
TW
Taiwan
Prior art keywords
layer
metal
photoresist
microstructure
forming
Prior art date
Application number
TW98126384A
Other languages
Chinese (zh)
Other versions
TWI411570B (en
Inventor
hong-jie Wang
Ya-Ru Huang
Original Assignee
Premtek Int Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Premtek Int Inc filed Critical Premtek Int Inc
Priority to TW98126384A priority Critical patent/TW201105569A/en
Publication of TW201105569A publication Critical patent/TW201105569A/en
Application granted granted Critical
Publication of TWI411570B publication Critical patent/TWI411570B/zh

Links

Abstract

Disclosed is a method of forming a metal micro-structure, which is suitable for micro-structure element process. Upon forming three-dimensional metal micro-structure on micro-structure elements by using the method in this invention, it needs neither to electroplate a second metal to enclose the metal periphery, nor to etch the second metal. It can decrease the residual stress caused by electroplating and residual stress is free between the metal layers, so that the substrate adhered by the metal will not deform, incurring no influence on subsequent processing of the micro-structure element. Because it is no need to etch the second metal, there is no problem of etchant infiltrating into the interfaces, thereby no fears of decreasing adhesion between the interfaces and influencing the function of micro-structure element.

Description

201105569 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種微結構形成方法,更詳而言之,猶關於一 種金屬微結構形成方法,係_於微結構树製程,可降低電鑛所造 成之殘留應力、金屬制騎有殘留應力,金屬_著之基板不致變 形’而不致影響微結構元件後續製程進行。 【先前技術】 對於目前微機電技躺言,微機電祕雖具雜小化、批次量 產、且可提供許多高性能元件等優點,‘然;其所追求的目標仍是,如 他製Xe出體積更小、能源耗損更低、且功缺強大、线更穩定之 微機電系統。 惟,為達到系統更穩定、可靠度更高之微機電系統,其上之微元 件通㊉須驗良好之三較屬觀構,如微機電探針卡(_s pr〇be card) ’這仍是待解決的課題。 於中華民國專利公報之發明公告/公開號侧52「深刻電鑄模造 製程的含潤轉ϋ電驗減物」巾,所揭露的是了二祕酸鈉的 院基^潤_可添加於深刻電賴造製程巾之鎳電雜,不但能維 持鎳電鑄層的低内應力,而且非常有效的提高鑄㈣廳力於深刻 録電鱗模造製程巾,能有效關時提升鎳微結構體的减比與電鑄過 201105569 程時的電流密度,然,其並非為 羿马探纣如何製作出具有良好金屬微結構 的微結構元件。 ;中華民國專利公報之發明公告/公職2眶測「三維微結 構及其形成方法」中,雖論及三維微結構,,然,其技麟徵為該三維 微結構係應用於電磁能之同軸傳輪線。 於中華民國專利公報之發明公告/公開號麵似的「三維微結 其/成方法」中’雖娜及二維微結構,•然,其技術特徵為三維微 結構經連續奴製郷姐包纽频_㈣麗狀件,該微結 構例如用於電磁能的同轴傳輸線内。 於中華民國專利公報之發明公告/公開號2〇〇829358「接合由不 錢鋼、鎳或錄合金製成之工作件的方法、製造微結構元件的方法以及 微結構元件」中’雖論及微結構元件,然,其技術特徵係關於一種用 於接合至少兩個由不錄鋼、鎳或鎮合金製成之工作件的方法,及用於 製造選自包含微反應器、微熱交換器、微冷卻器、及微混合器之群組 的微結構元件之方法,此外,係關於一種微結構元件,如具有流體結 構包括由不銹鋼、鎳或鎳合金製成之相互連接的微結構元件層堆疊之 元件。 於 US Patent No· 5,190, 637 Formation Of Microstructures By Multiple Level Deep X-Ray Lithography With Sacrificial Metal 201105569 Υ巾揭路種金屬微結構元件製造方法,其技術特徵為六個 '帮步驟1.在一基板形成一光阻,經由光罩曝光顯影,成 騎而要之圖案,步驟2 :在這圖案内,電鍍成型主要金屬(primary 論1);步驟3 :去除剩餘的光阻,再電鑛第二種金屬(secondary metal)圍繞在主要金屬賴,但第二種金屬必須與主要金屬有一定的 姓刻選擇比’例如,主要金屬為鎳(Nickel)、第:種金屬為銀㈤ver) 或銅(Copper),步驟4 :研磨加工(planarizati〇n)主要金屬及第二 種金屬使其結構高度-致;步驟5-:重複步驟卜4直到所需要之結構 同度’以及’步驟6 .働丨第二種金屬,僅留下主要金屬之微結構元 件。 然,US Patent No, 5,190, 637之缺點為:1·需要再電鍍第二種 金屬,若第二種金屬所佔的面積相當大時,必須儘可能降低電鍍所造 成之殘留應力,否則容易使附著主要金屬之基板變形,造成無法進行 後續製程;2.使得主要金屬每層間有殘留應力;以及,&雖然盡可能 調整蝕刻液使主要金屬與第二種金屬間有較高之選擇比,但,姓刻液 仍會滲入每層介面,造成每層之附著力降低,進而影響微結構元件之 可靠度。 所以如何尋求一種金屬微結構形成方法,於形成微結構元件之立 體金屬微結構時,無須電鍍第二種金屬以圍繞在主要金屬外圍、且無 201105569 須蝕d第一種金屬,而可降低電鍍所造成之殘留應力、金屬層間不會 "力金屬所附著之基板雜變形,而不致影響微結構元件後 續製程進行,曰, ,由於無須姓刻第二種金屬,因而,不會有姓刻液滲 — 之問題’不會造成每層之畴力降低,而不致影響微結構 元件之功成,乃是待解決的問題。 【發明内容】 本發月之料目的便是在於提供—種金顧結構形成方法,係應 用於微、,’。構凡件製程,於形成微結構元件之立體金屬微結構時,無須 電鑛第二種金屬以圍繞在金屬外圍、且無須钮刻第二種金屬。 本發明之X-目的便是在於提供—種金雜結卿成綠,係應 用於微結構元件製程,於形成微結構元件之立體金屬微結構時,由於 無須電鐘第二種金屬以圍繞在金屬外圍,因而,可降低電錄所造成之 殘留應力、金細爾軸力,销崎犧不致變形, 而不致影響微結構元件後續製程進行。 本發明之再-目雜是在於触—輕轉軸枝,係應 用於微結構元賴程,鄉賴轉辑之讀金相轉時,由於 無須娜二賴’因而,不愉_人每層介面之問題,不 會造成每層之附著力降低,而不致轉微結構元件之功能。 201105569 根據以上所述之目的,本發明之金屬微結構形成方法包含之步驟 為,首先’準備一基板,以便於該基板上進行後續之金屬微結構形成; 接著,於該基板之表面上相繼形成二層以上之金屬微結構,在此,每 一層金屬微結構係由一種材料所組成,而該二層以上之金屬微結構可 由相同材料及/或由不同之材料所組成;繼而,以液體或反應性離子蝕 刻去除該二層以上之金屬微結構以外的其他材料,在此,該液體或反 應性離子_不雜_二層社之金4微結構;最後,於基板上得 到良好的金屬微結構。 爲使熟悉該項技藝人士瞭解本發明之目的、特徵及功 效,茲藉由下述具體實施例,並配合所附之圖式,對本發明 詳加說明如後: 【實施方式】 第1圖為-流程圖,用以顯示說明本發明之金屬微結構形成方法 的4步驟’第丨圖中所示之為本發明之金屬微結獅成方法,首 先於步驟11,準備一基板,以便於該基板上進行後續之金屬微結 構形成’並進到步驟12。 ;步帮12’於該基板之表面上相繼形成二層以上之金屬微結構, 在此,每—層金屬微結構係由一種材料所组成,而該二層以上之金屬 201105569 微結構可由相同材料及/或由不同之材料所組成,並步驟i3。 於步驟13 ’以液體或反應性離子蝕刻去除該二層以上之金屬微 結構以外的其他材料’在此,該㈣或反應性離子細不會侧該二 層以上之金屬微結構,並進到步驟14。 於步驟14,於基板上得到良好的金屬微結構。 第2圖為一流程圖,用以顯示說明於第1圖中之準備一基板之步 驟的詳細流程程序。如第2圖中所示之,首先,於步騾m,選取一 基板’該基板係選取自石夕基板、玻璃基板、陶究基板等,並進到步驟 12;抑或,於步驟in ’選取一基板,該基板係選取自矽基板、玻璃 基板、陶瓷基板等之後,進到步驟112。 於步驟112,於該基板上沉積種子層(seed layer),在此,該種 子層為電鍍起始層’需要有良好的導電性及與基板間的附著性,一般 可選取自 Cr/Au(Cr under Au)、Ti/Au(Ti under Au)、Ti/Cu(Ti under Cu)或 Ti-W/Au(Ti-W under Au),以 Cr/Au or Ti/Au 為例,Cr 約 100-200A,Au約1000-2000A,另,沉積之技術選取自蒸鍍 (evaporation)、減鐘(Sputtering)、無電鑛(electroless)等;於步 驟112完成後’並進到步驟;[2。 第3圖為一流程圖,用以顯示說明於第】圖中之於該基板之表面 上相繼形成二層以上之金屬微結構之步驟的詳細流程程序。如第3圖 201105569 中所不之,首先,於步驟121,於該基板上批覆光阻及/或硬質蠟及/ 或高分子聚合物,端視實際施行情形而定,在此,批覆光阻可依光阻 特性而採用適宜之技術’有Spin coati^、Spray c〇ating、 lamination、casting 等’光阻可為正型、如 ciariantAZ4620、TOK LA900、ΡΜΜΑ,以及,光阻可為負型、如 jSR THB-^MicroChem SU-8、 epoxy-base photoresist/Su-8等;於步驟121完成後,並進到步驟 122。 於步驟122,進行光阻烘烤,光阻經烘烤後,將其中溶劑蒸發使 光Ρί變硬,之後進行曝光、顯影,以成形所需之微結構圖案 (pattern),其中,烘烤方法有加熱板直接加熱(direct backing如 hot plate)、烘箱(Oven)或紅外線加熱(ir backing)等,曝光方式有 X-ray lithography、UV lithography、direct write e-beam 等;於 步驟122完成後,並進到步驟123。 於步驟123 ’在微結構圖案凹洞内電鍍所需之金屬結構,一般可 電鍍的金屬可選取自 Au、Cu、Ni、Ni-Mn alloy、Ni-Fealloy、Ni-Co alloy、Sn-Pb等;在此,於進行電鍍之前,可在微結構圖案凹洞内先 沉積種子層,此種子層為電鍍起始層,需要有良好的導電性及與光阻 及電鍵金屬間的附著性’ 一般可選取自Cr under Au,Ti under Μι,201105569 VI. Description of the Invention: [Technical Field] The present invention relates to a method for forming a microstructure, and more particularly, to a method for forming a metal microstructure, which is capable of being reduced in a microstructure tree process The residual stress caused by the electric ore, the metal riding has residual stress, and the metal substrate is not deformed, which does not affect the subsequent process of the microstructured component. [Prior Art] For the current micro-electromechanical technology, micro-electromechanical secrets are small, mass-produced, and can provide many high-performance components, etc., but the goal is still, Xe has a smaller MEMS, a lower energy consumption, a weaker power, and a more stable MEMS system. However, in order to achieve a more stable and reliable system of MEMS, the micro-components on the top of the micro-components are better than the observation, such as MEMS probe card (_s pr〇be card) It is a subject to be solved. In the Announcement of the Announcement of the Republic of China Patent Gazette/52 on the side of the "Deep Electroforming Molding Process for the Infusion of the 含 ϋ ϋ 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 二 二 二 二 二 二 二 可 可 可 可 可The nickel-electric hybrid of the electric heating wiper not only maintains the low internal stress of the nickel electroformed layer, but also effectively improves the casting (4) chamber force for the deep recording of the electric scale molding machine, which can effectively raise the nickel microstructure. The reduction ratio and the current density during the electroforming of 101105569 are not the same as how to make a microstructured component with a good metal microstructure. In the invention announcement of the Republic of China Patent Gazette/public office 2 "Measurement of three-dimensional microstructure and its formation method", although the three-dimensional microstructure is discussed, the technique is applied to the coaxiality of the three-dimensional microstructure system for electromagnetic energy. Passing the line. In the invention of the Republic of China Patent Gazette, the "Three-Dimensional Micro-Knotting/Forming Method" in the Invention Bulletin / Publication No. "Despite the two-dimensional microstructure, the technical feature is that the three-dimensional microstructure is continuously slain. New frequency _ (four) 丽, the microstructure is used, for example, in a coaxial transmission line of electromagnetic energy. In the Announcement of Invention of the Republic of China Patent Publication No. 2,829,358, "Method of joining workpieces made of stainless steel, nickel or alloy, manufacturing of microstructured components, and microstructured components" Microstructural elements, however, are technically characterized by a method for joining at least two workpieces made of non-recorded steel, nickel or a town alloy, and for manufacturing from a microreactor, micro heat exchanger, a micro-cooler, and a method of grouping microstructured elements of a micro-mixer, furthermore, with respect to a microstructure element, such as a fluid structure comprising interconnected layers of microstructured elements made of stainless steel, nickel or nickel alloy The components. U.S. Patent No. 5,190, 637, Formation Of Microstructures By Multiple Level Deep X-Ray Lithography With Sacrificial Metal 201105569, a technical method for manufacturing a metal microstructure component of six types of roads, which is characterized by six 'help steps 1. The substrate forms a photoresist, which is exposed and developed through the reticle to form a pattern of riding. Step 2: In this pattern, the main metal is electroformed (primary 1); Step 3: remove the remaining photoresist, and then the electric mine The secondary metal surrounds the primary metal, but the second metal must have a certain ratio to the primary metal. For example, the primary metal is nickel (nickel, the first metal is silver (five) ver) or copper. (Copper), Step 4: Grinding (planarizati〇n) the main metal and the second metal to make the structure highly responsive; Step 5: Repeat step 4 until the required structure is the same 'and' step 6.丨 The second metal, leaving only the microstructured components of the main metal. However, the disadvantages of US Patent No. 5,190,637 are: 1. The second metal needs to be electroplated. If the area occupied by the second metal is relatively large, the residual stress caused by electroplating must be reduced as much as possible, otherwise it is easy to make Deformation of the substrate to which the main metal is attached, resulting in failure to carry out subsequent processes; 2. Residual stress between each layer of the main metal; and, & although the etching solution is adjusted as much as possible to have a higher selectivity ratio between the main metal and the second metal, However, the surname engraving will still penetrate into each layer of the interface, resulting in a decrease in the adhesion of each layer, which in turn affects the reliability of the microstructured components. Therefore, how to find a metal microstructure forming method, when forming a three-dimensional metal microstructure of a microstructure component, it is not necessary to plate a second metal to surround the main metal periphery, and there is no 201105569 etched d first metal, thereby reducing plating The residual stress caused by the residual metal layer does not interfere with the substrate adhesion caused by the force metal, and does not affect the subsequent process of the microstructure element. Oh, since there is no need to name the second metal, there will be no surname. The problem of liquid seepage - does not cause a reduction in the domain force of each layer, and does not affect the performance of the microstructured components, which is a problem to be solved. SUMMARY OF THE INVENTION The purpose of this month's material is to provide a method for forming a structure of a golden structure, which is applied to micro, ". In the process of forming a three-dimensional metal microstructure of the microstructure element, the second metal of the electric ore is not required to surround the periphery of the metal, and the second metal is not required to be engraved. The X-object of the present invention is to provide a kind of gold-like crystal into a green structure, which is applied to a microstructure component process, and when the three-dimensional metal microstructure of the microstructure component is formed, since the second metal of the electric clock is not required to surround The periphery of the metal, therefore, can reduce the residual stress caused by the electro-recording, the axial force of the gold fine, and the deformation of the pinnacle does not cause deformation, without affecting the subsequent process of the microstructured component. The re-demonstration of the present invention lies in the touch-light rotation axis branch, which is applied to the micro-structured element Lai Cheng, and the township Lai's reversal of the reading of the golden phase, because there is no need for Na Erlai' The problem does not result in a reduction in the adhesion of each layer without the function of rotating the microstructured components. According to the above, the metal microstructure forming method of the present invention comprises the steps of: first preparing a substrate to facilitate subsequent metal microstructure formation on the substrate; and subsequently forming on the surface of the substrate. a metal microstructure of two or more layers, wherein each metal microstructure is composed of one material, and the metal microstructures of the two or more layers may be composed of the same material and/or different materials; Reactive ion etching removes other materials than the two or more metal microstructures, where the liquid or reactive ions are not mixed with the gold 4 microstructure; finally, a good metal micro is obtained on the substrate. structure. The present invention will be described in detail by the following specific embodiments, and with the accompanying drawings, in the following description of the accompanying drawings: FIG. a flow chart for demonstrating the four steps of the method for forming a metal microstructure of the present invention. The method of forming a metal micronosed lion according to the present invention is as shown in the first step. First, in step 11, a substrate is prepared to facilitate the Subsequent metal microstructure formation is performed on the substrate' and proceeds to step 12. The step 12' successively forms two or more metal microstructures on the surface of the substrate, where each layer of the metal microstructure is composed of one material, and the second layer of the metal 201105569 may be made of the same material. And/or composed of different materials, and step i3. In step 13 'removing the material other than the two or more metal microstructures by liquid or reactive ion etching', the (4) or reactive ion fine does not face the metal microstructure of the two or more layers, and proceeds to the step 14. In step 14, a good metal microstructure is obtained on the substrate. Fig. 2 is a flow chart for showing a detailed flow chart of the steps of preparing a substrate in Fig. 1. As shown in FIG. 2, first, in step m, a substrate is selected, which is selected from a stone substrate, a glass substrate, a ceramic substrate, etc., and proceeds to step 12; or, in step in ' After the substrate is selected from a germanium substrate, a glass substrate, a ceramic substrate, or the like, the process proceeds to step 112. In step 112, a seed layer is deposited on the substrate, where the seed layer is a plating initiation layer, which needs good electrical conductivity and adhesion to the substrate, and is generally selected from Cr/Au ( Cr under Au), Ti/Au (Ti under Au), Ti/Cu (Ti under Cu) or Ti-W/Au (Ti-W under Au), taking Cr/Au or Ti/Au as an example, Cr about 100 -200A, Au is about 1000-2000A. In addition, the deposition technique is selected from evaporation, sputtering, electroless, etc.; after completion of step 112, 'steps into the step; [2. Fig. 3 is a flow chart for showing a detailed flow chart showing the steps of forming two or more metal microstructures successively on the surface of the substrate in the first drawing. As shown in FIG. 3, No. 201105569, first, in step 121, a photoresist and/or a hard wax and/or a high molecular polymer are coated on the substrate, depending on the actual implementation, where the photoresist is approved. Suitable techniques can be used depending on the photoresist characteristics. 'Spin coats, Spray c〇ating, lamination, casting, etc.' The photoresist can be positive, such as ciariantAZ4620, TOK LA900, ΡΜΜΑ, and the photoresist can be negative, For example, jSR THB-^MicroChem SU-8, epoxy-base photoresist/Su-8, etc.; after completion of step 121, the process proceeds to step 122. In step 122, photoresist baking is performed, after the photoresist is baked, the solvent is evaporated to harden the light, and then exposed and developed to form a desired microstructure pattern, wherein the baking method There is a heating plate direct heating (direct back such as hot plate), oven (Oven) or infrared heating (ir backing), etc., exposure methods are X-ray lithography, UV lithography, direct write e-beam, etc.; after completion of step 122, And proceed to step 123. In step 123, the metal structure required for electroplating in the micro pattern recess is generally selected from Au, Cu, Ni, Ni-Mn alloy, Ni-Fealloy, Ni-Co alloy, Sn-Pb, etc. Here, before the electroplating, a seed layer may be deposited in the micro pattern recess, which is an electroplating starting layer, which needs good electrical conductivity and adhesion to photoresist and key metal. Available from Cr under Au, Ti under Μι,

Ti under Cu or Ti-W under Au 等,以 Cr/Au 或 Ti/Au 為例,Cr 約 201105569 為100-200A,Au約為i〇〇〇_2〇〇〇a,另沉積技術選取自蒸鍍、濺鍍、 無電鍍等;抑或’於進行電鍍之前,無須先沉積種子層,端視實際施 行情形而定;於步驟123完成後,並進到步驟124。 於步驟124 ’進行研磨加工’研磨加工將使得光阻厚度與電鍍金 屬厚度一致,其中,研磨加工方式選取自機化學加工(Chemical mechanical polishing,CMP)、機械研磨(mechanical lapping)、 鲁拋光(polishing)等,並進到步驟125。 於步驟125 ’重覆步驟121至步驟124,用以於該基板之表面上 形成二層以上之金屬微結構。 第4圖為-流程圖,用以顯示說明於第丨圖中之以液體或反應性 離子飯刻去除該二層以上之金屬微結構以外的其他材料之步驟的詳 細流程程序。如第4圖中所示之,於步驟⑶,以溶劑或反應性離子 • _去除光阻及/或硬«及/或高分子聚合物,肋釋出立體之金屬 微結構’並進到步驟132;抑或,於釋出立體之金屬微結構後,並進 到驟14。 於步驟132,以蝕刻液移除種子層,並進到步驟14。 第5圖為-流程圖’用以顯示說明利用本發明之金屬微結構方法 之-實施例的流程步辞。如第5圖中所示之、並請參閱第h至第 Η圖之示意圖’首先,於步驟2卜選取一基板咖,該基板}係選 201105569 取自石夕基板、玻璃基板、陶瓷基板等;於該基板1上沉積第一種子層 201再批覆第一層光阻202,在此,該第一種子層201為電鍍起始層, 需要有良好的導電性及與基板間的附著性,一般可選取自Cr under Au,Ti under Au,Ti under Cu or Ti-W under Au,以 Cr/Au orTi under Cu or Ti-W under Au, etc., taking Cr/Au or Ti/Au as an example, Cr is about 201105569 is 100-200A, Au is about i〇〇〇_2〇〇〇a, and another deposition technique is selected from steaming. Plating, sputtering, electroless plating, etc.; or 'Before performing electroplating, it is not necessary to deposit a seed layer first, depending on the actual implementation situation; after completion of step 123, and proceeding to step 124. Grinding in step 124 'grinding' will make the thickness of the photoresist consistent with the thickness of the plated metal, wherein the grinding process is selected from chemical mechanical polishing (CMP), mechanical lapping, polishing (polishing). ), etc., and proceeds to step 125. Steps 121 to 124 are repeated in step 125 to form two or more metal microstructures on the surface of the substrate. Figure 4 is a flow chart showing a detailed flow chart illustrating the steps of removing liquid or reactive ions from the second or more metal microstructures in the second drawing. As shown in FIG. 4, in step (3), the solvent or reactive ions are removed to remove the photoresist and/or hard « and/or high molecular polymer, the ribs release the three-dimensional metal microstructure' and proceed to step 132. Or, after releasing the three-dimensional metal microstructure, proceed to step 14. At step 132, the seed layer is removed with an etchant and proceeds to step 14. Figure 5 is a flow chart showing the flow of the embodiment of the metal microstructure method of the present invention. As shown in Figure 5, please refer to the schematic diagram of the hth to the second figure. First, select a substrate coffee in step 2, and the substrate is selected as 201105569 from the stone substrate, glass substrate, ceramic substrate, etc. Depositing a first seed layer 201 on the substrate 1 and then coating the first layer of photoresist 202. Here, the first seed layer 201 is an electroplating starting layer, and needs good electrical conductivity and adhesion to the substrate. Generally available from Cr under Au, Ti under Au, Ti under Cu or Ti-W under Au, with Cr/Au or

Ti/Au 為例,Cr 約 100-200A,Au 約 1000-2000A,另,沉積之技術 選取自蒸鍵(evaporation)、減鍍(Sputtering)、無電鐘(electroless) 等’本實施例以濺鑛為例;批覆之光阻可依光阻特性所採用適宜之技 術選取自 spin coating、spray coating、lamination、casting 等; 光阻可為正型、如 Clariant AZ4620、TOK LA900、PMMA,以及,光 阻可為負型如JSR THB-126N、MicroChem SU-8等,可依產品特性選 擇合適的光阻,因本發明之後續須進行研磨加工製程,因而,於本實 施例,採用結構強度較高之ep0xy-base photoresist/Su-8並以旋轉 塗佈(spin coating)來批覆光阻,以有利於後續製程展開,步驟 之製程如第6-a圖中所示之,並進到步称22。 於步驟22,對第一層光阻202進行烘烤,經烘烤後,將其中溶 劑蒸發使第-層光阻2G2變硬,之·行曝光、顯影,在此,曝光、 顯影所使用之光罩為203以成形所需之第-層光阻微結構204;其 中,烘烤方法有加熱板直接加熱、烘箱或紅外線加熱等,曝光方式有 X-my llth〇graphy、uv Hth〇graphy、如奶…优 e be棚等;本 11 201105569 實施例以 hot plate backing/UV exposure 為例,步 • ^之製程如 第6_b圖中所示之,於步驟22完成後,並進到步驟烈。 於步驟23,在第一層光阻微結構2〇4 莱凹洞内電鍍所需之金 屬205結構,一般可電鍍的金屬2〇5可選 目 Au、Cu、Ni、Ni-Μπ ’步驟23之製程如第 alloy、Ni-Fe alloy、Ni-Co alloy、Sn-Pb 等 6-c圖中所示之,並進到步驟24 eFor example, Ti/Au, Cr is about 100-200A, and Au is about 1000-2000A. In addition, the deposition technique is selected from the group consisting of evaporation, sputtering, and electroless. For example, the photoresist of the coating can be selected from spin coating, spray coating, lamination, casting, etc. according to the suitable photoresist technology; the photoresist can be positive, such as Clariant AZ4620, TOK LA900, PMMA, and photoresist It can be a negative type such as JSR THB-126N, MicroChem SU-8, etc., and a suitable photoresist can be selected according to the product characteristics. Since the polishing process is required in the subsequent process of the present invention, in this embodiment, the structural strength is high. Ep0xy-base photoresist/Su-8 and the photoresist is applied by spin coating to facilitate subsequent process development. The process of the step is as shown in Figure 6-a and proceeds to step 22. In step 22, the first layer photoresist 202 is baked, and after baking, the solvent is evaporated to harden the first layer photoresist 2G2, which is exposed and developed, and is used for exposure and development. The photomask is 203 to form a first-layer photoresist microstructure 204 required for forming; wherein the baking method includes direct heating of the heating plate, oven or infrared heating, and the exposure method includes X-my llth〇graphy, uv Hth〇graphy, For example, the example of hot plate backing/UV exposure is as follows. The process of step • ^ is as shown in Figure 6_b. After completion of step 22, the process proceeds to step. In step 23, the desired metal 205 structure is electroplated in the first layer of photoresist microstructure 2 〇 4 凹 recess, generally electroplatable metal 2 〇 5 optional order Au, Cu, Ni, Ni-Μπ 'step 23 The process is as shown in Figure 6-c of the first, Ni-Fe alloy, Ni-Co alloy, Sn-Pb, etc., and proceeds to step 24e.

於步驟24,進行研磨加工以得到第—層金屬微結物,研磨加 工將使得第-層光阻2〇2與電鑛金屬挪厚度一致,其中,研磨加工 方式選取自機化學加工(CMP)、機械研磨、抛光等;另,光阻應採用具 epoxy-base photoresist ^ MicroChem Su-8 . 24 .之製程如第6-d圖中所示之,並進到步鄉25。 於步驟25,重覆步驟21中之光阻批覆動作,再次進行絲批覆, 以成形第二層光阻2〇7,步驟25之製程如第6_e圖中所示之,並進 到步驟26。 於步驟26 ’進行第二層光阻207烘烤、曝光、顯影,以成形所 需之第二層光阻微結構2〇8圖案,在此,使用光罩213,步驟26之 製程如第6~f圖中所示之,並進到步驟27。 於步驟27,沉積第二種子層209,該第二種子層2〇9 $電鍵起始 層,需要有良好的導電性及與光阻及電鍍金屬間的附著性,一般可選 12 201105569 取自 Cr under Au ’ Ti _er Au,Ti 吟 cu 〇r Ti—, - « Cr/Au or Ti/Au m > Cr ^ l〇〇-2〇GA , Au ^ 1000-2000A ^ ^ - 沉職_取自顏、称無電料,本實施_舰紙在此, 第二層光阻微結構208較第-層雜微結構2〇4為寬且大’為避免氣 孔包覆於第二層金屬微結構211内,因此,在此先沉積第二種子層 209,步驟27之製程如第6—g圖中所示之並進到步驟28。 _ 於步驟28,在第一層光阻微結構208圖案凹洞内電鍵所需之金 屬210結構,一般可電鑛的金屬210可選取自Au、Cu、Ni、Ni_Mn alloy Ni Fe alloy、Ni-C〇 ali〇jr、Sn_pb 等,步驟 28 之製程如第 6-h圖中所示之並進到步驟29。 於步驟29,進仃研磨加工以得到第二層金屬微結構犯,研磨加 工將使得第二層光阻2〇7與電鍍金屬厚度一致,其中,研磨加工 • 式選取自機化予加工(CMP)、機械研磨、拋光等;另,光阻應採用具 门機械強度之 epoxy__base ph〇t〇resist 如[cr〇Chem 8,步驟四 之製程如第6-i圖中所示之並進到步驟3〇。 於步驟3〇 ’進行第三層光阻212批覆,以成形第三層光阻212, 步驟30之I程如第圖中所示之並進到步驟3卜 於步驟31 ’進行第三層光阻212之供烤、曝光、顯影,以成形 所需之第三層光阻微結構215,在此,使用光罩214,步驟31之製程 13 201105569 如第6-j•圖中所示之並進到步驟32。 於步驟32 ’在第三層光阻微結構215圖案凹洞内電鍍所需之金 屬216結構’一般可電鑛的金屬216可選取自Au、Cu、Ni、Ni-Mn alloy、Ni-Fe alloy、Ni-Co alloy、Sn-Pb 等,步驟 32 之製程如第 6-k圖中所示之並進到步驟33。In step 24, a grinding process is performed to obtain a first layer of metal micro-junction, and the grinding process is such that the first-layer photoresist 2〇2 is in conformity with the thickness of the electro-mineral metal, wherein the grinding processing method selects self-machine chemical processing (CMP). , mechanical grinding, polishing, etc.; in addition, the photoresist should be epoxy-base photoresist ^ MicroChem Su-8. 24 . The process shown in Figure 6-d, and go to Step Township 25. In step 25, the photoresist coating operation in step 21 is repeated, and the wire coating is again performed to form the second layer photoresist 2〇7. The process of step 25 is as shown in Fig. 6_e, and the process proceeds to step 26. The second layer photoresist 207 is baked, exposed, and developed in step 26 to form a desired second layer photoresist microstructure 2〇8 pattern. Here, the mask 213 is used, and the process of step 26 is as shown in the sixth step. As shown in the ~f diagram, go to step 27. In step 27, a second seed layer 209 is deposited. The second seed layer 2 〇 9 $ electric bond starting layer needs good electrical conductivity and adhesion to the photoresist and the plated metal. Generally, 12 201105569 is taken from Cr under Au ' Ti _er Au, Ti 吟cu 〇r Ti—, - « Cr/Au or Ti/Au m > Cr ^ l〇〇-2〇GA , Au ^ 1000-2000A ^ ^ - Shen Shi _ Self-portrait, said no electricity, this implementation _ ship paper here, the second layer of photoresist microstructure 208 is wider and larger than the first layer of micro-structure 2〇4 to avoid pores coated on the second layer of metal microstructure 211, therefore, the second seed layer 209 is deposited first, and the process of step 27 is as shown in Figures 6-g and proceeds to step 28. _ In step 28, the metal 210 structure required for the electric bond in the pattern hole of the first layer photoresist microstructure 208, generally the metal 210 of the ore can be selected from Au, Cu, Ni, Ni_Mn alloy Ni Fe alloy, Ni- C〇ali〇jr, Sn_pb, etc., the process of step 28 is as shown in Fig. 6-h and proceeds to step 29. In step 29, the rubbing process is performed to obtain a second layer of metal microstructure, and the grinding process is such that the second layer of photoresist 2〇7 is consistent with the thickness of the plated metal, wherein the grinding process is selected from self-machined processing (CMP). ), mechanical grinding, polishing, etc.; in addition, the photoresist should be used with the mechanical strength of the door epoxy__base ph〇t〇resist such as [cr〇Chem 8, the process of step four as shown in Figure 6-i and proceed to step 3 Hey. In step 3, the third layer of photoresist 212 is applied to form a third layer of photoresist 212. Step I of step 30 is as shown in the figure and proceeds to step 3, and step 3 is performed to perform a third layer of photoresist. 212 for baking, exposing, developing, to form a desired third layer of photoresist microstructure 215, here, using a mask 214, step 31 of the process 13 201105569 as shown in Figure 6-j• Step 32. In step 32, the metal 216 structure required for electroplating in the pattern recess of the third layer photoresist microstructure 215 is generally selected from the group consisting of Au, Cu, Ni, Ni-Mn alloy, and Ni-Fe alloy. , Ni-Co alloy, Sn-Pb, etc., the process of step 32 is as shown in Fig. 6-k and proceeds to step 33.

於步驟33 ’進行研磨加工以得到第三層金屬微結構217,研磨加 工將使得第三層光阻212與電鍍金屬216厚度一致,其中,研磨加工 方式選取自機化學加工(CMP)、機械研磨、拋光等;另,光阻應採用具 咼機械強度之 ep0Xy_base photoresist 如[croChem Su-8,步驟 33 之製程如第6-1圖中所示之並進到步驟34。 於步驟34,以溶劑或反應性離子蝕刻(未圖示出)去除第一層光 阻微結構204、第二層光阻微結構208、以及第三層光阻微結構215, 用以釋出包含第一層金屬微結構咖、第二層金屬微結構2U、以及 第三層金屬微結構217之立體的金屬微結構218,步㈣之製程如 第6-m圖中所示之,並進到步驟邪。 ’之7F移除未被第一層金屬微結構 測、第二層金屬微結構咖、以及第三層金屬微結物所覆蓋之 ,步称 35之製程如第6-n圖中所示之。 201105569 第6-a至第6-n圖為示意圖,用以顯示說明於第5圖中之利用本 發明之金屬微結構方法之該實施例流程步驟的製程情形。 第7圖為一流程圖,用以顯示說明利用本發明之金屬微結構方法 之另一實施例的流程步驟。如第7圖中所示之,首先,於步驟41, 選取一基板300,該基板係選取自矽基板、玻璃基板、陶瓷基板等; 於該基板上沉積第一種子層301再批覆第一層光阻302,在此,該第 一種子層301為電鍍起始層,需要有良好的導電性及與基板3〇〇間的 附著性’ 一般可選取自 Cr under Au ’ Ti under Au,Ti under Cu or Ti-W under Au,以 Cr/Au or Ti/Au 為例,Cr 約 100-200A,Au 約1000-2000A ’另’沉積之技術選取自蒸鑛(evap0rati〇n)、难鑛 (Sputtering)、無電鍍(electroless)等,本實施例以藏鑛為例;批 覆之光阻可依光阻特性所採用適宜之技術選取自sPin coating、 spray coating、lamination、casting 等;光阻可為正型、如 ciariant AZ4620、TOK LA900、PMMA,以及,光阻可為負型如 jsr THB-126N、In step 33', a grinding process is performed to obtain a third layer of metal microstructure 217, and the polishing process is such that the third layer of photoresist 212 conforms to the thickness of the plated metal 216, wherein the grinding process is selected from machine chemical processing (CMP), mechanical grinding. In addition, the photoresist should be ep0Xy_base photoresist with mechanical strength such as [croChem Su-8, the process of step 33 is as shown in Figure 6-1 and proceeds to step 34. In step 34, the first layer photoresist microstructure 204, the second layer photoresist microstructure 208, and the third layer photoresist microstructure 215 are removed by solvent or reactive ion etching (not shown) for release. a three-dimensional metal microstructure 218 comprising a first layer of metal microstructure coffee, a second layer of metal microstructure 2U, and a third layer of metal microstructure 217, the process of step (4) is as shown in Figure 6-m, and proceeds to Step evil. 'The 7F removal is not covered by the first layer of metal microstructure measurement, the second layer of metal microstructure coffee, and the third layer of metal micro-junction. The process of step 35 is as shown in Figure 6-n. . 201105569 Figures 6-a through 6-n are schematic views showing the process of the process steps of this embodiment using the metal microstructure method of the present invention illustrated in Figure 5. Figure 7 is a flow chart showing the flow steps illustrating another embodiment of the method of using the metal microstructure of the present invention. As shown in FIG. 7, first, in step 41, a substrate 300 is selected, which is selected from a germanium substrate, a glass substrate, a ceramic substrate, etc.; a first seed layer 301 is deposited on the substrate, and the first layer is deposited. The photoresist 302, here, the first seed layer 301 is an electroplating starting layer, and needs good electrical conductivity and adhesion to the substrate 3'. Generally, it can be selected from Cr under Au 'Ti under Au, Ti under Cu or Ti-W under Au, taking Cr/Au or Ti/Au as an example, Cr is about 100-200A, Au is about 1000-2000A. 'Other' deposition technology is selected from steamed ore (evap0rati〇n), difficult to mine (Sputtering) ), electroless, etc., in this example, the Tibetan mine is taken as an example; the photoresist of the coating may be selected from the sPin coating, spray coating, lamination, casting, etc. according to the photoresist characteristics; the photoresist may be positive Type, such as ciariant AZ4620, TOK LA900, PMMA, and, the photoresist can be negative type such as jsr THB-126N,

MicroChem SU-8等,可依產品特性選擇合適的光阻,因本發明之後 續須進行研磨加工製程,因而,於本實施例,採用結構強度較高之 epoxy-base photoresist/Su-8 並以旋轉塗佈(spin c〇ating)來批覆 光阻,以有利於後續製程展開,步驟41之製程如第8-a圖中所示之, 並進到步驟42。 15 201105569 於步驟42,進行第一層光阻3〇2之烘烤,經烘烤後,將其中溶 劑瘵發使第一層光阻302變硬,之後進行曝光、顯影,在此,使用光 罩303,以成形所需之第一層光阻微結構3〇4圖案;其中,烘烤方法 有加熱板直接加熱、賴或紅穩加熱等,曝光方式有x_ray lithography、UV lithography、direct write e-beam 等;本實施例 以 hot plate backing/UV exposure 為例,步驟 42 之製程如第 8-bMicroChem SU-8, etc., can select a suitable photoresist according to product characteristics, and the subsequent processing of the present invention requires a grinding process. Therefore, in this embodiment, an epoxy-base photoresist/Su-8 having a higher structural strength is used. Spin coating is used to approve the photoresist to facilitate subsequent process development. The process of step 41 is as shown in Figure 8-a, and proceeds to step 42. 15 201105569 In step 42, the first layer of photoresist 3 〇 2 is baked, after baking, the solvent is bursted to make the first layer of photoresist 302 hard, and then exposed and developed, where light is used. The cover 303 is formed by forming a first layer of photoresist microstructure 3〇4 pattern; wherein the baking method comprises direct heating of the heating plate, heating or red stabilization, and the exposure method includes x_ray lithography, UV lithography, direct write e -beam, etc.; this embodiment takes hot plate backing/UV exposure as an example, and the process of step 42 is as shown in section 8-b.

圖中所示之,於步驟42完成後,並進到步驟43。 於步驟43,在第一光阻層微結構304圖案凹洞内電鍵所需之金 屬305結構,一般可電鑛的金屬305可選取自Au、Cu ' Ni ' Ni-Mn alloy Ni Fe alloy ϋ alloy、Sn-Pb 等,步驟 43 之製程如第 8-c圖中所示之,並進到步驟44。 於步驟44,進行研磨加工以得到第一層金屬微結構3〇6,研磨加 工將使得第一層光阻厚度咖與電鑛金屬3〇5厚度一致,其中,研磨 式選取自機化學加工(CMp)、機械研磨、抛光等;另,光阻應採 epoxy-base photoresist ^ MicroChem Su-8 » # 驟44之製程如第中所示之,並進到步驟奶。 '步驟45 ’進仃第二層光阻307批覆’以成形第二層光阻307, 步驟45之製程如第8~e圖中所示之,並進到步驟46。 步驟46 ’進仃第二層光阻謝之烘烤、曝光、顯影,以成形 201105569 所需之第二層光阻微結構3〇8,在此,使用光罩313,步驟之製程 -如第8-f圖中所示之,並進到步驟π。 於步驟47,在第二層光阻微結構圖案3〇8凹洞内電鍍所需之金 屬310結構,一般可電鍍的金屬可選取自Au、Cu、犯、此 alloy、Ni-Fe alloy、Ni-Co alloy、Sn-Pb 等,步驟 47 之製程如第 8-g圖中所示之,並進到步驟48。As shown in the figure, after the completion of step 42, the process proceeds to step 43. In step 43, the metal 305 structure required for the electric key in the pattern recess of the first photoresist layer microstructure 304 is generally selected from Au, Cu 'Ni ' Ni-Mn alloy Ni Fe alloy ϋ alloy , Sn-Pb, etc., the process of step 43 is as shown in Figure 8-c, and proceeds to step 44. In step 44, a grinding process is performed to obtain a first layer of metal microstructures 3〇6, and the grinding process is such that the first layer of photoresist thickness is consistent with the thickness of the electro-mineral metal 3〇5, wherein the grinding type is selected from the machine chemical processing ( CMp), mechanical grinding, polishing, etc.; in addition, the photoresist should be epoxy-base photoresist ^ MicroChem Su-8 » # The process of step 44 is as shown in the figure, and proceeds to the step milk. The 'step 45' is applied to the second layer photoresist 307 to form a second layer photoresist 307. The process of step 45 is as shown in Figs. 8 to e, and the process proceeds to step 46. Step 46 'Into the second layer of photoresist, baking, exposing, and developing to form a second layer of photoresist microstructure 3〇8 required for 201105569. Here, the mask 313 is used, and the process of the step is as follows. As shown in the figure 8-f, the process proceeds to step π. In step 47, the desired metal 310 structure is electroplated in the second layer of the photoresist microstructure pattern 3〇8, and the generally electroplatable metal can be selected from Au, Cu, sin, the alloy, Ni-Fe alloy, Ni. -Co alloy, Sn-Pb, etc., the process of step 47 is as shown in Fig. 8-g, and proceeds to step 48.

於步驟48,進行研磨加工以得到第二層金屬微結構&i,研磨加 工將使得第二層光阻307厚度與電鍍金屬31◦厚度一致,其中,研磨 加工方式選取自機化學加工_、機械研磨、抛光等;另,光阻應採 用具高機械強度之ep〇xy-base ph咖esist^ic她挪㈣,步 驟48之製程如第8-h圖中所示之,並進到步驟49。 於步驟49 ’以溶劑或反應性離子飯刻(未圖示出)去除第一層光 阻微結構304、以及第二層光阻微結構咖,用以釋出包含第一層金 屬微結構施、以及第二層金屬微結構311之立體的金屬微結構318, 步驟49之製程如帛8-i圖中所示之,並進到步驟5〇。 於步驟5〇 ’以钱刻液(未圖示出)移除未被第—層金屬微結構 306、以及第二層金屬微結構311所覆蓋之第一種子層部份⑽如第 8_1圖中所示之),以於基板上得到良好的金屬微結物,步驟50 之製程如第8-j圖中所示之。 17 201105569 第8-a至第8-j圖為示意圖,用以顯示說明於第7圖中之利用本 發明之金屬縣構;之該實蝴雜步_製程情形。 第9圖為-流程,用以顯示說明利用本發明之金屬微結構方法 之再-實施例的流程步驟。如第9圖中所示之,首先,於步驟6卜 選取-基板400 ’該基板_係選取自絲板、玻璃基板、喊基板 等,於該基板400上沉積第-種子層仙再批覆第—層光阻4〇2,在 此’該第-種子層401為電錢起始層,需要有良好的導電性及與基板 400間的附著性,-般可選取自CrunderAu,TiunderAu,心耐 Cu or Ti-W under Au,以 Cr/Au or Ti/Au 為例,& 約 1〇〇 2〇〇A , Au 約1000-2000A,另,沉積之技術選取自蒸鍍(evap〇rati〇n)、雜 (SPUttering)、無電鍍(electr〇less)等,本實施例以麟為例;批 覆之光阻可依光阻特性所採用適宜之技術選取自spin _ing、 spray coating、lamination、casting 等;光阻可為正型、如 Clariant AZ4620、TOK LA900、PMMA,以及’光阻可為負型如 jSR THB_126N、In step 48, a grinding process is performed to obtain a second layer of metal microstructures & i, and the grinding process is such that the thickness of the second layer of photoresist 307 is the same as the thickness of the plated metal 31 ,, wherein the grinding process is selected from the machine chemical processing _, Mechanical grinding, polishing, etc.; in addition, the photoresist should be ep〇xy-base ph esist^ic her (4) with high mechanical strength, the process of step 48 is shown in Figure 8-h, and proceed to step 49 . The first layer of photoresist microstructure 304 and the second layer of photoresist microstructures are removed by solvent or reactive ion milling (not shown) in step 49 to release the first layer of metal microstructures. And the three-dimensional metal microstructure 318 of the second metal microstructure 311, the process of step 49 is as shown in Figure 8-i, and proceeds to step 5〇. In step 5, the first seed layer portion (10) not covered by the first layer metal microstructure 306 and the second layer metal microstructure 311 is removed by a liquid engraving (not shown), as shown in FIG. 8_1. Shown) to obtain good metal micro-junction on the substrate, the process of step 50 is as shown in Figure 8-j. 17 201105569 Figures 8-a through 8-j are schematic diagrams showing the use of the metal structure of the present invention illustrated in Figure 7; Figure 9 is a flow diagram showing the flow steps illustrating a further embodiment of the method of using the metal microstructure of the present invention. As shown in FIG. 9, first, in step 6, the substrate is selected from the substrate 400. The substrate is selected from a wire plate, a glass substrate, a shattered substrate, etc., and a first seed layer is deposited on the substrate 400. —Layer photoresist 4〇2, where the first seed layer 401 is an electric money starting layer, which needs good electrical conductivity and adhesion to the substrate 400, and can be selected from CrunderAu, TiunderAu, and heart resistant. Cu or Ti-W under Au, taking Cr/Au or Ti/Au as an example, & about 1〇〇2〇〇A, Au about 1000-2000A, and the deposition technique is selected from evaporation (evap〇rati〇) n), SPU (ttertering), electroless plating (electr〇less), etc., this example takes Lin as an example; the photoresist of the coating can be selected from spin _ing, spray coating, lamination, casting according to the suitable technique according to the photoresist characteristics. Etc.; the photoresist can be positive, such as Clariant AZ4620, TOK LA900, PMMA, and 'the photoresist can be negative such as jSR THB_126N,

MicroChem SU-8等’可依產品特性選擇合適的光阻,因本發明之後 續須進行加工触,_,於本實關,採縣猶度較高之 ep〇Xy_base Phot_ist/Su—8並以旋轉塗佈(咖 c〇ating)來批覆 光阻,以有利於後續製程展開,步驟61之如第iQ_a圖巾所示之, 並進到步驟62。 201105569 &步驟62 ’進行第一層光阻402之烘烤,經烘烤後,將其中溶 劑洛發使第-層光p且4〇2冑硬,之後進行曝光、顯影,以成形所需之 第一層光阻微結構4〇4圖案,在此,使用光罩4〇3;其中,烘烤方法 有加熱板直接加熱、縣或紅外線加鮮,曝光方式有X-ray lithography、UV lithography、direct write e-beam 等;本實施例 以 hot plate backing/UV exposure 為例,步驟 62 之製程如第 10-6 圖中所示之,於步驟62完成後,並進到步驟eg。 於步驟63 ’在第一層光阻微結構4〇4圖案凹洞内電鑛所需之金 屬405結構,一般可電鍍的金屬4〇5可選取自Au、⑺、則、則一黯 alloy、Ni-Fe alloy、Ni-Co alloy、Sn-Pb 等,步驟 63 之製程如第 10-c圖中所示之,並進到步驟64。 於步驟64 ’去除該第-層光阻4〇2,步驟64之製程如第1〇 d圖 中所示之’並進到步驟65。 於步驟65,塗覆易溶解之硬質蝶或高分子聚合物以形成第一硬 質層407 ’此第-硬質層407材料可承受研磨加工的機械力,可時又 可改善光阻選擇之限制,步驟65之製程如第如圖中所示之並進 到步驟66。 於步驟66,進行_加工以得到第一層金屬微結構4〇6,研磨加 工將使得所塗覆之第-硬質層4〇7與電錢金屬厚度一致其中, 201105569 研磨加工方式觀自機化學加工(GMP)、賊研磨、概等,步驟66 之製程如第1G~f圖中所示之,並進到步驟67 » 於步驟67 ’進行第二層光阻408批覆,以成形第二層光阻408, 步驟67之製程如第1〇 g圖中所示之,並進到步雜。 ;步驟68 ’進行帛二層光阻4〇8之供烤、曝光、顯影,以成形 所需之第一層光阻微結構4〇9,在此,使用光罩41〇,步驟明之製程 • 如第1(Ηι圖中所示之,並進到步驟⑽。 :步驟69 ’在第二層光阻微結構409目案凹洞内電錢所需之金 屬411、、"構’一般可電鍍的金屬411可選取自Au、Cu、Ni、Ni-Mn Υ Nl Fe aU〇y、Ni-Co all〇y、Sn-Pb 等,步驟 69 之製程如第 l〇-i圖中所示之,並進到步驟7〇。 ;步驟70去除該第二層光阻4〇8’步驟之製程如第圖 φ 中所示之,並進到步螺71。 ;步驟71 S覆易溶解之硬質壞或高分子聚合物以形成第二硬 層2此第—硬質層412材料可承受研磨加工的機械力,可時又 可改善光阻選擇之限制,步驟71之製程如第㈣圖中所示之,並進 到步驟72。 工 於步驟72,進行研磨加工以得到第二層金屬微結構413,研磨加 將使得所塗覆之第二硬質⑽與電鍍金細厚度一致,其中, 20 201105569 研磨加工方式選取自機化學加邮MP)、機械碧、縣等,步驟72 之製程如第1〇-1圖中所示之,並進到步驟73。 於步驟73,以溶劑或反應性離子钱刻(未圖示出)去除第一硬質 層407、以及第二硬質層412,用以釋出包含第一層金屬微結構4〇6、 以及第二層金屬微結構413之立體的金屬微結構414;且以侧液 (未圖示出)移除未鮮-層金屬微結構4〇6、以及第二層金屬微結構 _ 413所覆蓋之第一種子層部份(未圖示出),以於基板上得到良好的金 屬微結構414,步驟73之製程如第i〇-m圖中所示之。 第ΙΟ-a至第l〇-m圖為示意圖,用以顯示說明於第9圖中之利用 本發明之金屬微結構方法之該實施例流程步驟的製程情形。 第11圖為一流程圖,用以顯示說明利用本發明之金屬微結構方 法之另-實施例的流程步驟。如第U圖中所示之,首先,於步驟81, 籲選取基板500並於該基板500上批覆第一層光阻501,該基板500 係選取自石夕基板、玻璃基板、陶兗基板等;批覆技術可依光阻特性而 採用適宜之技術選取自—coating、spray CQating、laminati〇n、 casting 等;光阻可為正型如 Clariant AZ462〇、T〇K LA9〇〇、pM驗, 以及,光阻可為負型如 ep〇xy_base ph〇t〇resist/Su 8、JSR ΤΗΒ-126N、MicroChem SU-8等,可依產品特性選擇合適的光阻,因 本實施例之後續須進行研磨加工製程,因而,本實施娜用結構強度 21 201105569 較尚之ep〇Xy-base photoresist/Su-8以旋轉塗佈方式來批覆光阻, 如此,有利後續製程展開,步鄉81之製程如第12_a圖斗所示之,並 進到步驟82。 於步驟82 ’進行第一層光P且501之烘烤,經供烤後,將其中溶 劑蒸發使第-層光阻5Q1變硬,其中,烘烤方法有加熱板直接加熱、 洪箱或紅外線加熱等,在此,使用光罩502,本實施例以加熱板直接 加熱為例’步驟82之製程如第12-b圖中所示之,並進到步驟83。 於步驟83,進行第二層光阻503批覆,於批覆第二層光阻5〇3 後,再進行烘烤’步驟83之製程如第12_c圖中所示之,並進到步驟 84。 於步驟84,進行第二層光阻之曝光,曝光方式有X-ray lithography、UV lithography、direct write e-beam 等,在此, 使用光罩504;本實施例以uv exposure為例,於步驟84完成後,步 驟84之製程如第i2-d圖中所示之,並進到步驟85。 於步驟85 ’將該第一層光阻5(Π、以及第二層光阻502予以顯影 後’用以成形所需之第—層光阻微結構圖案、以及第二層光阻微 結構506圖案;本實施例與第5圖中之實施例的最大不同在於可選 擇面解析度之化學放大型之正型或負型光阻(Chemical舰奶細 positive/negativephotoresist),此類光阻具有可多次批覆光阻MicroChem SU-8 and so on can choose the appropriate photoresist according to the product characteristics, because the subsequent processing of the invention must be processed, _, in this real customs, the county is higher than the ep〇Xy_base Phot_ist/Su-8 Rotating coating is used to approve the photoresist to facilitate subsequent process development, step 61 as shown in the iQ_a towel, and proceeds to step 62. 201105569 & Step 62 'Bake the first layer of photoresist 402, after baking, the solvent is released to make the first layer of light p and 4 〇 2 胄 hard, and then exposed and developed to form The first layer of photoresist microstructure 4〇4 pattern, here, the mask 4〇3 is used; wherein the baking method is direct heating of the heating plate, county or infrared freshening, and the exposure method is X-ray lithography, UV lithography For example, hot plate backing/UV exposure is used as an example. The process of step 62 is as shown in FIG. 10-6. After completion of step 62, the process proceeds to step eg. In step 63', the metal 405 structure required for the electric ore in the first layer of the photoresist microstructure 4〇4 pattern pit, the generally electroplatable metal 4〇5 may be selected from Au, (7), then, then a total, Ni-Fe alloy, Ni-Co alloy, Sn-Pb, etc., the process of step 63 is as shown in Fig. 10-c, and proceeds to step 64. The first layer photoresist 4 〇 2 is removed at step 64', and the process of step 64 is as shown in Fig. 1 and proceeds to step 65. In step 65, a hard-dissolved hard butterfly or high-molecular polymer is applied to form a first hard layer 407'. The first-hard layer 407 material can withstand the mechanical force of the grinding process, and can sometimes improve the limitation of the photoresist selection. The process of step 65 proceeds to step 66 as shown in the figure. In step 66, processing is performed to obtain a first layer of metal microstructures 4〇6, and the grinding process is such that the coated first hard layer 4〇7 is consistent with the thickness of the money metal, 201105569. Processing (GMP), thief grinding, general, the process of step 66 is as shown in Figures 1G to f, and proceeds to step 67 » in step 67, a second layer of photoresist 408 is applied to form a second layer of light. Block 408, the process of step 67 is as shown in the figure of Figure 1, and proceeds to the step. Step 68' performs the baking, exposing, and developing of the second layer of photoresist 4〇8 to form the first layer of photoresist microstructure 4〇9 required for the formation. Here, the mask 41 is used, and the process is as follows: As shown in the first figure (Ηι, and proceed to step (10).: Step 69 'In the second layer of photoresist microstructure 409, the metal required for electricity money 411, "construction' is generally electroplatable The metal 411 can be selected from Au, Cu, Ni, Ni-Mn Υ Nl Fe aU 〇 y, Ni-Co all 〇 y, Sn-Pb, etc., and the process of step 69 is as shown in the first 〇-i diagram. And proceeding to step 7〇. The process of removing the second layer photoresist 4〇8' step of step 70 is as shown in the figure φ, and proceeds to step screw 71. Step 71 S is easy to dissolve hard or bad Molecular polymer to form the second hard layer 2 The material of the first hard layer 412 can withstand the mechanical force of the grinding process, and can also improve the limitation of the photoresist selection. The process of step 71 is as shown in the figure (4). Go to step 72. In step 72, a grinding process is performed to obtain a second layer of metal microstructure 413, which will make the applied second hard (10) and electroplated gold thicker. Same, wherein 20201105569 grinding mode selected from organic chemistry plus the MP-mail), mechanical Bi, County, step 72 of the process as shown in the first FIG 1〇-1, and proceeds to step 73. In step 73, the first hard layer 407 and the second hard layer 412 are removed by solvent or reactive ion etching (not shown) for releasing the first layer of metal microstructures 4〇6, and the second a three-dimensional metal microstructure 414 of the layer metal microstructure 413; and the first layer covered by the non-fresh metal layer 4〇6 and the second layer metal microstructure 413 are removed by a side liquid (not shown) A seed layer portion (not shown) is used to obtain a good metal microstructure 414 on the substrate, and the process of step 73 is as shown in the figure i-m. Figures aa-a to 〇m-m are diagrams for illustrating the process of the process steps of this embodiment using the metal microstructure method of the present invention illustrated in Figure 9. Figure 11 is a flow chart showing the flow steps illustrating another embodiment using the metal microstructure method of the present invention. As shown in FIG. 9, first, in step 81, the substrate 500 is selected and the first layer photoresist 501 is deposited on the substrate 500. The substrate 500 is selected from the stone substrate, the glass substrate, the ceramic substrate, and the like. The coating technology can be selected from the coating properties, coating CQating, laminati〇n, casting, etc. according to the photoresist characteristics; the photoresist can be positive such as Clariant AZ462〇, T〇K LA9〇〇, pM, and The photoresist may be of a negative type such as ep〇xy_base ph〇t〇resist/Su 8, JSR ΤΗΒ-126N, MicroChem SU-8, etc., and a suitable photoresist may be selected according to product characteristics, which is required to be ground after the embodiment. The processing process, therefore, the implementation of the structural strength 21 201105569 ep〇Xy-base photoresist/Su-8 is more than the rotary coating method to approve the photoresist, so that the subsequent process is facilitated, the step of the township 81 process as the 12_a As shown in the figure, the process proceeds to step 82. In step 82', the first layer of light P and 501 are baked, and after being baked, the solvent is evaporated to harden the first layer photoresist 5Q1, wherein the baking method is directly heated by a heating plate, a flood box or an infrared ray. Heating or the like, here, using the photomask 502, the present embodiment is directly heated by the heating plate as an example. The process of the step 82 is as shown in Fig. 12-b, and proceeds to step 83. In step 83, a second layer of photoresist 503 is applied, and after the second layer of photoresist 5 〇 3 is applied, baking is performed. The process of step 83 is as shown in Fig. 12-c, and the process proceeds to step 84. In step 84, a second layer of photoresist is exposed, and the exposure mode is X-ray lithography, UV lithography, direct write e-beam, etc., here, a photomask 504 is used; in this embodiment, uv exposure is taken as an example, in the step After the completion of 84, the process of step 84 is as shown in the figure i2-d, and proceeds to step 85. In step 85, the first layer photoresist 5 (after developing the second layer photoresist 502) is used to form a first layer photoresist microstructure pattern and a second layer photoresist microstructure 506. Pattern; the biggest difference between this embodiment and the embodiment in FIG. 5 is that the chemical amplification type positive or negative photoresist (Chemical ship milk positive/negative photoresist) with selectable surface resolution, such photoresist has Repeated photoresist

22 201105569 火、烤曝光之後為一次顯影的特性如Micr〇chem su_g,因而, mm 5 ® 本實施例可減少一些製作流程;於步驟85 兀成後’步驟85之製程如第12_e圖中所示之,並進到步驟86。 於步驟86 ’沉積種子層507,該種子層507為電鍍起始層,需要 有良好的導電性及與光阻及魏金制騎著性,-般可選取自Cr22 201105569 The characteristics of one development after fire and baking exposure are such as Micr〇chem su_g. Therefore, mm 5 ® can reduce some production processes; after step 85, the process of step 85 is as shown in Fig. 12_e And proceed to step 86. The seed layer 507 is deposited in step 86', and the seed layer 507 is an electroplating starting layer, which needs good electrical conductivity and riding resistance with photoresist and Weijin, and can be selected from Cr.

Ti under Au ’ Ti under Cu or Ti-W under Au,以 Cr/Au or Ti/Au為例’ Cr約1〇〇_2〇〇A,Au約麵觸〇a,步驟祁之製 程如第12-f圖中所示之,並進到步驟87。 ;步驟87,在第一層光阻微結構5〇5圖案與第二層光阻微結構 506圖案凹洞内電鍍所需之金屬5⑽結構,一般可電鑛的金屬5⑽可 、 ⑶ Ni、Ni-Mnalloy、Ni-Fe alloy、Ni-Coalloy、Sn-Pb 步驟87之製程如第】2_g圖中所示之,並進到步驟88。 ;'8進行研磨加工以得到第一層金屬微結構Mg,研磨加 :使得第層光阻5〇1與第二層光阻5〇2之總厚度與電鍛金屬_ 厚度一致,复. "肀,研磨加工方式選取自機化學加工(CMp)、機械研磨、 llA止榮 〇 光阻應採用具高機械強度之ep〇xy_base ph〇t〇resist如 hemSu~8,步驟88之製程如第12-h圖中所示之,並進到步驟 89。 :步驟89,再批覆第三層光阻51〇後再進行烘烤,第三層光 23 201105569 阻510經烘烤後,將其中溶劑蒸發使帛三層光阻51〇冑硬,之後進行 曝光 ' 顯影,在此’使用光罩511,以成形所需之第三層光阻微結構 512圖案’步驟89之製程如第12—i圖中所示之,並進到步驟⑽。 於步驟90’在第三層光阻微結構512圖案凹洞内電链所需之金 屬513結構,一般可電錢的金屬513可選取自Au、&、附、n alloy、Ni-Fe alloy、Ni-Co all〇y、Sn_pb 等;進行研磨加工以得到 • 帛二層金屬微結構514,研磨加工將使得第三層光阻510厚度與電鑛 金屬513厚度-致,其中,研磨加工方式選取自機化學加工⑽、 機械研磨、滅等;另,光阻應採用具高機械強度之e卿七祀 photoresist如MiCr〇ChemSu-8,步驟9〇之製程如第旧圖中所示 之,並進到步驟91。 於步驟91 ’步驟91之製程如第12—k圖中所示之,以溶劑或反 籲 應性離子則(未圖示出)去除第-層光阻微結構5〇5、第二層光阻微 結構506、以及第三層光阻微結構512,用以釋出包含第一層金屬微 結構509、以及第二層金屬微結構514之立體的金屬微結構,以 於基板上得到良好的金屬微結構515。 第12-a至第12-k圖為示意圖,用以顯示說明於第u圖中之利 用本發明之金屬微結構方法之該實施例流程步驟的製程情形。 综合以上之實補’我們可得淋發明之—種金屬微結構形成方 24 201105569 法’係應用於微結構元件製程,利用本發明之金屬微結獅成方法, 於形成微結構%件之立體的金屬微結構時,無須電娜二種金屬以圍 在金屬外@且無舰鄕二種金屬可降輯鑛造成之殘留 -金屬層間不會有殘留應力,金屬所附著之基板不致變形,而不 致影響微結構元件後續製程進行,且,由於無綱刻第二種金屬,因 而,不會有姓刻液渗入每層介面之問題,不會造成每層之附著力降 # 低’而不致影響微結構元件之功能。本發明之金屬微結構形成方法包 含以下優點: 1. 於形成微結構元件之立體金屬微結構時,無須電鍍第二種金屬以 圍繞在金屬外圍、且無須侧第二種金屬。 2. 於形成微結構元件之立體金屬微結構時,由於無須電鑛第二種金 屬以圍繞在金屬外圍,因而,可降低電鑛所造成之殘留應力、金 • 屬層間不會有殘留應力’金屬所附著之基板不致變形,而不致影 響微結構元件後續製程進行。 3. 於形成微結構元件之立體金屬微結構時,由於無須姓刻第二種金 屬因而,不會有钮刻液滲入每層介面之問題,不會造成每層之 附著力降低,而不致影響微結構元件之功能。 以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之 範圍,凡其它未脫離本發明所揭示之精神下所完成之等效改變或修 25 201105569 飾,均應包含在下述之專利範圍内。 【圖式簡單說明j 第i圖為-流糊,肋顯祕明本發明之金屬微結構形成方法 的流程步驟; 第2圖為一流程®,用以顯示說明於第1圖中之準借-基板之步 驟的詳細流程程序; 第3圖為-流程圖,用以顯示說明於第j圖令之於該基板之表面 上相繼形成二層以上之金屬微結構之步驟_細流程程序; 第4圖為-流糊,肋顯示說明於第丨圖中之以液體來去除該 二層以上之金屬微結構以外的其他材料之步驟_細流程程序; 第5圖為-流程圖,用以顯示說明利用本發明之金屬微結構方法 之一實施例的流程步驟; 第6-a至第6-η圖為示意圖,用以顯示說明於第5圖中之利用本 發明之金屬微結構方法之該實施例流程步驟的製程情形 第7圖為-流程圖,用以顯示說明利用本發明之金屬微結構方法 之另一實施例的流程步驟; 第8-a至第8-j圖為示意圖,用以顯示說明於第7圖中之利用本 發明之金職結構方法之該實施淑程步驟的製程情形. 26 201105569 第9圖為一流程圖,用以顯示說明利用本發明之金屬微結構方法 之再一實施例的流程步驟; 第10-a至第1 Οι圖為不意圖’用以顯不說明於第9圖中之利用 本發明之金屬微結構方法之該實施例流程步驟的製程情形; 第11圖為一流程圖,用以顯示說明利用本發明之金屬微結構方 法之另一實施例的流程步驟;以及 # 第12_a至第12-k圖為示意圖,用以顯示說明於第11圖中之利 用本發明之金屬微結構方法之該實施例流程步驟的製程情形。 【主要元件符號說明】 II 12 13 14 步驟 21 22 23 24 25 26 27 28 步驟 • 29 3〇 31 32 33 34 35 步驟 41 42 43 44 45 46 47 48 步驟 49 50 51 52 53 54 步驟 61 62 63 64 65 66 67 68 步驟 69 70 71 72 73 步驟 81 82 83 84 85 86 87 88 89 90 91 步騾 III 112步驟 27 201105569 121 122 123 124 125 步驟 131 132步驟 200基板 201第一種子層 202第一層光阻 203光罩 204第一層光阻微結構 205金屬 206第一層金屬微結構 207第二層光阻 208第二層光阻微結構 209第二種子層 210金屬 211第二層金屬微結構 212第三層光阻 214光罩 215第三層光阻微結構 216金屬 217第三層金屬微結構 28 201105569 218金屬微結構 219第一種子層部份 300基板 301第一種子層 302第一層光阻 303光罩 304第一層光阻微結構 305金屬 306第一層金屬微結構 307第二層光阻 308第二層光阻微結構 310金屬 311第二層金屬微結構 313光罩 318金屬微結構 319第一種子層部份 400基板 401第一種子層 402第一層光阻 201105569 403光罩 404第一層光阻微結構 405金屬 406第一層金屬微結構 407第一硬質層 408第二層光阻 409第二層光阻微結構 410光罩 411金屬 412第二硬質層 413第二層金屬微結構 414金屬微結構 500基板 501第一層光阻 502光罩 503第二層光阻 504光罩 505第一層光阻微結構 506第二層光阻微結構 201105569 507種子層 508金屬 509第一層金屬微結構 510第三層光阻 511光罩 512第三層光阻微結構 513金屬 514第二層金屬微結構 515金屬微結構Ti under Au ' Ti under Cu or Ti-W under Au, taking Cr/Au or Ti/Au as an example 'Cr about 1〇〇_2〇〇A, Au is about the surface touch a, the process of the step is as shown in the 12th As shown in the -f diagram, and proceeds to step 87. Step 87, electroplating the desired metal 5 (10) structure in the first layer photoresist microstructure 5〇5 pattern and the second layer photoresist microstructure 506 pattern pit, generally the metallurgical metal 5(10), (3) Ni, Ni -Mnalloy, Ni-Fe alloy, Ni-Coalloy, Sn-Pb The process of step 87 is as shown in the figure 2_g, and proceeds to step 88. ; 8 grinding processing to obtain the first layer of metal microstructure Mg, grinding plus: the total thickness of the first layer of photoresist 5 〇 1 and the second layer of photoresist 5 〇 2 is consistent with the thickness of the electric forged metal _, complex.肀, grinding processing method selects self-machine chemical processing (CMp), mechanical grinding, llA 〇 〇 〇 photoresist should use high mechanical strength ep〇xy_base ph〇t〇resist such as hemSu~8, the process of step 88 is as follows As shown in the figure 12-h, the process proceeds to step 89. : Step 89, after the third layer of photoresist 51 is coated, and then baking, the third layer of light 23 201105569 After the 510 is baked, the solvent is evaporated to make the three layers of photoresist 51 hard, and then exposed. 'Developing, here using the reticle 511 to shape the desired third layer photoresist microstructure 512 pattern' is performed as shown in Figure 12-i, and proceeds to step (10). In step 90', the metal 513 structure required for the electric chain in the third layer photoresist microstructure 512 pattern recess is generally selected from Au, &, attached, n alloy, Ni-Fe alloy. , Ni-Co all〇y, Sn_pb, etc.; grinding processing to obtain • 帛 two-layer metal microstructure 514, the grinding process will make the thickness of the third layer photoresist 510 and the thickness of the electric ore metal 513, wherein the grinding processing method Select self-machine chemical processing (10), mechanical grinding, extinction, etc.; in addition, the photoresist should be a high mechanical strength eqing seven photosexist such as MiCr〇ChemSu-8, the process of step 9 is as shown in the old figure, And proceed to step 91. In the process of step 91 'Step 91, as shown in FIG. 12-k, the first layer photoresist microstructure 5〇5 and the second layer light are removed by solvent or anti-allergic ions (not shown). The micro-structure 506 and the third photoresist microstructure 512 are used to release the three-dimensional metal microstructure including the first metal microstructure 509 and the second metal microstructure 514 for good performance on the substrate. Metal microstructure 515. Figures 12-a through 12-k are schematic views showing the process of the process steps of this embodiment of the metal microstructure method of the present invention illustrated in Figure u. Based on the above-mentioned practical compensation, we can get the invention - a kind of metal microstructure forming method 24 201105569 The method is applied to the microstructure component process, and the metal micro-junction lion forming method of the invention is used to form a three-dimensional microstructure. When the metal microstructure is used, there is no need to use two kinds of metals to surround the metal. @There is no residue caused by the two kinds of metals. There is no residual stress between the metal layers, and the substrate to which the metal is attached is not deformed. It does not affect the subsequent process of the microstructured component, and since there is no second metal in the outline, there is no problem that the surname infiltration penetrates into each layer of the interface, and the adhesion of each layer is not lowered. The function of microstructural components. The metal microstructure forming method of the present invention comprises the following advantages: 1. When forming the three-dimensional metal microstructure of the microstructure element, it is not necessary to plate the second metal to surround the metal periphery without the second metal. 2. When forming the three-dimensional metal microstructure of the microstructured component, since the second metal of the electric ore is not required to surround the periphery of the metal, the residual stress caused by the electric ore can be reduced, and there is no residual stress between the layers of the metal. The substrate to which the metal is attached is not deformed, and does not affect the subsequent process of the microstructured component. 3. When forming the three-dimensional metal microstructure of the microstructured component, since there is no need to name the second metal, there is no problem that the buttoning solution penetrates into each layer interface, and the adhesion of each layer is not lowered, and the effect is not affected. The function of microstructural components. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. All other equivalent changes or modifications to the present invention, which are not departing from the spirit of the present invention, should be included in the following. Within the scope of the patents described. [Simple diagram of the drawing, the i-th picture is - flow paste, the ribs show the flow steps of the metal microstructure formation method of the present invention; the second picture is a flow ® to show the explanation in the first picture a detailed flow program of the steps of the substrate; FIG. 3 is a flow chart for displaying a step of forming a metal microstructure of two or more layers successively on the surface of the substrate in the jth pattern - a detailed flow program; 4 is a flow paste, the rib shows the steps in the figure to remove the material other than the metal microstructure above the second layer - a detailed flow program; Figure 5 is a flow chart for displaying A flow chart illustrating an embodiment of the metal microstructure method of the present invention; and FIGS. 6-a through 6-n are schematic diagrams showing the method of using the metal microstructure of the present invention illustrated in FIG. Process Diagram of Embodiment Process Steps FIG. 7 is a flow chart for showing the flow steps of another embodiment of the metal microstructure method using the present invention; FIGS. 8-a through 8-j are schematic views, By using the present invention as shown in Fig. 7 The process of the implementation of the process steps. 26 201105569 FIG. 9 is a flow chart showing the flow steps of a further embodiment of the metal microstructure method of the present invention; 10-a to 1 Ο 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Process steps of another embodiment of the inventive metal microstructure method; and #12_a to 12-k are schematic diagrams showing the embodiment of the metal microstructure method using the present invention illustrated in FIG. Process conditions for process steps. [Explanation of main component symbols] II 12 13 14 Step 21 22 23 24 25 26 27 28 Procedure • 29 3〇31 32 33 34 35 Step 41 42 43 44 45 46 47 48 Step 49 50 51 52 53 54 Step 61 62 63 64 65 66 67 68 Step 69 70 71 72 73 Step 81 82 83 84 85 86 87 88 89 90 91 Step III 112 Step 27 201105569 121 122 123 124 125 Step 131 132 Step 200 Substrate 201 First seed layer 202 first layer of light Resistor 203 reticle 204 first layer photoresist microstructure 205 metal 206 first layer metal microstructure 207 second layer photoresist 208 second layer photoresist microstructure 209 second seed layer 210 metal 211 second layer metal microstructure 212 Third layer photoresist 214 reticle 215 third layer photoresist microstructure 216 metal 217 third layer metal microstructure 28 201105569 218 metal microstructure 219 first seed layer portion 300 substrate 301 first seed layer 302 first layer light Resistor 303 reticle 304 first layer photoresist microstructure 305 metal 306 first layer metal microstructure 307 second layer photoresist 308 second layer photoresist microstructure 310 metal 311 second layer metal microstructure 313 reticle 318 metal micro Structure 319 first seed layer portion 400 substrate 401 first seed Layer 402 first layer photoresist 201105569 403 reticle 404 first layer photoresist microstructure 405 metal 406 first layer metal microstructure 407 first hard layer 408 second layer photoresist 409 second layer photoresist microstructure 410 reticle 411 metal 412 second hard layer 413 second layer metal microstructure 414 metal microstructure 500 substrate 501 first layer photoresist 502 reticle 503 second layer photoresist 504 reticle 505 first layer photoresist microstructure 506 second layer Photoresist microstructure 201105569 507 seed layer 508 metal 509 first layer metal microstructure 510 third layer photoresist 511 photomask 512 third layer photoresist microstructure 513 metal 514 second layer metal microstructure 515 metal microstructure

Claims (1)

201105569 七、申請專利範圍: h -種金屬微結構形成方法,係應脈微結構元件製程,該金屬微結 構形成方法包含以下程序· 準備一基板; 於該基板之表面上相繼形成二層以上之金屬微結構; 以液體來去除該二層以上之金屬微結構以外的其他材料,該液體 φ 不會姓刻該二層以上之金屬微結構;以及 於該基板上得到金屬微結構。 2. 如申請專利顧第丨項所述之該金屬微結構形成方法,其中,該準 備一基板的程序包含以下步驟: 選取一基板;以及 於該基板上_種子層,該種子層具導紐、並具無基板間的 φ 附著性’可選取自 Cr under Au、Ti under Au、Ti under Cu、Ti-W under Au。 3. 如申請專利範圍第1項所述之該金屬微結構形成方法,其中,該於 該基板之表面上相繼形成二層以上之金屬微結構的程序包含以下步 驟: 批覆光阻及/或硬質蠟及/或高分子聚合物; 對所批覆之該光阻進行烘烤,該光阻經烘烤後,將其中溶劑蒸發 32 201105569 使該光阻變硬’之後進㈣光、縣以成形所需之微結構圖案; 在該微結構圖案凹洞内電鍍所需之金屬結構; 進行研磨加工,研磨加工將使得該光阻與電鍍金屬厚度一致; 以及 選取、並利用以上步驟,於該基板之表面上形成二層以上之金屬 微結構。 • 4.如巾請專圍第3項所述之該金屬微結構形成方法,其中,於該 在該微結構圖案凹_電鍍所需之金屬結構之前,在該微結翻案凹 洞内先沉積-種子層,該種子層具導電性、並具與該光阻及電鑛所需 之S亥金屬結構間的附著性,可選取自Cr under Au、Ti under Au、 Ti under Cu、Ti-W under Au 等。 5. 如申請專利範圍第i項所述之該金屬微結構形成方法,其中,該液 體為溶劑,用以去除光阻及/或硬質蠟及/或高分子聚合物,該溶劑不 會蝕刻該二層以上之金屬微結構。 6. 如申請專利範圍第2項所述之該金屬微結構形成方法,其中,該液 體包含溶劑、以及蝕刻液,該溶劑用以去除光阻及/或硬質蠘及/或高 分子聚合物,該溶劑不會蝕刻該二層以上之金屬微結構,且,以該蝕 刻液移除該種子層。 7. 如申請專利範圍第1項或第2項所述之該金屬微結構形成方法,其 33 201105569 中,該基板係選取自矽基板、玻璃基板、陶瓷基板等。 8.如申請專利範圍第2項所述之該金屬微結構形成方法,其中,該沉 • 積之技術選取自蒸鐘、藏鍍、無電鍍等技術。 9·如申請專利範圍第3項所述之該金屬微結構形成方法,其中,該批 覆光阻之技術選取自 spin coating、spray coating、lamination、 casting 等。 馨 10.如申請專利範圍第3項所述之該金屬微結構形成方法,其中,該 批覆光阻為正型。- 11. 如申請專利範圍第3項所述之該金屬微結構形成方法,其中,該 批覆光阻為負型。 12. 如申請專利範圍第3項所述之該金屬微結構形成方法,其中,該 烘烤之方式選取自加熱板直接加熱、烘箱、紅外線加熱等,該曝光之 Φ 方式選取自 x-ray litho抑Phy、uv lithography、direct write e-beam 等0 13. 如申請專利範圍第3項所述之該金屬微結構形成方法,其中,該 研磨加工之方式選取自機化學加工(⑽)、機械研磨抛光等。 14. 如申w專利範圍第丨項或第2項或第3項所述之該金屬微結構形 成方法’其中,該二層以上之金屬微結構選取自Au、Cu、附、附_此 alloy、Ni-Fe ali〇y、Ni—c〇 all〇y、Sn__pb 等。 34 201105569 15. -種金屬微結構形成方法,健麟微結構元件製程,該金屬微 結構形成方法包含以下程序· 準備一基板; 於該基板之表面上相繼形成二層以上之金屬微結構; 以反應性離子蝕刻去除該二層以上之金屬微結構以外的其他材 料,且不會蝕刻該二層以上之金屬微結構;以及 φ 於該基板上得到金屬微結構。 16. 如申請專利範圍第15項所述之該金屬微結構形成方法,其中,該 準備一基板的程序包含以下步驟: 選取一基板;以及 於該基板上沉積種子層,該種子層具導電性、並具與該基板間的 附著性’可選取自 Cr under Au ' Ti under Au、Ti under Cu、Ti-W under Au。 17. 如申請專利範圍第15項所述之該金屬微結構形成方法,其中,該 於該基板之表面上相繼形成二層以上之金屬微結構的程序包含以下 步驟: 批覆光阻及/或硬質蠟及/或高分子聚合物; 對所批覆之該光阻進行烘烤,該光阻經烘烤後,將其中溶劑蒸發 使該光阻變硬,之後進行曝光、顯影,以成形所需之微結構圖案; 35 201105569 在該微結構圖案凹洞内電鍍所需之金屬結構. , 進行研磨加工’研磨加工將使得該光阻與電鍵金屬厚度一致; 以及 選取、並利用以上步驟,於該基板之表面上形成二層以上之金屬 微結構。 18·如申請專利範圍第Π項所述之該金屬微結構形成方法,其中,於 • 絲該微結構圖案凹洞内電鑛所需之金屬結構之前,在該微結構圖案 凹洞内先沉積-種子層,該種子層具導電性、並具與該光阻及電鍵所 需之該金屬結構間的附著性,可選取自Cr under Au、Ti uMa船、 Ti under Cu、Ti-W under Au 等。 19. 如申請專利範圍第15項所述之該金屬微結構形成方法,其中,該 反應性離子蝕刻用以去除光阻及/或硬質蠟及/或高分子聚合物,該反 應性離子蝕刻不會蝕刻該二層以上之金屬微結構。 20. 如申請專利範圍第16項所述之該金屬微結構形成方法,其中,該 反應性離子蝕刻用以去除光阻及/或硬質蠟及/或高分子聚合物,並使 用蝕刻液移除該種子層。 21. 如申請專利範圍第15項或第16項所述之該金屬微結構形成方 法’其中’該基板係選取自矽基板、玻璃基板、陶究基板等。 22. 如申請專利範圍第17項所述之該金屬微結構形成方法,其中,該 36 201105569 沉積之技術選取自蒸鑛、藏鍵、無電鍵等技術。 23. 如申請專利範圍第Π、項所述之該金屬微結構形成方法,其中,該 批覆光阻之技術選取自 spin coating' spray coating、lamination、 casting 等。 24. 如申請專利範圍第17項所述之該金屬微結構形成方法,其中,該 批覆光阻為正型。 25. 如申請專利範圍第17項所述之該金屬微結構形成方法,其中,該 批覆光阻為負型。 26. 如申請專利範圍第17項所述之該金屬微結構形成方法,其中,該 烘烤之方式選取自加熱板直接加熱、烘箱、紅外線加熱等,該曝光之 方式選取自 X-ray lithography、UV lithography、direct write e-beam 等。 27. 如申請補範圍第17項所述之該金屬微結構形成方法,其中,該 研磨加工之方式選取自機化學加工(CMP)、機械研磨、拋光等。 8.如申吻專利範圍第15項或第16項或第p項所述之該金屬微結構 形成方法,其中,該二層以上之金屬微結構選取自此 alloy、Ni-Fe aUoy、Ni_c〇aU〇y、Sn pb 等。 29.-種金驗結_成方法,聽驗観構元件触,該金屬微 結構形成方法包含以下程序 37 201105569 選取一基板,於該基板上沉積第一種子層再批覆第一層光阻; 進行該第一層光阻烘烤’該第一層光阻經烘烤後,其中溶劑蒸發 而變硬’之後進行曝光、顯影,以成形所需之第一層光阻微結構圖案; 在該第一層光阻微結構圖案凹洞内電鍍所需之金屬結構; 進行研磨加工以得到第一層金屬微結構,該研磨加工將使得第一 層光阻與電鍍金屬厚度一致; • 進行光阻批覆動作,再次進行光阻批覆,以成形第二層光阻; 進行該第二層光阻之烘烤、曝光、顯影,以職之第二層光 阻微結構; ’儿積第一種子層’該第二種子層為電錄起始層,具導電性及與該 第二層光隨該魏金制_ ,在此,δ第二層紐微結構較 該第一層光阻微結構為寬且大;201105569 VII. Patent application scope: h-type metal microstructure forming method, which is a pulse micro-structural component manufacturing process, the metal microstructure forming method includes the following procedures: preparing a substrate; forming two or more layers on the surface of the substrate a metal microstructure; removing a material other than the two or more metal microstructures by a liquid, the liquid φ not surnamed the metal microstructure of the two or more layers; and obtaining a metal microstructure on the substrate. 2. The method for forming a metal microstructure according to the patent application, wherein the step of preparing a substrate comprises the steps of: selecting a substrate; and forming a seed layer on the substrate, the seed layer having a guide And φ adhesion between the substrates can be selected from Cr under Au, Ti under Au, Ti under Cu, Ti-W under Au. 3. The metal microstructure forming method according to claim 1, wherein the process of sequentially forming two or more metal microstructures on the surface of the substrate comprises the steps of: coating photoresist and/or hard Wax and/or high molecular polymer; baking the coated photoresist, after the photoresist is baked, evaporating the solvent therein, 32 201105569, making the photoresist harder, and then entering the (four) light, county to form a station a microstructure pattern required; electroplating a desired metal structure in the microstructure pattern recess; performing a grinding process that causes the photoresist to conform to a thickness of the plated metal; and selecting and utilizing the above steps on the substrate Two or more metal microstructures are formed on the surface. 4. The method of forming the metal microstructure according to Item 3, wherein the deposition is performed in the micro-cavity recess before the microstructure of the microstructure pattern is recessed. a seed layer which is electrically conductive and has adhesion to the photoresist and the metal structure required for the electric ore, and may be selected from Cr under Au, Ti under Au, Ti under Cu, Ti-W Under Au et al. 5. The method of forming a metal microstructure according to the invention of claim 1, wherein the liquid is a solvent for removing photoresist and/or hard wax and/or high molecular polymer, the solvent does not etch the Metal microstructures of more than two layers. 6. The metal microstructure forming method according to claim 2, wherein the liquid comprises a solvent and an etching solution for removing photoresist and/or hard germanium and/or high molecular polymer, The solvent does not etch the metal microstructure of the two or more layers, and the seed layer is removed with the etching solution. 7. The method for forming a metal microstructure according to claim 1 or 2, wherein the substrate is selected from the group consisting of a germanium substrate, a glass substrate, a ceramic substrate, and the like. 8. The metal microstructure forming method according to claim 2, wherein the sinking technique is selected from the group consisting of a steaming clock, a plating plating, and an electroless plating. 9. The method of forming a metal microstructure according to claim 3, wherein the photoresist is selected from the group consisting of spin coating, spray coating, lamination, casting, and the like. The method of forming the metal microstructure according to claim 3, wherein the batch of photoresist is positive. The method of forming a metal microstructure according to claim 3, wherein the batch of photoresist is negative. 12. The metal microstructure forming method according to claim 3, wherein the baking method comprises direct heating from a heating plate, an oven, infrared heating, etc., and the Φ mode of the exposure is selected from x-ray litho Phy, uv lithography, direct write e-beam, etc. 13. The method for forming a metal microstructure according to claim 3, wherein the method of the grinding process is selected from the machine chemical processing ((10)), mechanical grinding Polishing, etc. 14. The method for forming a metal microstructure according to the scope of claim 4 or the item 2 or 3, wherein the metal microstructure of the second layer or more is selected from Au, Cu, attached, and attached. , Ni-Fe ali〇y, Ni-c〇all〇y, Sn__pb, etc. 34 201105569 15. A method for forming a microstructure of a metal, a process for forming a microstructure of a micro-structure comprising the following steps: preparing a substrate; forming two or more metal microstructures on the surface of the substrate; Reactive ion etching removes other materials than the two or more metal microstructures, and does not etch the metal microstructures of the two or more layers; and φ obtains a metal microstructure on the substrate. 16. The method of forming a metal microstructure according to claim 15, wherein the preparing a substrate comprises the steps of: selecting a substrate; and depositing a seed layer on the substrate, the seed layer having conductivity And adhesion to the substrate ' can be selected from Cr under Au ' Ti under Au, Ti under Cu, Ti-W under Au. 17. The metal microstructure forming method according to claim 15, wherein the process of sequentially forming two or more metal microstructures on the surface of the substrate comprises the steps of: coating photoresist and/or hard Wax and/or high molecular polymer; baking the coated photoresist, after baking the photoresist, evaporating the solvent to harden the photoresist, and then performing exposure and development to form a desired Microstructure pattern; 35 201105569 Electroplating the desired metal structure in the microstructure pattern cavity. Performing a grinding process 'grinding process will make the photoresist and the thickness of the key metal uniform; and selecting and using the above steps on the substrate Two or more metal microstructures are formed on the surface. The method for forming a metal microstructure according to the above-mentioned claim, wherein the microstructure is first deposited in the microstructure pattern pit before the metal structure required for the electric ore in the microstructure pattern cavity a seed layer which is electrically conductive and has adhesion to the metal structure required for the photoresist and the electrical bond, and may be selected from Cr under Au, Ti uMa, Ti under Cu, Ti-W under Au Wait. 19. The metal microstructure forming method according to claim 15, wherein the reactive ion etching is used to remove photoresist and/or hard wax and/or high molecular polymer, and the reactive ion etching is not The metal microstructure of the two or more layers is etched. 20. The method of forming a metal microstructure according to claim 16, wherein the reactive ion etching is used to remove photoresist and/or hard wax and/or high molecular polymer, and is removed using an etchant. The seed layer. 21. The metal microstructure forming method according to claim 15 or claim 16, wherein the substrate is selected from the group consisting of a germanium substrate, a glass substrate, a ceramic substrate, and the like. 22. The method for forming a metal microstructure according to claim 17, wherein the technique of depositing the 201105569 is selected from the group consisting of steaming, hiding, and no electric bonding. 23. The method of forming a metal microstructure according to the scope of the invention, wherein the technique of coating the photoresist is selected from the group consisting of spin coating 'spray coating, lamination, casting, and the like. 24. The method of forming a metal microstructure according to claim 17, wherein the batch of photoresist is positive. 25. The metal microstructure forming method of claim 17, wherein the batch of photoresist is negative. 26. The method for forming a metal microstructure according to claim 17, wherein the baking method is directly heated from a heating plate, oven, infrared heating, etc., and the exposure method is selected from X-ray lithography, UV lithography, direct write e-beam, etc. 27. The method of forming a metal microstructure according to claim 17, wherein the method of grinding comprises self-machine chemical processing (CMP), mechanical grinding, polishing, and the like. 8. The metal microstructure forming method according to Item 15 or Item 16 or Item p of the patent application, wherein the metal microstructure of the second layer or more is selected from the alloy, Ni-Fe aUoy, Ni_c〇 aU〇y, Sn pb, etc. 29. The method of forming a metal compositing method, the method of forming a metal structure comprises the following procedure: 37 201105569: selecting a substrate, depositing a first seed layer on the substrate and then coating the first layer of photoresist; Performing the first layer of photoresist baking 'the first layer of photoresist after baking, wherein the solvent evaporates and hardens', then performing exposure and development to form a desired first layer of photoresist microstructure pattern; Metal structure required for electroplating in the first layer of photoresist microstructure pattern pit; performing a grinding process to obtain a first layer of metal microstructure, the grinding process will make the first layer of photoresist and the thickness of the plated metal uniform; The coating operation, the photoresist is again applied to form the second layer of photoresist; the second layer of photoresist is baked, exposed, developed, and the second layer of the photoresist microstructure is used; 'The second seed layer is an electro-recording starting layer having conductivity and the second layer of light is associated with the Wei-jin system. Here, the δ second-layer neo-micro structure is smaller than the first layer photoresist microstructure. Width and size; 在該第二層光阻微結構圖案凹洞内電鍍所需之金屬結構; >研磨力σϋχ得到第_層金屬微結構,研磨加工將使得二 層光阻與該電鍍金屬厚度一致; ^ 仃一阻批覆動作’再次進行光阻批覆,以成形第三層光阻; 仃第—層触之㈣、曝光、顯影,以成形所需之第三層 微結構,· 在該第三層纽微結構圖案凹湖麵所需之金屬結構; 38 201105569 進行研磨加χ轉顺三層金顧轉,加稽使得該第三 層光阻與該電鍍金屬厚度一致; 以溶劑或以反應性離子钱刻去除該第—層光阻微結構、該第二層 光阻微結構、錢該第三層光阻觀構,㈣釋^含該第一層金屬 微結構、該第二層金屬微結構、以及該第三層金屬微結構的金屬微結 構;以及 以钱刻液移除未被該帛-層金屬微結構、該第二層金屬微結構、 以及該第三層金屬微結構所覆蓋之該第_種子層部份,以於該基板上 得到該金屬微結構。 30. 如申請專利範圍第29項所述之該金屬微結構形成方法其中該 第一種子層與該第二種子層選取自Cr under Au、Ti⑽細如、L under Cu、Ti-W under Au 等。 31. 如申請專利範圍第29項所述之該金屬微結構形成方法,其中,該 况積之技術選取自蒸鍍、濺鍍、無電鍍等技術。 32·如申請專利範圍第29項所述之該金屬微結構形成方法,其中,該 桃覆光阻之技術選取自spin coating、spray c〇ating、、 Casting 等。 〇Q •如申請專利範圍第29項所述之該金屬微結構形成方法,其中,該 相^覆光阻為負型。 39 201105569 抑·如申請專利範圍第29項所述之該金屬微結構形成方法其中該 八烤之方式選取自加熱板直接加熱、烘箱、紅外線加熱等,該曝光之 方式選取自 X—ray lith〇graphy、UV lithography、direct write e-beam 等。 35.如申請專利範圍第29項所述之該金屬微結構形成方法,其中,該 研磨加工之方式選取自機化學加玉(潰)、機械研磨、拋光等。 • 36.如申請專利範圍第29項所述之該金屬微結構形成方法,其中,該 金屬微結構選取自 Au、Cu、附、Ni-Mn all〇y、Ni—Fe all〇y、Ni_c〇 alloy、sn-Pb 等。 37· -種金屬微結構形成方法,係朗於赌構元件雜,該金屬微 結構形成方法包含以下程序: k取基板’該基板錢取自$基板、麵基板、基板等; • 於該基板上沉積第一種子層再批覆第一層光阻,在此,該第-種子層 為電鍍起始層,具導電性及與該基板間的附著性; 進行該第-層触之烘烤,祕職其情継聽該第一層光 阻變硬’之後進行曝光、顯影,以成形所需之該第一層光阻微結構圖 案; 在該第層光阻微結構圖案凹洞内電鑛所需之金屬結構; 進行研磨加W得料—層金級結構,研磨加硝使得該第一 201105569 層光阻與電鍍金屬厚度一致; 進行光阻批覆,以成形第二層光阻; 對第二層光阻進行烘烤、曝光、顯影,以成形所f之第二層光阻 微結構; 在第二層光阻微結構圖案凹_電錄所需之金屬結構; 進行研磨加工以得到第二層金屬微結構,磨加工將使得該第二 層光阻與該電鍍金屬厚度一致; 以溶劑或以反應性離子蝕刻去除該第_層光阻微結構、以及該第 二層光阻微結構,肋釋出包含該第—層金屬微結構 '以及該第二層 金屬微結構的金屬微結構;以及 , 以蝕刻液移除未被該第一層金屬微結構、以及該第二層金屬微結 構所覆蓋之該第一種子層部份,以於該基板上得到該金屬微結構。 38.如申請專利範圍第37項所述之該金屬微結構形成方法,其中,該 第一種子層選取自 Cr under Au、Ti under Au、Ti under Cu、Ti-W under Au 等。 39. 如申請專利範圍第37項所述之該金屬微結構形成方法,其中,該 沉積之技術選取自蒸鍍、濺鍍、無電鍍等技術。 40. 如申請專利範圍第37項所述之該金屬微結構形成方法,其中,該 批覆光阻之技術選取自 spin coating、spray coating、lamination、 201105569 casting 等。 41. 如申請專利範圍第37項所述之該金屬微結構形成方法,其中,該 批覆光阻為負型。 42. 如申請專利範圍第37項所述之該金屬微結構形成方法,其中,該 烘烤之方式選取自加熱板直接加熱、烘箱、紅外線加熱等,該曝光之 方式選取自 X-ray lithography、UV lithography、dkeet write e-beam 等。 43. 如申請專利範圍第37項所述之該金屬微結構形成方法,其中,該 研磨加工之方式選取自機化學加工(CMP)、機械研磨、拋光等。 44. 如申請專利範圍第37項所述之該金屬微結構形成方法,其中,該 金屬微結構選取自 Au、Cu、Ni、Ni-Mn alloy、Ni-Fe alloy、Ni-C〇 alloy、Sn-Pb 等。 45. —種金屬微結構形成方法,係應用於微結構元件製程,該金屬微 結構形成方法包含以下程序: 選取一基板,該基板係選取自矽基板、玻璃基板、陶瓷基板等; 於該基板上沉積第-種子層再批覆第_層光阻,在此,該第一種子層 為電鍍起始層,具導電性及與該基板間的附著性; 對該第-層光阻進行烘烤,經烘烤後,其中溶劑蒸發使該第一層 光阻變硬’之後進行曝光、w,以餅紐微結構圖 42 201105569 案; 在該第一層光阻微結構厨案凹洞内電鍍所需之金屬結構; 去除該第一層光阻; 塗覆易溶解之硬質蠟及/或高分子聚合物以形成第一硬質層,該 第一硬質層材料可承受研磨加工的機械力,可時又可改善光阻選擇之 限制; 進行研磨加工以得到第一層金屬微結構,研磨加工將使得所塗覆 之該第一硬質層與電鍍金屬厚度一致; 進行光阻批覆,以成形第二層光阻; 對該第二層光阻進行烘烤、曝光、顯影,以成形所需之第二層光 阻微結構; 在該第二層光阻微結構圖案凹洞内電鍍所需之金屬結構; 去除該第二層光阻; 塗覆易;^解之硬質壤或尚分子聚合物以形成第二硬質層該第二 硬質層材料可承受加工的機械力,可時又可改善光阻選擇之限 制; 進仃研磨加工~到第二層金屬微結構,研磨加卫紐得所塗覆 之該第二硬質層與電鍍金屬厚度一致;以及 以溶劑或以反應性離子餘刻去除第一硬質層、以及第二硬質層, 43 201105569 用以釋出包含該第一層金屬微結構、以及該第二層金屬微結構的金屬 微結構;以钱刻液移除未被該第.一層金屬微結構、以及該第二層金屬 微結構所覆蓋之該第一種子層部份,以於該基板上得到該金屬微結 構。 46. 如申請專利範圍第45項所述之該金屬微結構形成方法,其中,該 第一種子層選取自 Cr under Au、Ti under Au、Ti under Cu、Ti-W under Au 等。 47. 如申請專利範圍第45項所述之該金屬微結構形成方法,其中,該 沉積之技術選取自蒸鍍、滅鑛、無電鍍等技術。 48. 如申請專利範圍第45項所述之該金屬微結構形成方法,其中,該 批覆光阻之技術選取自 spin coating、spray coating、laminati〇n、 casting 等。 49. 如申請專利範圍第45項所述之該金屬微結構形成方法,其中,該 批覆光阻為負型。 50. 如申請專利範圍第45項所述之該金屬微結構形成方法,其中,該 烘烤之方式選取自加熱板直接加熱、烘箱、紅外線加熱等,該嗓光之 方式選取自 X-ray lithography、UV lithography、direct wHte e-beam 等。 51. 如申請專利範圍第45項所述之該金屬微結構形成方法,其中,該 44 201105569 研磨加工之方式選取自機化學加卫(CMP)、機械研磨、拋光等β 52.如申明專利範圍第奶項所述之該金屬微結構形成方法其中該 金屬微結構選取自人r 仙 Cu、Νι、Νι-Μη alloy、Ni-Fe all〇y、Ni-Co alloy、Sn-Pb 等。 53. -種金屬微結_射法,係應微結構元件触,該金屬微 結構形成方法包含以下程序. 選取一基板並於該基板上批覆第一層光阻,該基板係選取自矽基 板、玻璃基板、陶瓷基板等; 進行該第-層光崎烤,祕烤後,將其巾溶賴發使該第一層 光阻變硬; 批覆第二層光阻,於批覆該第二層光阻後,進行該第二層光随之 烘烤、曝光; •—將該第一層光阻、以及該第二層光阻予以顯影,用以顯影成形所 需之第-層細微結_案、以及第二層光阻微結構瞧爲第一層 光阻、以及該第二層光阻具有可多次批覆光阻L曝光 —次顯影的特性; "" 沉積種子層,該種子層為電鍍起始層,具導電性及與該第—層光 阻與該第二層光阻、以及該電鍍金制的附著性在此,該第二層光 &微結構較該帛—層光崎結構為寬且大; 45 201105569 在該第-層光a微結構圖案、以及該第二層光阻微結構圖案凹洞 内電鍍所需之金屬結構; 進仃研磨加UX得到第_層金屬微結構,研磨加工將使得光阻厚 度與電鑛金屬厚度—致; 進行第二層光阻批覆’批覆該第三層光阻後進行鱗,經烘烤 後’將其中溶劑蒸發使該第三層光阻變硬,之後進行曝光、顯影,以 成形所需之第三層光阻微結構圖案; 在該第二層紐微結構圖案凹洞内電鑛所需之金屬结構;進行研 磨加工以刺第二層金職結構,研磨加H使得該第三層光阻厚度 與電鍍金屬厚度一致;以及 以溶劑或以反應性離子侧去除第一層光阻微結構、第二層光阻 微結構、以及第三層光阻微結構,用崎出包含該第—層金屬微結 構、以及該第二層金屬微結構的金屬微結構,以於該基板上得到該金 屬微結構。 54. 如申請專利範圍第53項所述之該金屬微結構形成方法,其中,該 種子層選取自 Cr under Au、Ti under· Au、Ti under Cu、Ti-W under Au等。 55. 如申請專利範圍第53項所述之該金屬微結構形成方法,其中,該 沉積之技術選取自蒸鍍、濺鍍、無電鍍等技術。 46 201105569 56. 如申請專利範圍第53項所述之該金屬微結構形成方法其中該 批覆光阻之技術選取自 spin coating、spray coating、lamination、 casting 等。 57. 如申請專利範圍第53項所述之該金屬微結構形成方法,其中,該 批覆光阻為負型。 58. 如申請專利範圍第53項所述之該金屬微結構形成方法,其中,該 鲁輯之方式選取自加熱板直接加熱、烘箱、紅外線加鱗,該曝光之 方式選取自 X—ray lith〇gr_y、uv Hthography、direct write e-beam 等。 59. 如申請專利範圍第53項所述之該金屬微結構形成方法,其中,該 研磨加工之方式觀自機化學加卫(⑽、機械研磨、抛光等。 60. 如申請專利範圍第54項所述之該金屬微結構形成方法,其中,該 •金屬微結構選取自 Au、Cu、Ni、Ni—此 、Ni-Fe all0y、Nl_c〇 alloy、Sn-Pb 等。 47Electroplating the desired metal structure in the second layer of the photoresist microstructure pattern recess; > grinding force σϋχ to obtain the first layer of metal microstructure, the grinding process will make the two layer photoresist consistent with the thickness of the plating metal; ^ 仃A resistance to the overlay action 're-resistance of the photoresist to form a third layer of photoresist; 仃 first layer touch (four), exposure, development, to form the required third layer of microstructure, · in the third layer of the new micro The metal structure required for the concave pattern of the structural pattern; 38 201105569 The grinding and twisting of the three layers of gold is carried out, and the third layer of the photoresist is made to be the same as the thickness of the plating metal; Removing the first layer photoresist microstructure, the second layer photoresist microstructure, and the third layer photoresist structure, (4) releasing the first layer metal microstructure, the second layer metal microstructure, and a metal microstructure of the third layer of metal microstructures; and removing the layer not covered by the germanium-layer metal microstructure, the second layer metal microstructure, and the third layer metal microstructure by a money engraving _ seed layer portion for the substrate The metal microstructure. The method for forming a metal microstructure according to claim 29, wherein the first seed layer and the second seed layer are selected from Cr under Au, Ti (10), L under Cu, Ti-W under Au, etc. . The method of forming a metal microstructure according to claim 29, wherein the technique of the condition is selected from the group consisting of evaporation, sputtering, electroless plating, and the like. 32. The metal microstructure forming method according to claim 29, wherein the peach photoresisting technique is selected from the group consisting of spin coating, spray c〇ating, and Casting. The method of forming a metal microstructure according to claim 29, wherein the phase resist is negative. 39 201105569 A method for forming a metal microstructure according to claim 29, wherein the eight-baked method is directly heated by a heating plate, oven, infrared heating, etc., and the exposure method is selected from X-ray lith〇 Photography, UV lithography, direct write e-beam, etc. The method for forming a metal microstructure according to claim 29, wherein the method of the grinding process is selected from the group consisting of self-organizing chemistry, jade, mechanical polishing, polishing, and the like. The metal microstructure forming method according to claim 29, wherein the metal microstructure is selected from Au, Cu, attached, Ni-Mn all〇y, Ni-Fe all〇y, Ni_c〇 Alloy, sn-Pb, etc. 37. - A method for forming a metal microstructure, which is a method for forming a metal structure, comprising the following steps: k taking a substrate, the substrate is taken from a substrate, a surface substrate, a substrate, etc.; Depositing a first seed layer and then coating a first layer of photoresist, wherein the first seed layer is an electroplating starting layer, having electrical conductivity and adhesion to the substrate; performing the first layer of contact baking, The first layer of resistive microstructure pattern required for forming after exposure to the first layer of photoresist is hardened, and the first layer of photoresist microstructure pattern required for forming is formed in the first layer of photoresist microstructure pattern pit Metal structure required; grinding and adding material-layer gold structure, grinding and adding nitrate to make the first 201105569 layer photoresist and the thickness of the plating metal; performing photoresist coating to form the second layer of photoresist; The second layer of photoresist is baked, exposed, and developed to form a second layer of photoresist microstructure; the second layer of photoresist microstructure pattern is recessed and the metal structure required for electro-recording; Two-layer metal microstructure, grinding will make The second layer of photoresist is consistent with the thickness of the plating metal; removing the first layer photoresist microstructure and the second layer photoresist microstructure by solvent or reactive ion etching, and the rib release comprises the first layer of metal micro a structure 'and a metal microstructure of the second layer of metal microstructures; and removing, by the etchant, the first seed layer portion not covered by the first layer of metal microstructures and the second layer of metal microstructures The metal microstructure is obtained on the substrate. 38. The method of forming a metal microstructure according to claim 37, wherein the first seed layer is selected from the group consisting of Cr under Au, Ti under Au, Ti under Cu, Ti-W under Au, and the like. 39. The metal microstructure forming method of claim 37, wherein the deposition technique is selected from the group consisting of evaporation, sputtering, electroless plating, and the like. 40. The metal microstructure forming method according to claim 37, wherein the photoresist coating technique is selected from the group consisting of spin coating, spray coating, lamination, 201105569 casting, and the like. The method of forming a metal microstructure according to claim 37, wherein the batch of photoresist is negative. 42. The metal microstructure forming method according to claim 37, wherein the baking method comprises direct heating from a heating plate, an oven, infrared heating, etc., and the exposure method is selected from X-ray lithography, UV lithography, dkeet write e-beam, etc. 43. The metal microstructure forming method according to claim 37, wherein the grinding process is performed by self-machine chemical processing (CMP), mechanical grinding, polishing, or the like. 44. The metal microstructure forming method according to claim 37, wherein the metal microstructure is selected from Au, Cu, Ni, Ni-Mn alloy, Ni-Fe alloy, Ni-C〇alloy, Sn -Pb, etc. 45. A method for forming a microstructure of a metal, which is applied to a process of forming a microstructure, the method for forming a metal microstructure comprising the following steps: selecting a substrate selected from a substrate, a glass substrate, a ceramic substrate, etc.; Depositing a first seed layer and then coating a first layer of photoresist, wherein the first seed layer is an electroplating starting layer, having electrical conductivity and adhesion to the substrate; baking the first layer photoresist After baking, wherein the solvent is evaporated to make the first layer of photoresist harden 'after exposure, w, to the cake micro-structure diagram 42 201105569; electroplating in the first layer of photoresist microstructured kitchen cavity a desired metal structure; removing the first layer of photoresist; coating a hard-dissolving hard wax and/or a high molecular polymer to form a first hard layer, the first hard layer material can withstand the mechanical force of the grinding process, At the same time, the limitation of the photoresist selection can be improved; the grinding process is performed to obtain the first layer of metal microstructure, and the grinding process is performed so that the first hard layer is coated with the thickness of the plated metal; the photoresist is coated to form the first a layer of photoresist; baking, exposing, and developing the second layer of photoresist to form a desired second layer of photoresist microstructure; plating the metal required in the second layer of photoresist microstructure pattern recess Structure; removing the second layer of photoresist; coating the hard soil or the molecular polymer to form a second hard layer, the second hard layer material can withstand the mechanical force of processing, and sometimes improve the photoresist Limitation of selection; advance grinding process~ to the second layer of metal microstructure, the second hard layer coated by the grinding and welcoming has the same thickness as the plating metal; and the first part is removed by solvent or by reactive ion a hard layer, and a second hard layer, 43 201105569 for releasing a metal microstructure including the first layer of metal microstructure and the second layer of metal microstructure; removing the first layer of metal by the money engraving The microstructure, and the portion of the first seed layer covered by the second layer of metal microstructure, to obtain the metal microstructure on the substrate. The metal microstructure forming method according to claim 45, wherein the first seed layer is selected from the group consisting of Cr under Au, Ti under Au, Ti under Cu, Ti-W under Au, and the like. 47. The method for forming a metal microstructure according to claim 45, wherein the deposition technique is selected from the group consisting of evaporation, ore removal, electroless plating, and the like. 48. The metal microstructure forming method of claim 45, wherein the photoresist is selected from the group consisting of spin coating, spray coating, laminati〇n, casting, and the like. 49. The method of forming a metal microstructure according to claim 45, wherein the batch of photoresist is negative. 50. The metal microstructure forming method according to claim 45, wherein the baking method comprises direct heating from a heating plate, an oven, infrared heating, etc., and the method of the light is selected from X-ray lithography. , UV lithography, direct wHte e-beam, etc. 51. The metal microstructure forming method according to claim 45, wherein the method of grinding and processing is selected from the group consisting of self-organizing chemical (CMP), mechanical grinding, polishing, etc. 52. The method for forming a metal microstructure according to the item of the third aspect, wherein the metal microstructure is selected from the group consisting of a person such as Cu, Νι, Νι-Μη alloy, Ni-Fe all〇y, Ni-Co alloy, Sn-Pb, and the like. 53. A metal microjunction _ shot method, which is a microstructural component touch, the metal microstructure forming method comprises the following procedure: selecting a substrate and approving a first layer of photoresist on the substrate, the substrate is selected from a germanium substrate , the glass substrate, the ceramic substrate, etc.; performing the first layer of photo-salt roasting, after the secret baking, dissolving the towel to make the first layer of photoresist harden; approving the second layer of photoresist to append the second layer of light After blocking, the second layer of light is baked and exposed; • the first layer of photoresist and the second layer of photoresist are developed for development of the first layer of fine junctions required for forming And the second layer of the photoresist microstructure 瞧 is the first layer of photoresist, and the second layer of photoresist has the characteristics of multiple exposures of the photoresist L exposure-sub-development; "" depositing the seed layer, the seed layer The electroplating starting layer is electrically conductive and adhered to the first layer photoresist and the second layer photoresist, and the electroplated gold, wherein the second layer light & microstructure is compared to the layer The light-sand structure is wide and large; 45 201105569 in the first-layer light a microstructure pattern, and the second layer The metal structure required for electroplating in the photoresist microstructure pattern pit; the 第 layer metal microstructure is obtained by the 仃 grinding and UX, and the grinding process will make the thickness of the photoresist and the thickness of the electro-mineral metal; the second layer photoresist is coated. After the third layer of photoresist is applied, the scale is polished, and after baking, the solvent is evaporated to harden the third layer of photoresist, and then exposed and developed to form a third layer of photoresist microstructure pattern required for forming. a metal structure required for the electric ore in the second layer of the microstructured pattern pit; performing a grinding process to puncture the second layer of the gold structure, and grinding and adding H such that the thickness of the third layer of the photoresist is consistent with the thickness of the plated metal; And removing the first layer photoresist microstructure, the second layer photoresist microstructure, and the third layer photoresist microstructure by a solvent or a reactive ion side, including the first layer metal microstructure, and the first A metal microstructure of a two-layer metal microstructure to obtain the metal microstructure on the substrate. 54. The metal microstructure forming method according to claim 53, wherein the seed layer is selected from the group consisting of Cr under Au, Ti under·Au, Ti under Cu, Ti-W under Au, and the like. 55. The metal microstructure forming method of claim 53, wherein the deposition technique is selected from the group consisting of evaporation, sputtering, electroless plating, and the like. 46. The method of forming a metal microstructure according to claim 53 wherein the technique of coating the photoresist is selected from the group consisting of spin coating, spray coating, lamination, casting, and the like. 57. The metal microstructure forming method of claim 53, wherein the batch of photoresist is negative. 58. The metal microstructure forming method according to claim 53, wherein the method of selecting the series is directly heated by a heating plate, oven, and infrared scaly, and the exposure method is selected from X-ray lith〇. Gr_y, uv Hthography, direct write e-beam, etc. 59. The metal microstructure forming method according to claim 53, wherein the method of grinding processing is self-organized ((10), mechanical grinding, polishing, etc. 60. If the patent application scope is 54th The metal microstructure forming method, wherein the metal microstructure is selected from Au, Cu, Ni, Ni-this, Ni-Fe all0y, Nl_c〇alloy, Sn-Pb, etc. 47
TW98126384A 2009-08-05 2009-08-05 Method of forming a metal micro-structure TW201105569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98126384A TW201105569A (en) 2009-08-05 2009-08-05 Method of forming a metal micro-structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98126384A TW201105569A (en) 2009-08-05 2009-08-05 Method of forming a metal micro-structure

Publications (2)

Publication Number Publication Date
TW201105569A true TW201105569A (en) 2011-02-16
TWI411570B TWI411570B (en) 2013-10-11

Family

ID=44814071

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98126384A TW201105569A (en) 2009-08-05 2009-08-05 Method of forming a metal micro-structure

Country Status (1)

Country Link
TW (1) TW201105569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655250A (en) * 2014-11-28 2016-06-08 东和株式会社 Planar member with bump electrode, electronic component, and method for producing the two

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538328B1 (en) * 1999-11-10 2003-03-25 Em Microelectronic Metal film protection of the surface of a structure formed on a semiconductor substrate during etching of the substrate by a KOH etchant
TW523487B (en) * 2002-01-22 2003-03-11 Ind Tech Res Inst Micro-electroforming mold core using pre-formed metal as substrate and its fabrication method
US6943448B2 (en) * 2003-01-23 2005-09-13 Akustica, Inc. Multi-metal layer MEMS structure and process for making the same
US20060108327A1 (en) * 2004-11-23 2006-05-25 Chng Kiong C Method of manufacturing a microstructure
US7271022B2 (en) * 2004-12-21 2007-09-18 Touchdown Technologies, Inc. Process for forming microstructures
CN1799986A (en) * 2004-12-30 2006-07-12 中国科学院微电子研究所 Three-layer production process for high aspect ratio, deep submicro nanometer metal structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655250A (en) * 2014-11-28 2016-06-08 东和株式会社 Planar member with bump electrode, electronic component, and method for producing the two

Also Published As

Publication number Publication date
TWI411570B (en) 2013-10-11

Similar Documents

Publication Publication Date Title
Bernasconi et al. Electroless metallization of stereolithographic photocurable resins for 3D printing of functional microdevices
TWI474127B (en) Heterogeneous liga method
TWI291452B (en) Process for forming microstructures
JP5559699B2 (en) Method for producing metal microstructure and microstructure obtained by this method
US20070158200A1 (en) Electrochemical fabrication processes incorporating non-platable metals and/or metals that are difficult to plate on
US20060228917A1 (en) Intermetallic Spring Structure
US11630127B2 (en) Multi-layer, multi-material micro-scale and millimeter-scale devices with enhanced electrical and/or mechanical properties
TWI313753B (en) Vertical probe card
TW201013329A (en) Method of fabricating multi-level metallic parts by the LIGA-UV technique
TWI756888B (en) Method for manufacturing a horological component
CN101995766A (en) Metal microstructure forming method
JP4930899B2 (en) Manufacturing method of needle-shaped body
JP2007070709A (en) Electroforming die, method for producing electroforming die, and method for producing electroformed component
JP2008126375A (en) Manufacturing method for three-dimensional microstructure
TW201105569A (en) Method of forming a metal micro-structure
KR102532840B1 (en) Method for manufacturing a horological component and component produced according to said method
TWI300581B (en) Method of manufacturing suspension structure
CN102621804A (en) Method for forming metal microstructure
EP3839626A1 (en) Method for manufacturing a timepiece component and component produced by this method
CN102591144A (en) Metal microstructure formation method
TWI619591B (en) Manufacturing method for metal part, and mold and release film used therein
JP3385708B2 (en) Method for forming microstructure
TW201239362A (en) A method of making a micro probe by using 3D lithography and a structure of the micro probe made by the method
TW200936490A (en) Method of fabricating a metallic microstructure and microstructure obtained via the method
TWI261890B (en) Micro contact device and fabricating method thereof