TW201105505A - Microporous polyolefin multilayer film possessing good mechanical properties and thermal stability - Google Patents

Microporous polyolefin multilayer film possessing good mechanical properties and thermal stability Download PDF

Info

Publication number
TW201105505A
TW201105505A TW99110121A TW99110121A TW201105505A TW 201105505 A TW201105505 A TW 201105505A TW 99110121 A TW99110121 A TW 99110121A TW 99110121 A TW99110121 A TW 99110121A TW 201105505 A TW201105505 A TW 201105505A
Authority
TW
Taiwan
Prior art keywords
layer
polyethylene
temperature
weight
heat
Prior art date
Application number
TW99110121A
Other languages
English (en)
Inventor
Gwi-Gwon Kang
Young-Keun Lee
Jang-Weon Rhee
In-Hwa Jung
Original Assignee
Sk Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sk Energy Co Ltd filed Critical Sk Energy Co Ltd
Publication of TW201105505A publication Critical patent/TW201105505A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/32Melting point or glass-transition temperatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

201105505 ' 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有良好機械特性與熱穩定性之微孔聚烯烴 多層膜。特定言之,本發明係關於一種不僅同時因聚乙烯而具有 低關閉溫度(shutdown temperature )及因对熱性樹脂而具有高熔 融破裂溫度及低收縮率外,亦同時具有由濕式法所製得之分隔物 之均勻微孔隙與高強度/穩定度特性之特徵及透過乾式製程所製得 之巨大孔隙而具有高滲透率/高強度特性之微孔聚烯烴多層膜。因 此,當用於高效能/高功率之二次電池時可展現絕佳之效果。 【先前技術】 微孔聚烯烴膜因其化學穩定性及良好機械特性而廣泛地用為電 池中之分隔物、分離用之濾材及微孔過濾用之薄膜。 在以聚烯烴製造微孔膜之方法中,因濕式法所製得之薄膜具.有 良好強度、良好滲透率、均勻孔隙及良好品質穩定性,故其係廣 泛用來製造高效能/高功率鋰離子二次電池等用之分隔物,該方法 包含:在高溫下混合聚烯烴與稀釋劑以形成一單相;在冷卻過程中 相分離該聚烯烴及該稀釋劑;隨後萃取該稀釋劑以於該聚烯烴中 形成孔隙。 舉例言之,美國專利第4,247,498號揭露一種以濕式法來製造一 般多孔膜之方法,其中係揭露以下技術:在高溫下攪混一聚乙烯 與對應稀釋劑之混合物以形成一熱力學單相溶液;隨後冷卻該混 合物以在冷卻過程中相分離聚乙烯及該稀釋劑;以及製備一多孔 聚稀烴膜。 鋰離子二次電池雖然為具有非常高能量密度之絕佳電池,但其 201105505 具有因短路(short)而爆炸之危險,因此亟需一種同時具有品質 穩定性與高品質水準之分隔物。近來,為因應高效能及高功率鋰 離子二次電池之趨勢,例如供動力混合車(hybrid vehicle)所用 之電池,除透過濕式法所製得分隔物之品質穩定性外,分隔物之 熱穩定性亦亟為需要的。因為若分隔物之熱穩定性不夠優越,當 電池過熱時,會增加因分隔物炫斷而爆炸之風險。 電池之熱穩定性係受關閉溫度、分隔物之炫斷溫度(meltdown temperature )、高溫收縮率、橫向炫融收縮率(垂直於電極/分隔物 之纏繞方向的方向)及高溫下分隔物之強度所影響。 關閉溫度乃為電池中之内部溫度因電池之異常行為而異常上升 時,分隔物中微孔隙關閉以防止電流流動之溫度。熔斷溫度為在 高過關閉溫度後電池溫度仍持續增加之情況下,分隔物熔融破裂 而使電流再次流動之溫度。就電池之穩定性而言,較低之關閉溫 度及較高之熔斷溫度係較佳的。 高溫收縮率為在因外部/内部因素而使電池溫度上升之情況下, 在分隔物熔融前分隔物之收縮程度;而橫向熔融收縮率為分隔物在 熔融期間所產生之收縮程度。若二者收縮率係大的,則在電池溫 度增加之情況下,在收縮過程中可能會使電池電極之邊緣部分暴 露出來而造成電極間短路,因而發生加熱/燃火/爆炸等。即使分隔 物之熔融破裂溫度係高的,若高溫收縮率及橫向熔融收縮率係大 的,則在分隔物熔融過程中,電池之電極邊緣部分可能會暴露出 來而產生電極間短路。 為防止分隔物受損,分隔物之高溫強度乃為必要的,藉此防止 電極間短路,上述受損可能為電池充電/放電過程中所產生之樹狀 201105505 突(dendrite)於高溫下所造成的。此外,弱的分隔物高溫強度可 能會使分隔物破裂而造成短路。此可能會因電極間短路而造成加 熱/燃火/爆炸等。 改良分隔物熱穩定性之研究主要是從三個方向發展:在聚乙烯 中添加無機物質或耐熱性樹脂以提升分隔物之而ί熱性;在分隔物 之表面上塗覆耐熱性物質;以及形成具有耐熱性層之多層膜。 美國專利第6,949,315號揭露一種具有改良熱穩定性之膜的分隔 物,其係在超高分子量聚乙稀中添加5重量%至15重量%之如氧化 鈦的無機物質。然而,不論其添加無機物質在熱穩定上之增強效 果,此方法可能導致以下問題:因添加無機物質而劣化混合效能、 隨著拉伸而產生針孔(pin holes )、及由於劣化的可揉合性而產生 的不均勻之品質,再者,亦可能因在無機物質與聚合物樹脂之界 面間缺乏相容性而造成如衝擊強度等機械特性的劣化。當使用無 機物質時,這些在分隔物上之缺點係無法避免的。 美國專利第5,641,565號揭露一種藉由添加具有良好耐熱性之樹 脂來取代無機物質所製得之分隔物。在此技術中,係將20重量% 至75重量%之有機液體及10重量%至50重量%之無機物與一樹 脂混合物混合,其中該樹脂混合物為聚乙烯與5重量%至45重量 %之聚丙烯所混合而成,隨後將該有機液體與無機物質萃取而出, 藉此製備一分隔物。雖然在此技術中無機物質係被萃取出來,然 而此技術因混合無機物質而具有前述之問題,此外,如該專利自 身所述,其機械特性因添加無法與聚乙烯均勻混合之聚丙烯而呈 現劣化效果。再者,此方法之缺點在於:萃取及移除所添加之無 機物質之程序使得該方法變得複雜,以及需要相對大量之聚丙烯以 201105505 獲得足夠之耐熱性效果,其將愈加劣化分隔物之機械特性。 美國專利公開號第2006/0055075A1號揭露一種在微孔膜表面上 塗覆耐熱性物質之方法。然而,該塗覆方法會因其塗層滲透率之 提升限制而存有劣化整體膜滲透率之高風險,並且,會因塗層及 微孔膜之間的低濕潤能力而造成品質不均。 使用層合乃一種形成多層膜的方法,其會增加分隔物之熱穩定 性。美國專利第5,691,077號揭露一種製造三層分隔物之方法,其 係藉由層合一具有高熔斷溫度(具有高熔點)之聚丙烯層於一具 有良好關閉特性之聚乙烯上(具有低熔點)。雖然此種分隔物之熱 特性良好,但其問題不僅在於因增設分別進行之層合步驟而使產 率降低,且亦會因不好的層合而造成脫層,並且在以低溫之乾式 法製備織物膜的過程中伴隨有拉伸不均、產生針孔及厚度不均之 缺點。不論該方法之良好的耐熱特性,其仍具有低強度、低滲透 率、低品質均勻性及低產率問題,此等特性對二次電池之分隔物 乃不可或缺的。 曰本專利申請公開第 2002-321323 號及PCT公告第 W02004/089627號揭露多層分隔物,其等具有一由濕式法製得之 微孔.聚乙烯層作為主層,及一亦由濕式法製得之聚乙烯及聚丙烯 之混合物層作為表面層。雖然該等分隔物因以濕式法來製得而具 良好品質穩定性,但該等方法之限制在於:其耐熱性無法比聚乙 烯樹脂之耐熱性高,且當藉由增加聚丙烯含量來改良耐熱性時, 會因無法實現高滲透率而無法施用在高效能/高功率電池上。此 外,該等方法亦有因所有分隔物層係以濕式法所製得而使得製程 複雜之缺點。PCT第W02006/038532號公開案揭露一種包含無機 201105505 顆粒、透過濕式法而得之多層分隔物,然而,由於 :係由:上所述之濕式法所製得,故此分隔物仍要透過= 口方法來製造’且由於製造過程是㈣熱層包含鄉或更 釋劑之情況下所進行,因此在機械祕之改良效果低,^ 釋劍應在製膜過程中萃取出來(因當包含稀釋劑時 = 柔軟之型態拉伸’故呈現拉伸效果減少之現象);PCT; W02007/046473 號公問宏'遮* H . 路一具有單以聚丙烯形成之表層的多 層刀隔物。該方法係藉由在低溫下拉伸由具有高度結晶度之聚丙 _权層以產生内部裂縫,進而獲得高滲透率之方法,且可輕 易實見_透率’惟’因形成弱的聚丙烯層網絡結構,故 性之改良效果低。 I'、、 高強度、高滲透率及品質均勻性為二次電池之分隔物令 缺之特性,除此之外,近年來祕料求_定性。⑼,上述 :統:術無法在實現高熱穩定性之同時,一併獲得與由濕式法所 付之为Ik物相同等級之品f穩定性與強度/渗透率。 【發明内容】 為解決上述傳統技術之問題,業經多次深入研究後,本案發明 人發現藉由將結晶度為·至45%絲化熱為2G焦耳/公克至90 焦。耳/公克、域點為峨至繼及玻璃轉移溫度為讀至 9〇°C之半晶質聚合物’或者玻璃轉移溫度為9〇〇c至⑽。c之非晶 質聚合物,與在峨下仍保持固相之無機填料或有機填料(: 點或玻璃轉移溫度為峨至25〇〇c之有機物質)混合,隨後拉 伸該混合物,擴大樹脂及填料間之界面以形成孔隙,並可由此製 得-具有良好耐熱性及滲透率之纽膜H藉由使龍多孔 201105505 膜與-以濕式㈣得之?孔㈣為分離層,可製得—包含—具有 良㈣械雜及品質穩定性之聚乙稀多孔層與-具有良好耐熱性 之夕孔層’ m而同時具有高強度及高滲透率的多層分隔物,且該 夕層分隔物同時具有絕佳之強度、滲透率、品質穩定性及熱穩定 性。從而發明出本發明。 "有良子之Qt3貝穩疋性、強度、滲透率及、熱穩定性之聚稀煙 夕層膜的特徵係如下所示·· ⑴具有二層或二層以上φ層之微孔聚烯煙膜,在該等層中之 至乂層包含90重量%或更多之熔點為130°C至140〇C之聚乙 婦’且至少-層包含20重量%或更多之耐熱性樹脂及⑽重量%或 更乂之在130 C下仍保持在固相之選自以下群組之填料:有機填 料、無機填料及前述之混合物。該耐熱性樹脂較佳係半晶質聚合 物或非晶質聚合物。較佳地,該半晶f聚合物之結晶度較佳為㈣ 至45%或溶化熱為20焦、耳/公克至9〇焦耳/公克且晶質溶點為 14YC至250«C及玻璃轉移溫度為_1〇〇Qc至9〇Cc。此外,較佳地, 該非晶質聚合物較佳係不具結晶且玻璃轉移溫度為9〇〇c至 120°C。本發明提供一種如上所述之微孔聚烯烴多層膜。 (2)在(1)中,提供有一微孔聚烯烴多層膜,其中,由聚乙 烯所形成之多孔層的平均孔隙大小為〇.丨微米或更小,且非由聚乙 烯所形成而係由半晶質聚合物或非晶質聚合物所形成之多孔層之 孔隙的代表直徑為5微米至1〇〇微米。 (3)在(2)中,提供有一微孔聚烯烴骐,其具有三層或三層 以上之疊層且具有一包含90重量%至1〇〇重量。/。之熔點為13〇〇c 至140°C之聚乙烯的層,作為二層表層。 201105505 (4) 在(2)或(3)中,提供有一微孔聚烯烴多層膜,其中膜 之厚度為9微米30微米 '穿刺強度為〇 15牛頓/微米或更高、 渗透率為1.5XHT5達西(Darcy)或更高、在12〇C(:穿刺強度為〇 〇5 牛頓/微米或更高及熔融破裂溫度為17〇()(::或更高。 (5) 在(4)中,提供有一微孔聚烯烴多層膜,其中膜之厚度 為9微米至30微米、穿刺強度為〇 2〇牛頓/微米或更高、滲透率 為2.0x10達西至ι〇.0χ1〇-5達西、12〇〇c穿刺強度為㈣6牛頓/微 米或更高及熔融破裂溫度為更高。 (6) 在(5)中,提供有一微孔聚烯烴多層膜,其中於i2〇〇c 下歷經1小時縱向及橫向收縮率為〇%至12%、且在經膜厚度標準 化之2.0毫牛頓/微米之外部應力下,TMA最大收縮率為或更 小〇 (7) 在(6)中,提供有一微孔聚烯烴多層膜,其中於120oC 下歷經1小時之縱向及橫向收縮率為〇%至1〇%、且在經膜厚度標 準化之1.5宅牛頓/微米之外部應力下,TMA最大收縮率為抓或 更小。 下文將詳細說明本發明。 【實施方式】 本發明提供-微孔聚稀烴多層膜,其具有二或二層以上之疊層 的,其中’至少—層為一包含9〇重量%至100重量%之熔點為130〇c 至140。(:之聚乙烯的微孔聚烯烴層,且其他層之至少一者為一包 含選自以下群組之耐熱性樹脂的而才熱性樹脂層:結晶度為10%至 45%或炫點為2G焦耳/公克至9G焦耳/公克,且日日日質㈣為145〇c 至250°C及玻墻轉移溫度為]〇〇〇c至9〇〇c之半晶質聚合物;玻璃
[SI 10 201105505 轉移溫度為90°C至120°C之非晶質聚合物;及前述之混合物。該 耐熱性樹脂層較佳可包含20重量%至75重量%之上述耐熱性樹脂 及25重量%至80重量%之在130°C下仍保存固相之選自以下群組 之填料:有機填料、無機填料及前述之混合物。 本發明為一具有二層或二層以上疊層且至少一層為包含90重量 %至100重量%之具有130°C至140°C熔點之聚乙烯的微孔聚烯烴 多層膜。一般的聚乙烯在提升耐熱性限制上係有所限制,因其熔 點為135°C或更低,然而,因其關閉溫度係低的,故在確保電池 安全性上卻是有效的。因關閉溫度係較所需求者低,故聚乙烯之 熔點較佳為130°C至140°C,然而,當聚乙烯之熔點低於130°C時, 整體多層分隔物之熔斷溫度可能會難以增加。又由於電池安全性 可能會隨聚乙烯層之機械特性劣化而劣化,因此聚乙烯層中聚乙 烯之含量較佳為90重量%至100重量%,且當聚乙烯層中聚乙烯 之含量低於90重量%時,其將使整體多層膜的機械特性劣化。 具有二層或二層以上疊層之微孔聚烯烴多層膜中之一層可包含 20重量%或更高之耐熱性樹脂及可包含80重量%或更少之在 130°C下仍保持固相之有機或無機填料。該耐熱性樹脂較佳為半晶 質聚舍物或非晶質聚合物。該半晶質聚合物較佳應為結晶度為 10%至45%或熔化熱為20焦耳/公克至90焦耳/公克,且晶質熔點 為145°C至250°C及玻璃轉移溫度為90°C或更低,較佳係-100°C 至90°C。此外,該非晶質聚合物較佳應不具結晶且玻璃轉移溫度 為 90°C 至 120°C。 在本發明中,係在高溫下拉伸該由聚乙烯薄板及耐熱性樹脂薄 板所組成之多層薄板,使其聚乙烯薄板中部分由濕式法所製得之 11 201105505 結晶得以熔融(約100°C至130°C)。由於該程序得以簡化至同時 拉伸聚乙烯層及耐熱層,故有助於改良產率。在拉伸聚乙烯薄板 之溫度下,當耐熱性薄板中存有高於預定含量之不具流動性的固 體時,耐熱性樹脂在拉伸過程中無法被拉伸且會破裂,此可能導 致耐熱性改良不彰及機械特性劣化之問題。據此,耐熱性樹脂較 佳為結晶度為10%至45%或熔化熱為20焦耳/公克至90焦耳/公 克,且晶質熔點為145°C至250°C及玻璃轉移溫度為90°C或更低, 較佳係-l〇〇°C至90°C之半晶質聚合物,或為玻璃轉移溫度為90°C 至120°C之非晶質聚合物,俾確保流動性於拉伸溫度範圍(約 100°C至130°C)下可達預定程度。在半晶質聚合物之結晶度高於 45%之情況下,於拉伸溫度下,50%或更多的耐熱性樹脂係呈固體 (雖然結晶含量係45%,然而,部分與結晶連結之樹脂鏈並無法 保存流動性,因此使50%或更高之樹脂不具流動性),且可能因此 造成耐熱層破裂。在半晶質聚合物之玻璃轉移溫度高於90°C之情 況下(縱使其結晶度為45%或更低),拉伸溫度下之耐熱性樹脂之 剛度係高的,因此耐熱層在拉伸過程中會破裂,進而劣化耐熱性 與機械特性。 結晶度係用微分掃描熱分析儀(Differential Scanning Calorimeter,DSC )來估算。計算方式係將由微分掃描熱分析儀戶斤 測量之熱吸收峰的熱含量除以文獻記載之100%結晶的熔化熱。 惟,有時候在難以測量100%結晶之熔化熱之情況下,20焦耳/公 克至90焦耳/公克之熔化熱堪為充足。90焦耳/公克或更少(尤其 是20焦耳/公克至90焦耳/公克)之熔化熱,係表示低的結晶度或 結晶轉變,且其在拉伸過程中不會造成耐熱層破裂。此外,由於 12 201105505 作為耐熱性樹脂之半晶請脂係要求在13代或更高之聚乙稀炫 點溫度下不會熔化或流動以期望獲得多層分隔物在耐熱性上之改 良效果’作為耐熱性樹脂之半晶質樹脂之㈣較佳為μ代或更 低’更佳為MC至250〇c。當其溶點高於25〇〇c時,柔混時之擠 製溫度將過度提升,而產生嚴重的樹脂氧化,進而導製品質劣化。 對非晶質聚合物而言,當玻璃轉移溫度為9 〇。c或更低時,樹脂在 拉伸溫度下具有充分之流動性,此雖導致良好之拉伸特性,但卻 難以確保耐熱性會高於聚乙烯。當其玻璃轉移溫度為12〇。匸或更 高時,在拉伸溫度下之耐熱性樹脂具有低流動性且在拉伸過程中 會因此而破裂,進而使賴性之改良效果不彰及機械特性有所劣
化。玻璃轉移溫度為卯叱至12(rc之非晶質聚合物即使在i5〇〇C 或更高之溫度下亦不具流動性,因此在多層分隔物之耐熱性上展 現大幅度之改良效果。 就多層分隔物之孔隙特性而言,在聚乙烯及稀釋劑之相分離 後,聚乙烯層具有透過拉伸及萃取程序所形成、平均直徑為〇们 微米至0.1微米之微孔隙,且耐熱性樹脂層具有透過擴大基材樹脂 與有機或無機填料之間的界面所形成、代表直徑為0 5微米至100 微米之巨孔隙。 該由聚乙烯所形成之層中的孔隙為在聚乙烯及稀釋劑之相分離 後透過拉伸及萃取程序所形成的微孔隙,其平均直徑為01微米或 更小,較佳係0.02微米至〇.!微米’且均勻地分散在整體膜上, 其賦予膜良好之機械特性、品質均勻性及品質穩定性等。此外, 由耐熱性樹脂所形成之層的孔隙為透過擴大基材樹脂與有機或無 機填料之間的界面所形成的巨孔隙,其係在多孔膜之平面方向上 13 201105505 呈一圓盤狀,代表直徑為0.5微米至1〇〇微米,且具有良好之強度 及滲透率。當巨孔隙之代表直徑小於5微米時,渗透率係不佳的二 但當巨孔隙之代表直徑大於100微米時,因孔隙係過度巨大,反 而會使機械特性與耐熱性之改良效果不彰。 在包含無機填料之耐熱性樹脂層中,無機填料不僅扮演孔隙形 成過各中之成孔核’亦保留在最終產物巾以幫助改良耐熱性並改 良對電解質之濕m生。無機填料之含量較佳為5G重量_重量 ❶/❶,且耐熱性樹脂之含量較佳係2G重量%至5g重量%。當無機填料 之含量低於50重量%時,其係無法形成足量之孔隙,進而使渗透 率不彰。當無機填料之含量高於8G重量%時,耐熱性樹脂之含量 過低’因此,在㈣過程中將會破壞耐熱性樹脂之架構。據此, 分隔物將呈現高的滲透率,但耐熱性及機械特性上之改良效果不 .彰。當使用有機填料來形成孔隙時,有機填料係於㈣之前自呈 薄板狀態之耐熱性樹脂相分離而出且呈微顆粒之形狀,並且在拉 伸過程中,隨著自有機填料與耐熱性樹脂間之界面生成孔隙而升 成孔隙。在㈣過財,含於耐熱性樹脂層中之有機填料的含量 較佳係25重量%至45重量%且耐熱性樹脂之含量較佳係Μ重量 %至75重量%。由於有機填料相較於無機填料而言密度較低,故 唯有使用25重量❶/❶至45重量%之有機填料才可能形成充足之孔 隙。在拉伸之後,有機填料可在移除聚乙稀層之稀釋劑的過程中 一起移除。當使用-種可溶於用於萃取聚乙稀層中稀釋劑之溶劑 的有機填料時’有機填料在萃取過程中將被—併移除,此可能可 改良耐熱性樹脂層之滲透率,再者,在操作最終產物時不會產生 填料脫出,使產物容易操作。在使用此有機填料所製得之 14 201105505 耐熱性樹脂層之最終產物中,耐熱性樹脂之含量為1〇〇%。相反 地,當使用不溶於用來萃取稀釋劑之溶劑的有機填料時,有機填料 係保留於耐熱性樹脂層中並幫助改良_性樹脂層之耐熱性及對 電解質之濕祕。在❹此有機填料所製得之耐熱_脂層最終 產物中,耐熱性樹脂之含量為55重量%至75重量% 上述無機填料及有機填料可各別單獨❹,亦可使料混合物。 有,於分隔物之特性及產率,雖然本發明為具有二層或二層以 上之叠層的膜,然'而其較佳為具有三層或三層以上疊層,並且具 有一具有90重量%至100重量%、炫點為13〇〇(:至i歡之聚^ 烯的層’作為二表層。當以透過濕式法、使用聚乙烯所製得之声 來形成表層時’多層分隔物之二表層的品f均勻性係良好的且可 错此改良多層分隔物之品質均勾性。此外,中間廣係具有代表直 徑為5至100微米之巨大孔隙並因此具有良好之渗透率,且表声 平均大小為⑽微米至W微米之小且均㈣孔隙並藉此 具有良好的電池過充電特性―职。师Μ及良好之電 解質雜能力。再者,切耐熱性樹縣置於中間料,鮮少有 填料脫洛之現象且容易確保生產穩定性。 報據本發明,於膜強度、輕量電池及電池安全性之考量下,膜 厚度較佳為9«至30微米。當膜厚度比9微米薄時,並#法 確保安全性及用來作騎抗製造電池時之外部應力_狀物以 隨電池充電/方電而生成之樹狀突)之阻抗(reSistances);此外, 當膜厚度比30微米厚時 ]生相反地 之严m率劣化及電池厚於所需者 ㈣早一耐熱性樹脂層厚度較佳係3微米或更厚,更佳係5 201105505 微米至10微米。當耐熱性樹脂層之厚度低於3微米時,耐熱性之 改良效果不佳;而當耐熱性樹脂層之厚度超過10微米時,整層之 機械特性與品質均勻性將劣化。 常溫之穿刺強度係0.15牛頓/微米或更高,較佳係0.20牛頓/微米 至0.50牛頓/微米。當穿刺強度低於0.15牛頓/微米,無法確保電 池安全性,因為對抗在電池製備過程中可能產生之外部損害的阻 抗係低的。 120°C之穿刺強度係0.05牛頓/微米或更高,較佳係0.10牛頓/ 微米至0.30牛頓/微米。當120°C之穿刺強度低於0.05牛頓/微米 時,無法確保安全性,因為分隔物在高溫下會被樹狀突(隨著充 電/放電過程所產生)損壞。 本發明之多層分隔物因使用熔點為145°C至250°C之半晶質聚 合物或玻璃轉移溫度為90°C至120°C之非晶質聚合物,故具有良 好之高溫熱穩定性與高溫穿刺強度。 本發明之微孔膜的熔融破裂溫度係取決於所用之耐熱性樹脂與 填料種類及含量,且較佳係170°C或更高,更佳係180°C至250°C。 當熔融破裂溫度低於170°C時,在考量單使用聚乙烯之分隔物的 熔融破裂溫度為150°C時,電池耐熱性之改良效果係不顯著的。 在120°C、無應力情況下,縱向及橫向上之收縮率分別為0%至 12%,較佳係分別為0%至10%。當收縮率高於12%,由於收縮會 產生電極間短路,因此無法確保電池安全性。 在經厚度標準化之外部應力下,於橫向方向上之TMA最大收縮 率為0%或更少。TMA係一種在施加預定應力之情況下,在以升 溫之方式造成熔融之過程中測量試片收縮程度之裝置,其中,係 16 201105505 根據不同之施加應力來測量收縮程度。此外,由於即使在施加相 同應力之清況下收lis率亦會隨著試片厚度而改變,因此自外部 施加之應力隸厚度標準化。在本發明之分隔物巾,在自外部施 加且經厚度標準化之應力為20毫牛頓/微米(施加應力/試片厚度) 之清况下,於知'向上之TMA最大收縮率為〇%或更少;而在該應 力為!.5毫牛頓/微米之情況下,於橫向上之tma最大收縮率較佳 為㈣或更少。本發明分隔物因耐熱性樹脂在聚乙稀之縣/收縮 溫度下不會炼融’因此其係具有微量之收縮。據此,當自外部施 加相同之應力下,其收縮較傳統之分隔物來得小。當於2 〇毫牛頓 /微米下於橫向上之收縮率超過〇%時,在電池外部處於高溫之情 況下’於㈣與收縮過程時電池之邊緣部位會暴露而出,進而造 成電極間短路,從而劣化電池之安全性。 製備該微孔聚烯烴多層膜之方法包含以下步驟:(a)炫融並 混合-由耐熱性樹脂(炫點為⑷。c至25〇〇c之半晶質聚合物或 玻璃轉移溫度為败至贿之非晶質聚合物)及填料所形成之 組合物;(b)炫融並混合一由溶點為13〇〇c或更高之聚乙稀血稀 釋劑所組成之組合物:⑺藉由疊合該於步驟⑴與⑴中所 熔融並混合之炫融體來形成多層薄板;⑷藉由在一可使3〇%至 嶋之多層薄板中之聚乙烯層的聚乙埽結晶炫融的溫度範圍下,。拉 =2薄板以形成—膜;⑷從該財萃取出該稀釋劑及部分 有機填料;以及(f)熱-固化該膜。 於下文中將詳細說明各步驟。 =行步驟U)之溶融及混合一由耐熱性樹脂 (炫點為MC至2责之半晶質聚合物或_轉移溫度為9〇。 17 201105505 C至120°C之非晶質聚合物)及填料所組成之組合物。 使用一雙螺桿混煉機(twin screw compounder )、一揉混機或一 設計用來混合樹脂與填料之萬馬力機(Banbury mixer )來熔融並 混合一由以下配比所形成之組合物:20重量%至75重量%之具有 10%至45%結晶度、熔點為145°C至250°C且玻璃轉移溫度為 -100°C至90°C之半晶質聚合物或玻璃轉移溫度為90°C至120QC 之非晶質聚合物,及25重量%至80重量%之填料。 在無機填料之情況下,較佳係於高於樹脂之熔點(為半晶質聚 合物之情況)或玻璃轉移溫度(為非晶質聚合物之情況)40°C至 70°C之溫度下進行熔融及混合;而在有機填料情況下,較佳係於 高於樹脂之最高熔點(為半晶質聚合物之情況)、玻璃轉移溫度(為 非晶質聚合物之情況)、有機填料之熔點(為半晶質聚合物或晶質 有機填料之情況)及有機填料之玻璃轉移溫度(為非晶質聚合物 填料之情況)40°C至70°C之溫度下進行熔融及混合。當熔融及混 合溫度低於上述溫度範圍時,可能會因不熔融之樹脂而造成低劣 的混合效能;相反地,當熔融及混合溫度高於上述溫度範圍時, 可能會因過高的溫度而嚴重地造成有機物質(含耐熱性樹脂)熱 氧化。耐熱性樹脂與填料可先行經過摻和後再導至混煉機中或各 別藉由分開的進料器導至混煉機中。再者,其可先行於另一揉混 機中初步混煉,以組合物的型態導入。 使用於本發明中之耐熱性樹脂的實例可包含下列之半晶質聚合 物:聚丙烯、聚醯胺樹脂(奈龍基樹脂)、聚對苯二曱酸二丁酯 (polybutylene terephthalate,PBT )、聚對苯二甲酸二乙自旨 (polyethylene terephthalate ,PET )、聚氯三氟乙稀 18 201105505 (polychlorotrifluoroethylene ,PCTFE )、聚氧化甲稀 (polyoxymethylene,POM )、聚氟乙稀(polyvinyl fluoride,PVF ) 及聚偏二敗乙缔(polyvinylidene fluoride,PVdF );以及包含以下 之非晶質聚合物:聚丙烯酸、聚甲基丙浠酸酯(polymetacrylate )、 聚苯乙烯及ABS樹脂。 雖然在上述樹脂中,聚丙烯之種類係並無特殊限制,然而,聚 丙烯之同元聚合物由於其高結晶度,故無法使用。較佳^系使用丙 烯與其他烯烴之共聚合物或其混合物。就共聚合物而言,可使用 隨機共聚合物與嵌段共聚物。除丙烯外之共聚合烯烴較佳包含: 乙烯、丁烯-1、戊烯-1、己烷-1、4-甲基戊烯-1及辛烯-1。 儘管耐熱性樹脂之較佳分子量會依據樹脂之種類而有所不同’ 然而,重量平均分子量較佳係1.(^1〇4至5.〇><1〇6。 無機填料之實例可包括:平均顆粒大小為〇·1微米至3微米之二 氧化矽(Si02)、氧化鋁(Al2〇3)、碳酸鈣(CaC〇3)、氧化鋇 產太(barium titanium oxide,BaTi〇3)、氧化欽(Ti〇2)、天然或 有機改質之黏土、或前述之混合物。 有機填料為與形成耐熱性樹脂架構之基質樹脂不同種類之 樹脂,較佳係包含:熔點為13〇°C至25〇°C之半晶質聚合物、玻 壤轉移溫度為130°C至250°C之非晶質聚合物及熔點為130°c至 200°C且沸點為300°C或更高之有機物質。此外,除耐熱性樹脂 外’有機填料可包含:聚碳酸酯、聚芳香酯、聚碾、及聚醚醯亞 胺。 視需要,組合物中可進一步添入添加劑以達特定功效之改良效 果’如氧化安定劑、紫外光安定劑、抗靜電劑等。 19 201105505 ♦ 進行步驟(b)之熔融及混合一由熔點為130°C或更高之聚乙烯 與稀釋劑所形成之組合物。 在熔融/混合/擠製聚乙烯與稀釋劑之過程中,聚乙烯之含量較佳 為20重量%至50重量%。當聚乙烯之含量低於20重量%時,其 將難以確保微孔膜之強度及揉合性;反之,當聚乙烯之含量高於 50重量%時,此時擠製及混合效能將會降低且分隔物之滲透率將 大幅下降。 用於此步驟之聚乙烯係同元聚乙烯、聚乙烯共聚合物或前述之 混合物。此外,本發明之聚乙烯為由乙烯單獨形成之同元聚乙烯、 由乙烯與C3至C8之α-烯烴共聚合作用所形成之共聚合聚乙烯或 前述之混合物,且熔點為130°C或更高。C3至C8之α-烯烴共聚 單體的實例可包含丙烯、1-丁烯、1-己烯及4曱基戊烯-1。當聚乙 烯之熔點低於130°C時,因聚乙烯之結晶度低,此時分隔物之 滲透率將會大幅下降並可能因此使整體分隔物之熱穩定性劣化。 最佳之聚乙烯熔點為130°C至140°C。 較佳地,聚乙烯之重量平均分子量為2χ105至3xlO6。當聚乙烯 之重量平均分子量低於2χ105時,此時多孔膜之機械特性將被弱 化。當聚乙烯之重量平均分子量高於3χ106時,此時擠製及混合效 能將劣化,進而造成產率下降。在本發明中,更佳之重量平均分 子量為 2χ105 至 1.5χ106。 就稀釋劑而言,可使用所有能在擠製溫度下與樹脂形成單相之 有機液體。稀釋劑之實例包含:如壬烷、癸烷 '萘烷及石蠟油之 脂肪族;或如環烴、鄰苯二甲酸二丁酯及鄰苯二甲酸二辛酯。較 佳地,對人體無害且具高沸點與低揮發成分之石蠟油係合適的。 20 201105505 更佳地/ 40 C下動力黏度為2〇厘斯至2〇〇厘斯之石螺油為合 I的/石❹之動力黏度高於扇厘斯時,將在擠製過程中將 產生高的動力黏度進而產生負载及膜與薄板之表面缺陷的問題, 且衫取過財,亦會因殘留之油而導致萃取_,進㈣成產 …及〇漏率下P牛的問題。當石犧油之動力黏度低於2〇厘斯 時’因其與在擠,機中之㈣聚乙和的黏度差異將使其在擠製 過程+難以混合。 使用-雙螺桿混練機、揉合機或設計供混合稀釋劑與聚乙稀用 的=馬力機來熔㈣亚處合該組合物。合適之炫融及混合溫度為 ⑽C至25G 〇聚乙稀稀釋劑可先行經過摻和後再導至混煉機令 或藉由各別分開的進料器導至混煉機中。 視情況需要,組合物中可進一步地添入添加物以達特定功效之 改良效果’如氧化安定劑、紫外線安定劑、抗靜電劑等。 進行步驟(〇 ’藉由疊合於步驟(a)與(b)中所溶融並混合 之炫融體來形成多層薄板。 為自溶融體中製備薄板,可使用所有傳統之塗覆及磨延 (calendaring)方法。合適之塗覆或壓延輥溫度為卯%至肋。〔。 低於3〇°C之冷独溫度可能會因薄板的快速冷卻而造成薄板產生 敵摺;而高於8G°C之冷卻報溫度會因冷卻不足而產生表面缺陷的 問題。 為形成多層薄板,可使用傳統之共擠製與熱結合方法。共擠製 係一種在鑄造薄板時,藉由共擠製各別經多層τ型擠製件 (醜丨出ayerTdie)所擠製之熔融體來製備多層薄板之方法,:熱 黏合為·種^合由各襲製機所獲得之薄板並搭配壓力熱壓合該 201105505
V 等薄板之方法。 進行程序(d),藉由在一可使30%至80%之多層薄板中 聚乙烯層之聚乙烯結晶熔融之溫度範圍下,拉伸該多層薄板以形 成一膜。 可藉由任何拉伸方法來進行所述拉伸。如張布機(tenter )式同 步拉伸,以及先使用輥於縱向上進行主要拉伸後,再使用一張布 機於橫向上進行拉伸之連續拉伸。於縱向及橫向上之拉伸比率各 別為4倍或更高,且總拉伸比率較佳為25倍至60倍。當單一方 向上之拉伸比率低於4倍時,該單一方向上之取向(orientation ) 係不夠充足且同時會破壞縱向及橫向上之機械特性平衡,進而劣 化穿刺強度。此外,當總拉伸比率低於25倍時,拉伸係不夠充分, 而當總拉伸比率高於60倍時,則會在拉伸時產生破裂之風險且最 終膜之收縮率將有所增加。 拉伸溫度係隨著聚乙烯之熔點與稀釋劑之濃度及種類而改變。 較佳地,最好的拉伸溫度係選自可使30%至80%之多層薄板中之 聚乙烯層之聚乙烯結晶熔融的溫度範圍中。因應溫度而熔融之晶 體量可以從薄板之DSC分析中獲得。當拉伸溫度係選自使30%以 下之聚乙烯層中之聚乙烯晶體熔融之溫度範圍時,會因膜不具柔 軟度而使可其拉伸性劣化,並因此在拉伸過程中產生破裂及無法 拉伸之高風險。反之,當拉伸溫度係選自使80%以上之聚乙烯層 中之聚乙烯晶體熔融之溫度範圍時,儘管易於拉伸且不易產生無 法拉伸之現象,但會因部分過度拉伸而使厚度均勻性有所劣化, 且會因減少的樹脂取向而使機械特性劣化。上述拉伸之溫度範圍 不僅為耐熱性樹脂得以熔融之範圍,且亦為可確保柔軟性以使。 22 201105505 :熱性樹脂在可拉伸之範圍。透過拉伸,在耐熱性樹脂·填料肩 ’耐熱性樹脂不但不會破裂,反而會被拉伸開I, 耐熱性樹脂與填料間之界面係經擴大以形成孔隙。由μ :熱性樹脂係於不含稀釋劑之情況下被拉伸,因此其在高拉伸效〆 果之情況下拉伸,且對整體分隔物提供良好之機械特性改良效果。 進订步驟⑴,自財萃取該_劑與部分有機填料。 經拉伸程序減少厚度之薄板( 萃取在取卩幻“由使用—有機溶劑來 2在*乙細料之稀釋劑與在耐熱性樹脂層_之可萃取之 有機填料,隨後乾燥之。本發明中可用 且可A γ — 有機〉谷劑並無特殊限制 了為任何可样稀_及时 較佳係且古m之有機填料,然而, π 效且可快速乾燥W基乙基酮、二氯甲炫及 ,元。卒取可以任何傳統之溶劑萃 ^ 劑喷霧法月留描+ rt 凌;進仃,如沉浸法、溶 稀釋ΓΓ ㈣之超音料。針料㈣言,殘留 重量二:合:應為1重量%或更小。當殘留稀釋劑之含量高過1 =時’機械雜將有所劣化謂之渗料亦有所下降。 笼留稀釋劑含量係與萃取時間及 高的萃取πv泌 取/m度非常地相關。雖然較 卒取/皿度仔以增加稀釋劑溶於溶 沸點所致之安全問題,萃取溫度較佳為20oc解度。,然而考量溶劑 溫度為C至4〇。〇由於當萃取 -為稀釋劑之凝固點或更低之 此萃取、、®庳庙山她 了早取效盃會大幅下降,因 /皿度應咼於稀釋劑之凝固點。 厚度,然而當所製得之微孔膜厚度為9=;;叫間係取決於膜 間較佳為2分鐘至4分鐘。 ❹至30微米時,萃取時 進仃步驟(f),熱固化該膜。 對萃取後之經乾燥的膜進 化步驟以最終移除殘留應力並 Γ S1 23 201105505 因此減少最終膜之收縮率。熱固化程序係以強迫固定待收縮膜之 方式來移除殘留應力’而收縮率及高溫穿刺強度將受到熱固化程 序之溫度及固化比率影響。當熱固化溫度高時,固化之應力將有 所下降並藉此降低收縮率及提升高溫穿刺強度。當測量溫度上升 日守’穿刺強度將隨樹脂中之應力下降而減少。然而,當增加熱固 化溫度時,因為應力在熱固化過程中已充分地降低,故使得高溫 穿刺強度變得更高,因此穿刺·強度下降程度並不大。但是,當 熱固化溫度太高時,膜會部分熔融而關閉微孔隙,進而導致滲透率 劣化。合適之熱固化溫度較佳係選自可使1〇重量%至4()重量%聚 乙烯層中之結晶熔融之溫度範圍。當熱固化溫度係選自低於可使 10重量%聚乙烯層中之結晶熔融之溫度範圍時,此時將因膜中之 刀子取向不夠充足而使得膜中殘留應力無法移除,然而,當 T固化溫度高於可使40重量%聚乙烯層中之結晶熔融之溫度範圍 日^將因。卩分熔融而使微孔隙關閉,進而導致滲透率劣化之結果。 此外’對熱固化而言’係使用—張布機型之機器來進行階段式之 熱固化,進而改良如拉伸強度、穿刺強度等機械特性及減少收縮 率。在熱固化過程之第一步驟中,膜係於橫向上被拉伸纖至50% 以。增加滲透率及改良拉仲強度與穿刺強度。當膜被拉伸超過 5〇/❶’雖在渗透率與拉伸強度之改良效果上具有優勢,,然而卻有以 當收料增加時,於橫向上之TMA收縮率係有所增加且 步增加,且孔隙之大小係過度增加。在第二 之情况下==膜之寬度係收縮15%至4〇%。在施加熱量 所減少,進^、之收^ ’應力係有所減4、J'樹脂取向亦有 進而減少收縮率與橫向上之TMA收縮率。此時,當產物 S1 24 201105505 之寬度收縮達40%或更多時’故滲透率與穿刺強度將過度減少, 且當產物之寬度收縮為15%或更低時,因應力及樹脂之取向並無 減少,使收縮率及橫向上之TMA收縮率增加,孔隙之大小仍為巨 大,因此無法碟保電池安全性。當熱固化溫度變高時,熱固化時 間可相對地變短;而當熱固化溫度變低時,熱固化溫度將相對地 變長。較佳地,熱固化時間為15秒至1分鐘》 拉#、萃取及熱固化步驟較佳係以一連續程序來進行。 本發明之微孔多層膜不僅同時因聚乙烯而具有低關閉溫度及因 耐熱性樹脂與填料而具有高熔斷溫度與低收縮特性,且亦同時具 有濕式法所製得之分隔物之均勻微孔隙特徵及乾式法所製得之巨 大孔隙之高強度/穩定性特性,因此,當用於高效能/高功率之二次 電池中時,可展現絕佳的效果。 參照以下實施態樣及隨附圖式之詳細說明以彰顯本發明之優 點、特徵及主旨。然而,該等說明並無限制本發明範圍之意圖。 實施例 1.分子量 以一商購自聚合物實驗室公司(p〇丨ymer Laboratory )之高溫凝 膠渗透色層分析儀(Gel Permeation Chromatography,GPC)來量 測聚乙烯之分子量及分子量分佈。 2·熱特性分析(熔點、熔化熱、結晶度及玻璃轉移溫度等) 以一微分掃描熱分析儀(DSC,商購自梅特勒托利多公司 (Mettler Toledo)之DSC-S22E型)來進行薄板及耐熱性樹脂拉 伸時之熱特性分析。對分析薄板而言,係將一重量為5毫克之樣 品以10°C/分鐘之掃描速率升溫至薄板完全熔融之溫度,且從中獲 25 201105505 仔聚乙烯層之炼融特性峰。對分析耐熱性樹脂而言,係將—重量 為5毫权樣品以败/分鐘之掃描速率升溫至樹脂完全炫融之^ 又接著以10 C/分鐘之掃描速率降溫至樹脂完全凝固之溫度然 後再次以1〇〇C/分鐘之掃描速率升溫。在此過程令量測玻璃轉移 溫度、,點及嫁化熱,並以下方程式計算結晶度: 結晶度(%) ={(所量測之熔化熱)/ (100%結晶之 熔化熱)}xl〇〇 3.氣體滲透率(達西(Darcy)) y般而言,氣體滲透率係以格利數(Gurley仙*)表示,然而 2^數為基準時,因並未校正分隔物厚度之影響,因此難以根 ^刀隔物本身之孔隙結構比較其相對滲透率。為解決上述問題, 在本㈣中係使用達西渗透常數。達西滲透常數係由以下數學式 所獲得,且本發明係使用氮氣。 C= (8FTV) / (πΌ2 (ρ2_〇 } 其t, c=達西滲透常數 戶=流速 T=樣品厚度 V氣體黏度(氮氣為0.185) D=樣品直徑 P=壓力 100磅/平方吋至200磅/平方吋壓力下之達 在本發明中,係使用 西/參透常數的平均值。
26 201105505 4. 聚乙烯層之平均孔隙直徑 待將聚乙烯層自多層分隔物膜中剝離後,根據美國材料試驗協 會(ASTM )之F316-03標準,使用一氣孔計(pmi公司之 CFP-1500-AEL型)’以半乾法(half-dry method)量測聚乙烯層之 平均孔隙直徑。其中,係使用一商購自PMI公司之Galwick液體 (表面張力:15.9達因/公分)來量測孔隙直徑。 5. 耐熱性樹脂層之代表孔隙直徑 自耐熱性樹脂層表面之掃描式電子顯微鏡影像,量測孔隙之表 面面積,並自膜表面之表觀面積(apparent area )之最大孔隙加成 至最小之孔隙,直至所加成之面積達50%之膜總面積。隨後將所 加成之孔隙的平均直徑值定義為該耐熱性樹脂層之代表孔隙直 徑。 6. 穿刺強度 當以一裝置於萬能試驗機(Universal Testing Machine,UTM) 中之試針(直徑為1毫米,曲率半徑為0.5毫米)以120毫米/分 鐘之十字移動速度(crosshead moving speed)穿刺分隔物膜時, 分隔物之強度即定義為其穿刺強度。 7. 高溫穿刺強度 於120QC下之穿刺強度即定義為高溫穿刺強度。量測方法係如 上述用來定義穿刺強度之方法,惟係於120°C下進行。為將溫度 穩定在120°C,在考量到二者之溫度穩定性及效果下,係將試針及 試片置於一 120°C烘箱中達3分鐘,較佳達5分鐘。 8. 於橫向上之TMA收縮率 使用一熱機械分析儀(Thermo-Mechanical Analysis,TMA)來 [S] 27 201105505 確涊分隔物於橫向上因應上升溫度及熔融狀態下之收縮。該量測 係使用一商購自梅特勒托利多(Mettler T〇iedo )公司之 TMA/SDTA840。在於橫向上施加一外部應力之情況下,以5〇〇c/ 刀釭之速率將分隔物之溫度由3〇〇c升高至,確認橫向上之 長度%化1。試片之大小為:橫向為15毫米,縱向為6毫米。由 於》式片之起始長度係設定為〇%並以百分比表示經改變之長度對 初始長度之比值,故結果係'以正(+ ) %表示產生收縮,而當分隔 物熔融並因此增加長度則以負㈠%(〇%或更小)表示。計算丁隐 收縮之方程式如下: ΤΜΑ收縮率(%) =1〇〇X{(起始長度—試片在各溫度下之長 度)/起始長度} 在ΤΜΑ收~§率中’(_) %收、縮(〇%或更小)代表在外部應力·下 <4片並非收&而疋增長的’此代表收縮力係小於該外部應力並因 此得以確保分隔物之熱穩定性。 9·在120°C下歷經1小時之收縮率 裁切- 15公分xl5公分之分隔物並各別在縱向及橫向上間距為 A刀之處作上;^ $。隨後,將該經標記之分隔物置於一維持在 2〇 C之;t、相中歷經6〇分鐘,接著量測間距變化量及計算收縮 率。其中,收縮率係以下方程式計算: 收縮率(%)=刚χ{(初始間距—停留在⑽。c後之間距)/ 初始間距} 10·熔融破裂溫度 為量翁融破裂溫度,係利用聚酿亞_帶將-膜〇公分χ5 公分)固定在-如第!圖所示之框架上(外框:75公分χ75公分,
[S 28 201105505 内框:2.5公分χ2.5公分),如第2圖所示。隨後將其置於一維持 在一預定溫度下之對流烘箱中達5分鐘,接著觀察膜之破裂。為 避免熱風直接施加在試片上,係於熱風排出口提供一鐵質分隔 板。膜在歷經5分鐘後仍不會破裂之最高溫度即定義為熔融破裂 溫度。 實施例1 就聚乙烯層而言,係使用重量平均分子量為3.〇χ105且熔點為 135°C之聚乙稀與於40°C下動力黏度為95厘斯之石蠟油,二成分 之含量各別為30重量%與70重量%。在一 φ=46毫米之雙螺桿混 煉機中混合該聚乙烯與該石蠟油,混合溫度為220°C。聚乙烯係進 料至一主漏斗中且石蠟油(即稀釋劑)係使用一側部進料機而進 料至一擠製機。就耐熱層而言,係使用重量平均分子量為2.5xl05、 熔點為153°C及結晶度為42%之以乙烯作為共聚單體的聚丙烯, 並使用平均顆粒大小為1.5微米之碳酸鈣(CaC03)作為填料,且 二成分之含量各別為30重量%及70重量%。耐熱層中之聚丙烯及 填料係於一 φ=40毫米之雙螺桿混煉機中混合/擠製,該混合/擠製 溫度為220°C。經此混合/擠製之組合物係於220°C下透過一 φ=15 毫米之單擠製機(separate extruder )擠製而出(該單撥製機係固 定在一為製備多層薄板而設計且裝置在一用來擠製聚乙烯層之擠 製機上之多層T型擠製件上),並隨後藉由一 30°C之塗覆輥與該 聚乙稀組合物一同模造成一 2-層(聚乙稀層/耐熱層)薄板。透過 控制此二組合物之擠製量,由聚乙烯所形成之薄板厚度為680微 米,而由而t熱性樹脂所形成之薄板厚度為140微米。 該2-層薄板相繼地以114°C於縱向上拉伸6倍並以125°C於橫 29 201105505 瓤 向上拉伸6倍。該經拉伸之膜係使用25°C至30°C之二氣甲烷來 萃取於其聚乙烯層中之稀釋劑。於127°C下進行熱固化,其中, 該膜在收縮步驟中於橫向上較初始寬度增長了 130%,且在收縮階 段中較拉伸步驟之最終寬度收縮了 15.4%。獲得之分隔物的機械特 性係示於下表1。 實施例2 就聚乙烯層而言,係使用重量平均分子量為3.OxlO5且熔點為 135°C之聚乙烯與於40°C下動力黏度為95厘斯之石蠟油,二成分 之含量各別為30重量%與70重量%。在一 φ=46毫米之雙螺桿混 煉機中混合該聚乙烯與該石蠟油,混合溫度為220°C。聚乙烯係進 料至一主运斗中而石螺油(即稀釋劑)係使用一側部進料機而進 料至一擠製機。就耐熱層而言,係使用重量平均分子量為3.5χ105、 熔點為164°C及結晶度為41%之添加有乙烯-聚丙烯橡膠的聚丙 烯,並使用玻璃轉移溫度為200°C之聚芳香酯作為填料,二成分 之含量各別為60重量%及40重量%。耐熱層中之聚丙烯及填料係 於一 φ=40毫米之雙螺桿混煉機中混合/擠製,該混合/擠製溫度為 250°C。經此混合/擠製之組合物係於250°C下透過一 φ=15毫米之 單擠製機擠製而出(該單擠製機係固定在一為製備多層薄板而設 計且裝置在一用來擠製聚乙烯層之擠製機上之多層Τ型擠製件 上),並隨後藉由一 30°C之塗覆輥與該聚乙烯組合物一同模造成 一 3-層(聚乙烯層/耐熱層/聚乙烯層)薄板。透過控制此二組合物 之撥製量,由聚乙稀所形成之薄板厚度為420微米,而由而ί熱性 樹脂所形成之薄板厚度為150微米。
該3-層薄板相繼地在110°C下於縱向上拉伸6.5倍且在124°C 30 201105505 下於心向上拉伸61。該經拉伸之膜係使用wc至⑽之二氣 甲烧來萃取於其聚乙稀層中之稀釋劑。於⑽。c下進行熱固化, 八^膜在收縮步驟中於橫向上較初始寬度增長了 14G%,且在 =階段中較拉伸步驟之最終寬度收縮了 214%。獲得之分隔物的 機械特性係示於下表i。 實施例3 :。來乙稀層而言’係使用重量平均分子量為3 Gxiq5且炼點為 入=之聚乙稀與於錢下動力黏度為%厘斯之石犧油,二成分 3里各別為30重量%與7〇重量%。在一 φ=46毫米之雙螺桿混 =機^合錢乙烯與該石纖油,現合溫度為⑽。c。聚乙稀係進 ,至-主漏斗t而石壞油(即稀釋劑)係使用—側部進料機而進 枓至一擠製機。就耐熱層而言,係使用重量平均分子量為6.〇x1〇5、 熔點為23rC及溶化熱為4〇焦耳/公克之聚4甲基」戊稀,並使 用平,顆粒大小為2·5微米之碳酸舞(CaC〇^作為填料,二成分 β 各別為35重置%及65重量%。耐熱層中之聚4_甲基]戊烯 ,曰人/撼Γ於""φ=4ί)毫米之雙螺桿混煉機中混合/擠製,該 溫度為·。c。經此混合/擠製之組合物係於靡C下透 P 15笔米之單擠製機掩製而出(該單擠製機係固定在—為製 ^多層薄板而設計且裝置在—用來擠製聚乙烯層之擠製機上之多 ^一擠製件上),並隨後藉由一 3〇〇c之塗覆親與該聚乙稀組合 叫造成-3-層(聚乙稀層/耐熱層/聚乙稀層)薄板。透過控 制:二Μ合物之播製量,由聚乙婦所形成之薄板厚度為微米 而由耐熱性樹脂所形成之薄板厚度為刚微米。 該3-層薄板相繼地在U6〇c下於縱向上拉伸7倍且在】抓下 [S] 31 201105505 於橫向上拉伸6倍。該經拉伸之膜係使用25°C至30°C之二氣甲 烷來萃取於其聚乙烯層令之稀釋劑。於130°C下進行熱固化,其 中,該膜在收縮步驟中於橫向上較初始寬度增長了 150%,且在收 縮階段中較拉伸步驟之最終寬度收縮了 20%。獲得之分隔物的機 械特性係示於下表1。 實施例4 就聚乙烯層而言,係使用重量平均分子量為3·〇χ105且熔點為 135°C之聚乙烯與於40°C下動力黏度為95厘斯之石蠟油,二成分 之含量各別為30重量%與70重量%。在一 φ=46毫米之雙螺桿混 煉機中混合該聚乙烯與該石蠟油,混合溫度為220°C。聚乙烯係進 料至一主漏斗中而石樣油(即稀釋劑)係使用一側部進料機而進 料至一擠製機。就耐熱層而言,係使用重量平均分子量為2.ΟχΙΟ5、 熔點為167°C及結晶度為34.6%之與氯三氟乙烯(CTFE)共聚之 聚偏二氟乙烯(PVdF),並使用平均顆粒大小為0.4微米之氧化鋇 鈦(BaTi03)作為填料,二成分之含量各別為35重量%及65重量 %。耐熱層中之聚偏二氟乙烯及填料係於一 φ=40毫米之雙螺桿混 煉機中混合/擠製,該混合/擠製溫度為230°C。經此混合/擠製之組 合物係於230°C下透過一 φ=15毫米之單擠製機擠製而出(該單擠 製機係固定在一為製備多層薄板而設計且裝置在一用來擠製聚乙 烯層之擠製機上之多層Τ型擠製件上),並隨後藉由一 30°C之塗 覆輥與該聚乙烯組合物一同模造成一 2-層(聚乙烯層/耐熱層)薄 板。透過控制此二組合物之擠製量,由聚乙稀所形成之薄板厚度 為800微米而由耐熱性樹脂所形成之薄板厚度為60微米。 該2-層薄板在117°C下同時於縱向上拉伸7倍且於橫向上拉伸 32 201105505 5.5倍。該經拉伸之膜係使用25〇c至3〇〇c之三氯甲烧來萃取於其 聚乙稀層中之稀釋劑。於129〇c下進行熱固化,其中,該膜在收 縮步驟中於橫向上較初始寬度增長了 15〇%,且在收縮階段中較拉 伸步驟之最終寬度收縮了 26·7%。獲得之分隔物的機械特性係示於 下表1。 實施例5 就聚乙稀層而言,係使用重量平均分子量為3 〇χΐ〇5且炫點為 135 C之聚乙稀與於錢下動力黏度為%厘斯之石瑕油,二成分 之含量各別為30重量%與7G重量%。在—㈣毫米之雙螺桿混 煉機中混合該聚乙烯與該石蠟油,混合溫度為22〇〇c。聚乙烯係進 料至-主漏斗中而石蠟油(即稀釋劑)係使用一側部進料機而進 料至-擠製機。就耐熱層而言,係使用重量平均分子量為5㈣〇5 及玻璃轉移溫度為98°c之他樹脂,並使用重量平均分子量為 2.5x10及炼點為163〇c之同元聚丙烯作為填料二成分之含量各 別為65重量%及35重量%。耐熱層中之娜樹脂及填料係於一 ㈣毫米之雙螺桿混煉機中混合/播製,該混合/擠製溫度為 240 C匕此混合/擠製之組合物係於24q(>c下透過—㈣5毫米之 單擠製機播製而出(該單擠製機係固定在一為製備多層薄板而、設 s十且裝Λ在"1用來播製聚乙稀層之擠製機上之多層了型擠製件 上)JLlk後藉由-3GQC之塗覆親與該聚乙稀組合物—同模造成 - 3-層K乙烯層/耐熱層/聚乙稀層)薄板。透過控制此二组:物 之擠製I’由聚乙烯所形成之薄板厚度為楊微米而 脂所形成之薄板厚度為2〇〇微米。 ’、,、『树 該3-層薄板在118。[下同時於縱向上拉伸w倍且於橫向上拉伸 33 201105505 5.5倍。該經拉伸之膜係使用25°C至30°C之二氣甲烷來萃取於其 聚乙烯層中之稀釋劑。於125°C下進行熱固化,其中,該膜在收 縮步驟中於橫向上較初始寬度增長了 130%,且在收縮階段中較拉 伸步驟之最終寬度收縮了 15.4%。獲得之分隔物的機械特性係示於 下表1。 實施例6 就聚乙烯層而言,係使用重量平均分子量為3.〇χ 105且熔點為 135°C之聚乙烯與於4(TC下動力黏度為95厘斯之石蠟油,二成分 之含量各別為30重量%與70重量%。在一 φ=46毫米之雙螺桿混 煉機中混合該聚乙烯與該石蠟油,混合溫度為220°C。聚乙烯係進 料至一主漏斗中且石蠟油(即稀釋劑)係使用一側部進料機而進 料至一擠製機。就对熱層而言,係使用重量平均分子量為4.0X105、 熔點為225°C及結晶度為35%之聚對苯二甲酸丁二酯,並使用平 均顆粒大小為0.8微米之碳酸鈣(CaC03)作為填料,且二成分之 含量各別為40重量%及60重量%。耐熱層中之聚對苯二甲酸丁二 酯及填料係於一 φ=40毫米之雙螺桿混煉機中混合/擠製,該 混合/擠製溫度為280°C。經此混合/擠製之組合物係於280°C下透 過一 φ=15毫米之單擠製機擠製而出(該單擠製機係固定在一為製 備多層薄板而設計且裝置在一用來擠製聚乙烯層之擠製機上之多 層Τ型擠製件上),並隨後藉由一 30°C之塗覆輥與該聚乙烯組合 物一同模造成一 2-層(聚乙稀層/而t熱層)薄板。透過控制此二組 合物之擠製量,由聚乙烯所形成之薄板厚度為700微米而由耐熱 性樹脂所形成之薄板厚度為100微米。 該2-層薄板以115°C同時於縱向上拉伸7.0倍並於橫向上拉伸 34 201105505 y倍。該經拉伸之膜係使用饥至30〇c之二氯f燒來萃取於其 =乙婦層中之稀釋劑。於129QC下進行熱固化,其中,該膜在收 、·步驟中於橫向上較之初始寬度增長了】鄕1在收縮階段中較 拉伸步驟之最終寬度收縮了 179%。獲得之分隔物的機械特性係示 比較實例1 "ST層而言,係使用重量平均分子量為3.〇心且炫點為 ’乙烯與於40 C下動力黏度為95厘斯之石蠟油,二成分 之含量各別為30重量%與7〇重量%。在一㈣ 煉機中混合該聚乙稀_油,混合溫度為 = 料至一主漏斗巾曰r罐丄, ^乙席係進 料至—… 稀釋劑)係使用-側部進料機而進 之塗覆m u相—τ型擠料播製並藉由-咖 U00微米。 (V乙蹲層)溥板,該聚乙稀薄板厚度為 該聚乙烯薄板相繼地以1160c 橫向上拉伸5 η也 、縱向上拉伸7·〇倍並以124°c於 ,• 該經拉伸之獏係使用25〇C至30〇C之二顏甲# 來卒取於盆平7 P 13 —氣甲院 該膜在收縮1驟/中之稀釋劑。於進行熱固化’其中, 段中較拉伸步驟之==初始寬度增長了 _’且在收縮階 性係示於下表1。、’m縮了 21.4%°獲得之分隔物的機械特 比較實施例2 就聚乙烯層而令各 135°c之聚乙㈣,、 量平均分子量為3.Gx1q5且溶點為 之人曰夂與於4〇〇C下動力點度為%厘斯之石壤油,-成八 〜各別為30重量%與 之^ -成分 I里/〇。在一 φ=4ό毫米之雙螺桿混 35 201105505 煉機中混合該聚乙烯與該石蠟油,混合溫度為22〇〇c。聚乙烯係進 料至-主漏斗t且石堪油(即稀釋劑)係、使用―側部進料機而進 料至一擠製機。就耐熱層而言,係使用重量平均分子量為5 7χΐ〇5、 炫點為163°C及結晶度為51%之同元聚丙烯,並使用平均顆粒大 小為1.5微米之碳酸鈣(CaC〇3)作為填料,且二成分之含量各別 為30重量%及70重量%。耐熱層中之同元聚丙燦及填料係於一 Φ=40毫米之雙螺桿混煉機t混合/擠製,f亥混合/擠製溫度為 230°〇經此混合/擠製之組合物係於23〇Qc下透過一^毫米之 早擠製機擠製而出(該單擠製機係固定在—為製備多層薄板而設 計且裝置在-用來擠製聚乙_之擠製機上之多層了型擠製件 上)’並隨後藉由-3代之塗龍與該聚乙燁組合物—同模造成 一 3=聚乙稀層/耐熱層/聚乙騎)薄板。透過控制此二組合物 之擠製量,由聚乙烯所形成之薄板厚度為铜微米而由耐熱性樹 脂所形成之薄板厚度為15〇微米。 該3-層薄板相繼地以112γ於縱向上拉伸7倍並以122。匸於橫 =上拉伸6倍。該經拉伸之膜係使用抓至避之二氣甲燒來 萃取於其聚乙烯層中之稀釋劑。於13代下進行熱固化,其=, 2在收縮步射於橫向上較初始寬度增長了 在收縮階
=較拉伸步驟之最終寬度收縮了26.7%。獲得之分隔物的 性係示於下表1。 T 比較實施例3 就聚乙稀層而言,#传會 係便用重里+均分子量為3〇χ]〇5且熔點 135〇C之聚乙烯盥於4 0 ”'、 、40 C下動力黏度為95厘斯之石蠟油,二成分 之έ里各別為30重量%盘7〇重量%。力 ”更里/〇在一 ΦΜ6毫米之雙螺捍混 36 201105505 煉機中混合該聚乙稀與該石躐油,混合溫度為22〇〇c。聚乙稀係進 枓至-主漏斗中且石蝶油(即稀釋劑)係使用—側部進料機而進 料至5—擠製機。就樹脂·填料層而言,係使用重量平均分子量為Μ x10 @點為134°C及結晶度為72%之高密度聚乙稀並使用平均 顆粒大小為2.5微米之碳_ (CaC〇3)作為填料且二成分之含 量各別為30重量%及7〇重量%。樹脂·填料層中之高密度聚乙稀 真料係於9一40耄米之雙螺桿混煉機中混合/擠製,該 二合/擠製溫度為22G〇c。經此混合/擠製之組合物係於⑽。C下透 ° 9毫米之單擠製機擠製而出(該單擠製機係固定在-為製 備夕層薄板而设計且裝置在一用來擠製聚乙烯層之擠製機上之多 層:型擠製件上),並隨後藉由―咖之塗⑽與該聚乙稀組合 一 5 成2_層(聚乙烯層/樹脂-填料層)薄板。透過控制此 口物之擠t里’由聚乙烯所形成之薄板厚度為600微米而由 樹脂-填料所形成之薄板厚度為200微米。 該2-層薄板相繼地以u〇〇c於縱向上拉伸6倍並以於橫 =上拉伸5.5倍。該經拉伸之臈係使用25。(:至就之二氯甲烧來 萃取於其聚乙歸層_之稀釋劑。於126°C下進行熱固化,其中, :膜在收化步驟中於橫向上較初始寬度增長了⑽%,且在收縮階 •k中幸又拉伸步驟之最終寬度收縮了 ι5 4%。獲得之分隔物的機械特 性係示於下表1。 比較實例4 就聚乙稀層而言,俜 旦 曰 舉便用重里千均/刀子I為3〇χ1〇5且熔點為 135C之聚乙稀愈於, ' 〇 C下動力黏度為95厘斯之石蠟油,二成分 之含量各別為3〇重晋%斑舌旦〇/各 ,、70重里/〇。在一 φ=46毫米之雙螺桿混 37 201105505 煉機中混合該聚乙烯與該石蠟油,混合溫度為220°C。聚乙烯係進 料至一主漏斗中且石蠟油(即稀釋劑)係使用一側部進料機而進 料至一擠製機。就耐熱層而言,係使用重量平均分子量為2·5χ105、 熔點為153°C及結晶度為42%之以乙烯作為共聚單體之聚丙烯, 並使用平均顆粒大小為1.5微米之碳酸鈣(CaC03)作為填料,且 二成分之含量各別為65重量%及35重量%。耐熱層中之聚丙烯及 填料係於一 φ=40毫米之雙螺桿混煉機中混合/擠製,該 混合/擠製溫度為220°C。經此混合/擠製之組合物係於220°C下透 過一 φ= 15毫米之單擠製機(separate extruder )擠製而出(該單擠 製機係固定在一為製備多層薄板而設計且裝置在一用來擠製聚乙 烯層之擠製機上之多層T型擠製件上),並隨後藉由一 30°C之塗 覆輥與該聚乙烯組合物一同模造成一 3-層(聚乙烯層/耐熱層/聚乙 烯層)薄板。透過控制此二組合物之擠製量,由聚乙烯所形成之 薄板厚度為370微米而由耐熱性樹脂所形成之薄板厚度為100微 米。 該3-層薄板以119°C同時於縱向上拉伸6倍並於橫向上拉伸6 倍。該經拉伸之膜係使用25°C至30°C之二氯曱烷來萃取於其聚 乙烯層中之稀釋劑。於120°C下進行熱固化,其中,該膜在收縮 步驟中於橫向上較初始寬度增長了 135%,且在收縮階段中較拉伸 步驟之最終寬度收縮了 18.5%。獲得之分隔物的機械特性係示於以 下表1中。 比較實施例5 就聚乙烯層而言,係使用重量平均分子量為3.〇χ105且熔點為 135°C之聚乙烯與於40°C下動力黏度為95厘斯之石蠟油,二成分 38 201105505 之含量各別為30重量%與70重量%。在一 φ=46毫米之雙螺桿混 煉機中混合該聚乙烯與該石蠟油,混合溫度為220°C。聚乙烯係進 料至一主漏斗令且石蠟油(即稀釋劑)係使用一側部進料機而進 料至一擠製機。就耐熱層而言,係使用重量平均分子量為2.OxlO5 及玻璃轉移溫度為150°C之聚碳酸酯,並使用平均顆粒大小為2.5 微米之碳酸鈣(CaC03)作為填料,且二成分之含量各別為30重 量%及70重量%。耐熱層中之聚碳酸酯及填料係於一 φ=40毫米之 雙螺桿混煉機中混合/擠製,該混合/擠製溫度為240°C。經此 混合/擠製之組合物係於240°C下透過一 φ=15毫米之單擠製機 (separate extruder )擠製而出(該單擠製機係固定在一為製備多 層薄板而設計且裝置在一用來擠製聚乙烯層之擠製機上之多層T 型擠製件上),並隨後藉由一 30°C之塗覆輥與該聚乙烯組合物一 同模造成一 2-層(聚乙烯層/耐熱層)薄板。透過控制此二組合物 之擠製量,由聚乙稀所形成之薄板厚度為600微米而由而t熱性樹 脂所形成之薄板厚度為150微米。 該2-層薄板以120°C同時於縱向上拉伸5.5倍並於橫向上拉伸 5.5倍。該而t熱性樹脂層在拉伸過程中並無法被拉伸,因此亦無法 進行如萃取之後續處理。 上文係以特定實施態樣描述本發明,於此技術領域中具有通常 知識者將輕易了解,在不違背如後附申請專利範圍所定義之本發 明精神與範疇下當可進行各種變化及調整。 39 201105505 表1 項目 臈厚度 (微米) 滲透率 (達西X 10.” 聚乙燦層之 平均孔隙直 徑 (微米) 耐熱層之 代表直徑 (微米) 穿刺強度 (牛頓/微 米) r®3 /sn. 穿刺強度 (120oC, 牛頓/微米) 橫向上最大TMA 收缩率(%) 熔融破裂 溫度 (°C) 收缩率 (1200C,1 小時) 2.0毫牛頓/微米 縱向 橫向 實施例1 20 3.2 0.04 18 0.20 0.08 0%或更少 185 10% 12% 實施例2 20 3.0 0.04 13 0.23 0.11 0%或更少 190 9% 8% 實施例3 20 4.9 0.05 21 0.19 0.08 0%或更少 210 9% 10% 實施例4 20 2.5 0.04 15 0.25 0.12 0%或更少 190 8% 7% 實施例5 29 2.7 0.04 12 0.18 . 0.06 0%或更少 185 9% 11% 實施例6 16 2.2 0.03 17 0.27 0.14 0%或更少 215 8% 9% 比較實施例! 20 3.0 0.04 - 0.21 0.06 〇%或更少 145 10% 11% 比較實施例2 21 4.5 0.04 >50 0.15 0.02 11% 165 10% 8% 比較實施例3 23 3.3 - 15 0.20 0.06 6% 155 11% 15% 比較實施例4 18 0 0.03 <5 0.20 0.10 0%或更少 185 10% 10% 比較實施例5 - - - - - - - - 丽 - 【圖式簡單說明】 第1圖所示為一用來量測本發明之實施態樣之微孔膜之熔融破 裂溫度的框架;以及 第2圖所示為使用一膠帶將一本發明之實施態樣之微孔膜固定 於用來量測微孔膜之熔融破裂溫度的框架上之示意圖。 【主要元件符號說明】 (無) 40

Claims (1)

  1. 201105505 七、申請專利範圍: 種微孔聚烯烴多層膜 、有一層或二層以上之堆疊層,其 中’至。少一層為—包含90重量%至1 〇〇重量%之熔點為i3代 至140〇C之聚乙稀的微孔聚乙稀層,且其他層之至少—者為一 G3 k自以下群組之耐熱性樹脂之耐熱性樹脂層:結晶度為 嶋至桃或熔融時之溶化熱為2G焦耳/公克至9G焦耳/公克、 並且溶點為145〇C至25〇°C且玻璃轉移溫度為-HKTC至 之半晶質聚合物;玻璃轉移溫度為9代1 12代之非晶質聚 合物;及前述之混合物。 2·如請求項i之微孔聚埽烴多層膜,其令該耐熱性樹脂層包含2〇 重量%至75重量%之耐熱性樹脂及25重量%至8〇重量%之一 在13代下仍保持固相之選自以下群組之填料:有機填料、無 機填料及前述之混合物。 3.如請求項2之微孔聚稀煙多層膜,其中該微孔聚乙稀層之平均 孔隙直徑為0.02微米至(U微米且該耐熱性樹脂層之代表直徑 (representative diameter)為 5 微米至 1〇〇 微求。 4·如請求項3之微孔聚烯烴多層膜,其中該微孔聚烯烴膜具有三 層或三層以上之堆疊層,且具有&含9〇重量%至1〇〇重量%之 溶點為130。(:或更高之聚乙烯的層,作為二表層。 5·如明求項1至4 t任-項之微孔聚稀烴多層膜,其中該微孔聚 稀烴多層膜之厚度為9微米至30微米、穿刺強度為〇15牛頓/ 微米或更咼、滲透率為1.5xl〇-5達西或更高、12〇〇c穿刺強度 為0.05牛頓/微米或更高以及熔融破裂溫度(爪化作扣比代 temperature)為 170°C 或更高。 201105505 螫 6. 如請求項5之微孔聚烯烴多層膜,其中該微孔聚烯烴多層膜之 厚度為9微米至30微米、穿刺強度為〇.2〇牛頓/微米或更高、 渗透率為2.〇xl〇-5達西或更高、12〇Q(:穿刺強度為〇 〇6牛頓/ 微米或更高以及熔融破裂溫度為180«C或更高。 7. 如請求項6之微孔聚烯烴多層膜,其中在12〇〇c下歷經1小時 之縱向及橫向之收縮率分別為〇%至12%,且在經膜厚度標準 化之2·〇毫牛頓/微米之外部應力下,於橫向上之熱機械分析 (ΤΜΑ )最大收縮率為〇%或更小: ΤΜΑ收縮率(%)= 100χ{(起始長度-試片在各溫度下之長度) /起始長度}。 8. 如請求項7之微孔聚烯烴多層膜,其中在12〇〇c下歷經i小時 之縱向及橫向之收縮率分別為〇%至1〇%,且在經膜厚度標準 化之1.5毫牛頓/微米之外部應力下,於橫向上之tma ^收 縮率為0%或更小: ™A收縮率(%)=論{(起始長度—試片在各溫度下之長度)
    42
TW99110121A 2009-04-06 2010-04-01 Microporous polyolefin multilayer film possessing good mechanical properties and thermal stability TW201105505A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090029439A KR101394622B1 (ko) 2009-04-06 2009-04-06 물성과 고온 안정성이 우수한 폴리올레핀계 다층 미세다공막

Publications (1)

Publication Number Publication Date
TW201105505A true TW201105505A (en) 2011-02-16

Family

ID=42936689

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99110121A TW201105505A (en) 2009-04-06 2010-04-01 Microporous polyolefin multilayer film possessing good mechanical properties and thermal stability

Country Status (7)

Country Link
US (1) US20120070644A1 (zh)
EP (1) EP2420311A4 (zh)
JP (1) JP2012522669A (zh)
KR (1) KR101394622B1 (zh)
CN (1) CN102405095A (zh)
TW (1) TW201105505A (zh)
WO (1) WO2010117166A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497791B (zh) * 2011-04-08 2015-08-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery
TWI501451B (zh) * 2011-04-08 2015-09-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101269207B1 (ko) * 2010-01-25 2013-05-31 에스케이이노베이션 주식회사 내열성이 우수한 다층 다공막
EP2903830B1 (de) * 2012-10-08 2018-09-12 Treofan Germany GmbH & Co.KG Mikroporöse separator-folie mit homogener porosität und erhöhter durchstossfestigkeit
KR101611229B1 (ko) * 2013-01-31 2016-04-11 제일모직 주식회사 분리막의 제조 방법과 그 분리막, 및 이를 이용한 전지
US9947928B2 (en) * 2013-02-28 2018-04-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP5844950B2 (ja) * 2013-12-26 2016-01-20 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP5876616B1 (ja) * 2014-04-11 2016-03-02 東レバッテリーセパレータフィルム株式会社 電池用セパレータ
JP2017522399A (ja) * 2014-06-06 2017-08-10 キンバリー クラーク ワールドワイド インコーポレイテッド 多孔質高分子シートから形成される熱成形物品
JP5909031B1 (ja) * 2014-06-25 2016-04-26 帝人株式会社 液体フィルター用基材及びその製造方法
KR102604599B1 (ko) * 2015-04-02 2023-11-22 에스케이이노베이션 주식회사 리튬 이차전지용 복합 분리막 및 이의 제조방법
KR20170044499A (ko) * 2015-10-15 2017-04-25 삼성에스디아이 주식회사 다공성 필름, 다공성 필름의 제조 방법, 및 이를 포함하는 전기화학 전지
JP6543164B2 (ja) * 2015-10-27 2019-07-10 旭化成株式会社 多層微多孔膜及び蓄電デバイス用セパレータ
JP6014743B1 (ja) 2015-11-30 2016-10-25 住友化学株式会社 非水電解液二次電池用セパレータおよびその利用
WO2017118616A1 (en) 2016-01-05 2017-07-13 Sabic Global Technologies B.V. Process for preparing graft copolymer comprising polyethylene
WO2017153058A1 (en) * 2016-01-05 2017-09-14 Sabic Global Technologies B.V. Process for preparing graft copolymer comprising polyethylene
EP3478487A4 (en) * 2016-08-19 2020-03-18 Jindal Films Americas LLC CO-EXTRUDED POLYETHYLENE COATINGS ON POLYPROPYLENE CORE
US11242440B2 (en) 2017-03-27 2022-02-08 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane and production method thereof
TWI638718B (zh) * 2017-08-31 2018-10-21 財團法人工業技術研究院 複合膜及其製造方法與包括複合膜的電池
KR102309225B1 (ko) * 2019-12-27 2021-10-05 닛토덴코 가부시키가이샤 복합 반투막
WO2024064698A1 (en) * 2022-09-19 2024-03-28 Amtek Research International Llc Biaxially oriented membranes from double layer, oil filled sheets

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247498A (en) 1976-08-30 1981-01-27 Akzona Incorporated Methods for making microporous products
JPS59196706A (ja) * 1983-04-22 1984-11-08 Dainippon Ink & Chem Inc 不均質膜およびその製造方法
US4980101A (en) * 1989-07-14 1990-12-25 The Dow Chemical Company Anisotropic microporous syndiotactic polystyrene membranes and a process for preparing the same
US4927535A (en) * 1989-07-14 1990-05-22 The Dow Chemical Company Microporous membranes from isotactic polystyrene and syndiotactic polystyrene
US5641565A (en) 1991-07-05 1997-06-24 Asahi Kasei Kogyo Kabushiki Kaisha Separator for a battery using an organic electrolytic solution and method for preparing the same
TW297171B (zh) 1994-12-20 1997-02-01 Hoechst Celanese Corp
KR100648026B1 (ko) * 1998-10-15 2006-11-23 가부시키가이샤 유포 코포레숀 인몰드성형용 라벨
TWI315591B (en) 2000-06-14 2009-10-01 Sumitomo Chemical Co Porous film and separator for battery using the same
JP4931163B2 (ja) 2001-04-24 2012-05-16 旭化成イーマテリアルズ株式会社 ポリオレフィン製微多孔膜
JP4540607B2 (ja) 2003-04-04 2010-09-08 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜
US6949315B1 (en) 2004-05-12 2005-09-27 Garrin Samii Shutdown separators with improved properties
KR101078456B1 (ko) 2004-10-01 2011-10-31 아사히 가세이 케미칼즈 가부시키가이샤 폴리올레핀 미다공막
JP4791044B2 (ja) * 2005-01-11 2011-10-12 日東電工株式会社 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法
TWI399295B (zh) * 2005-06-24 2013-06-21 聚乙烯多層微多孔膜與使用它之電池用隔離材及電池
JP5148093B2 (ja) * 2005-09-28 2013-02-20 東レバッテリーセパレータフィルム株式会社 ポリエチレン多層微多孔膜及びその製造方法、並びに電池用セパレータ
CN1331578C (zh) * 2005-10-13 2007-08-15 中材科技股份有限公司 耐高温聚四氟乙烯覆膜过滤材料
EP1946905B1 (en) * 2005-10-19 2016-09-14 Toray Battery Separator Film Co., Ltd. Process for producing multilayered microporous polyolefin film
JP5026981B2 (ja) * 2005-10-24 2012-09-19 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ
JP5164413B2 (ja) * 2007-04-04 2013-03-21 旭化成イーマテリアルズ株式会社 複合微多孔膜、電池用セパレータ、及び複合微多孔膜の製造方法
JP4936960B2 (ja) * 2007-04-04 2012-05-23 旭化成イーマテリアルズ株式会社 複合微多孔膜、電池用セパレータ、及び複合微多孔膜の製造方法
US8003204B2 (en) * 2007-12-26 2011-08-23 Sk Energy Co., Ltd. Microporous polyolefin multi layer film and preparing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497791B (zh) * 2011-04-08 2015-08-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery
TWI501451B (zh) * 2011-04-08 2015-09-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery
US9269938B2 (en) 2011-04-08 2016-02-23 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US9281508B2 (en) 2011-04-08 2016-03-08 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US10193117B2 (en) 2011-04-08 2019-01-29 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Also Published As

Publication number Publication date
KR20100111065A (ko) 2010-10-14
WO2010117166A2 (ko) 2010-10-14
WO2010117166A3 (ko) 2011-01-20
KR101394622B1 (ko) 2014-05-20
US20120070644A1 (en) 2012-03-22
EP2420311A4 (en) 2013-10-23
EP2420311A2 (en) 2012-02-22
JP2012522669A (ja) 2012-09-27
CN102405095A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
TW201105505A (en) Microporous polyolefin multilayer film possessing good mechanical properties and thermal stability
US8563120B2 (en) Microporous polyolefin multi layer film
US8801984B2 (en) Microporous polyolefin multi layer film and preparing method thereof
JP6093814B2 (ja) 積層セパレータ、ポリオレフィン微多孔膜、及び蓄電デバイス用セパレータ
KR101269207B1 (ko) 내열성이 우수한 다층 다공막
JP6443333B2 (ja) ポリオレフィン微多孔膜およびその製造方法
KR101448087B1 (ko) 폴리올레핀 다층 미세 다공막, 그 제조 방법, 전지용 세퍼레이터 및 전지
KR101340393B1 (ko) 폴리올레핀 미세 다공막 및 그 제조 방법, 및 전지용세퍼레이터 및 전지
EP2274787B1 (en) Microporous polyolefin film with thermally stable porous layer at high temperature
KR101404451B1 (ko) 다층 폴리올레핀계 미세다공막 및 그 제조방법
KR20120124478A (ko) 적층 다공 필름, 비수 전해액 2 차 전지용 세퍼레이터, 및 비수 전해액 2 차 전지
JP6394597B2 (ja) ポリオレフィン多層微多孔膜およびその製造方法
JP5213768B2 (ja) ポリオレフィン微多孔膜
JP7268004B2 (ja) 蓄電デバイス用セパレータ