201043129 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種散熱模組,且特別是有關於一種 雙風扇散熱模組與應用其之電子裝置。 【先前技術】 大多數電子裝置内部的電子元件於運作時都會產生 ❹ 當溫度過高時’極有可能影響到電子裝置本 身的操作性能。因此,在電子袭置中勢 熱機制去排除熱量,以避免電子裝置之損壞田月 ^^_概分為主動式散熱與被 ❹ 熱鰭片將熱逸散到空^中"。’、^例如是藉由與空氣接觸的散 採用風扇與散熱鰭片之設气桌上型電腦為例,其係同時 溫度。然而,為维持足夠 ^4降低電腦内部零組件之 與風扇又佔有太大的體積,盔熱效果,所使用的散熱鰭片 「輕、薄、短、小」之要求“。,、法滿足市場上對於電子裝置 【發明内容】 本發明係有關於一種 子裝置’係將熱管設置在巧散熱模叙與應用其之電 配置與散熱效果。 〜個風扇之間以達到更佳之空間 根據本發明之一方面 模組包括熱管、第一風屬血^出一種雙風扇散熱模組,此 、一風扇。熱管具有相對之第 3 201043129 1 w^z/ur/\ 一表面與第二表面。第一風扇對應第一表面設置,並具有 第一入風口。第二風扇對應第二表面設置,I具有第二入 風口,其中,第二入風口與第一入風口係背對背設置。 根據本發明之另一方面,提出一種電子裝置,此裝置 包括一電子元件以及一個雙風扇散熱模組。熱管連接電子 元件,並具有相對之第一表面與第二表面。第一風扇對應 第一表面設置,並具有第一入風口。第二風扇對應第二表 面設置,並具有第二入風口,其中,第二入風口與第—入 風口係背對背設置。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下· 【實施方式】 請參照第1A、1B圖’第1A圖係依照本發明較佳實 施例的一種雙風扇散熱模組之示意圖,第1B圖係第1A圖 雙風扇散熱模組省去部分元件之示意圖。雙風扇散熱模組 10包括熱管1〇卜第一風扇1〇3與第二風扇105。熱管1〇1 具有相對之第一表面101A與第二表面101B。第一風扇103 對應第一表面101A設置’並具有第一入風口 103A。第二 風扇105對應第二表面101B設置’並具有第二入風口 105A (因視角關係,未繪示於第1A圖中)’其中,第二入 風口 105A與第一入風口 l〇3A係背對背設置。 較佳地,本實施例之熱管1 〇 1係薄型熱管,而第一風 扇103與第二風扇105係薄型風扇。因此,熱管101夾置 在第一風扇103、第二風扇1〇5之間之結構係為較扁平的 201043129 結構,並不會佔去太大的體積。熱管101部分位在第一風 扇103與第二風扇1〇5之外侧,以連接其他元件進而提供 散熱之用途。 如第1A圖所示,雙風扇散熱模組1〇更包括第一隔 板107與第二隔板1〇9。第一隔板1〇7設置在熱管101之 第一表面101A,而第一風扇103裝設在第一隔板107上 方。第二隔板109設置在熱管101之第二表面101B,而第 二風扇105裝設在第二隔板1〇9下方。第一隔板1〇7與第 ❹ 二隔板109用以分隔第一風扇1〇3與第二風扇1〇5 ’並使 第一風扇103與第二風扇105之裝設更為穩固,且更加大 了熱管101與第一風扇103、第二風扇之接觸面積’ 使熱管1〇1之散熱面積增加。 第一風扇103更具有第一出風口 103B’第二風扇105 更具有第二出風口 105B。第一出風口 103B與第二出風口 105B相鄰設置,以將氣體(或空氣)導引至相同方向。較 佳地,第一出風口 103B與第二出風口 105B分別垂直第一 ❹ 入風口 103A與第二入風口 l〇5A。當啟動第一風扇1〇3與 第二風扇105後,氣體會受到風扇旋轉之葉片牽引’而分 別被導入第一入風口 103A與第二入風口 1〇5Α中’氣體再 透過同側之第一出風口 103B與第二出風口 1〇5Β離開。 在葉片持續牽引下,雙風扇散熱模組10周圍會產生 氣體循環。由於熱管101設置在第一風扇103與第二風扇 105之間,在氣體流動的過程中,熱管中傳遞的熱量 會同時與氣體進行熱交換,使氣體溫度升高’而熱管101 之溫度降低。 5 201043129 i w^/um 另外,如第1A圖所示,雙風扇散熱模組10更包括 多個散熱鰭片111,這些散熱鰭片111係相互平行’並對 應第一出風口 103Β與第二出風口 105Β設置。由於高溫之 氣體會被導引至第一出風口 103Β與第二出風口 l〇5B,散 熱籍片111用以擴大散熱的面積,提升氣體之散熱效率。 第一風扇103與第二風扇105之其他部位更可具有其 他入風口。為使圖式清晰以便說明,於第1Β圖係省去第 一風扇103而僅以第二風扇作說明。例如,第一風扇1〇3 更具有第三入風口,而第二風扇105更具有第四入風口 105C,其中,第四入風口 105C係相對第三入風口設置, 使第一風扇103與第二風扇105之間隙(熱管101所處位 置)中亦可產生氣流,有助於提升散熱速度。 較佳地,第四入風口 105C與第三入風口係錯位設 置,以降低第一風扇103與第二風扇105之氣流互相干 擾。另外,亦可使第二風扇105之第四入風口 105C小於 第二入風口 105Α,而第一風扇103之第三入風口小於第 一入風口 103Α,同樣也可降低第一風扇103與第二風扇 105之氣流互擾問題。 由於第一風扇103與第二風扇105之間設置有第一隔 板107 (見第1Α圖)與第二隔板109,於隔板上可開設貫 穿孔使氣體流通。如第1Β圖所示,第二隔板109對應第 四入風口 105C處係具有一貫穿孔109Α。如此一來,第— 隔板1〇7 (見第1Α圖)與第二隔板109之間的氣體也會 受到第一風扇103與第二風扇105之牽引,而從第一出風 口 103Β (見第1Α圖)與第二出風口 105Β導出,亦有助 201043129 於降低熱管101之溫度。 另外’如第1B圖所示,熱管101是以半環繞之方式 設置在第一風扇103 (見第1Λ圖)與第二風扇105之間。 且熱管101較佳呈現L型’其一段結構緊靠著散熱鰭片 111 ’另一段結構則緊靠著風扇並向外延伸以連接其他外 部元件。如此,當熱管101所連接的元件溫度升高時,熱 管101能夠將熱帶到第一風扇103 (見第1A圖)與第二 風扇105之間’並直接透過散熱鰭片111與外部氣體(或 ❹ 空氣)產生熱交換,以避免元件過熱的情形。 請參照第2圖,其係依照本發明較佳實施例的一種電 子裝置之示意圖。如第2圖所示,電子裝置200包括電子 元件201以及上述之雙風扇散熱模組1〇,其中,雙風扇散 熱模組10之熱管101連接電子元件201。電子裝置200例 如為桌上型或筆記型電腦,而電子元件201例如為中央處 理器、硬碟等會產生高溫之電子元件。較佳地,雙風扇散 熱模組10之散熱鰭片111可對應電子裝置200其殼體(未 ❹ 繪示)上之開口,以與外部氣體產生熱交換。當電子元件 201運作時’電子元件201產生之熱能夠透過熱管101、 第一風扇103、第二風扇105與散熱鰭片ill等元件散逸 至電子裝置200外。 另外,由於本實施例之熱管101、第一風扇103與第 二風扇105係採用薄型熱管與薄型風扇,將熱管101設置 在第一風扇103與第二風扇105之間的配置方式不僅可加 強散熱效果,且不會佔電子裝置200内部太大的空間,更 使電子裝置200内部空間的安排更為彈性,且達到更好的 201043129 1 WΟΔ /υΓΛ 空間利用。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1Α圖係依照本發明較佳實施例的一種雙風扇散熱 模組之示意圖。 第1Β圖係第1Α圖雙風扇散熱模組省去部分元件之 示意圖。 第2圖係依照本發明較佳實施例的一種電子裝置之 示意圖。 【主要元件符號說明】 10 :雙風扇散熱模組 101 :熱管 101Α :第一表面 101Β :第二表面 103 :第一風扇 103Α :第一入風口 103Β :第一出風口 105 :第二風扇 105Α :第二入風口 201043129 105B :第二出風口 105C :第四入風口 107 :第一隔板 109 :第二隔板 109A :貫穿孔 111 :散熱鰭片 200 :電子裝置 201 :電子元件201043129 VI. Description of the Invention: [Technical Field] The present invention relates to a heat dissipation module, and more particularly to a dual fan heat dissipation module and an electronic device using the same. [Prior Art] Most of the electronic components inside the electronic device are generated during operation. ❹ When the temperature is too high, it is highly likely to affect the operational performance of the electronic device itself. Therefore, in the electronic attack, the thermal mechanism is used to remove heat to avoid damage to the electronic device. Tianyue ^^_ is divided into active heat dissipation and heat dissipation. The heat fins will dissipate heat to the air. For example, an air-storing desktop computer that uses a fan and a heat sink fin that is in contact with the air is an example of a simultaneous temperature. However, in order to maintain enough ^4 to reduce the internal components of the computer and the fan occupies too much volume, the helmet heat effect, the use of the heat sink fins "light, thin, short, small" requirements "., the law to meet the market BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sub-device that sets a heat pipe in a heat-dissipating mode and uses the same electrical configuration and heat dissipation effect. Between the fans to achieve a better space according to the present invention. On one hand, the module includes a heat pipe, a first wind is a double fan cooling module, and a fan. The heat pipe has a surface of the third 201043129 1 w^z/ur/\ surface and a second surface. The fan is disposed corresponding to the first surface and has a first air inlet. The second fan is disposed corresponding to the second surface, and the I has a second air inlet, wherein the second air inlet is disposed back to back with the first air inlet. In one aspect, an electronic device is provided, the device comprising an electronic component and a dual fan heat dissipation module. The heat pipe is connected to the electronic component and has a first surface and a second surface opposite to each other. The fan is disposed corresponding to the first surface and has a first air inlet. The second fan is disposed corresponding to the second surface and has a second air inlet, wherein the second air inlet and the first air inlet are disposed back to back. The above description can be more clearly understood, and the preferred embodiments are described below in detail with reference to the accompanying drawings. [Embodiment] Please refer to FIGS. 1A and 1B. FIG. 1A is a preferred embodiment of the present invention. A schematic diagram of a dual fan heat dissipation module, FIG. 1B is a schematic diagram of a part of the dual fan heat dissipation module of FIG. 1A. The dual fan heat dissipation module 10 includes a heat pipe 1 and a first fan 1〇3 and a second. The fan 105. The heat pipe 101 has an opposite first surface 101A and a second surface 101B. The first fan 103 is disposed corresponding to the first surface 101A and has a first air inlet 103A. The second fan 105 is disposed corresponding to the second surface 101B. And having a second air inlet 105A (not shown in FIG. 1A due to the viewing angle relationship), wherein the second air inlet 105A and the first air inlet l3A are disposed back to back. Preferably, the heat pipe of the embodiment 1 〇1 series thin The heat pipe, and the first fan 103 and the second fan 105 are thin fans. Therefore, the structure in which the heat pipe 101 is sandwiched between the first fan 103 and the second fan 1〇5 is a relatively flat structure of 201043129, and does not occupy Too much volume. The heat pipe 101 is located on the outer side of the first fan 103 and the second fan 1〇5 to connect other components to provide heat dissipation. As shown in FIG. 1A, the dual fan heat dissipation module 1 The first partition plate 107 and the second partition plate 1〇9 are disposed. The first partition plate 1〇7 is disposed on the first surface 101A of the heat pipe 101, and the first fan 103 is disposed above the first partition plate 107. The second partition The plate 109 is disposed on the second surface 101B of the heat pipe 101, and the second fan 105 is disposed below the second separator 1〇9. The first partition plate 1〇7 and the second partition plate 109 are used to separate the first fan 1〇3 from the second fan 1〇5′ and make the installation of the first fan 103 and the second fan 105 more stable, and The contact area between the heat pipe 101 and the first fan 103 and the second fan is increased to increase the heat dissipation area of the heat pipe 1〇1. The first fan 103 further has a first air outlet 103B. The second fan 105 further has a second air outlet 105B. The first air outlet 103B is disposed adjacent to the second air outlet 105B to guide the gas (or air) to the same direction. Preferably, the first air outlet 103B and the second air outlet 105B are perpendicular to the first air inlet 103A and the second air inlet 10A, respectively. When the first fan 1〇3 and the second fan 105 are activated, the gas is pulled by the blades of the fan rotation and is respectively introduced into the first air inlet 103A and the second air inlet 1〇5Α, and the gas is transmitted through the same side. An air outlet 103B exits from the second air outlet 1〇5Β. Gas circulation occurs around the dual fan heatsink module 10 as the blades continue to pull. Since the heat pipe 101 is disposed between the first fan 103 and the second fan 105, during the flow of the gas, the heat transferred in the heat pipe simultaneously exchanges heat with the gas to raise the temperature of the gas and the temperature of the heat pipe 101 is lowered. 5 201043129 iw^/ um In addition, as shown in FIG. 1A , the dual fan heat dissipation module 10 further includes a plurality of heat dissipation fins 111 , which are parallel to each other 'and corresponding to the first air outlet 103 Β and the second one The tuyere 105Β is set. Since the high temperature gas is guided to the first air outlet 103Β and the second air outlet l〇5B, the heat dissipation sheet 111 is used to expand the heat dissipation area and improve the heat dissipation efficiency of the gas. The first fan 103 and other portions of the second fan 105 may have other air inlets. In order to clarify the drawing for the sake of explanation, the first fan 103 is omitted in the first drawing and only the second fan is explained. For example, the first fan 1〇3 further has a third air inlet, and the second fan 105 further has a fourth air inlet 105C. The fourth air inlet 105C is disposed opposite to the third air inlet, so that the first fan 103 and the first fan 103 The air gap between the two fans 105 (where the heat pipe 101 is located) can also generate airflow, which helps to increase the heat dissipation speed. Preferably, the fourth air inlet 105C and the third air inlet are offset to reduce interference between the airflows of the first fan 103 and the second fan 105. In addition, the fourth air inlet 105C of the second fan 105 may be smaller than the second air inlet 105Α, and the third air inlet of the first fan 103 is smaller than the first air inlet 103Α, and the first fan 103 and the second may also be lowered. The airflow mutual interference problem of the fan 105. Since the first partition plate 107 (see Fig. 1) and the second partition plate 109 are disposed between the first fan 103 and the second fan 105, a perforation can be formed in the partition plate to allow the gas to circulate. As shown in Fig. 1, the second partition 109 has a continuous perforation 109Α corresponding to the fourth air inlet 105C. As a result, the gas between the first partition plate 1〇7 (see FIG. 1) and the second partition plate 109 is also pulled by the first fan 103 and the second fan 105, and from the first air outlet 103 ( See Fig. 1) and the second air outlet 105Β, which also helps 201043129 to reduce the temperature of the heat pipe 101. Further, as shown in Fig. 1B, the heat pipe 101 is disposed between the first fan 103 (see Fig. 1) and the second fan 105 in a semi-circumferential manner. And the heat pipe 101 preferably exhibits an L-shape, a segment of which abuts the fins 111. Another segment of the structure abuts the fan and extends outwardly to connect the other outer components. Thus, when the temperature of the component to which the heat pipe 101 is connected is increased, the heat pipe 101 can tropically pass between the first fan 103 (see FIG. 1A) and the second fan 105 and directly pass through the heat dissipation fin 111 and the external gas (or ❹ Air) creates heat exchange to avoid overheating of components. Referring to Figure 2, there is shown a schematic diagram of an electronic device in accordance with a preferred embodiment of the present invention. As shown in FIG. 2, the electronic device 200 includes an electronic component 201 and the above-described dual fan heat dissipation module 1A, wherein the heat pipe 101 of the dual fan heat dissipation module 10 is connected to the electronic component 201. The electronic device 200 is, for example, a desktop type or a notebook computer, and the electronic component 201 is, for example, a central processing unit, a hard disk, or the like which generates high temperature electronic components. Preferably, the heat dissipation fins 111 of the dual fan heat dissipation module 10 can correspond to openings in the housing (not shown) of the electronic device 200 to exchange heat with external gases. When the electronic component 201 is in operation, the heat generated by the electronic component 201 can be dissipated to the outside of the electronic device 200 through the heat pipe 101, the first fan 103, the second fan 105, and the heat radiating fin ill. In addition, since the heat pipe 101, the first fan 103, and the second fan 105 of the present embodiment adopt a thin heat pipe and a thin fan, the arrangement of the heat pipe 101 between the first fan 103 and the second fan 105 can not only enhance heat dissipation. The effect does not occupy too much space inside the electronic device 200, and the arrangement of the internal space of the electronic device 200 is more flexible, and a better 201043129 1 WΟΔ /υΓΛ space utilization is achieved. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a dual fan heat dissipation module in accordance with a preferred embodiment of the present invention. The first diagram is a schematic diagram of the first component of the dual fan cooling module to save some components. Figure 2 is a schematic illustration of an electronic device in accordance with a preferred embodiment of the present invention. [Main component symbol description] 10: Dual fan heat dissipation module 101: Heat pipe 101Α: First surface 101Β: Second surface 103: First fan 103Α: First air inlet 103Β: First air outlet 105: Second fan 105Α: Second air inlet 201043129 105B: second air outlet 105C: fourth air inlet 107: first partition 109: second partition 109A: through hole 111: heat sink fin 200: electronic device 201: electronic component