TW201039472A - High power LED module structure and method of making the same - Google Patents

High power LED module structure and method of making the same Download PDF

Info

Publication number
TW201039472A
TW201039472A TW98113423A TW98113423A TW201039472A TW 201039472 A TW201039472 A TW 201039472A TW 98113423 A TW98113423 A TW 98113423A TW 98113423 A TW98113423 A TW 98113423A TW 201039472 A TW201039472 A TW 201039472A
Authority
TW
Taiwan
Prior art keywords
substrate
component
layer
module
emitting diode
Prior art date
Application number
TW98113423A
Other languages
Chinese (zh)
Other versions
TWI425684B (en
Inventor
jia-zhong Wang
wen-qiang Lin
Original Assignee
Bridge Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridge Semiconductor Corp filed Critical Bridge Semiconductor Corp
Priority to TW98113423A priority Critical patent/TW201039472A/en
Publication of TW201039472A publication Critical patent/TW201039472A/en
Application granted granted Critical
Publication of TWI425684B publication Critical patent/TWI425684B/zh

Links

Abstract

A high power LED module structure and method of making the same are disclosed at least including a module substrate and an LED component. The module substrate comprises a heat dissipation substrate and a multi-layer circuit. The heat dissipation substrate includes at least on component bonding post protruded from the upper surface thereof. The present invention is characterized in that the module substrate and the LED is not isolated by any dielectric layer or resin with low thermal conduction coefficient, such that the main thermal pathway of the LED component is directly bonded to the component bonding post of the module substrate, effectively directing away the heat source via the heat dissipation substrate. In addition, the multi-layer circuit surrounding the component bonding post provides the winding required by electrical connection between active and passive components in the module, thereby increasing the capability of the design and achieving the purpose of highly modularized. As such, this invention provides an LED module with high reliability, high design flexibility, high heat dissipation performance and low cost and a method of making the same.

Description

201039472 六、發明說明: 【發明所屬之技術領域】 本發明係錢於―種高轉光二極賴組結構及其 2方法,尤指涉及-種針對高功率元件之散熱需求特別係 j強設計之勝以軸高度模㈣統化之發光二極體模組 結構及其製作方法者。 【先前技術】 Ο 隨著光電產品之普及與發光二極體晶片功率之不斷提 昇’多晶片發光二極體模組化已逐漸成為電子照明之新趨勢, 因此作為發光二極體多晶片模組電性連接之基板,其繞線能力 與散熱特性遂成為新產品衫能獅㈣發之胃_因素之… 早期發展之散熱紹基板(Metal Core PCB),由於在發光 二極趙树位置下方含有樹脂,因此產生有整體散熱效果不佳 之問題。請參閱『第9圖』所示’其係為習知技術之高導熱型 發光二極體模組結構剖面示意圖。如圖所示:此高導熱型發光 Ο 一極體模組結構5係包括一鋁基板5 0及複數個高功率發光 二極體元件6 0。其中該鋁基板5 〇上係貼附一不導電之導熱 膠膜5 1,於此單層線路上並形成有複數個元件接墊5 2及複 數個相互串聯或並聯之電性接墊5 3、5 4。藉由表面黏著技 術將該發光二極體元件6 〇上之兩電極6 1、6 2分別與相對 應之電性接墊5 3、5 4導通,並使該高功率發光二極體元件 6 0固定於該些元件接墊5 2上。 然而,由上述之結構5可知,以傳統鋁基板所製成之發光 二極體模組,其晶片運作時所產生之熱源需經由該元件接墊5 3 201039472 膜5 1而傳導至該銘基板5 0作儲存或散溢,惟 右二導…谬膜5 1之導熱係數係雜一般金屬材質小,進而 Γ熱效果不佳之問題;另外,此基板單層之線路結 構亦限制其模組設計之彈性。 接供ίΓΓΓ極顧靖雜躲讀料求,故有其他能 =較佳金屬散熱麵(Thermal Pathway )之多層基板製作技 Γ二如曰本公司τ,提出-種利_ 導電銀膠作為連接上、下_之方式,以提供—導電與置放晶201039472 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a structure of a high-conversion dipole group and a method thereof, and more particularly to a heat-dissipating requirement for a high-power component. The structure of the light-emitting diode module that is integrated with the axis height mode (four) and its manufacturing method. [Prior Art] Ο With the popularization of optoelectronic products and the continuous improvement of the power of LEDs, multi-chip LEDs have gradually become a new trend in electronic lighting, so they are used as LED multi-chip modules. The electrical connection of the substrate, its winding ability and heat dissipation characteristics become the new product of the lion (four) of the stomach _ factors... The early development of the thermal core substrate (Metal Core PCB), due to the position under the LED pole Zhao Lan Resin, therefore, has the problem of poor overall heat dissipation. Please refer to the figure shown in Figure 9 for a high-heat-conductivity LED module structure. As shown in the figure, the high thermal conductivity type illuminator Ο one body module structure 5 includes an aluminum substrate 50 and a plurality of high power light emitting diode elements 60. The non-conductive thermal conductive film 5 1 is attached to the aluminum substrate 5, and a plurality of component pads 52 and a plurality of electrical pads 5 3 connected in series or in parallel are formed on the single-layer circuit. , 5 4. The two electrodes 6 1 and 6 2 on the LED device 6 are electrically connected to the corresponding electrical pads 5 3 and 5 4 by surface adhesion technology, and the high-power LED device 6 is turned on. 0 is fixed to the component pads 52. However, it can be seen from the above structure 5 that the light-emitting diode module made of the conventional aluminum substrate, the heat source generated during the operation of the wafer is transmitted to the substrate through the component pad 5 3 201039472 film 51. 50 0 for storage or overflow, but the right two guides... The thermal conductivity of the tantalum film 5 1 is small in general metal material, and the heat effect is not good. In addition, the circuit structure of the single layer of the substrate also limits the module design. Flexibility.接 ΓΓΓ ΓΓΓ 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖 靖, the way to provide - conductive and placed crystal

^之導熱平台’如美國申請專利第獅934及74删2號,並 :^閱_第10圖』所不’其係另—種f知技術之散熱基板製 作流程不意i如_示:首先侧印刷與烘烤方式,形成複 數個導電銀凸塊8 1於-銅iS8 〇上,接著施力於—預浸布 (Prepreg) 8 2 ’倾些導電銀凸塊8丨刺穿過該預浸布8 2 後’再將另-片銅箱8 3壓合於此預浸布8 2與複數個顯露於 該預浸布8 2外之導電銀凸塊8!上,最後形成—線路層8 4 ° 雖然以上述壓合方式所形成之線路層8 4可經由該些導 電銀凸塊81使上、下層電性導通;_,因其導電銀凸塊8 1與銅線路麟-體成形,所以在實際_上將產生因熱膨脹 而導致刀離等可讀之問題發生^另外,若欲延伸此技術加大 該導電銀凸塊81面積’亦或使用其他材料,如銅凸塊等,使 其成為承接晶片之散齡座,於實際翻上亦有製練雜以及 製造良率不佳等問題。 另外’亦有另一種散熱基板形成之方式,請參閱『第工工 圖』所示’其係再—種習知技術之散熱基板製作流程示意圖。 4 201039472 . 如圖所示:首先係提供一厚銅板g 〇,並利用蝕刻方式,於該 厚鋼板9 0之一面上形成複數個銅凸塊9 〇 i,接著係塗佈並 烘烤一絕緣材料9 1於其上,且於該絕緣材料9丄上再形成_ 金屬銅層9 2,最後形成一線路層9 3。 雖然以上述散熱基板之元件接墊與散熱板係為相同或係 一體成形之金屬,惟其線路係直接由已熟化之絕緣材料9丄上 長成,因此有附著力不佳等可靠性問題;另外,以此方式所製 成之發光一極體模組除了製程昂貴外,其單層線路繞線之限制 Ο 仍係造成模組設計最大之瓶頸之一。 綜上述習知技術所遭遇之設備限制所產生之可靠度、設計 彈杜、散熱性及價格昂貴等問題,故…般習用者係無法符合 使用者於實際使用時之所需。 【發明内容】 窃、本發明之主要目的係在於,克服習知技藝所遭遇之上述問 題並提供—種具高散熱效果之發光二鋪模減構及其製作 〇 方法者。 本發明之次要目的係在於,提供-種具多賴賴線能力 之發光二極體模組,以達成系統整合之目的。 本發明之另一目的係在於,提供一種具元件接合柱以及散 熱基板之發光二極體模組,可有效^}字元件運作時產生之熱源 直接經由下方之元件接合柱傳至該散熱基板而導出者。 為達以上之目的,本發明係一種高功率型發光二極體模組 結構及其製作方法,其中該發光二極體模組結構係至少包括一 氣组基板及-發光二極體元件,該模組絲係包含一散執基板 5 201039472 及一多層線路’該散熱基板係包括至少一凸起於其上表面之元 件接合柱,該多層線路以該凸起之元件接合柱為核心壓合於該 散熱基板上表面並向四周延伸’且與該元件接合柱及該散熱基 板之間以一絕緣層緊在、接合,形成該絕緣層、該元件接合柱及 該多層線路顯露於該模組基板之上表面,及該散熱基板顯露於 該模組基板之下表面;以及該發光二極體元件係以導熱材料固 定於該模組基板之元件接合柱上,且該發光二極體元件上之電 極與該模組基板上之電性接墊相連接。其主要特徵係在於該模 Ο 組基板與該發光二極體元件之間並無任何低導熱係數之介電 層或樹脂阻隔,使該發光二極體元件之主散熱途徑係以直接無 阻隔地接合於該模組基板之元件接合柱上。 完成上述高功率型發光二極體模組結構之製作方法,係至 少包括提供一散熱基板,並形成至少一元件接合柱於該散熱基 板之上表面,提供一線路基板及一絕緣層,並形成至少一通孔 於該線路基板及該絕緣層上;對應該元件接合柱於該通孔上 後,以加熱、加壓方式將該線路基板以該絕緣層壓合於該散熱 0 基板之上表面’使該元件接合柱埋藏於該絕緣層内並對應於該 通孔顯露出其表面;形成一電接合層於上述外露之絕緣層、線 路基板及元件接合柱之表面上,並峨電接合層接合並電性導 通該壓合之線路基板與該元件接合柱;於該壓合之線路基板以 及該電接合^上形成-祕ϋ麟祕紅進行防焊層及 阻障層之製作,以完成-完整圖案化之多層模組基板;以及將 發光-極體元件以導熱材料固定於該模組基板之元件接合柱 上’並使該發光二極體元件上之電極與該模組基板上之電性接 墊相連接。 6 201039472 【實施方式】 凊參閱『第1圖』所示,係本發明一較佳實施例之發光二 極體模組結構剖面示意圖。如圖所示:本發明係一種高功率型 發光二極體模組結構,於一較佳實施例中,該發光二極體模組 結構1係至少包括一模組基板i 〇及複數個發光二極體元件 2 0° 上述模組基板10係包含一散熱基板11,該散熱基板1 〇 1係為—平整且具上、下兩表面111、1 1 2之底座,包括 至少-凸起於該散熱基板! i上表面i i i之元件接合柱工 2 ’該些元件接合柱!2表面係具有—金屬薄膜i 3,可用以 作為黏貼元件之介面,且概熱基板1 1之下表面1 1 2係延 伸至該模組基板工〇之邊緣而成為該模組基板工〇之下表 面’可提供模組最大之散熱面積,又該散絲板i i之下表面 1 1 2並無任何舰騎或任何雜層,因此亦可提供模組最 佳之散熱介面;另外’該模組基板10尚包含-多層線路! 〇 4 ’該多層線路工4係以該凸起之元件接合柱工2為核心以 一絕緣層1 5平整關合於該散熱基板1 1上表面i i i並 向四周延伸’且該絕緣層15係介於該多層線路層14之間, 使該多層線路層1 4、該散熱基板1 ;l及該元件接合柱工2之 間以該絕緣層! 5緊密接合而無任何_,因此 光二極體模組,形成該絕緣層1 5 及該多層線路1 4顯露於該模組基板1 〇. 基板11顯露於該模組基板i 〇之下表面。其中,在 路1 4之上線路基板1 4a與下線路層i 4b之問^The thermal conductivity platform 'such as the United States patent application lion 934 and 74 delete 2, and: ^ _ _ 10th figure is not 'the other is another kind of knowledge of the heat sink substrate production process does not mean i as _ show: first Side printing and baking, forming a plurality of conductive silver bumps 8 1 on the copper iS8 ,, and then applying a force to the prepreg 8 2 'pour the conductive silver bumps 8 to puncture through the pre After immersing the cloth 8 2, the other copper plate 8 3 is pressed together with the prepreg 8 2 and a plurality of conductive silver bumps 8 ! exposed on the prepreg 8 2 , and finally the circuit layer is formed. 8 4 ° Although the circuit layer 84 formed by the above-mentioned pressing manner can electrically conduct the upper and lower layers via the conductive silver bumps 81; _, because of the conductive silver bumps 8 1 and copper lines Therefore, in actual _, there will be a problem that the knife is detached due to thermal expansion, etc. In addition, if the technique is to extend the area of the conductive silver bump 81, or use other materials, such as copper bumps, It makes it a loose-seat seat for receiving wafers, and it also has problems such as poor practice and poor manufacturing yield. In addition, there is another way to form a heat-dissipating substrate. Please refer to the schematic diagram of the manufacturing process of the heat-dissipating substrate in the "Technical Drawings". 4 201039472 . As shown in the figure: firstly, a thick copper plate g 提供 is provided, and a plurality of copper bumps 9 〇i are formed on one surface of the thick steel plate 90 by etching, followed by coating and baking an insulation. A material 9 1 is formed thereon, and a metal copper layer 9 2 is further formed on the insulating material 9 ,, and finally a wiring layer 9 3 is formed. Although the component pads of the heat dissipating substrate and the heat dissipating plate are the same or integrally formed metal, the circuit is directly grown from the cured insulating material 9 , and thus has reliability problems such as poor adhesion; In addition to the expensive process, the limitation of the single-layer circuit winding is still one of the biggest bottlenecks in the module design. In view of the reliability, design, heat dissipation and high cost of the equipment limitations encountered by the above-mentioned prior art, the conventional users cannot meet the needs of the user in actual use. SUMMARY OF THE INVENTION The main object of the present invention is to overcome the above problems encountered in the prior art and to provide a light-emitting two-mode subtractive structure with high heat dissipation effect and a method for fabricating the same. A secondary object of the present invention is to provide a light-emitting diode module with a multi-layered line capability for system integration purposes. Another object of the present invention is to provide a light emitting diode module having a component bonding post and a heat dissipating substrate, and the heat source generated during operation of the word device can be directly transmitted to the heat dissipating substrate via the lower component bonding post. Exporter. For the purpose of the above, the present invention is a high-power type LED module structure and a manufacturing method thereof, wherein the LED module structure comprises at least a gas group substrate and a light emitting diode element, the module The component wire system comprises a dispersion substrate 5 201039472 and a multilayer circuit comprising: at least one component bonding post protruding from the upper surface thereof, the multilayer circuit is pressed with the protruding component bonding pillar as a core The upper surface of the heat dissipation substrate extends to the periphery and is tightly bonded and bonded to the component bonding pillar and the heat dissipation substrate by an insulating layer, and the insulating layer, the component bonding pillar and the multilayer wiring are exposed on the module substrate. The upper surface, and the heat dissipation substrate is exposed on the lower surface of the module substrate; and the light emitting diode component is fixed on the component bonding pillar of the module substrate by a heat conductive material, and the light emitting diode component is The electrode is connected to an electrical pad on the module substrate. The main feature is that there is no dielectric layer or resin barrier with low thermal conductivity between the module substrate and the LED component, so that the main heat dissipation path of the LED component is directly and unobstructed. Bonded to the component bonding post of the module substrate. The method for fabricating the high-power type light-emitting diode module comprises at least providing a heat-dissipating substrate, and forming at least one component bonding pillar on the upper surface of the heat-dissipating substrate, providing a circuit substrate and an insulating layer, and forming At least one via hole is on the circuit substrate and the insulating layer; after the component is bonded to the via hole, the circuit substrate is laminated on the upper surface of the heat dissipation 0 substrate by heat and pressure. The component bonding pillar is buried in the insulating layer and the surface is exposed corresponding to the through hole; an electrical bonding layer is formed on the surface of the exposed insulating layer, the circuit substrate and the component bonding pillar, and the electrical bonding layer is bonded And electrically connecting the pressed circuit substrate and the component bonding pillar; forming a solder mask layer and a barrier layer on the pressed circuit substrate and the electrical bonding to complete - a fully patterned multi-layer module substrate; and fixing the light-emitting body element to the component bonding post of the module substrate with a heat conductive material and causing the electrode on the light emitting diode element and the electrode Electrical contact pads on the substrate is connected to the group. 6 201039472 [Embodiment] FIG. 1 is a cross-sectional view showing the structure of a light-emitting diode module according to a preferred embodiment of the present invention. As shown in the figure, the present invention is a high-power LED module structure. In a preferred embodiment, the LED module 1 includes at least one module substrate i and a plurality of illuminations. The diode module 20° includes a heat dissipation substrate 11 which is a flat substrate having upper and lower surfaces 111 and 112, including at least a protrusion. The heat sink substrate! i The components of the upper surface i i i are joined to the column 2 ' these components are bonded to the column! 2 The surface has a metal film i 3 which can be used as an interface of the adhesive component, and the lower surface of the substrate 1 1 extends to the edge of the module substrate to become the module substrate. The lower surface' provides the largest heat dissipation area of the module, and the lower surface of the slab ii has no ship or any miscellaneous layer, so it can also provide the best heat dissipation interface for the module; The group substrate 10 still contains a multi-layer circuit! 〇 4 ' The multi-layer line 4 is centered on the raised component bonding column 2 with an insulating layer 15 flatly attached to the upper surface iii of the heat dissipation substrate 1 1 and extends to the periphery 'and the insulating layer 15 Between the multilayer circuit layers 14, the insulating layer is formed between the multilayer circuit layer 14 and the heat dissipating substrate 1 and the component bonding column 2! 5 is tightly bonded without any _, so the photodiode module forms the insulating layer 15 and the multilayer wiring 14 is exposed on the module substrate 1. The substrate 11 is exposed on the lower surface of the module substrate i. Wherein, the problem of the circuit substrate 14a and the lower circuit layer i4b above the road 14

。其中,在該多層線 度之發光二極艚媪細 >A姑紹祕故1 /- 7 201039472 且6亥多層線路1 4之最上層線路層1 4〇上並且有 2 〇a上之電極2 i、2\㈣連接該些發光二極批件2 〇、 金屬薄膜H,H 而該電性接墊16表面亦具有此 鉾/鈒Μ思^金屬薄膜13係可為兩層金屬之錦/金、 金屬之物金、抑或係等效線路基板者;於 本^例中’該元件接合柱1 2表面與壓合之多層線路工4表. Wherein, in the multi-layer linearity of the light-emitting diodes > A Gu Shaoshou 1 / - 7 201039472 and 6 Hai multilayer line 14 4 of the uppermost circuit layer 1 4 并且 and there are electrodes on 2 〇 a 2 i, 2 \ (4) connected to the light-emitting diodes 2 〇, metal film H, H and the surface of the electrical pad 16 also has the 鉾 / 鈒Μ ^ ^ metal film 13 series can be two layers of metal / Gold, metal material gold, or equivalent circuit substrate; in this example, 'the component joint column 1 2 surface and press-bonded multilayer line 4 table

形態,亦可為具有一高度差形態’且藉由 f邑緣層1 5之阻隔,該元件接錄1 2與壓合之多層線路工 4之間係可形成紐料或紐不料者。 &二發光二極體元件2 〇、2…係以金屬膜、陶究 導熱膠等導熱材料2 2分·定於鋪組基板丨〇之元件接 口柱1 2上’且該發光二極體元件2 〇、2 〇a上之電極2 1、 21a與該模組基板工〇上之電性接塾工6相連接。以上所 述’係構成-全新且為高功率型之發光二極體模組結構工。The form may also have a height difference form and is blocked by the f edge layer 15 , and the component can be formed between the component 1 2 and the laminated multilayer wire 4 to form a new material or a defect. & two light-emitting diode elements 2 〇, 2... are made of a metal film, a thermal conductive material such as a thermal conductive adhesive, and the like, and are disposed on the component interface column 1 2 of the paving substrate 且 and the light-emitting diode The electrodes 2 1 and 21a on the elements 2 and 2 〇a are connected to the electrical connector 6 on the module substrate. The above-mentioned structure constitutes a new and high-power type LED diode structure structure.

本發明之主要概係在於該元件接合柱丨2係顯露於該 模板基板1 Q之上表面職絲板1 1賴露於該模組基 板1 0之下表面,因此,該模組基板丄〇與該發光二極體元件 2 0、2 〇a之間並無任何低導熱係數之介電層或樹脂阻隔, 使該發光二極體元件2 〇、2 〇a之主散熱途徑(ThermaiThe main feature of the present invention is that the component bonding post 2 is exposed on the surface of the template substrate 1 Q. The surface of the core board 1 1 is exposed on the lower surface of the module substrate 10, and therefore, the module substrate is There is no dielectric layer or resin barrier with low thermal conductivity between the light-emitting diode elements 20 and 2 〇a, and the main heat dissipation path of the light-emitting diode elements 2 〇, 2 〇a (Thermai

Pathway)係以直接無阻隔地接合導熱於該模組基板i ◦上作 儲存或散溢。 凊進一步參閱『第2圖〜第8圖』所示,係分別為本發明 一較佳實施例之製作流程(一)剖面示意圖、本發明一較佳實施 例之製作流程(二)剖面示意圖、本發明一較佳實施例之製作流 程(三)剖面示意圖、本發明一較佳實施例之製作流程(四)剖面 201039472 示意圖、本發明一較佳實施例之製作流程(五)剖面示意圖、本 發明一較佳實施例之製作流程(六)剖面示意圖及本發明一較 佳實施例之製作流程(七)剖面示意圖。如圖所示:完成上述高 功率型發光二極體模組結構1之製作方法,係至少包括下列步 驟: (A)如第2、3圖所示,提供一厚銅底板1 ia,利用 姓刻方式使該厚銅底板1 la形成為散熱基板1 1,並在該散 熱基板1 1之上表面1 1 1形成有複數個元件接合柱丄2,於 Ο 本實施例中,該厚銅底板1 la為一不含介質材料之金屬底 板,且經蝕刻後所形成之散熱基板11與該元件接合柱丄2係 無任何材料接合之一體成形者。其中,本發明亦可以電鍍、沖 壓鑄模或焊接等方式達到將該元件接合柱12形成於該散熱 基板1 1上表面1 1 1,使形成之元件接合柱1 2與散熱基板 1 1之間係以合金材料接合之非一體成形者,並且,依據不同 製程,該散熱基板11使用之材質係可包含銅、鎳、鐵、鋁、 銅合金、碳化矽(SiC)、石墨、陶究或其他等效之_材料者; 〇 (B)如第4圖所示’提供一事先經蝕刻方式形成具單面 線路14b之雙層基板i4〇以及—絕緣層:5,並利用成型 機形成至少-通孔1 7於該雙層基板丨4 ◦及舰緣層工5 上’使該通孔17之開口面積係至少等於或略大於該元件接合 柱1 2之面積且位置相互呼應,於本實施例中,該雙層基板工 4〇已事先以電性導通孔18電性連接上線路基板i 4a與下 線路層1 4b,且該絕緣層1 5係為-含玻璃纖維與環氧樹脂 混成之絕騎料。其巾’本_亦可使时職舰、機械電 鍍孔或印刷導電膠連結該上線路基板i 4a與下線路層丄化 9 201039472 (C )如第5圖所示,對應該元件接合柱1 2於該通孔上 後,以加熱、加壓方式將該雙層基板以該絕緣層15壓合於該 散熱基板1 1之上表面,使該元件接合柱1 2埋藏於該絕緣層 1 5内,並利用磨刷、電射或電漿除溢膠等方式對應於該通孔 顯露出該元件接合柱12之表面; (D) 如第6圖所示,於上述絕緣層15、外露之元件接 合柱1 2表面及上線路基板1 4a上,以無電電鍍與電鍍方式 形成一電接合層1 9,並以該電接合層1 9接合並電性導通該 Ο 壓合之雙層基板之上線路基板1 4a與該元件接合柱]^ 2 .,於 本實施例中’該電接合層19係為金屬銅層; (E) 如第7、8圖所示,於該壓合之雙層基板之上線路 基板以及该電接合層上’以蝕刻方式形成一最上層線路層1 4 c並構成一多層線路14後,再於該最上層線路層14e上進 行防焊層3 0及阻障層(即金屬薄膜工3)之製作,以完成一 完整圖案化之多層模組基板工〇。其中,該外露之線路層工4 c表面係具有複數個電性接墊i 6,且該些電性接墊丄6表面 ❹ 係具有祕屬細1 3,可作為接合贱二極體元件其電極之 介面,並且,該外露之元件接合柱工2表面亦具有該金屬薄膜 13,可作為黏貼該發光二極體元件之介面;以及 、 (F )如上述第工圖所示’可利用表面黏著技術⑺讀從 Mountmg Techn〇logy,SMT)將發光二極體元件2 〇 a以印刷踢 膏2 2、過錫爐方式焊接於該模組基板丄〇之元件接合柱12 二^使該發光二極體元件2 Qa上之電極2 u與該模級基 ^1 〇上之電性接塾1 6相連接。其+,該發光二極體元件2 a除了可為上述已完成封裝之封裝體外,亦可為晶粒抑或兩 201039472 ' 因此亦可利用晶粒接合技術(Die Bonding )先將 光二極體元件20以導熱材料(即金屬薄膜13 )置放於 二一組基板1 Qh件接合幻2上後經由打線方式使該發 光極體元件2 〇上之電極2丄與該模組基板丄〇上之電性 接墊16相連接。Pathway) is thermally or directly bonded to the module substrate i 储存 for storage or overflow. Further, referring to FIG. 2 to FIG. 8 , FIG. 2 is a cross-sectional view showing a manufacturing process (a) of a preferred embodiment of the present invention, and a cross-sectional view showing a manufacturing process (2) of a preferred embodiment of the present invention. A schematic diagram of a manufacturing process (3) of a preferred embodiment of the present invention, a manufacturing process of a preferred embodiment of the present invention, a cross section of 201039472, a manufacturing process of a preferred embodiment of the present invention, and a schematic cross-sectional view of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6 is a schematic cross-sectional view showing a cross-sectional view of a manufacturing process (6) and a manufacturing process (7) of a preferred embodiment of the present invention. As shown in the figure, the method for fabricating the high-power LED module structure 1 described above comprises at least the following steps: (A) as shown in Figures 2 and 3, providing a thick copper substrate 1 ia, using the last name The thick copper substrate 1 la is formed as a heat dissipation substrate 1 1 and a plurality of component bonding pillars 2 are formed on the upper surface 11 1 of the heat dissipation substrate 1 1 . In the embodiment, the thick copper substrate 1 la is a metal substrate without a dielectric material, and the heat-dissipating substrate 11 formed by etching and the element bonding pillar 2 are formed without any material bonding. The present invention can also be formed by electroplating, stamping, or soldering to form the component bonding post 12 on the upper surface 11 of the heat dissipating substrate 1 1 so that the formed component bonding post 12 and the heat dissipating substrate 1 1 are The non-integral shape is joined by an alloy material, and the material used for the heat dissipation substrate 11 may include copper, nickel, iron, aluminum, copper alloy, tantalum carbide (SiC), graphite, ceramics or the like according to different processes. _ _ material; 〇 (B) as shown in Figure 4 'provide a pre-etched way to form a two-layer substrate 14b with a single-sided line 14b and - insulation layer: 5, and use the molding machine to form at least - through The hole 17 is disposed on the double-layer substrate 丨4 ◦ and the ship edge layer 5 such that the opening area of the through hole 17 is at least equal to or slightly larger than the area of the component bonding post 12 and the positions correspond to each other, in this embodiment. The double-layer substrate has been electrically connected to the circuit substrate i 4a and the lower circuit layer 14b in advance, and the insulating layer 15 is composed of a glass fiber and an epoxy resin. Extreme riding. The towel 'this_ can also be used to make the time ship, mechanical plating hole or printed conductive glue to the upper circuit substrate i 4a and the lower circuit layer 9化 9 201039472 (C) as shown in Figure 5, corresponding to the component joint column 1 After the via hole is pressed, the double-layer substrate is pressed onto the upper surface of the heat dissipation substrate 1 by the insulating layer 15 by heating and pressing, so that the component bonding pillar 12 is buried in the insulating layer 15. Internally, the surface of the component bonding post 12 is exposed corresponding to the through hole by means of brushing, electro-radiation or plasma-removing glue; (D) as shown in FIG. 6, on the insulating layer 15, exposed On the surface of the component bonding pillar 12 and the upper circuit substrate 14a, an electrical bonding layer 119 is formed by electroless plating and electroplating, and the electrical bonding layer 19 is bonded and electrically connected to the bismuth-bonded two-layer substrate. The upper circuit substrate 14a and the component bonding pillar are in the present embodiment 'the electrical bonding layer 19 is a metallic copper layer; (E) as shown in Figures 7 and 8, in the bonding double Forming an uppermost circuit layer 14 c on the circuit substrate above the layer substrate and the electrical bonding layer etched to form a multilayer wiring 14 Production then at the uppermost layer wiring line 14e progress solder resist layer 30 and the barrier layer (i.e., the metal thin film work 3), the complete pattern to complete a module substrate of the multilayer ENGINEERING square. Wherein, the exposed circuit layer 4 c surface has a plurality of electrical pads i 6 , and the surface of the electrical pads 6 has a secret thin 13 , which can be used as a bonded germanium diode element. The interface of the electrode, and the surface of the exposed component bonding column 2 also has the metal film 13 as an interface for bonding the light emitting diode element; and, (F) as shown in the above drawings Adhesive technology (7) read from Mountmg Techn〇logy, SMT) to the light-emitting diode element 2 〇a to print the sponge 2 2, through the tin furnace welding on the module substrate 丄〇 of the component joint column 12 The electrode 2 u on the diode element 2 Qa is connected to the electrical interface 16 on the mode substrate. +, the light-emitting diode element 2 a can be a package of the above-mentioned completed package, or can be a die or two 201039472. Therefore, the photodiode element 20 can also be first used by die bonding technology (Die Bonding). The conductive material (ie, the metal film 13) is placed on the two sets of the substrate 1 and the Qh is bonded to the phantom 2, and then the electrode 2 丄 on the illuminating body element 2 and the module substrate are electrically connected by wire bonding. The pads 16 are connected.

Ο 於本實施例巾’上述多層模組基板由於其元件接合柱與散 熱基座為體絲之金屬’故可有效將傳統f知技術之導熱 途控’由原本經由元件接墊、導熱樹脂而傳導至絲板之方 式’簡化為直接由該元件接合柱料至大©積之散絲板儲存 或散溢’因此’係可有效解決習知技術整體導熱效果不佳等問 題。此外,該多層模組基板之上、下線路層不僅可電性相互連 接’且為一複數個相互串聯或並聯之連續或不連續線路,除了 可藉此連接複數個高功率發光二極體光件以外,更可藉由該多 層線路之電性繞線能力連接其他主、被動元件,進而增強模組 設計之彈性以達成高度模組系統化之目的。 藉此’由上述本發明一較佳實施例可知,本發明高功率型 發光二極體模組之特點在於發光二極體元件可直接接合於高 導熱之元件接合柱上,利用該元件接合柱係埋藏於絕緣層内, 可改進傳統模組基板因介電層或樹脂介於發光二極體之主散 熱途徑上所造成之阻隔,因此該發光二極體元件於運作時所產 生之熱源係可直接且有效地傳至該元件接合柱下方之散熱基 板導出,而無須經由基板内之介電層或樹脂;另外,壓合於該 散熱基板上之多層線路由於係緊密環繞於該元件接合柱之四 周’不僅能避免造成散熱途徑之干擾,更可提供模組内主、被 動元件電性相連所需之繞線,進而增強圖案設計之能性,以達 201039472 成尚度模組系統化之目的,係為一種具有高可靠度、高設計彈 性、高散熱性且具低成本之發光二極體模組結構及其製作方法 者。 紅上所述’本發明係一種高功率型發光二極體模組結構及 其製作方法,可有效改善習用之種種缺點,利用高功率發光二 極體可直接#合於冑導熱之元件接合柱上,可有效將其^作時 所產生之熱源從散熱基板導出,並可藉由多層線路之繞線能力 增強圖案設計之能性,以達成高度模組系統化之目的,進而使 〇 本發明之產生能更進步、更實用、更符合使用者之所須,確已 符合發明專利申請之要件,爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已,當不能以 此限定本發明實施之範圍,例如在散熱基板之下表面加以變形 或附加任何散熱材料之散熱塊或散熱膠等亦不影響本發明= 精神;故,凡依本發明申請專利範圍及發明說明書内容飧作之 簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍内。 〇 【圖式簡單說明】 第1圖,係本發明一較佳實施例之發光二極體模組結構剖 面示意圖。 第2圖,係本發明一較佳實施例之製作流程(一)剖面示音 圖。 心 第3圖,係本發明一較佳實施例之製作流程(二)剖面示意 圖。 第4圖,係本發明一較佳實施例之製作流程(三)剖面示意 圖。 ^ 12 201039472 第5圖’係本發明一較佳實施例之製作流程㈣剖面示意 圖。 帛6圖’係本發明一較佳實施例之製作流程(五)剖面示意 圖。 第7圖’係本發明一較佳實施例之製作流程(六)剖面示意 圖。 第8圖’係本發明一較佳實施例之製作流程(七)剖面示意 圖。 〇 第9圖’係習知技術之高導熱型發光二極體模組結構剖面 示意圖。 第10圖,係另一種習知技術之散熱基板製作流程示意 圖。 第11圓,係再一種習知技術之散熱基板製作流程示意 圖。 【主要元件符號說明】 〇 (本發明部分) 發光二極體模組結構1 模組基板10 散熱基板11 厚銅底板1 la 上表面111 下表面112 元件接合柱12 金屬薄臈13 13 201039472 多層線路1 4 雙層基板140 上線路基板1 4a 下線路層1 4b 最上層線路層1 4c 絕緣層1 5 電性接墊16 通孔1 7 0 電性導通孔18 電接合層19 發光二極體元件2 0、2 〇a 電極21、2 1 a 導熱材料22 防焊層3 0 (習用部分) 發光二極體模組結構5 〇 鋁基板50 導熱膠膜51 元件接墊5 2 電性接墊5 3、5 4 發光二極體元件6 0 電極61、6 2 銅猪8 0 導電銀凸塊81 預浸布8 2 14 201039472 銅箱8 3 線路層8 4 厚銅板9 0 銅凸塊9 01 絕緣材料91 金屬銅層9 2 線路層9 3本 In the embodiment of the invention, the above-mentioned multi-layer module substrate can effectively effectively control the heat-conducting control of the conventional technology by the element bonding pillar and the heat-dissipating base as the metal of the body wire. The way of conduction to the wire plate is simplified to directly store the column material from the element to the large volume of the loose plate for storage or overflow. Therefore, the problem of poor thermal conductivity of the conventional technology can be effectively solved. In addition, the upper and lower circuit layers of the multi-layer module substrate are not only electrically connected to each other but also a plurality of continuous or discontinuous lines connected in series or in parallel, in addition to connecting a plurality of high-power light-emitting diode lights In addition, the electrical winding capability of the multilayer circuit can be connected to other active and passive components, thereby enhancing the flexibility of the module design to achieve a high degree of modular systemization. According to a preferred embodiment of the present invention, the high-power LED module of the present invention is characterized in that the LED component can be directly bonded to the component of the high thermal conductivity component, and the component is used to bond the column. It is buried in the insulating layer, which can improve the barrier caused by the dielectric layer or the resin on the main heat dissipation path of the light-emitting diode. Therefore, the heat source generated by the LED component during operation is The heat dissipation substrate can be directly and efficiently transferred to the underside of the component bonding post without passing through the dielectric layer or resin in the substrate; in addition, the multilayer wiring pressed onto the heat dissipation substrate is closely surrounding the component bonding pillar The surrounding area can not only avoid the interference caused by the heat dissipation path, but also provide the winding required for the electrical connection of the main and passive components in the module, thereby enhancing the performance of the pattern design, so as to achieve the systemization of the 201039472 Chengshang module. The object is a light-emitting diode module structure with high reliability, high design flexibility, high heat dissipation and low cost, and a manufacturing method thereof. The invention described above is a high-power type light-emitting diode module structure and a manufacturing method thereof, which can effectively improve various disadvantages of the conventional use, and can utilize the high-power light-emitting diode to directly engage the component joint pillar of the heat conduction element. In the above, the heat source generated by the method can be effectively led out from the heat dissipation substrate, and the capability of the pattern design can be enhanced by the winding capability of the multilayer circuit to achieve the purpose of system moduleization, thereby making the invention The production can be more progressive, more practical, and more in line with the needs of the user. It has indeed met the requirements of the invention patent application, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, for example, a heat dissipating block or a heat dissipating adhesive which is deformed on the lower surface of the heat dissipating substrate or added with any heat dissipating material. The invention is not limited to the spirit of the invention; therefore, any equivalent changes and modifications made by the scope of the invention and the description of the invention are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the structure of a light-emitting diode module according to a preferred embodiment of the present invention. Fig. 2 is a cross-sectional view showing the production process (1) of a preferred embodiment of the present invention. Figure 3 is a schematic cross-sectional view showing a manufacturing process (2) of a preferred embodiment of the present invention. Fig. 4 is a schematic cross-sectional view showing a manufacturing process (3) of a preferred embodiment of the present invention. ^ 12 201039472 Fig. 5 is a schematic cross-sectional view showing a manufacturing process (four) of a preferred embodiment of the present invention. Figure 6 is a schematic cross-sectional view showing a manufacturing process (5) of a preferred embodiment of the present invention. Figure 7 is a schematic cross-sectional view showing a manufacturing process (six) of a preferred embodiment of the present invention. Figure 8 is a schematic cross-sectional view showing a manufacturing process (seven) of a preferred embodiment of the present invention. 〇 Figure 9 is a schematic cross-sectional view of a high thermal conductivity LED module of the prior art. Fig. 10 is a schematic diagram showing the flow of a heat-dissipating substrate of another conventional technique. The 11th circle is a schematic diagram of a heat-dissipating substrate production process of another conventional technique. [Main component symbol description] 〇 (part of the invention) LED module structure 1 module substrate 10 heat dissipation substrate 11 thick copper substrate 1 la upper surface 111 lower surface 112 component bonding post 12 metal thin crucible 13 13 201039472 multilayer wiring 1 4 double-layer substrate 140 upper circuit substrate 1 4a lower circuit layer 1 4b uppermost circuit layer 1 4c insulating layer 1 5 electrical pad 16 through hole 1 7 0 electrical via 18 electrical bonding layer 19 light emitting diode component 2 0, 2 〇a electrode 21, 2 1 a thermal conductive material 22 solder mask 3 0 (customized part) light-emitting diode module structure 5 〇 aluminum substrate 50 thermal film 51 component pads 5 2 electrical pads 5 3,5 4 Light-emitting diode components 6 0 Electrodes 61, 6 2 Copper pigs 8 0 Conductive silver bumps 81 Prepreg 8 2 14 201039472 Copper box 8 3 Line layer 8 4 Thick copper plate 9 0 Copper bumps 9 01 Insulation Material 91 metal copper layer 9 2 circuit layer 9 3

Claims (1)

201039472 七、申請專利範圍·· 1·一種高功率型發光二極體模組結構,係至少包括一模組基板 及一發光二極體元件,其主要特徵係在於該發光二極體元件 之主散熱途徑(Thermal Pathway)係以直接無阻隔地接合導 熱於該模組基板上,其中: 該模組基板係包含一散熱基板及一多層線路,該散熱基 板為平整且具上、下兩表面之底座,包括至少一凸起於該 散熱基板上表面之元件接合柱,且該散熱基板之下表面係延 〇 伸至該模組基板之邊緣而成為該模組基板之下表面,該多層 線路以該凸起之元件接合㈣㈣壓合於該散熱基板上表面 並向四周延伸,且與該元件接合柱及該散熱基板之間以一絕 緣層緊_合,形成該崎層、該元件接合柱及該多層線路 顯露於該基板之上表面,及雜熱基板麟於該模組基 板之下表面;以及 該發光二極體元件係以導熱材料固定於該模組基板之元 件接合柱上,且該發光二極體元件上之電極與該模組基板上 〇 之電性接墊相連接。 2 ·依據巾請專概圍第1:ii所述之高功率型發光二極體模組結 構,其中,該元件接合柱與該散熱基板間係無任何材料接合 之一體成形者。 3·依據中請專利範圍第!項所述之高功率型發光二極體模組結 構’其中,該元件接合柱與該散熱基板間係以合金材料接合 之非一體成形者。 4 .依據申料概圍第丨項所述之高功率型發光二極體模組結 構’其中,該兀件接合柱之表面與該多層線路之表面係為共 16 201039472 平形態。 5 =據^專利卿第i項所述之高辨型發光二極體模組結 j 切牛接合柱之表面與該多層線路之表面係為具 有一尚度差形錐。 6·依據申請專利範圍第i項所述之高功率型發光二極體模組結 構,其中’該元件接合柱與該多層線路係電性連接。 7接據Γγ專她圍第1項所述之高辨型發光二極體模組結 構,其中,該元件接合柱與該多層線路係電性不連接。 Ο 〇 8 ·=射請專利細第1項所述之高功率型發光二極體模組結 構,其中,該導熱材料係可為金屬膜、陶究片或導数膠。 9 ·依據申請專利顧第i項所述之高神型發光二極體模組結 構’其中,該多層線路係可包含―層或—層以上之線路,並 於最上層線路上具有至少—電性接墊,用以作為與該發光二 極體元件上之電極電性連接用。 10 ·依據中請專利範圍第i 〇項所述之高功率型發光二極體模 組結構,其中,該電性缝表面係具有—金屬薄膜,並可為 &含鎳/金、鎳/銀或義s/金之複數金制,或鱗效線路基 11.依據申請專利範圍第1項所述之高功率型發光二極體模組 結構,其中,該多層線路係事先以電性導通孔、雷射電鑛孔、 機械電鍍孔或印刷導電膠電性連接上、下線路層者。 1 2 ·依射請專利範圍第1項所述之高功率型發光二極體模組 結構,其中,該散熱基板之材質係可為銅m、銅 合金、碳化矽(SiC)、石墨或陶瓷之導熱材料。 13·依據申請專利範圍第1項所述之高功率型發光二極體模組 17 201039472 結構,其中,該模組基板之多層線路係為一複數個相互串聯 或並聯之連續或非連續線路者。 14·依據申請專利範圍第1項所述之高功率型發光二極體模組 結構,其中,該發光二極體元件係可為晶粒'已完成封裝之 封裝體或兩者共存者。 15 ·—種高功率型發光二極體模組之製作方法,係至少包含下 列步驟: (A) &供一散熱基板,並形成至少一元件接合柱於該 〇 散熱基板之上表面; (B) 提供一線路基板及一絕緣層,並形成至少一通孔 於該線路基板及該絕緣層上; (C) 對應該元件接合柱於該通孔上後,以加熱、加壓 方式將該線路基板以該絕緣層壓合於該散熱基板之上表面, 使該元件接合柱埋藏於該絕緣層内並對應於該通孔顯露出其 表面; (D) 形成一電接合層於上述外露之絕緣層、線路基板 〇 及元件接合柱之表面上,並以該電接合層接合並電性導通該 壓合之線路基板與該元件接合柱; (E) 於該壓合之線路基板以及該電接合層上形成一線 路層並構成一多層線路後,再於該線路層上進行防焊層及阻 障層之製作,以完成一完整圖案化之多層模組基板;以及 (F) 將發光二極體元件以導熱材料固定於該模組基板 之元件接合柱上’並使該發光二極體元件上之電極與該模組 基板上之電性接墊相連接。 16.依據申請專利範圍第15項所述之高功率型發光二極體模 201039472 組結構,其中,該步驟⑷之元件接合柱係可由餘刻、電 鍍、沖壓鑄模或焊接形成於該散熱基板之上表面。 17.依據中請專利範圍第!5項所述之高功率型發光二極體模 組結構,纟中,該通孔之開口面積係至少等於或大於該元件 接合柱之面積且位置相互呼應。 18 ·依據申請專利範圍第i 5項所述之高功率型發光二極體模 組結構,其中,該步驟(c)係以磨刷、電射或電聚除溢膠 之方式顯露出該元件接合柱之表面。 Ο 19·依據申請專利範圍第15項所述之高功率型發光二極體模 組結構,其中,該步驟(F)之發光二極體元件係由表面黏 著技術(Surface Mounting Technology, SMT )以印刷錫膏、過 錫爐方式焊接於該模組基板之元件接合柱上。 2 0 ·依據申請專利範圍第1 5項所述之高功率型發光二極體模 組結構,其中’該步驟(F)之發光二極體元件係由晶粒接 合技術(Die Bonding)以導熱材料置放於該模組基板之元件 接合柱上,經由打線方式使該發光二極體元件上之電極與兮 〇 模組基板上之電性接墊相連接。 Λ201039472 VII. Patent Application Range··1. A high-power LED module structure comprising at least one module substrate and one LED component, the main feature of which is the main component of the LED component The thermal path is thermally and directly bonded to the module substrate. The module substrate includes a heat dissipation substrate and a multilayer circuit. The heat dissipation substrate is flat and has upper and lower surfaces. The base includes at least one component bonding post protruding from the upper surface of the heat dissipation substrate, and the lower surface of the heat dissipation substrate extends to the edge of the module substrate to become a lower surface of the module substrate, the multilayer circuit The protruding component is bonded (4) and (4) to the upper surface of the heat dissipating substrate and extends to the periphery, and is tightly combined with the component bonding post and the heat dissipating substrate to form the saddle layer and the component bonding post. And the multilayer circuit is exposed on the upper surface of the substrate, and the heat-heating substrate is adjacent to the lower surface of the module substrate; and the light-emitting diode component is fixed on the conductive material The substrate engaging element group column, and the upper electrode of the light emitting diode element and the square of the electrical module is connected to the substrate contact pads. 2 Depending on the towel, please refer to the high power type LED module structure described in Section 1:ii, wherein the component bonding post and the heat dissipating substrate are formed without any material. 3. According to the patent scope of the request! The high power type light emitting diode module structure described in the above, wherein the element bonding pillar and the heat dissipation substrate are non-integrally formed by bonding an alloy material. 4. The high power type light emitting diode module structure according to the above item, wherein the surface of the element joint column and the surface of the multilayer line are in a flat form of 2010. 5 = According to the patent of the patented item i, the surface of the high-density light-emitting diode module j and the surface of the multilayered line have a differential cone. 6. The high power type light emitting diode module structure according to claim i, wherein the component bonding post is electrically connected to the multilayer wiring. The invention relates to the high-resolution light-emitting diode module structure according to Item 1, wherein the component bonding post is not electrically connected to the multilayer wiring system. Ο 〇 8 · The high-power LED module structure described in the above-mentioned patent item 1, wherein the heat-conducting material can be a metal film, a ceramic film or a derivative glue. 9 · According to the patent application of the high-lying light-emitting diode module structure described in the first item, wherein the multi-layer circuit system may comprise a layer above or above the layer, and at least on the uppermost line. The susceptor is used for electrically connecting the electrode on the illuminating diode element. 10. The high power type LED module structure according to the scope of the patent application, wherein the surface of the electrical seam has a metal film and can be & nickel/gold, nickel/ A high-power type light-emitting diode module structure according to the first aspect of the patent application, wherein the multi-layer circuit is electrically conductive in advance. Holes, laser electric ore holes, mechanical plating holes or printed conductive adhesives are electrically connected to the upper and lower circuit layers. 1 2 · According to the high-power type light-emitting diode module structure described in the first paragraph of the patent scope, the material of the heat-dissipating substrate may be copper m, copper alloy, tantalum carbide (SiC), graphite or ceramic. Thermally conductive material. 13. The structure of the high power type LED module 17 201039472 according to claim 1, wherein the multilayer circuit of the module substrate is a plurality of continuous or discontinuous lines connected in series or in parallel. . The high power type light emitting diode module structure according to claim 1, wherein the light emitting diode element is a package of a die 'completed package or a coexistence of both. The method for manufacturing a high-power type light-emitting diode module comprises at least the following steps: (A) & providing a heat-dissipating substrate and forming at least one component bonding post on the upper surface of the heat-dissipating substrate; B) providing a circuit substrate and an insulating layer, and forming at least one through hole on the circuit substrate and the insulating layer; (C) corresponding to the component bonding post on the through hole, heating and pressing the line The substrate is laminated on the upper surface of the heat dissipation substrate by the insulation, so that the component bonding pillar is buried in the insulating layer and the surface is exposed corresponding to the through hole; (D) forming an electrical bonding layer on the exposed insulation a layer, a circuit substrate and a surface of the component bonding pillar, and the electrical bonding layer is bonded and electrically connected to the bonding circuit substrate and the component bonding pillar; (E) the bonding circuit substrate and the electrical bonding After forming a circuit layer on the layer and forming a multi-layer circuit, the solder resist layer and the barrier layer are formed on the circuit layer to complete a fully patterned multi-layer module substrate; and (F) the light-emitting layer Polar body component Thermally conductive material is fixed to the element of the module substrate is bonded column 'and the electrode on the light emitting diode elements of the upper electrical pad connected to the module substrate. 16. The structure of the high power type LED module 201039472 according to claim 15 , wherein the component bonding pillar of the step (4) is formed on the heat dissipation substrate by engraving, electroplating, stamping or welding. Upper surface. 17. According to the patent scope of the request! In the high-power type LED module structure described in the fifth aspect, the opening area of the through hole is at least equal to or larger than the area of the component bonding post and the positions correspond to each other. 18) The high-power LED module structure according to the scope of claim 5, wherein the step (c) reveals the component by means of brushing, electro-radiation or electro-polymerization. Bond the surface of the column. Ο 19· The high power type LED module structure according to claim 15 , wherein the LED component of the step (F) is a surface mount technology (SMT) The solder paste and the tin solder furnace are soldered to the component bonding posts of the module substrate. 2 0 · According to the high-power type light-emitting diode module structure described in claim 15 of the patent application, wherein the light-emitting diode element of the step (F) is thermally conductive by die bonding technology (Die Bonding) The material is placed on the component bonding pillar of the module substrate, and the electrode on the LED component is connected to the electrical pad on the 兮〇 module substrate via a wire bonding method. Λ
TW98113423A 2009-04-23 2009-04-23 High power LED module structure and method of making the same TW201039472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98113423A TW201039472A (en) 2009-04-23 2009-04-23 High power LED module structure and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98113423A TW201039472A (en) 2009-04-23 2009-04-23 High power LED module structure and method of making the same

Publications (2)

Publication Number Publication Date
TW201039472A true TW201039472A (en) 2010-11-01
TWI425684B TWI425684B (en) 2014-02-01

Family

ID=44995513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98113423A TW201039472A (en) 2009-04-23 2009-04-23 High power LED module structure and method of making the same

Country Status (1)

Country Link
TW (1) TW201039472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370123B2 (en) 2012-04-19 2016-06-14 Oe Solutions America, Inc. System and methods for reduced power consumption and heat removal in optical and optoelectronic devices and subassemblies
CN110996540A (en) * 2019-12-31 2020-04-10 生益电子股份有限公司 Manufacturing method of PCB

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166775A (en) * 2003-12-01 2005-06-23 Osram-Melco Ltd Light emitting diode module and its manufacturing method
JP5073179B2 (en) * 2005-06-09 2012-11-14 株式会社住友金属エレクトロデバイス Aluminum nitride sintered compact for storing light-emitting elements
JP2007311760A (en) * 2006-04-20 2007-11-29 Kokubu Denki Co Ltd Led module
KR20080007961A (en) * 2006-07-19 2008-01-23 알티전자 주식회사 Cooling device of led module and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370123B2 (en) 2012-04-19 2016-06-14 Oe Solutions America, Inc. System and methods for reduced power consumption and heat removal in optical and optoelectronic devices and subassemblies
US9882646B2 (en) 2012-04-19 2018-01-30 Oe Solutions America, Inc. System and method for reduced power consumption and heat removal in optical and optoelectronic devices and subassemblies
CN110996540A (en) * 2019-12-31 2020-04-10 生益电子股份有限公司 Manufacturing method of PCB

Also Published As

Publication number Publication date
TWI425684B (en) 2014-02-01

Similar Documents

Publication Publication Date Title
JP6506719B2 (en) METHOD OF MANUFACTURING PRINTED CIRCUIT BOARD HAVING ULTRA-SMALL RADIATOR
TWI569387B (en) Method of making thermally enhanced wiring board having isolator incorporated therein
JP4062358B2 (en) LED device
JP4833683B2 (en) Method for manufacturing light source module and method for manufacturing liquid crystal display device
US8716870B2 (en) Direct write interconnections and method of manufacturing thereof
TWI419272B (en) Semiconductor chip assembly with post/base heat spreader and signal post
TWI425599B (en) Semiconductor chip assembly with post/base heat spreaderand substrate
JP5624698B1 (en) Electronic component package and manufacturing method thereof
KR101986855B1 (en) Circuit for a light emitting component and method of manufacturing the same
JP2012079994A (en) Component built-in printed circuit board and its manufacturing method
TW201507556A (en) Thermally enhanced wiring board with thermal pad and electrical post
JP4992532B2 (en) Heat dissipation board and manufacturing method thereof
US10433414B2 (en) Manufacturing method of printing circuit board with micro-radiators
JP2000100987A (en) Semiconductor chip module multilayer circuit board and manufacture thereof
JP5760260B2 (en) Printed circuit board with built-in component and manufacturing method thereof
TW201815240A (en) Element-embedded circuit board structures and methods for forming the same
TW201133729A (en) Semiconductor chip assembly with post/base heat spreader and conductive trace
TW201039472A (en) High power LED module structure and method of making the same
CN102117801B (en) Manufacturing method of high-power light-emitting diode module structure
KR100923784B1 (en) Metal base circuit board superior in heat dissipation property and method of manufacturing the same
CN104867863B (en) The manufacture of electronic module
TW201318235A (en) Thermally enhanced optical package
TW200945966A (en) High power light emitting diode module package structure
TW200931633A (en) Structure of LED substrate
TWI404482B (en) Circuit board and method for forming the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees