TW201038125A - Organic light-emitting diode and method of manufacturing the same - Google Patents

Organic light-emitting diode and method of manufacturing the same Download PDF

Info

Publication number
TW201038125A
TW201038125A TW099104261A TW99104261A TW201038125A TW 201038125 A TW201038125 A TW 201038125A TW 099104261 A TW099104261 A TW 099104261A TW 99104261 A TW99104261 A TW 99104261A TW 201038125 A TW201038125 A TW 201038125A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
reflective layer
substrate
oled
Prior art date
Application number
TW099104261A
Other languages
Chinese (zh)
Other versions
TWI503051B (en
Inventor
Won-Jong Kim
Chang-Ho Lee
Jong-Hyuk Lee
Young-Woo Song
Yong-Tak Kim
Jin-Baek Choi
Joon-Gu Lee
Se-Jin Cho
Hee-Joo Ko
Il-Soo Oh
Hye-Lim Lee
Kyu-Hwan Hwang
Original Assignee
Samsung Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Mobile Display Co Ltd filed Critical Samsung Mobile Display Co Ltd
Publication of TW201038125A publication Critical patent/TW201038125A/en
Application granted granted Critical
Publication of TWI503051B publication Critical patent/TWI503051B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers

Abstract

An organic light emitting diode (OLED) including: a substrate; a reflection layer on the substrate and including metal; a first electrode on the reflection layer and including a light transparent aluminum zinc oxide (AZO); an organic layer on the first electrode and including an emitting layer; and a second electrode on the organic layer and including a semi-permeable reflection layer.

Description

201038125 六、發明說明: 【相關專利申請案之交叉引用】 本申请案主張2009年2月17日在韓國智慧財產局申 請之韓國專射請㈣1G_2_销3126制優先權及權 利,該專利申請案之全部内容以弓丨用的方式併人本文中。 【發明所屬之技術領域】 本發明係關於一種有機發光二極體(〇LED)及其製備201038125 VI. Description of invention: [Cross-reference to related patent application] This application claims the priority and right of the Korean special application for the Korean Intellectual Property Office on February 17, 2009 (4) 1G_2_Sale 3126 system, the patent application The entire content of this article is used in this article. TECHNICAL FIELD OF THE INVENTION The present invention relates to an organic light emitting diode (〇LED) and preparation thereof

〇 【先前技術】 有機發光二極體(〇LED)藉由依序堆疊作為陽極之第 一電極'有機發射層及作為陰極之第二電極來製備。 在有機發射層所發出之光透過第二電極傳遞而獲得夺 像之頂部發㈣0LED結構中,使用具有高功函數之金屬 氧化物在反射層上形成第一電極,且使用半透性反射型電 極形成第二電極。另外’頂部發射型OLED中向第二電極 發射之光的發光效率可藉由反射層與第二電極之間發 學共振而進一步提高。 ^此而言’若料陽極之第—電極之厚度增加,則可 減y g點形成且可降低功率消耗。 另外,在頂部發射型0LED巾,有機發射層所發出之 先因陽極下所形成之反射層與用作陰極之半透性反射層之 間發生共振而透過陽極傳遞。因A,^陽極之吸收常數k 增加’則發光效率降低。 在習知OLED令用作陽極之氧化銦錫(ιτ⑴層具有高 201038125 吸收常數k,且蝕刻速率不同於反射層之蝕刻速率,且因此 難以利用其來形成厚的陽極。 【發明内容】 本發明之一具體實例之一態樣係關於—種具有改良 (或優良)之發光效率及降低之功率消耗且陽極具有足夠 厚度的有機發光二極體(OLED )以及其製備方法。 本發明之一具體實例提供一種有機發光二極體 (OLED ),其包含·基板;位於該基板上且包含金屬之反 射層;位於該反射層上且包含透光氧化鋅鋁(AZ0)之第一 電極;位於該第一電極上且包含發射層之有機層;及位於 該有機層上且包含半透性反射層之第二電極。 該OLED可進一步包含位於該基板上且電耦接至該反 射層之薄膜電晶體。 該OLED可進一步包含薄膜電晶體及介於反射層與基 板之間且包括AZO的接觸層,且其中該接觸層與該薄膜電 晶體接觸。 該有機層可進一步包含介於該發射層與該第一電極之 間的第一層,其中該第一層之厚度在約4〇 nm至約12〇 nm 範圍内。 該第一電極玎具有約30 nm至約14〇 nm範圍内之厚 度。 該透光AZ0玎具有約1χ1〇_3至約2χ1〇-2範圍内之吸收 常數。 本發明之另一具體實例提供一種製備有機發光二極體 201038125 (OLED)之方法,該方法包括:在基板上形成包含金屬之 反射層;在該反射層上形成包含透光氧化鋅鋁(AZ〇)的第 一電極;在該第一電極上形成包含發射層的有機層;及在 該有機層上形成包含半透性反射層的第二電極。 該第電極之形成可包括.在反射層上沉積氧化链; 及在反射層上沉積氧化辞。 該氧化铭之沉積與該氧化辞之沉積可並行進行。 第一電極之形成可包括以約1:99與約10:9〇之間的重 〇 量比沉積氧化鋁與氧化辞。 氧化紹與氧化鋅之沉積可在約l〇〇〇c至約450〇c範圍内 之溫度下進行。 該方法可進一步包括在基板上形成薄膜電晶體,其中 反射層電耦接至該薄膜電晶體。 該方法可進一步包括在形成反射層之前形成包含Az〇 之接觸層以與薄膜電晶體接觸,其中反射層位於該接觸層 上0 ❹ 有機層可進一步包含一介於發射層與第一電極之間的 第一層’其中該第一層具有約40 nm至約120 nm範圍内之 厚度。 第一電極可具有約30 nm至約140 nm範圍内之厚声。 第一電極與反射層可並行圖案化。 因而’鑒於以上所述及如下文更詳細地描述,儘管頂 部發射結構之反射層上所形成的第一電極足夠厚,但本發 明之一具體實例之發光效率卻未降低。 201038125 因此可降低功率消耗, 另外,由於第一電極足夠厚, 且亦可增加OLED效率。 此外,反射層與作為半透性反射層之第二電極 共振厚度可藉由第一電極厚 4的 制。 电®心厚度而非有機層之第一層來控 亦可藉由並行(或同時) 反射層來增加OLED之生產力 圖案化足夠厚之第—電極及 【實施方式】 附圖連同本說明書一起說明本發明之例示性具體實例 且連同本說明書一起用以說明本發明之原理。 ^ 、下實施方式中,本發明之某些例示性具體實例僅 藉由說明加以展不及描述。如熟習此項技術者所瞭解,所 述具體實例可以各心同方式修改m偏離本發明之 精神或範嘴。目此,圖式及說明視為例示性而非限制性。 在整篇本說明書中類似參考數字表示類似元件。 圖1為本發明之一具體實例之有機發光二極體(OLED ) 的橫截面示意圖。 參看圖1 ’本發明之一具體實例之OLED包括基板j、 形成於該基板1上之反射層2、形成於該反射層2上之第— 電極3、形成於該第一電極3上之有機層4及形成於該有機 層4上之第二電極5。 基板1可由玻璃形成,但用以形成基板1之材料不限 於此。基板1亦可由塑膠、金屬或其類似物形成。基板ι 上(例如在基板1與反射層2之間)亦可形成絕緣層,以 201038125 平坦化基板1之表面且減少或防止雜質自基板丨擴散。基 板1可透光。然而,本發明不限於此,且基板丨可不透光。 反射層2可由具有高光反射率之材料(諸如金屬)形 成。反射層2之厚度經確定,應使得光充分被反射。 反射層2可由A卜Ag、Cr、M〇或其類似物形成且可 具有約ι,οοο A之厚度。 第一電極3可使用透光摻鋁氧化辞或氧化辞鋁(Az〇 ) 形成於反射層2上。第一電極3充當〇LED之陽極。 €) 藉由以特定比率混合氧化鋁(例如a12〇3 )與氧化鋅(例 如ZnO )且沉積混合物來形成AZ〇。所形成之Az〇可透光。 氧化鋁與氧化鋅之比率可在1:99至1〇:9〇 (或約1;99 至为10.90 )之叙圍内。氧化銘與氧化辞之比率可為2.98(或 約2:98)。若氧化鋁部分小於丄或大於1〇,則電阻值會增 加。 另外’氧化銘與氧化鋅可藉由室内各別坩鍋、於1〇〇 至450°c (或約100至約45〇r )範圍内之溫度下並行(或 ◎同時)沉積’以形成AZ0層。在一具體實例中,若沉積溫 度小於loot,則AZO層之品質降低,透射率減小,且吸 收常數k増加。在一具體實例中’若沉積溫度大於4 $ 〇, 則基板會變$。 AZO層之吸收常數可在1χ1〇-3至2χ1〇_2 (或約ΐχΐ〇·3 至約2xl〇 2)範圍内。當吸收常數k減小時,功率消耗降低, 且因此頂部發射之發光效率提高。 圖2為曲線圖’其說明本發明之具體實例之Αζο層(π 201038125 及III)的吸收常數k與習知ITO層(I)之吸收常數k與波 長的關係。 圖2之曲線II展示當氧化鋁與氧化辞在2〇〇°C下以2:98 之重量比沉積時AZO層之吸收常數k。圖2之曲線III展示 當氧化鋁與氧化鋅在40CTC下以2:98之重量比沉積時AZO 層之吸收常數k。依據曲線II,AZO層在450至650 nm範 圍内之可見光波長區域中顯示0.016至〇.〇12範圍内之低吸 收常數。依據曲線III,AZO層在可見光波長區域中顯示 0_002至0.006範圍内之甚至更低之吸收常數。兩個AZO層 之吸收常數均比ITO層(I)在可見光波長區域中0.022至 〇.〇4範圍内之吸收常數低得多。 當吸收常數減小90。/。時,功率消耗降低約1 〇%。因此, 在400°C下沉積之AZO層之吸收常數小於在200〇c下沉積之 AZO層之吸收常數。吸收常數難以降至小於1χ1〇-3。 因為ΑΖΟ層之蝕刻速度比用作習知陽極之ΙΤ〇層快, 所以更易並行(或同時)圖案化ΑΖΟ層與反射層2。亦即, 當ΙΤΟ層具有200 Α(或約200 Α)之厚度時’難以並行(或 同時)蝕刻ITO層與使用Ag所形成之反射層2。然而,因 為具有超過1000人(或約1000A)之厚度之AZO層具有高 蝕刻速率,所以易於並行(或同時)蝕刻AZ〇層與使用Ag 所形成之反射層2。因此,第—電極3可具有足夠厚度,亦 即30至140 nm (或約30至約140 nm)範圍内之厚度,且 因此可降低功率消耗,且可滿足共振厚度,即反射層2與 第一電極5之間的距離tl。通常在有機層上形成支撐層, 201038125 以滿足共振厚度。然而,此處無需此類額外支撐層。 有機層4包括發射層42。 第一層41作為常見功能層插入發射層42與第一電極3 之間。 第一層41可藉由堆疊電洞注入層(HIL )與電洞輸送 層(HTL )或選擇性堆疊hil與HTL之一來形成。 HIL可使用熱蒸發或旋塗法、由用以形成HIL之材料 來形成。〇 [Prior Art] An organic light-emitting diode (〇LED) is prepared by sequentially stacking a first electrode as an anode, an organic emission layer, and a second electrode as a cathode. In the top (four) OLED structure in which light emitted from the organic emission layer is transmitted through the second electrode to obtain a image, a first electrode is formed on the reflective layer using a metal oxide having a high work function, and a semi-transparent reflective electrode is used. A second electrode is formed. Further, the luminous efficiency of light emitted to the second electrode in the top emission type OLED can be further improved by the resonance between the reflective layer and the second electrode. ^In this case, if the thickness of the first electrode of the anode is increased, the y g point can be formed and the power consumption can be reduced. Further, in the top emission type OLED wafer, the organic emission layer is transmitted through the anode due to resonance between the reflective layer formed under the anode and the semipermeable reflective layer serving as the cathode. Since the absorption constant k of the anode of A and ^ increases, the luminous efficiency decreases. In the conventional OLED, the indium tin oxide used as the anode (the ιτ(1) layer has a high absorption constant k of 201038125, and the etching rate is different from the etching rate of the reflective layer, and thus it is difficult to use it to form a thick anode. [Invention] One aspect of one specific embodiment relates to an organic light-emitting diode (OLED) having improved (or excellent) luminous efficiency and reduced power consumption and having a sufficient thickness of the anode, and a method of preparing the same. An example provides an organic light emitting diode (OLED) comprising: a substrate; a reflective layer on the substrate and comprising a metal; a first electrode on the reflective layer and comprising light transmissive zinc aluminum oxide (AZ0); An organic layer on the first electrode and including an emissive layer; and a second electrode on the organic layer and including a semi-transparent reflective layer. The OLED may further comprise a thin film electrically disposed on the substrate and electrically coupled to the reflective layer The OLED may further include a thin film transistor and a contact layer interposed between the reflective layer and the substrate and including AZO, and wherein the contact layer is connected to the thin film transistor The organic layer may further include a first layer between the emissive layer and the first electrode, wherein the first layer has a thickness in a range of about 4 〇 nm to about 12 〇 nm. A thickness in the range of from about 30 nm to about 14 Å. The light transmissive AZ0 玎 has an absorption constant in the range of from about 1 χ 1 〇 3 to about 2 χ 1 〇 - 2. Another embodiment of the present invention provides an organic light emitting diode. The method of 201038125 (OLED), the method comprising: forming a reflective layer comprising a metal on a substrate; forming a first electrode comprising light-transmissive zinc aluminum oxide (AZ〇) on the reflective layer; forming on the first electrode An organic layer comprising an emissive layer; and forming a second electrode comprising a semi-permeable reflective layer on the organic layer. The forming of the first electrode may include depositing an oxidized chain on the reflective layer; and depositing an oxidized word on the reflective layer. The deposition of the oxidation can be performed in parallel with the deposition of the oxidation. The formation of the first electrode can include depositing alumina and oxidation with a weight ratio of between about 1:99 and about 10:9 Å. The deposition of zinc oxide can be in the range of about l〇〇〇c The method may further comprise forming a thin film transistor on the substrate, wherein the reflective layer is electrically coupled to the thin film transistor. The method may further comprise forming the Az〇 before forming the reflective layer. The contact layer is in contact with the thin film transistor, wherein the reflective layer is on the contact layer. The organic layer may further comprise a first layer between the emissive layer and the first electrode, wherein the first layer has about 40 nm to Thickness in the range of about 120 nm. The first electrode can have a thick sound in the range of about 30 nm to about 140 nm. The first electrode and the reflective layer can be patterned in parallel. Thus, in view of the above and as described in more detail below Although the first electrode formed on the reflective layer of the top emission structure is sufficiently thick, the luminous efficiency of one embodiment of the present invention is not lowered. 201038125 therefore reduces power consumption and, in addition, because the first electrode is thick enough and can also increase OLED efficiency. Further, the resonance thickness of the reflective layer and the second electrode as the semi-transmissive reflective layer can be made thick by the first electrode thickness 4. The first layer of the thickness of the core, rather than the organic layer, can also be increased by the parallel (or simultaneous) reflective layer to increase the productivity of the OLED. The electrode is sufficiently thick and the first embodiment and the accompanying drawings Illustrative embodiments of the invention, together with the specification, are used to illustrate the principles of the invention. In the following embodiments, some illustrative specific examples of the invention are described by way of illustration only. As will be appreciated by those skilled in the art, the specific examples can be modified in a manner that is deviating from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative rather than limiting. Like reference numerals indicate like elements throughout the specification. 1 is a schematic cross-sectional view of an organic light emitting diode (OLED) according to an embodiment of the present invention. Referring to FIG. 1 , an OLED according to an embodiment of the present invention includes a substrate j, a reflective layer 2 formed on the substrate 1, a first electrode 3 formed on the reflective layer 2, and an organic layer formed on the first electrode 3. Layer 4 and a second electrode 5 formed on the organic layer 4. The substrate 1 may be formed of glass, but the material for forming the substrate 1 is not limited thereto. The substrate 1 may also be formed of plastic, metal or the like. An insulating layer may also be formed on the substrate ι (for example between the substrate 1 and the reflective layer 2) to planarize the surface of the substrate 1 with 201038125 and to reduce or prevent the diffusion of impurities from the substrate. The substrate 1 is light transmissive. However, the present invention is not limited thereto, and the substrate 丨 may be opaque. The reflective layer 2 can be formed of a material having a high light reflectivity such as a metal. The thickness of the reflective layer 2 is determined such that the light is sufficiently reflected. The reflective layer 2 may be formed of A, Ag, Cr, M, or the like and may have a thickness of about ι, οοο. The first electrode 3 may be formed on the reflective layer 2 using a light-transmitting aluminum-doped oxidized or oxidized aluminum (Az〇). The first electrode 3 serves as the anode of the 〇LED. €) AZ〇 is formed by mixing alumina (e.g., a12〇3) with zinc oxide (e.g., ZnO) at a specific ratio and depositing a mixture. The formed Az〇 can transmit light. The ratio of alumina to zinc oxide can range from 1:99 to 1 〇:9 〇 (or from about 1;99 to 10.90). The ratio of oxidized to oxidized words can be 2.98 (or about 2:98). If the alumina portion is less than 丄 or greater than 1 〇, the resistance value will increase. In addition, 'Oxide and Zinc Oxide can be deposited in parallel (or ◎ simultaneous) at a temperature ranging from 1 〇〇 to 450 ° C (or from about 100 to about 45 〇r) to form AZ0. Floor. In one embodiment, if the deposition temperature is less than the loot, the quality of the AZO layer is lowered, the transmittance is decreased, and the absorption constant k is increased. In a specific example, if the deposition temperature is greater than 4 $ 〇, the substrate will become $. The absorption constant of the AZO layer may range from 1χ1〇-3 to 2χ1〇_2 (or from about ΐχΐ〇·3 to about 2xl〇 2). When the absorption constant k is decreased, the power consumption is lowered, and thus the luminous efficiency of the top emission is improved. Fig. 2 is a graph showing the relationship between the absorption constant k of the layer (π 201038125 and III) of the specific example of the present invention and the absorption constant k of the conventional ITO layer (I) and the wavelength. Curve II of Figure 2 shows the absorption constant k of the AZO layer when alumina is deposited with the oxidation at a weight ratio of 2:98 at 2 °C. Curve III of Figure 2 shows the absorption constant k of the AZO layer when alumina and zinc oxide are deposited at a weight ratio of 2:98 at 40 CTC. According to curve II, the AZO layer exhibits a low absorption constant in the range of 0.016 to 〇.〇12 in the visible light wavelength region in the range of 450 to 650 nm. According to the curve III, the AZO layer exhibits an even lower absorption constant in the range of 0_002 to 0.006 in the visible light wavelength region. The absorption constants of the two AZO layers are much lower than the absorption constants of the ITO layer (I) in the range of 0.022 to 〇.〇4 in the visible light wavelength region. When the absorption constant is reduced by 90. /. At the time, the power consumption is reduced by about 1%. Therefore, the absorption constant of the AZO layer deposited at 400 ° C is smaller than the absorption constant of the AZO layer deposited at 200 ° C. It is difficult to reduce the absorption constant to less than 1χ1〇-3. Since the enamel layer is etched faster than the ruthenium layer used as a conventional anode, it is easier to pattern the ruthenium layer and the reflection layer 2 in parallel (or simultaneously). That is, when the tantalum layer has a thickness of 200 Å (or about 200 Å), it is difficult to etch the ITO layer in parallel (or simultaneously) with the reflective layer 2 formed using Ag. However, since the AZO layer having a thickness of more than 1000 people (or about 1000 A) has a high etching rate, it is easy to etch the AZ layer and the reflection layer 2 formed using Ag in parallel (or simultaneously). Therefore, the first electrode 3 can have a thickness sufficient, that is, a thickness in the range of 30 to 140 nm (or about 30 to about 140 nm), and thus can reduce power consumption, and can satisfy the resonance thickness, that is, the reflective layer 2 and the first The distance between one electrode 5 is t1. A support layer is usually formed on the organic layer, 201038125 to meet the resonance thickness. However, such additional support layers are not required here. The organic layer 4 includes an emissive layer 42. The first layer 41 is interposed between the emissive layer 42 and the first electrode 3 as a common functional layer. The first layer 41 can be formed by stacking a hole injection layer (HIL) and a hole transport layer (HTL) or selectively stacking one of hil and HTL. The HIL can be formed by a material used to form the HIL using thermal evaporation or spin coating.

用以形成HIL之材料可為酿花青(phthai〇Cyanine )化 合物’諸如銅醜青’或星爆型胺衍生物,諸如TCTA、 m-MTDATA 及 m-MTDAPB。The material for forming the HIL may be a phthai 〇 Cyanine compound such as copper ugly or a starburst amine derivative such as TCTA, m-MTDATA and m-MTDAPB.

HTL可藉由真空沉積 '旋塗、澆鑄、朗繆爾布羅傑特 (Langmuir Blodgett,LB ) HTL之材料形成於HIL上。 或其類似方法、使用用以形成 HTL可藉由真空沉積來形成, 以獲得均—層且減少或防止針孔形成。當HTL由真空沉積 形成時,真空沉積條件可根據用以形成HTL之材料而變 二而 般而σ真空沉積之條件類似於形成HIL之 條件。 -曱基苯基)-N,N'- 用以形成HTL·之材料可為ν,νι-雙(3 9 201038125 二苯基-Π,1-聯苯]-4,4,-二胺(TPD)及 基)-N,N-_—本基聯苯胺(α-NPD),但不限於此。The HTL can be formed on the HIL by vacuum deposition of 'spin coating, casting, and Langmuir Blodgett (LB) HTL material. Or a similar method, used to form the HTL, can be formed by vacuum deposition to obtain a uniform layer and to reduce or prevent pinhole formation. When the HTL is formed by vacuum deposition, the vacuum deposition conditions may vary depending on the material used to form the HTL, and the conditions of σ vacuum deposition are similar to those for forming the HIL. - mercaptophenyl)-N,N'- The material used to form the HTL· can be ν, νι-bis (3 9 201038125 diphenyl-fluorene, 1-biphenyl)-4,4,-diamine ( TPD) and base)-N,N-_-benylbenzidine (α-NPD), but are not limited thereto.

接著在第一層41上形成發射層42,且在發射層42上 形成第二層43作為另一常見功能層。 第二層43可藉由堆疊電子注入層(EIL)與電子輸送 層(ETL )或選擇性堆疊EIL與ETL之一來形成。 EIL 可由 LiF、NaC卜 CsF、Li2〇、BaO、Liq 或其類似 物形成。EIL之厚度可在1至100 A(或約1至約i〇〇A)範 圍内,但不限於此。An emissive layer 42 is then formed on the first layer 41, and a second layer 43 is formed on the emissive layer 42 as another common functional layer. The second layer 43 can be formed by stacking an electron injection layer (EIL) with an electron transport layer (ETL) or selectively stacking one of EIL and ETL. The EIL may be formed of LiF, NaC, CsF, Li2, BaO, Liq or the like. The thickness of the EIL may be in the range of 1 to 100 A (or about 1 to about i 〇〇 A), but is not limited thereto.

Liq ETL可使用真空沉積或旋塗法形成。用以形成ετ[之 材料可為Alq3,但不限於此。雖然ETL之厚度可在至Liq ETL can be formed using vacuum deposition or spin coating. The material used to form ετ [may be Alq3, but is not limited thereto. Although the thickness of ETL can be

600 A (或 他層之材料而變化。600 A (or the material of his layer varies.

ETL之間。用以形成HBL之 之材料具有高電子輸送能力及高 201038125Between ETL. The material used to form the HBL has high electron transport capability and high 201038125

於發射化合物的游離電位。用以形成 Balq、BCP及TPBI,但不限於此。The free potential of the emitting compound. Used to form Balq, BCP and TPBI, but is not limited to this.

發射層42可由主體材料與摻雜材料之混合物形成,或 可獨立地由主體材料或摻雜材料形成。 HBL之材料可為Emissive layer 42 may be formed from a mixture of host material and dopant material, or may be formed independently of host material or dopant material. HBL material can be

主體材料可為參(8-經基-喹琳)鋁(Aiq3) 、9,1〇_二(萘 -2-基)蒽(AND ) 、3-第三丁基·9,1〇•二(萘 _2_ 基)蒽The host material may be ginseng (8-carbyl-quinolin) aluminum (Aiq3), 9,1 〇_bis(naphthalen-2-yl)anthracene (AND), 3-tert-butyl·9,1〇•2 (naphthalene_2_yl)蒽

(TBADN) 、4,4_ 雙(2,2-二苯基-乙稀 _1_基)_4,4’_二曱基苯 基(DPVBi) 、4,4·-雙(2,2-二苯基-乙烯-卜基)_4,4,_二甲基 苯基(p-DMDPVBi )、第三(9,9-二芳基第)(tdAF )、2-(9,9'_ 螺雙苐-2 -基)-9,9’-螺雙苐(BSDF) 、2,7-雙(9,9’_螺雙葬 -2-yl)-9,9’-螺雙苐(TSDF)、雙(9,9-二芳基苐)(BDAF)、 4,4’-雙(2,2-二苯基-乙烯-1-基)_4,4'-二-(第三丁基)苯基 (p-TDPVBi)、1,3-雙(吟唑-9-基)苯(mCP)、1,3,5-參(味 11 坐-9-基)苯(tCP)、4,4’,4M-參(咔唑-9-基)三苯胺(TcTa)、 4,4'-雙(咔嗤-9-基)聯苯(CBP) 、4,4,-雙(9-咔嗤基)-2,2,-二 甲基-聯苯(CBDP) 、4,4'-雙(咔唑-9-基)-9,9-二甲基-苐 (DMFL-CBP )、4,4'-雙(咔唑-9-基)-9,9-雙(9-苯基-9H-咔唑) 苐(FL-4CBP ) 、4,4,-雙(咔唑-9-基)-9,9-二甲苯基_苐 (DPFL-CBP )、9,9-雙(9-苯基-9H-咔唑)第(FL-2CBP )或 其類似物。 11 201038125 摻雜材料可為4,4,-雙[4-(二對甲苯基胺基)苯乙烯基]聯 笨(DPAVBl)、9,1〇-二(萘-2-基)蒽(ADN)、3-第三丁基 -9,10-二(萘-2-基)蒽(TBadn)或其類似物。 r~i(TBADN), 4,4_bis(2,2-diphenyl-ethlyl-1-yl)_4,4'-dinonylphenyl (DPVBi), 4,4·-bis (2,2-di Phenyl-ethylene-diyl)_4,4,_dimethylphenyl (p-DMDPVBi), third (9,9-diaryl) (tdAF), 2-(9,9'_ snail苐-2 -yl)-9,9'-spirobiguanide (BSDF), 2,7-double (9,9'-spiro double burial-2-yl)-9,9'-spirobiguanide (TSDF) , bis(9,9-diarylfluorene) (BDAF), 4,4'-bis(2,2-diphenyl-ethen-1-yl)_4,4'-di-(t-butyl) Phenyl (p-TDPVBi), 1,3-bis(carbazol-9-yl)benzene (mCP), 1,3,5-parade (taste 11 -9-yl)benzene (tCP), 4, 4 ',4M-gin (carbazol-9-yl)triphenylamine (TcTa), 4,4'-bis(indol-9-yl)biphenyl (CBP), 4,4,-bis(9-咔嗤-2,2,-dimethyl-biphenyl (CBDP), 4,4'-bis(carbazol-9-yl)-9,9-dimethyl-indole (DMFL-CBP), 4, 4'-bis(carbazol-9-yl)-9,9-bis(9-phenyl-9H-carbazole) fluorene (FL-4CBP), 4,4,-bis(carbazol-9-yl) -9,9-Dimethylphenyl-indole (DPFL-CBP), 9,9-bis(9-phenyl-9H-carbazole) (FL-2CBP) or an analog thereof. 11 201038125 The doping material can be 4,4,-bis[4-(di-p-tolylamino)styryl] phenyl (DPAVBl), 9,1 〇-bis(naphthalen-2-yl) fluorene (ADN) , 3-tert-butyl-9,10-di(naphthalen-2-yl)indole (TBadn) or an analogue thereof. r~i

DPAVBiDPAVBi

ANDAND

TBADN 形成有機層4後,在有機層4上形成第二電極5。 第二電極5係使用低功函數金屬形成。可藉由減少厚 度進行半透性反射。Mg:Ag薄層可具有⑽至· A (或約 100至約300 A)靶圍内之厚度。亦可使用低功函數金屬, 諸如Al、Au及Cr。 *形成第二電極5後,可在第二電極5上形成封蓋層卜 封蓋層6可由透明有機或無機材料形成以透光。 12 201038125 • 由於光學共振,因此可藉由調節反射層2與第二電極5 之間彼此相向的距離U以達成發射層42之發射波長來增加 光耦合效率。 因為在習知OLED中第-電極3難以具有賴厚度t3, 所以需要增加第-層41之厚度t2以滿足共振距離u。在習 知OLED中,第一電極3之厚度t3等於或超過丨〇〇〇人。 然而,根據本發明之一具體實例,因為AZ〇用作第一 電極3,所以第一電極3之厚度〇可足夠厚,例如在%至 140 nm (或約30至約14〇 nm)範圍内,且因此可減少有機 曰4之第層41之厚度t2。根據本發明之一具體實例,第 層41之厚度t2在40至12〇 nm (或約40至約120 nm) 範圍内w有機層4之厚度因增加AZ〇電極厚度而減小時, 驅動電壓減小且功率消耗降低。 圖3為本發明之另一具體實例之〇LED(例如頂部發射 主動矩陣OLED )的橫截面示意圖。 Q 緩衝層11形成於基板1上,且包含薄膜電晶體12之 像素電路形成於緩衝層11上。除薄膜電晶體12外,像素 電路可進—步包含電容器,儘管圖3僅說明薄膜電晶體12 作為構成像素電路之元件。 形成於緩衝層11上之薄膜電晶體12可如下製造。首 ’使用半導體材料在緩衝層11上形成活化層121。形成 閑極絕緣層122以覆蓋活化層12卜且在閘極絕緣層122上 形成閘極電極123。層間絕緣層124形成於閘極絕緣層122 上以覆蓋閘極電極123。與活化層121接觸之源電極125及 13 201038125 汲電極1 26形成於層間絕緣層丨24上。 形成平坦化層13以覆蓋薄膜電晶體12,且在平坦化層 13上形成與薄膜電晶體12之汲電極126接觸的接觸層η。 接觸層可使用與用以形成第一電極3之az〇層相同之材 料形成’且形成後可具有50至15〇人(或約5〇至約"Ο幻 範圍内之厚度。在—具體實例中,若接觸I 31之厚度過大, 則汲電極126與反射層2之間的接觸電阻會過高。另一方 面’若接觸層31 <厚度過小,則可能不會形成歐姆接觸 (Ohmic contact ) ° 且第一電極3形成於反 反射層2形成於接觸層31上 射層2上。 —如圖3中所示,接觸層31、反射層2及第—電極3可 藉由依序堆疊AZ0膜、Ag膜及AZ〇膜且並行(或同時) 圖案化該等膜來形成。如上所述,因為接觸層31及第一電 極3由AZ0膜形成,所以可迅速進行蝕刻,亦即可迅速蝕 刻,且因此接觸層31及第一電極3可與反射層2並行(或 同時)钱刻。 形成第一電極3後,使用絕緣材料形成像素界定層14。 像素界定層14形成於平坦化層13上以覆蓋第一電極3之 邊緣(或邊緣部分)。 接著在第一電極3上依序堆疊第一層41、發射層42及 第二層43,以形成有機層4。就此而言,第一層41及第二 層43可作為常見層形成於像素上,且可在各像素上獨立地 圖案化發射層42。 14 201038125 接著在有機層4上形成第二電極5作為半透性反射層 以覆蓋像素。 在第二電極5上可進一步形成封蓋層6。 雖然本發明已結合某些例示性具體實例加以描述,但 應瞭解本發明不限於所揭示之具體實例,相反地,意欲涵 蓋各種修改及其等效配置。 【圖式簡單說明】 圖1為本發明之一具體實例之有機發光二極體(OLED ) D 的橫截面示意圖。 圖2為曲線圖,其說明本發明之具體實例之第一電極 的吸收吊數k及習知ITO層之吸收常數k與波長的關係; 及 圖3為另一具體實例之〇LED之橫截面示意圖。 【主要元件符號說明】 1 ·基板After the organic layer 4 is formed by the TBADN, the second electrode 5 is formed on the organic layer 4. The second electrode 5 is formed using a low work function metal. Semi-reflective reflection can be achieved by reducing the thickness. The Mg:Ag thin layer may have a thickness within the target perimeter of (10) to A (or from about 100 to about 300 A). Low work function metals such as Al, Au and Cr can also be used. * After forming the second electrode 5, a capping layer can be formed on the second electrode 5. The capping layer 6 can be formed of a transparent organic or inorganic material to transmit light. 12 201038125 • Due to optical resonance, the optical coupling efficiency can be increased by adjusting the distance U between the reflective layer 2 and the second electrode 5 to achieve the emission wavelength of the emission layer 42. Since the first electrode 3 is difficult to have the thickness t3 in the conventional OLED, it is necessary to increase the thickness t2 of the first layer 41 to satisfy the resonance distance u. In the conventional OLED, the thickness t3 of the first electrode 3 is equal to or exceeds that of the person. However, according to an embodiment of the present invention, since AZ is used as the first electrode 3, the thickness 〇 of the first electrode 3 may be sufficiently thick, for example, in the range of % to 140 nm (or about 30 to about 14 〇 nm). And thus the thickness t2 of the first layer 41 of the organic crucible 4 can be reduced. According to an embodiment of the present invention, the thickness t2 of the first layer 41 is in the range of 40 to 12 〇 nm (or about 40 to about 120 nm). When the thickness of the organic layer 4 is decreased by increasing the thickness of the AZ 〇 electrode, the driving voltage is decreased. Small and reduced power consumption. 3 is a cross-sectional view of a 〇LED (eg, a top emitting active matrix OLED) of another embodiment of the present invention. The Q buffer layer 11 is formed on the substrate 1, and a pixel circuit including the thin film transistor 12 is formed on the buffer layer 11. In addition to the thin film transistor 12, the pixel circuit can further include a capacitor, although Fig. 3 only illustrates the thin film transistor 12 as an element constituting the pixel circuit. The thin film transistor 12 formed on the buffer layer 11 can be fabricated as follows. The activation layer 121 is formed on the buffer layer 11 using a semiconductor material. A dummy insulating layer 122 is formed to cover the active layer 12 and a gate electrode 123 is formed on the gate insulating layer 122. An interlayer insulating layer 124 is formed on the gate insulating layer 122 to cover the gate electrode 123. The source electrodes 125 and 13 in contact with the active layer 121 are formed on the interlayer insulating layer 24, 201038125. A planarization layer 13 is formed to cover the thin film transistor 12, and a contact layer η which is in contact with the tantalum electrode 126 of the thin film transistor 12 is formed on the planarization layer 13. The contact layer may be formed using the same material as the az layer used to form the first electrode 3 and may have a thickness of 50 to 15 Å (or about 5 Å to about Å illusion) after formation. In the example, if the thickness of the contact I 31 is too large, the contact resistance between the germanium electrode 126 and the reflective layer 2 may be too high. On the other hand, if the thickness of the contact layer 31 < too small, ohmic contact may not be formed (Ohmic) Contact ) ° and the first electrode 3 is formed on the reflective layer 2 formed on the contact layer 31 on the shot layer 2. As shown in FIG. 3, the contact layer 31, the reflective layer 2 and the first electrode 3 can be stacked by sequentially The AZ0 film, the Ag film, and the AZ film are formed by patterning the films in parallel (or simultaneously). As described above, since the contact layer 31 and the first electrode 3 are formed of the AZ0 film, etching can be performed quickly. The etching is rapidly performed, and thus the contact layer 31 and the first electrode 3 may be parallel (or simultaneously) with the reflective layer 2. After the first electrode 3 is formed, the pixel defining layer 14 is formed using an insulating material. The pixel defining layer 14 is formed in the planarization. Layer 13 to cover the edge (or edge portion) of the first electrode 3 Then, the first layer 41, the emission layer 42, and the second layer 43 are sequentially stacked on the first electrode 3 to form the organic layer 4. In this regard, the first layer 41 and the second layer 43 may be formed as a common layer. On the pixel, the emissive layer 42 can be independently patterned on each pixel. 14 201038125 Next, a second electrode 5 is formed on the organic layer 4 as a semi-transparent reflective layer to cover the pixel. The second electrode 5 can be further formed on the second electrode 5. The present invention is not limited to the specific embodiments disclosed, but is instead intended to cover various modifications and equivalent arrangements thereof. 1 is a schematic cross-sectional view of an organic light emitting diode (OLED) D according to an embodiment of the present invention. FIG. 2 is a graph illustrating an absorption number k of a first electrode of the specific example of the present invention and a conventional ITO. The absorption constant k of the layer is related to the wavelength; and FIG. 3 is a schematic cross-sectional view of the LED of another specific example. [Description of main components] 1 · Substrate

4 反射層 第一電極 有機層 41 :第一層 42 :發射層 43 :第二層 U :反射層與第二電極之間的距離 t2 :第一層之厚度 t3 :第一電極之厚度 15 201038125 5 :第二電極 6 :封蓋層 11 :缓衝層 12 :薄膜電晶體 121 :活化層 122 :閘極絕緣層 123 :閘極電極 124 :層間絕緣層 125 :源電極 126 :汲電極 1 3 :平坦化層 14 :像素界定層 3 1 :接觸層4 reflective layer first electrode organic layer 41: first layer 42: emissive layer 43: second layer U: distance between the reflective layer and the second electrode t2: thickness of the first layer t3: thickness of the first electrode 15 201038125 5: second electrode 6: capping layer 11: buffer layer 12: thin film transistor 121: active layer 122: gate insulating layer 123: gate electrode 124: interlayer insulating layer 125: source electrode 126: germanium electrode 1 3 : planarization layer 14 : pixel defining layer 3 1 : contact layer

Claims (1)

201038125 七、申請專利範圍: 1,一種有機發光二極體(OLED),其包含: 基板; 位於該基板上且包含金屬之反射層; 位於該反射層上且包含透光氧化鋅鋁(AZO )之第一電 極; 位於該第一電極上且包含發射層之有機層;及 位於該有機層上且包含半透性反射層之第二電極。 〇 2.如申請專利範圍第1項之OLED,其進一步包含位於 該基板上且電耦接至該反射層之薄膜電晶體。 3 ·如申請專利範圍第1項之OLED,其進一步包含薄膜 電晶體及介於該反射層與該基板之間且包含AZ〇的接觸 •層,且其中該接觸層與該薄膜電晶體接觸。 4·如申請專利範圍第1項之OLED,其中該有機層進一 步包含介於該發射層與該第一電極之間的第一層,其中該 第一層之厚度在約40 至約120 iim範圍内。 〇 5.如申請專利範圍第1項之〇LED,其中該第一電極具 有約30 nm至約14〇 nm範圍内之厚度。 6·如中清專利範圍第1項之OLED,其中該透光AZO 具有約lxM至約2χι〇·2範圍内之吸收常數。 7·一種製備有機發光二極體(OLED)之方法,該方法 包括: 在基板上形成包含金屬的反射層; 在該反射層上形成包含透光氧化鋅鋁(AZO)的第一電 17 201038125 極; 在孩第一電 上形成包含發射層的韦機層;及 在該有機層上形成包含半透性反射層的第二電極。 8·如申請專利範圍第7項之方 : 成包括: 電極之形 在該反射層上沉積氧化鋁;及 在該反射層上沉積氧化鋅。 〇 9.如申請專利範圍第8項之方法,其中該氧化叙之沉牙 與邊氧化鋅之沉積可並行進行。 之方法’其中該第一電極之 之間的重里比;儿積該氧化銘 10.如申請專利範圍第8項 ^成包括以約1:99與約1〇:9〇 與該氧化鋅。 # 11·如中請專利範圍帛8項之方法,其中該氧化銘與該 氧化鋅之沉積在約10(rc至約45(rcs圍内之溫度下進行。 12.如申請專利範圍第7項之方法,其進一步包括在該 基板上形成薄膜電晶體’其中該反射層係電耦接至該薄膜 電晶體。 13·如申請專利範圍第12項之方法,其進一步包括在形 成忒反射層之前形成包含AZ0之接觸層以與該薄膜電晶體 接觸’其中該反射層位於該接觸層上。 14 ·如申請專利範圍第7項之方法,其中該有機層進一 步包含介於該發射層與該第一電極之間的第一層,其中該 第一層具有約40 nm至約120 nm範圍内之厚度。 15.如申請專利範圍第7項之方法,其中該第一電極具 18 201038125 有約30 nm至約140 nm範圍内之厚度。 1 6.如申請專利範圍第7項之方法,其中該第一電極與 該反射層可並行圖案化。 八、圖式: (如次頁) C201038125 VII. Patent application scope: 1. An organic light emitting diode (OLED) comprising: a substrate; a reflective layer on the substrate and comprising a metal; and located on the reflective layer and comprising light-transmissive zinc-aluminum oxide (AZO) a first electrode; an organic layer on the first electrode and including an emissive layer; and a second electrode on the organic layer and including a semi-transparent reflective layer. 2. The OLED of claim 1, further comprising a thin film transistor electrically coupled to the substrate and electrically coupled to the reflective layer. 3. The OLED of claim 1, further comprising a thin film transistor and a contact layer interposed between the reflective layer and the substrate and comprising AZ, wherein the contact layer is in contact with the thin film transistor. 4. The OLED of claim 1, wherein the organic layer further comprises a first layer between the emissive layer and the first electrode, wherein the first layer has a thickness in the range of about 40 to about 120 μm Inside. 〇 5. The LED of claim 1 wherein the first electrode has a thickness in the range of from about 30 nm to about 14 Å. 6. The OLED of claim 1, wherein the light transmissive AZO has an absorption constant in a range from about 1 x M to about 2 Å 〇. 7. A method of fabricating an organic light emitting diode (OLED), the method comprising: forming a reflective layer comprising a metal on a substrate; forming a first electrical layer comprising light transmissive aluminum zinc oxide (AZO) on the reflective layer 17 201038125 Forming a getter layer comprising an emissive layer on the first electric; and forming a second electrode comprising a semipermeable reflective layer on the organic layer. 8. If the scope of claim 7 is: The shape includes: an electrode shape depositing alumina on the reflective layer; and depositing zinc oxide on the reflective layer. 〇 9. The method of claim 8, wherein the deposition of the oxidized and the zinc oxide can be performed in parallel. The method 'where the ratio of the weight ratio between the first electrodes; the oxidization of the oxide 10. As s. 8 of the patent application, the inclusion includes about 1:99 and about 1 〇:9 〇 with the zinc oxide. #11. The method of claim 8, wherein the oxidation and the deposition of the zinc oxide are carried out at a temperature of about 10 (rc to about 45 (circle rcs. 12.) The method further includes forming a thin film transistor on the substrate, wherein the reflective layer is electrically coupled to the thin film transistor. The method of claim 12, further comprising: before forming the germanium reflective layer Forming a contact layer comprising AZ0 to contact the thin film transistor, wherein the reflective layer is located on the contact layer. The method of claim 7, wherein the organic layer further comprises the emissive layer and the first a first layer between the electrodes, wherein the first layer has a thickness in the range of from about 40 nm to about 120 nm. 15. The method of claim 7, wherein the first electrode member 18 201038125 has about 30 The method of claim 7, wherein the first electrode and the reflective layer can be patterned in parallel. 8. Pattern: (e.g., page C) 1919
TW099104261A 2009-02-17 2010-02-11 Organic light-emitting diode and method of manufacturing the same TWI503051B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090013126A KR101146980B1 (en) 2009-02-17 2009-02-17 Organic light emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201038125A true TW201038125A (en) 2010-10-16
TWI503051B TWI503051B (en) 2015-10-01

Family

ID=42559116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099104261A TWI503051B (en) 2009-02-17 2010-02-11 Organic light-emitting diode and method of manufacturing the same

Country Status (5)

Country Link
US (1) US8383431B2 (en)
JP (1) JP5261414B2 (en)
KR (1) KR101146980B1 (en)
CN (1) CN101807671B (en)
TW (1) TWI503051B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560867B (en) * 2011-08-30 2016-12-01 Samsung Display Co Ltd Organic light emitting display device having reflection structure and method of manufacturing organic light emitting display device having reflection structure
TWI612513B (en) * 2012-05-15 2018-01-21 精工愛普生股份有限公司 Electro-optical device and electronic apparatus having the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839930B1 (en) * 2010-12-29 2018-04-27 삼성디스플레이 주식회사 Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
JP5998626B2 (en) * 2012-05-15 2016-09-28 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP6424456B2 (en) * 2013-07-17 2018-11-21 セイコーエプソン株式会社 Light emitting device, method of manufacturing light emitting device, light emitting and receiving device, electronic device
CN105449107B (en) * 2014-08-15 2018-08-10 北京维信诺科技有限公司 A kind of top-illuminating OLED device and preparation method thereof
KR102527217B1 (en) * 2016-01-15 2023-04-28 삼성디스플레이 주식회사 Organic light emitting diode, manufacturing method for the same and organic light emitting display including the same
KR102594014B1 (en) * 2016-08-03 2023-10-27 삼성디스플레이 주식회사 Organic light emitting diode and display device having the same
CN108305955A (en) * 2018-01-25 2018-07-20 武汉华星光电半导体显示技术有限公司 The production method of luminescent device and luminescent device
US10741783B2 (en) * 2018-01-25 2020-08-11 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Light emitting device and manufacturing method for the same
CN109346625A (en) * 2018-09-26 2019-02-15 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof, display module
CN112802799B (en) * 2021-01-14 2023-07-25 合肥维信诺科技有限公司 Display panel manufacturing method, display panel and display device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPH0731950B2 (en) * 1985-11-22 1995-04-10 株式会社リコー Method for producing transparent conductive film
JPH05114482A (en) 1991-10-22 1993-05-07 Toyota Motor Corp Manufacture of transmission type electroluminescent element
JPH06248427A (en) * 1993-02-26 1994-09-06 Asahi Glass Co Ltd Raw material for vacuum vapor deposition
DE69305794T2 (en) * 1992-07-10 1997-06-12 Asahi Glass Co Ltd Transparent, conductive film and target and material for vapor deposition for its manufacture
JP2839829B2 (en) * 1993-10-18 1998-12-16 株式会社東芝 Transparent conductive film, method for forming the same, and method for processing transparent conductive film
JPH11302876A (en) * 1998-04-16 1999-11-02 Nippon Sheet Glass Co Ltd Electrode pattern processing method for transparent conductive film
US7102282B1 (en) * 1999-11-22 2006-09-05 Sony Corporation Display device with a cavity structure for resonating light
JP2004156070A (en) * 2002-11-01 2004-06-03 Kanto Chem Co Inc Composition of etchant for multilayer film including transparent electroconductive film
JP2004342375A (en) * 2003-05-13 2004-12-02 Mitsui Chemicals Inc Luminous body
KR100493531B1 (en) * 2003-06-02 2005-06-07 한국전자통신연구원 Formation method for anode of oxide film in organic electroluminescent device and organic electroluminescent device comprising anode of oxide film
US6905788B2 (en) * 2003-09-12 2005-06-14 Eastman Kodak Company Stabilized OLED device
KR100579184B1 (en) * 2003-11-24 2006-05-11 삼성에스디아이 주식회사 organic light-emitting display device
JP2005302313A (en) 2004-04-06 2005-10-27 Idemitsu Kosan Co Ltd Organic electroluminescent display device and full color device
KR100827401B1 (en) 2004-10-18 2008-05-06 삼성코닝정밀유리 주식회사 EMI Filter, method for fabricating the same and the apparatus employing the same
KR100673744B1 (en) * 2004-10-28 2007-01-24 삼성에스디아이 주식회사 Multi-layer Anode
US7759856B2 (en) * 2004-12-17 2010-07-20 Honeywell International Inc. Organic light emitting diode (OLED) having improved stability, luminance, and efficiency
TWI253878B (en) * 2005-03-09 2006-04-21 Au Optronics Corp Organic electroluminescent element and display device including the same
TWI297226B (en) * 2006-03-08 2008-05-21 Au Optronics Corp Organic electroluminescence display and manufacturing method thereof
US7554261B2 (en) * 2006-05-05 2009-06-30 Eastman Kodak Company Electrical connection in OLED devices
JP4864546B2 (en) 2006-05-29 2012-02-01 三菱電機株式会社 Organic EL display device and manufacturing method thereof
KR100787461B1 (en) * 2006-11-10 2007-12-26 삼성에스디아이 주식회사 Organic light emitting display apparatus employing multi-layered anode
TW200834610A (en) * 2007-01-10 2008-08-16 Nitto Denko Corp Transparent conductive film and method for producing the same
JP2008205254A (en) * 2007-02-21 2008-09-04 Toyota Central R&D Labs Inc Organic electroluminescence element
JP2009205928A (en) * 2008-02-27 2009-09-10 Fuji Electric Holdings Co Ltd Resonant cavity color conversion el device and organic el display device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560867B (en) * 2011-08-30 2016-12-01 Samsung Display Co Ltd Organic light emitting display device having reflection structure and method of manufacturing organic light emitting display device having reflection structure
TWI612513B (en) * 2012-05-15 2018-01-21 精工愛普生股份有限公司 Electro-optical device and electronic apparatus having the same

Also Published As

Publication number Publication date
CN101807671B (en) 2015-03-18
CN101807671A (en) 2010-08-18
TWI503051B (en) 2015-10-01
US8383431B2 (en) 2013-02-26
JP5261414B2 (en) 2013-08-14
US20100207149A1 (en) 2010-08-19
KR20100093954A (en) 2010-08-26
JP2010192441A (en) 2010-09-02
KR101146980B1 (en) 2012-05-22

Similar Documents

Publication Publication Date Title
TW201038125A (en) Organic light-emitting diode and method of manufacturing the same
TWI549284B (en) Organic light emitting display device and method of manufacturing the same
EP2131411B1 (en) Organic light emitting diode display device
CN104218062B (en) Display unit, the method and electronic equipment for manufacturing display unit
KR100611756B1 (en) Organic electroluminescent display device and method of fabricating the same
CN102456713B (en) Organic light-emitting display device and manufacture method thereof
CN107785494B (en) Organic light-emitting display device
TW200421926A (en) Display apparatus and method of manufacturing the same
TW201212326A (en) Organic light-emitting device and method of manufacturing the same
KR20040000630A (en) Organic electroluminescence device employing multi-layered anode
JP2008171637A (en) Transparent conductive film laminate, organic el device using this transparent conductive film laminate, and manufacturing method of these
KR20080008983A (en) Display and method for manufacturing display
TW201327802A (en) Organic light-emitting display apparatus and method of manufacturing the same
TW201116640A (en) Evaporation donor substrate of evaporation device, method for making layers using the same and method for fabricating of organic light emitting diode display
US20160260904A1 (en) Transparent display device and method of manufacturing the same
JP5996159B2 (en) Organic light emitting diode device
JP2009266524A (en) Organic el display device
TW201123973A (en) Organic light emitting diode device
JP2008034280A (en) Manufacturing method of display
JP4310995B2 (en) Organic electroluminescence device
KR101879796B1 (en) Organic Light Emitting Diode Display and method for fabricating of the same
JP2007114266A (en) Optical element, method of manufacturing optical element, and organic electroluminescence element
KR101489209B1 (en) An organic light emitting diode and the method for preparation of the same
KR20110107447A (en) Flexible organic light emitting diode and manufacturing method for the same
KR101097336B1 (en) Top emission organic light emitting device