JPH06248427A - Raw material for vacuum vapor deposition - Google Patents

Raw material for vacuum vapor deposition

Info

Publication number
JPH06248427A
JPH06248427A JP6286393A JP6286393A JPH06248427A JP H06248427 A JPH06248427 A JP H06248427A JP 6286393 A JP6286393 A JP 6286393A JP 6286393 A JP6286393 A JP 6286393A JP H06248427 A JPH06248427 A JP H06248427A
Authority
JP
Japan
Prior art keywords
vapor deposition
raw material
film
zno
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6286393A
Other languages
Japanese (ja)
Inventor
Akira Mitsui
彰 光井
Kazuo Sato
一夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6286393A priority Critical patent/JPH06248427A/en
Priority to EP93109950A priority patent/EP0578046B1/en
Priority to DE69305794T priority patent/DE69305794T2/en
Priority to US08/080,522 priority patent/US5458753A/en
Publication of JPH06248427A publication Critical patent/JPH06248427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a low-resistant transparent conductive film having high heat resistance even in the air by consisting the raw material of a zinc oxide sintered compact contg. Ga, allowing the Ga to exist as a Ga solid soln. ZnO phase and uniformly evaporating Ga atoms and Zn atoms to form the film. CONSTITUTION:This raw material for vacuum vapor deposition consists of the zinc oxide sintered compact contg. the Ga and is obtd. by sintering molded articles of a mixture composed of ZnO powder and Ga2O3 powder in the air. The ratio I1/I2 between the integral intensity I1 of the X-ray diffraction peak of the face (002) of the Ga soln. ZnO phase shifted to a high angle side by solution of the Ga and the integral intensity I2 of the X-ray diffraction peak of the face (002) of the ZnO phase on the low angle side where the Ga does not enter into a solid solution is specified to >=0.2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜を真空蒸着法で形
成する際に用いる蒸着用原料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition material used when forming a thin film by a vacuum vapor deposition method.

【0002】[0002]

【従来の技術】従来、酸化インジウムにスズをドープし
たITO(Indium Tin Oxide系)は、透明でかつ導電性
の酸化物としてよく知られており、太陽電池や液晶ディ
スプレイ等に用いられる透明導電膜として、広く用いら
れいる。また、最近、酸化亜鉛にアルミニウムをドープ
したAZO(Aluminium Zinc Oxide系)が、ITOと同
程度の透明性、導電性を有する透明導電膜として知られ
るようになり、高価なITOより安価であることから、
工業的実用化が期待されている。
2. Description of the Related Art Conventionally, ITO (Indium Tin Oxide type) in which tin is doped into indium oxide is well known as a transparent and conductive oxide, and is a transparent conductive film used in solar cells, liquid crystal displays, etc. Is widely used as In addition, recently, AZO (Aluminium Zinc Oxide type) in which zinc oxide is doped with aluminum has come to be known as a transparent conductive film having the same level of transparency and conductivity as ITO, and is cheaper than expensive ITO. From
Industrial commercialization is expected.

【0003】ところで、真空蒸着法でITO膜やAZO
膜を成膜する場合、低抵抗な薄膜が形成しやすいことや
成膜時の制御がしやすいなどの理由から蒸発原料とし
て、それぞれITO系やAZO系のような酸化物のペレ
ットやチャンクなどを用いるのが一般的である。
By the way, an ITO film or AZO is formed by a vacuum deposition method.
When a film is formed, pellets or chunks of oxides such as ITO and AZO are used as evaporation raw materials for the reason that a low-resistance thin film is easily formed and the control during film formation is easy. It is generally used.

【0004】しかし、たとえばITO系ではInとSn
の蒸発速度が異なるため、形成した膜の組成が蒸着時間
にしたがって変化し、膜の比抵抗が増加するなどの問題
があった。また、AZO系においてもAlとZnの蒸着
速度が異なりITO系と同様の問題があった。
However, for example, in ITO, In and Sn
Since the evaporation rates of the above are different, there is a problem that the composition of the formed film changes according to the evaporation time and the specific resistance of the film increases. In addition, the AZO system has different vapor deposition rates of Al and Zn, and has the same problem as the ITO system.

【0005】さらに、従来のITO系やAZO系の蒸着
原料では、当然のことながら蒸発原料自身の組成も変化
するため、長時間の使用はできず、そのほとんどは使用
されず、蒸着原料の使用効率の面でも問題があった。し
たがって、膜組成および蒸着原料の経時変化が少ない蒸
着原料が望まれてきた。
Further, with conventional ITO-based or AZO-based vapor deposition raw materials, the composition of the vaporization raw materials themselves naturally changes, so that they cannot be used for a long time, and most of them are not used. There was also a problem in terms of efficiency. Therefore, there has been a demand for a vapor deposition raw material whose film composition and vapor deposition raw material have little change over time.

【0006】また、最近、透明導電膜がさまざまな素
子、部品等に利用されるようになってきており、高温等
の過酷な使用条件でも使用可能であることや、また、そ
れらを用いた素子、部品等の製造プロセスにおいて高温
が必要となることが多くなってきた。
Recently, transparent conductive films have been used in various devices, parts, etc., and can be used under severe operating conditions such as high temperature, and devices using them. In many cases, high temperatures are required in the manufacturing process of parts and the like.

【0007】しかし、従来の透明導電膜は、真空中やア
ルゴン雰囲気などの酸素分圧の低い雰囲気ではある程度
の耐熱性は有しているものの、実用上重要となる空気中
などの酸素を含む雰囲気での耐熱性は不十分であり、実
用上有用な空気中でも高い耐熱性を有する透明導電膜が
望まれていた。
However, although the conventional transparent conductive film has some heat resistance in a vacuum or an atmosphere with a low oxygen partial pressure such as an argon atmosphere, it is an atmosphere containing oxygen such as in air which is practically important. The heat resistance is insufficient, and a transparent conductive film having high heat resistance in the air, which is practically useful, has been desired.

【0008】ところで、最近、ガリウムを含有した酸化
亜鉛系(GZO系)において、比較的再現性がよく、熱
的安定性に優れ、比抵抗が10-3Ωcm以下の膜が報告
されている(特開平4-181304)が、蒸着原料(ペレッ
ト)にガリウムが充分に酸化亜鉛に固溶していないた
め、酸化亜鉛と酸化ガリウムの蒸気圧が近いながらも異
なっており、再現性も充分でなく、空気中での耐熱性も
200℃程度であった。
By the way, recently, a zinc oxide-based (GZO-based) film containing gallium has been reported to have relatively good reproducibility, excellent thermal stability, and a specific resistance of 10 −3 Ωcm or less ( In JP-A-4-181304), gallium is not sufficiently dissolved in zinc oxide in the vapor deposition material (pellet), so that the vapor pressures of zinc oxide and gallium oxide are different even though they are close, and reproducibility is not sufficient. The heat resistance in air was about 200 ° C.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有していた前述の欠点を解決しようとするもので
ある。つまり、透明導電膜を形成する際に、膜組成や蒸
着原料の蒸着時の経時変化が少なく、空気中でも高い耐
熱性を有する低抵抗の透明導電膜を安定的に形成するこ
とができる真空蒸着用蒸発原料を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art. In other words, when forming a transparent conductive film, it is possible to stably form a low-resistance transparent conductive film that has little change in film composition and deposition material with time during vapor deposition and has high heat resistance even in air. The purpose is to provide evaporation raw materials.

【0010】[0010]

【課題を解決するための手段】即ち、本発明は、ガリウ
ムを含む酸化亜鉛焼結体からなる真空蒸着用原料であっ
て、該酸化亜鉛焼結体はガリウムの固溶により高角側に
シフトしたGa固溶ZnO相の(002)面のX線回折
ピークの積分強度I1 と、ガリウムが固溶していない低
角側のZnO相の(002)面のX線回折ピークの積分
強度I2 の比が0.2以上(I1 /I2 ≧0.2)であ
ることを特徴とする真空蒸着用原料を提供するものであ
る。
That is, the present invention is a raw material for vacuum vapor deposition comprising a zinc oxide sintered body containing gallium, the zinc oxide sintered body being shifted to a high angle side by solid solution of gallium. The integrated intensity I 1 of the X-ray diffraction peak of the (002) plane of the Ga solid solution ZnO phase and the integrated intensity I 2 of the X-ray diffraction peak of the (002) plane of the ZnO phase on the low angle side where gallium is not in solid solution. Is 0.2 or more (I 1 / I 2 ≧ 0.2).

【0011】本発明の真空蒸着用原料は、実質的に亜鉛
・ガリウムの酸化物であり、Gaとして1原子%〜10
原子%を含有するものである。このとき、Ga原子%=
Ga/(Ga+Zn)×100として、計算した。な
お、本発明の真空蒸着用原料には他の成分が本発明の目
的、効果を損なわない範囲において含まれていても差し
支えないが可及的に少量にとどめることが望ましい。
The raw material for vacuum deposition of the present invention is substantially an oxide of zinc gallium, and has a Ga content of 1 atomic% to 10%.
It contains atomic%. At this time, Ga atomic% =
It was calculated as Ga / (Ga + Zn) × 100. It should be noted that the raw material for vacuum vapor deposition of the present invention may contain other components within a range that does not impair the purpose and effects of the present invention, but it is desirable to keep the amount as small as possible.

【0012】図1は本発明の蒸着用原料のX線回折パタ
ーンを示すグラフである。横軸は、Cu−Kα線におけ
る回折角2θ(deg)を、縦軸は強度を示す。
FIG. 1 is a graph showing an X-ray diffraction pattern of the vapor deposition material of the present invention. The horizontal axis represents the diffraction angle 2θ (deg) in the Cu-Kα line, and the vertical axis represents the intensity.

【0013】X線回折パターンから、Ga固溶ZnO相
は、ZnO結晶のある特定のZn原子にGa原子が置換
した置換型規則的固溶体であり、おおよそZnO結晶が
c軸方向に縮んだような結晶であると考えられる。これ
は、Ga23 量が少ないほうがGa固溶ZnO相と考
えられるピークの積分強度は小さくなることからも支持
される。本発明では、上記の考察による結晶の状態を最
も顕著に表す(002)面について着目し、Gaの固溶
によりc軸方向に縮んだ、つまり高角度側にシフトした
(002)面のX線回折ピーク(図1中において、白丸
印.I1 )と、Gaが固溶していない、つまりシフトし
ていない(002)面のX線回折ピーク(図1中におい
て、黒丸印.I2 )の積分強度比により、最適なGa固
溶ZnO相の割合を見いだしたものである。また、本発
明における積分強度は、各ピークからバックグラウンド
を差し引いたピークの面積により算出される。
From the X-ray diffraction pattern, the Ga solid solution ZnO phase is a substitutional type regular solid solution in which a specific Zn atom of the ZnO crystal is replaced with a Ga atom, and the ZnO crystal appears to shrink in the c-axis direction. It is considered to be crystalline. This is also supported by the fact that the smaller the amount of Ga 2 O 3 is, the smaller the integrated intensity of the peak considered to be the Ga solid solution ZnO phase is. In the present invention, attention is paid to the (002) plane that most significantly expresses the crystal state according to the above consideration, and the X-ray of the (002) plane that is contracted in the c-axis direction due to Ga solid solution, that is, shifted to the high angle side. Diffraction peaks (white circles .I 1 in FIG. 1) and X-ray diffraction peaks of (002) plane in which Ga does not form a solid solution, that is, are not shifted (black circles .I 2 in FIG. 1) The optimum ratio of Ga solid solution ZnO phase was found from the integrated intensity ratio of. Further, the integrated intensity in the present invention is calculated by the area of the peak obtained by subtracting the background from each peak.

【0014】本発明において、Ga固溶ZnO相の(0
02)面のX線回折ピークの積分強度I1 と、ガリウム
が固溶していない低角側のZnO相の(002)面のX
線回折ピークの積分強度I2 の比が0.2以上(I1
2 ≧0.2)であることが好ましい。前記の強度比I
1 /I2 が0.2より低いと、つまり、Ga固溶ZnO
相が少なく、ガリウムが固溶していないZnO相が多い
蒸着原料を用いて形成した場合、GaとZnの蒸発速度
が異なり、経時変化の少ない蒸発原料は得られない。本
発明では、特に強度比I1 /I2 が1.0以上にするこ
とにより、経時変化の少ない蒸発原料が得られるので好
ましい。
In the present invention, the Ga solid solution ZnO phase (0
The integrated intensity I 1 of the X-ray diffraction peak of the (02) plane and the X of the (002) plane of the ZnO phase on the low angle side in which gallium is not dissolved.
The ratio of the integrated intensity I 2 of the line diffraction peak is 0.2 or more (I 1 /
It is preferable that I 2 ≧ 0.2). The intensity ratio I
When 1 / I 2 is lower than 0.2, that is, Ga solid solution ZnO
When a vapor deposition raw material having a small number of phases and a large amount of ZnO phase in which gallium is not solid-solved is used, the vaporization rates of Ga and Zn are different, and an evaporation raw material with little change over time cannot be obtained. In the present invention, it is particularly preferable that the strength ratio I 1 / I 2 is 1.0 or more, since an evaporation raw material with little change with time can be obtained.

【0015】上述のGa固溶ZnO相の(002)面の
X線回折ピークの積分強度I1 と、ガリウムが固溶して
いない低角側のZnO相の(002)面のX線回折ピー
クの積分強度I2 の比が0.2以上(I1 /I2 ≧0.
2)である蒸着原料(焼結体)は、例えば以下のように
して製造される。
The integrated intensity I 1 of the X-ray diffraction peak of the (002) plane of the Ga solid solution ZnO phase described above and the X-ray diffraction peak of the (002) plane of the ZnO phase on the low angle side where gallium is not solid-solved. Ratio of integrated intensity I 2 of 0.2 or more (I 1 / I 2 ≧ 0.
The vapor deposition material (sintered body) which is 2) is manufactured as follows, for example.

【0016】即ち、平均粒径が1μm以下のZnO粉末
とGa23 粉末を所定量秤量し、ボールミルを用いて
3時間以上、アセトン中で混合して、焼結体の原料とな
る粉末を調製する。この粉末をラバープレス法を用いて
成形し、その成形体を空気中で1350℃〜1550℃
で2時間焼結して、例えば、本発明の蒸着原料(焼結
体)を得ることができる。
That is, a predetermined amount of ZnO powder having an average particle diameter of 1 μm or less and Ga 2 O 3 powder were weighed and mixed in acetone for 3 hours or more using a ball mill to obtain a powder as a raw material for a sintered body. Prepare. This powder was molded using a rubber press method, and the molded body was heated to 1350 ° C to 1550 ° C in air.
After sintering for 2 hours, the vapor deposition material (sintered body) of the present invention can be obtained, for example.

【0017】たとえば電子ビーム蒸着(EB蒸着)に適
したチャージアップしにくい良電導性の蒸着原料を得る
には、焼結温度が1350℃〜1550℃であることが
好ましい。焼結温度が1350℃より低いと焼結体の抵
抗が高く、蒸着の際、電子ビームが安定しにくくなるの
で好ましくない。また、1550℃より高い焼結温度で
は、焼結時の蒸発が激しく組成が変化し、所望の組成の
ターゲットが得にくいので好ましくない。
For example, in order to obtain a highly conductive vapor deposition material which is suitable for electron beam vapor deposition (EB vapor deposition) and does not easily charge up, the sintering temperature is preferably 1350 ° C to 1550 ° C. If the sintering temperature is lower than 1350 ° C., the resistance of the sintered body is high and the electron beam is difficult to stabilize during vapor deposition, which is not preferable. Further, if the sintering temperature is higher than 1550 ° C., the composition during evaporation will be violently changed during sintering, and it will be difficult to obtain a target having a desired composition.

【0018】また、蒸着原料の電導性をさらに高める目
的で、蒸着原料(焼結体)を例えばアルゴン雰囲気や真
空中などの非酸化(還元性)雰囲気で熱処理してもよ
い。
For the purpose of further increasing the conductivity of the vapor deposition material, the vapor deposition material (sintered body) may be heat-treated in a non-oxidizing (reducing) atmosphere such as an argon atmosphere or a vacuum.

【0019】[0019]

【作用】本発明において、蒸着原料中のGaがGa固溶
ZnO相として、存在することにより、Ga原子とZn
原子が均一な蒸発が容易になり、膜組成や蒸着原料の蒸
着時の経時変化が少なく、結晶性の極めて高い膜が得ら
れるため、空気中のような酸素を含む雰囲気においても
高い耐熱性を有する低抵抗の透明導電膜が得られるもの
と考えられる。
In the present invention, since Ga in the vapor deposition material exists as a Ga-solid-solution ZnO phase, Ga atoms and Zn
Evaporation of uniform atoms is easy, and there is little change over time in film composition and deposition of the deposition material, and a film with extremely high crystallinity is obtained, so high heat resistance is achieved even in an atmosphere containing oxygen such as air. It is considered that the transparent conductive film having low resistance is obtained.

【0020】[0020]

【実施例】高純度のZnO粉末およびGa23 粉末を
準備し、ZnO粉末とGa23末を、ボールミルで混
合し、Ga23 −ZnO粉末を調製した。ついで、ラ
バープレス法で成形した。成形体を空気中1400℃で
焼成し、蒸着用原料を作製した(なお、図1は、これら
のうち空気中1400℃で焼結した5原子%Gaをドー
プしたZnO焼結体のX線回折パターンである。)。
EXAMPLES Prepare a high purity ZnO powder and Ga 2 O 3 powder, a ZnO powder and Ga 2 O 3 powder were mixed in a ball mill to prepare a Ga 2 O 3 -ZnO powder. Then, it was molded by the rubber press method. The formed body was fired in air at 1400 ° C. to prepare a raw material for vapor deposition. (Note that FIG. 1 shows the X-ray diffraction of a ZnO sintered body doped with 5 atom% Ga sintered at 1400 ° C. in air. It is a pattern.).

【0021】次に、この蒸着用原料について、電子ビー
ム(EB)蒸着装置を使用して、GZO膜の成膜を行っ
た。この時の基板温度は200℃の条件で行った。ま
た、基板には、無アルカリガラスコーニング#7059
を用いた。膜厚はおよそ500nmとなるように行っ
た。成膜後、膜厚、シート抵抗、可視光透過率を測定
し、膜厚、シート抵抗から膜の比抵抗を計算した。
Next, a GZO film was formed on this vapor deposition material by using an electron beam (EB) vapor deposition apparatus. The substrate temperature at this time was 200 ° C. Also, the substrate is made of non-alkali glass Corning # 7059.
Was used. The film thickness was set to about 500 nm. After the film formation, the film thickness, the sheet resistance and the visible light transmittance were measured, and the specific resistance of the film was calculated from the film thickness and the sheet resistance.

【0022】表1に、以上のようにして作製した蒸着用
原料の(002)面のX線強度比I1 /I2 と本発明の
蒸着用原料の使用開始直後に形成した膜の比抵抗とその
後30分使用した後に形成した膜の比抵抗を示す。表1
に示すように、本発明のターゲットを用いて形成した膜
の比抵抗は、30分使用した後でも使用開始直後の膜の
比抵抗と同じであり、膜の経時変化は見られなかった。
しかも、得られた薄膜は2×10-4Ωcm台の低い比抵
抗であった。即ち、本発明の蒸着用原料を用いることに
より、低抵抗で成膜時の経時変化がきわめて小さい蒸着
を可能とすることがわかった。また、表1には、成膜し
た膜を空気中500℃で10分保持の条件で熱処理した
後の膜の比抵抗を示す。
Table 1 shows the X-ray intensity ratio I 1 / I 2 of the (002) plane of the vapor deposition raw material prepared as described above and the specific resistance of the film formed immediately after the use of the vapor deposition raw material of the present invention. And the specific resistance of the film formed after 30 minutes of use. Table 1
As shown in, the specific resistance of the film formed using the target of the present invention was the same as the specific resistance of the film immediately after the start of use even after 30 minutes of use, and no change with time of the film was observed.
Moreover, the obtained thin film had a low specific resistance on the order of 2 × 10 −4 Ωcm. That is, it was found that the use of the vapor deposition raw material of the present invention enables vapor deposition with low resistance and with very little change with time during film formation. In addition, Table 1 shows the specific resistance of the formed film after the film was heat-treated at 500 ° C. in air for 10 minutes.

【0023】表1に示すように、本発明の蒸着用原料を
用いて形成した膜は、空気中500℃での熱処理でも比
抵抗は同等あるいは減少する傾向があり、熱処理後にお
いても2〜3×10-4Ωcm台の低い比抵抗であった。
即ち、本発明の蒸着原料を用いて形成した膜は、空気中
でも高い耐熱性を有することがわかった。また、本発明
のターゲットを用いて形成した膜は、波長550nmの
可視光において透過率85%程度の透過率を有してい
た。
As shown in Table 1, the film formed by using the vapor deposition raw material of the present invention tends to have the same or reduced specific resistance even in the heat treatment at 500 ° C. in the air, and after the heat treatment, the specific resistance is 2-3. The specific resistance was as low as × 10 −4 Ωcm.
That is, it was found that the film formed using the vapor deposition material of the present invention has high heat resistance even in air. Further, the film formed using the target of the present invention had a transmittance of about 85% in the visible light having a wavelength of 550 nm.

【0024】比較例1および2として、I1 /I2
0.2のGaドープZnO系蒸着用原料を用いた場合に
ついて、また、比較例3として、同様の方法で作製した
従来のITO系(5原子%SnをドープしたIn2
3 )蒸着用原料を用いた場合について、さらに、同様の
方法で作製した従来のAZO系(2.5原子%Alをド
ープしたZnO)の蒸着用原料を用いた場合について表
1に示した。
As Comparative Examples 1 and 2, I 1 / I 2 <
In the case of using the Ga-doped ZnO-based vapor deposition material of 0.2, and as Comparative Example 3, a conventional ITO-based (5 at% Sn-doped In 2 O) prepared by the same method was used.
3 ) Table 1 shows the case of using the vapor deposition raw material and the case of using the conventional AZO vapor deposition raw material (ZnO doped with 2.5 at% Al) produced by the same method.

【0025】表1に示すように、I1 /I2 <0.2の
蒸着用原料、従来のITO系、AZO系の蒸着用原料を
用いた場合では、膜の比抵抗は経時変化し、大きく増加
した。また、空気中500℃で10分保持の熱処理によ
り、膜の比抵抗は大きく増加した。
As shown in Table 1, when a vapor deposition material having I 1 / I 2 <0.2 or a conventional ITO or AZO vapor deposition material is used, the specific resistance of the film changes with time, Greatly increased. Further, the specific resistance of the film was greatly increased by the heat treatment of keeping at 500 ° C. in air for 10 minutes.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】上記のことから明らかなように、本発明
の真空蒸着用原料を用いることにより、膜組成や蒸着原
料の蒸着時の経時変化が少なく、空気中でも高い耐熱性
を有する低抵抗の透明導電膜が得られる。
As is apparent from the above, by using the raw material for vacuum deposition of the present invention, the film composition and the change of the raw material for vapor deposition with time during deposition are small, and the low resistance having high heat resistance even in air is obtained. A transparent conductive film is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空蒸着用原料の代表的なX線回折パ
ターンを示す図。
FIG. 1 is a diagram showing a typical X-ray diffraction pattern of a raw material for vacuum vapor deposition according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガリウムを含む酸化亜鉛焼結体からなる真
空蒸着用原料であって、該酸化亜鉛焼結体は、ガリウム
の固溶により高角側にシフトしたGa固溶ZnO相の
(002)面のX線回折ピークの積分強度I1 と、ガリ
ウムが固溶していない低角側のZnO相の(002)面
のX線回折ピークの積分強度I2 の比が0.2以上(I
1 /I2 ≧0.2)であることを特徴とする真空蒸着用
原料。
1. A raw material for vacuum vapor deposition comprising a zinc oxide sintered body containing gallium, wherein the zinc oxide sintered body has a Ga solid solution ZnO phase (002) shifted to a high angle side by solid solution of gallium. the integrated intensity I 1 of the X-ray diffraction peaks of the plane, the ratio of the integrated intensity I 2 of the X-ray diffraction peaks of the low angle side of the gallium is not dissolved in the ZnO phase (002) plane is 0.2 or more (I
1 / I 2 ≧ 0.2) A raw material for vacuum evaporation.
【請求項2】請求項1において、I1 /I2 ≧1.0で
あることを特徴とする真空蒸着用原料。
2. The raw material for vacuum evaporation according to claim 1, wherein I 1 / I 2 ≧ 1.0.
JP6286393A 1992-07-10 1993-02-26 Raw material for vacuum vapor deposition Pending JPH06248427A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6286393A JPH06248427A (en) 1993-02-26 1993-02-26 Raw material for vacuum vapor deposition
EP93109950A EP0578046B1 (en) 1992-07-10 1993-06-22 Transparent conductive film, and target and material for vapor deposition to be used for its production
DE69305794T DE69305794T2 (en) 1992-07-10 1993-06-22 Transparent, conductive film and target and material for vapor deposition for its manufacture
US08/080,522 US5458753A (en) 1992-07-10 1993-06-24 Transparent conductive film consisting of zinc oxide and gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6286393A JPH06248427A (en) 1993-02-26 1993-02-26 Raw material for vacuum vapor deposition

Publications (1)

Publication Number Publication Date
JPH06248427A true JPH06248427A (en) 1994-09-06

Family

ID=13212563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6286393A Pending JPH06248427A (en) 1992-07-10 1993-02-26 Raw material for vacuum vapor deposition

Country Status (1)

Country Link
JP (1) JPH06248427A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1981036A1 (en) * 2006-01-11 2008-10-15 Murata Manufacturing Co. Ltd. Transparent electroconductive film and process for producing transparent electroconductive film
DE102007029028A1 (en) * 2007-06-23 2009-01-08 Leybold Optics Gmbh Cathode sputter surface coating source has two components of different heat conductivity positioned in enriched zones
EP2071586A1 (en) * 2007-09-05 2009-06-17 Murata Manufacturing Co. Ltd. Transparent conductive film and method for producing transparent conductive film
JP2009132997A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2010192441A (en) * 2009-02-17 2010-09-02 Samsung Mobile Display Co Ltd Organic light emitting element, and manufacturing method thereof
WO2011145665A1 (en) 2010-05-21 2011-11-24 住友金属鉱山株式会社 Sintered zinc oxide tablet and process for producing same
KR20130063408A (en) * 2011-12-06 2013-06-14 삼성전자주식회사 Transistor, method of manufacturing the same and electronic device including transistor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1981036A1 (en) * 2006-01-11 2008-10-15 Murata Manufacturing Co. Ltd. Transparent electroconductive film and process for producing transparent electroconductive film
EP1981036A4 (en) * 2006-01-11 2014-03-12 Murata Manufacturing Co Transparent electroconductive film and process for producing transparent electroconductive film
DE102007029028A1 (en) * 2007-06-23 2009-01-08 Leybold Optics Gmbh Cathode sputter surface coating source has two components of different heat conductivity positioned in enriched zones
EP2071586A1 (en) * 2007-09-05 2009-06-17 Murata Manufacturing Co. Ltd. Transparent conductive film and method for producing transparent conductive film
EP2071586A4 (en) * 2007-09-05 2014-03-05 Murata Manufacturing Co Transparent conductive film and method for producing transparent conductive film
JP2009132997A (en) * 2007-10-30 2009-06-18 Mitsubishi Materials Corp VAPOR DEPOSITION MATERIAL OF ZnO AND MANUFACTURING METHOD THEREFOR
JP2010192441A (en) * 2009-02-17 2010-09-02 Samsung Mobile Display Co Ltd Organic light emitting element, and manufacturing method thereof
WO2011145665A1 (en) 2010-05-21 2011-11-24 住友金属鉱山株式会社 Sintered zinc oxide tablet and process for producing same
US9224513B2 (en) 2010-05-21 2015-12-29 Sumitomo Metal Mining Co., Ltd. Zinc oxide sintered compact tablet and manufacturing method thereof
KR20130063408A (en) * 2011-12-06 2013-06-14 삼성전자주식회사 Transistor, method of manufacturing the same and electronic device including transistor
KR101878731B1 (en) * 2011-12-06 2018-07-17 삼성전자주식회사 Transistor, method of manufacturing the same and electronic device including transistor

Similar Documents

Publication Publication Date Title
EP0578046B1 (en) Transparent conductive film, and target and material for vapor deposition to be used for its production
US10037830B2 (en) Indium oxide transparent conductive film
CN101575697B (en) ZnO-based transparent conductive film co-doped with Al-F and preparation method thereof
EP1734150A1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
KR20110127182A (en) Transparent conductive film and transparent conductive film laminate, processes for production of same, and silicon thin film solar cell
JPH02181304A (en) Zinc oxide transparent conductive film and manufacture thereof
JPH06248427A (en) Raw material for vacuum vapor deposition
JPH06290641A (en) Noncrystal transparent conductive membrane
CN102191466A (en) Gallium doped zinc oxide target and preparation method of transparent conductive film thereof
CN1800440A (en) Preparation method of polycrystalline vanadium dioxide film with room temperature resistance temperature coefficient higher than 10%K
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
Paine et al. Transparent conducting oxide materials and technology
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
JPH0987833A (en) Production of transparent electrically conductive film
Balasubramanian et al. Effect of substrate temperature on the electrical and optical properties of reactively evaporated indium tin oxide films
JPS61136954A (en) Indium oxide sintered body
JPH0625838A (en) Sputtering target
JPH0315107A (en) Conductive metal oxide sintered body and its application
JPH054768B2 (en)
JP3058278B2 (en) Oxide sintered body and its use
JP3189782B2 (en) Conductive metal oxide sintered body and use thereof
Mizuno et al. Properties of germanium-doped indium oxide thin films prepared by DC magnetron sputtering
US7674357B2 (en) Transparent electroconductive film and process for producing same
JP2625841B2 (en) Method for producing transparent conductive film, target material and tablet material