JPH05114482A - Manufacture of transmission type electroluminescent element - Google Patents

Manufacture of transmission type electroluminescent element

Info

Publication number
JPH05114482A
JPH05114482A JP3273981A JP27398191A JPH05114482A JP H05114482 A JPH05114482 A JP H05114482A JP 3273981 A JP3273981 A JP 3273981A JP 27398191 A JP27398191 A JP 27398191A JP H05114482 A JPH05114482 A JP H05114482A
Authority
JP
Japan
Prior art keywords
layer
zno
light emitting
electrode layer
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3273981A
Other languages
Japanese (ja)
Inventor
Keiichi Kohama
恵一 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3273981A priority Critical patent/JPH05114482A/en
Publication of JPH05114482A publication Critical patent/JPH05114482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To easily manufacture a transmission type electroluminescent element capable of fully displaying the high luminous efficacy of zinc sulfide, when this material expected to display high luminous efficacy as the base material of a luminous layer is used. CONSTITUTION:The first transparent electrode layer 2 of ZnO:Al, the first insulation layer 3 of ZnO, a luminous layer 4 of ZnS:Mn, the second insulation layer 5 of Y2O3 and the second transparent electrode layer 6 of ZnO:Al are formed in order on a transparent glass substrate 1. ZnO in the first transparent electrode 2 is intensively oriented to the direction of (001) and more intensively than ZnO in the layer 3 to the same direction. The luminous layer 4 with ZnS having the same crystal structure as ZnO as a base material is influenced by the crystal of ZnO, and formed under improved crystal quality. As a result, a low quality layer hardly exists near the interface of the first insulation layer 3 and the luminous layer 4, and the crystal grain of the layer 4 also grows to or above a hundred and several tens of mum, thereby ensuring high luminous efficacy due to zinc sulfide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、文字板照明、ディスプ
レイ等の発光素子として利用される透過型エレクトロル
ミネセンス(EL)素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a transmissive electroluminescence (EL) element used as a light emitting element for a dial illumination, a display and the like.

【0002】[0002]

【従来の技術】薄膜EL素子は、基板上に第1電極層と
第1絶縁層と発光層と第2絶縁層と第2電極層とが順次
積層され、第1電極層と第2電極層との間に所定のしき
い値以上の電圧を印加することにより、発光層が発光す
るものである。所望により第2電極層上にさらに基板が
積層されることもある。この薄膜EL素子は、通常、基
板、第1電極層並びに第1及び第2絶縁層が透明に形成
されるが、第2電極層も透明に形成された透過型EL素
子では、発光層の光が第1絶縁層及び第1電極層を透過
して表側の基板から放射されるとともに、第2絶縁層及
び第2電極層を透過して裏側の基板から放射され、かつ
非発光時に透明体とされる。
2. Description of the Related Art A thin film EL device has a first electrode layer, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode layer, which are sequentially laminated on a substrate. The light emitting layer emits light by applying a voltage equal to or higher than a predetermined threshold value between and. If desired, a substrate may be further laminated on the second electrode layer. In this thin film EL element, the substrate, the first electrode layer, and the first and second insulating layers are normally formed transparently. However, in the transmissive EL element in which the second electrode layer is also transparently formed, the light of the light emitting layer Is transmitted through the first insulating layer and the first electrode layer and radiated from the front substrate, and is transmitted through the second insulating layer and the second electrode layer and radiated from the back substrate. To be done.

【0003】一般的な透過型EL素子は、基板として透
明ガラス基板が採用され、第1及び第2電極層としてI
2 3 −SnO2 (ITO)又はZnO:Al(Zn
O中に数%Alを添加したもの。以下同様。)が採用さ
れ、第1及び第2絶縁層としてY2 3 、Ta2 5
はSi3 4 が採用され、発光層としてZnS:Mn又
はZnS:TbF3 が採用されている。この透過型EL
素子では、ZnS:Mn又はZnS:TbF3 の発光層
の採用により良好な発光効率を発揮するとともに、上記
第1及び第2電極層と第1及び第2絶縁層との採用によ
り、透明ガラス基板と第1電極層との間、第1電極層と
第1絶縁層との間及び第2絶縁層と第2電極層との間の
良好な密着性による良好な耐久性を発揮している。
In a general transmissive EL element, a transparent glass substrate is used as a substrate and I and I are used as the first and second electrode layers.
n 2 O 3 -SnO 2 (ITO ) or ZnO: Al (Zn
O with a few% Al added. The same applies below. ) Is adopted, Y 2 O 3 , Ta 2 O 5 or Si 3 N 4 is adopted as the first and second insulating layers, and ZnS: Mn or ZnS: TbF 3 is adopted as the light emitting layer. This transmissive EL
In the device, a ZnS: Mn or ZnS: TbF 3 light emitting layer is used to exhibit good light emission efficiency, and a transparent glass substrate is used by using the first and second electrode layers and the first and second insulating layers. And the first electrode layer, between the first electrode layer and the first insulating layer, and between the second insulating layer and the second electrode layer, good durability is exhibited.

【0004】また、第2電極層が金属光沢を有して形成
され、この第2電極層で発光層の光を反射させる非透過
型EL素子では、第1電極層としてZnO:Alが採用
され、第1及び第2絶縁層としてAlN−Si3 4
が採用され、発光層の母材としてSrS等のアルカリ土
類カルコゲン化物が採用され、第2電極層としてAlが
採用されたものが知られている(特開平2−82493
号公報)。この非透過型EL素子では、アルカリ土類カ
ルコゲン化物を発光層の母材としつつ、ZnO:Alか
らなる第1透明電極層とAlN−Si3 4 系の第1及
び第2絶縁層とを採用することにより、第1電極層と第
1絶縁層との良好な密着性等による耐久性の向上が図ら
れている。
Further, in the non-transmissive EL element in which the second electrode layer is formed with metallic luster and the light of the light emitting layer is reflected by this second electrode layer, ZnO: Al is adopted as the first electrode layer. , AlN—Si 3 N 4 system is adopted as the first and second insulating layers, alkaline earth chalcogenide such as SrS is adopted as the base material of the light emitting layer, and Al is adopted as the second electrode layer. Known (JP-A-2-82493)
Publication). In this non-transmissive EL device, the first transparent electrode layer made of ZnO: Al and the first and second insulating layers made of AlN—Si 3 N 4 are used while using the alkaline earth chalcogenide as a base material of the light emitting layer. By adopting this, the durability is improved by the good adhesion between the first electrode layer and the first insulating layer.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記一般的な
透過型EL素子では、発光層の母材として優れた発光効
率が期待できるZnSを採用した場合、第1及び第2絶
縁層として採用するY2 3 、Ta2 5 又はSi3
4 が非晶質であるため、発光層を第1絶縁層上に(11
1)配向の閃亜鉛鉱構造では形成できるものの、第1絶
縁層と発光層との界面付近に品質の悪い層が大きな厚さ
で存在してしまうとともに、発光層の結晶粒も数μm〜
数十μm程度にしかならないことが明らかとなった。こ
のため、この透過型EL素子の発光効率は、最も大きい
発光効率が期待されるZnS:Mnの発光層(黄橙色発
光)を採用した場合でも2(lm/W)程度であり、比
較的大きい発光効率が期待されるZnS:TbF3 の発
光層(緑色発光)を採用した場合では1(lm/W)程
度以下であった。
However, in the above-mentioned general transmissive EL element, when ZnS, which can be expected to have excellent luminous efficiency, is adopted as the base material of the light emitting layer, it is adopted as the first and second insulating layers. Y 2 O 3 , Ta 2 O 5 or Si 3 N
Since 4 is amorphous, the light emitting layer is formed on the first insulating layer (11
1) Although it can be formed with an oriented zinc blende structure, a poor quality layer exists in a large thickness in the vicinity of the interface between the first insulating layer and the light emitting layer, and the crystal grain of the light emitting layer is several μm or less.
It became clear that it was only about several tens of μm. Therefore, the light emission efficiency of the transmissive EL element is about 2 (lm / W) even when a ZnS: Mn light emitting layer (yellow-orange light emission), which is expected to have the highest light emission efficiency, is employed, which is relatively large. When a light emitting layer of ZnS: TbF 3 (green light emission), which is expected to have light emitting efficiency, is adopted, it is about 1 (lm / W) or less.

【0006】なお、上記公報記載の非透過型EL素子に
おいて、基板として透明ガラス基板を採用し、第2電極
層をAlではなく例えばZnO:Alとすれば、透過型
EL素子となりうるが、こうして得られる透過型EL素
子においても、第1及び第2絶縁層がAlN−Si3
4 系のやはり非晶質のものであるため、発光層の母材と
してZnSを採用した場合は、上記と同様に充分な発光
効率を発揮することができない。
In the non-transmissive EL device described in the above publication, if a transparent glass substrate is used as the substrate and the second electrode layer is made of, for example, ZnO: Al instead of Al, a transmissive EL device can be obtained. also in transmission type EL element obtained, the first and second insulating layers AlN-Si 3 N
Since the 4 type is also amorphous, when ZnS is adopted as the base material of the light emitting layer, sufficient luminous efficiency cannot be exhibited as in the above case.

【0007】本発明は、上記従来の不具合に鑑みてなさ
れたものであって、発光層の母材として優れた発光効率
が期待できるZnSを採用した場合、その優れた発光効
率を充分に発揮できる透過型EL素子を容易に製造する
ことを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and when ZnS, which can be expected to have excellent luminous efficiency, is adopted as the base material of the light emitting layer, the excellent luminous efficiency can be sufficiently exhibited. The purpose is to easily manufacture a transmissive EL device.

【0008】[0008]

【課題を解決するための手段】本発明の透過型EL素子
の製造方法は、透明基板上にZnOとAlとからなる第
1透明電極層を形成する第1工程と、該第1透明電極層
上にZnOからなる第1絶縁層を形成する第2工程と、
該第1絶縁層上にZnSを母材とする発光層をスパッタ
リング法により400〜500℃にて形成する第3工程
と、該発光層上に第2絶縁層と第2透明電極層とを順次
形成する第4工程と、を含むことを特徴とするものであ
る。
A method of manufacturing a transmissive EL device according to the present invention comprises a first step of forming a first transparent electrode layer made of ZnO and Al on a transparent substrate, and the first transparent electrode layer. A second step of forming a first insulating layer of ZnO thereon,
A third step of forming a light emitting layer having ZnS as a base material on the first insulating layer by sputtering at 400 to 500 ° C., and a second insulating layer and a second transparent electrode layer on the light emitting layer in this order. And a fourth step of forming.

【0009】第1工程では、透明基板上にZnOとAl
と(ZnO:Al)からなる第1透明電極層を形成す
る。基板としては、後述する第3工程での熱に耐えられ
る透明基板を用いることができ例えば、透明ガラス基板
を用いることができる。第1透明電極層は、ZnO:A
lからなる。この第1透明電極層を形成するには、スパ
ッタリング法、真空蒸着法、CVD(化学蒸着)法等の
公知の成膜方法を採用することができるが、透明基板の
温度が200〜400℃のスパッタリング法により形成
することが好ましい。第1透明電極層をスパッタリング
法により形成すれば、他の工程もスパッタリング法で行
なうことにより、蒸発源の共通化が可能であり、雰囲気
ガスの変更作業で各層の形成が可能となるため、作業性
が向上するからである。また、第1透明電極層を温度が
200〜400℃の透明基板にスパッタリング法により
形成すれば、ZnO:Alが(001)方向に強く配向
しやすいからである。
In the first step, ZnO and Al are formed on the transparent substrate.
And a first transparent electrode layer made of (ZnO: Al) is formed. As the substrate, a transparent substrate that can withstand the heat in the third step described later can be used, and for example, a transparent glass substrate can be used. The first transparent electrode layer is ZnO: A
It consists of l. In order to form this first transparent electrode layer, a known film forming method such as a sputtering method, a vacuum vapor deposition method, a CVD (chemical vapor deposition) method can be adopted, but the temperature of the transparent substrate is 200 to 400 ° C. It is preferably formed by a sputtering method. If the first transparent electrode layer is formed by the sputtering method, the evaporation source can be made common by performing the other steps by the sputtering method, and each layer can be formed by changing the atmosphere gas. This is because the property is improved. Further, if the first transparent electrode layer is formed on the transparent substrate at a temperature of 200 to 400 ° C. by the sputtering method, ZnO: Al is likely to be strongly oriented in the (001) direction.

【0010】第2工程では、第1透明電極層上にZnO
からなる第1絶縁層を形成する。第1絶縁層を形成する
にも、スパッタリング法、真空蒸着法、CVD法等の公
知の成膜方法を採用することができるが、第1工程と同
様の理由により、透明基板の温度が200〜400℃の
スパッタリング法により形成することが好ましい。第3
工程では、第1絶縁層上にZnSを母材とする発光層を
スパッタリング法により400〜500℃にて形成す
る。発光層としては、付活剤としてMnを用いたZn
S:Mn、付活剤としてTbF3 を用いたZnS:Tb
3 を採用することができる。発光層をスパッタリング
法により400℃未満で形成すれば、結晶が(111)
に配向した閃亜鉛鉱構造になるとともに、結晶粒の大き
さが数十μm程度であり、かつ結晶が比較的弱い配向強
度を示すため、得られる透過型EL素子が充分な発光効
率を発揮できない。発光層をスパッタリング法により5
00℃を超えて形成すれば、透明基板に歪みを生じやす
く、製品歩留りが低下する。また、発光層をスパッタ装
置によるスパッタリング法でなく、MOCVD(有機金
属化学蒸着)法、ALE(原子層エピタキシー)法によ
り形成しても発光層の結晶粒を大きく成長させることが
できるが、これらの方法では装置の煩雑化を生じてしま
う。 第4工程では、発光層上に第2絶縁層と第2透明
電極層とを順次形成する。第2絶縁層としては、第1絶
縁層と同様のZnOの他、Y2 3 、Ta2 5 、Si
3 4 、Sm2 3 、Al2 3 等の高誘電材料を採用
することができる。この第2絶縁層を形成するには、ス
パッタリング法、真空蒸着法、CVD法等の公知の成膜
方法を採用することができる。第1工程と同様の理由に
より、第2絶縁層としてZnOを採用し、透明基板の温
度が200〜400℃のスパッタリング法により形成す
ることが好ましい。第2透明電極層としては、第1透明
電極層と同様のZnO:Alの他、ITO、SnO2
In2 3等を採用することができる。この第2透明電
極層を形成するには、スパッタリング法、真空蒸着法、
CVD法等の公知の成膜方法を利用できる。第1工程と
同様の理由により、第2透明電極層としてZnO:Al
を採用し、透明基板の温度が200〜400℃のスパッ
タリング法により形成することが好ましい。
In the second step, ZnO is formed on the first transparent electrode layer.
Forming a first insulating layer. For forming the first insulating layer, a known film forming method such as a sputtering method, a vacuum evaporation method, or a CVD method can be adopted, but the temperature of the transparent substrate is 200 to 200 for the same reason as in the first step. It is preferably formed by a sputtering method at 400 ° C. Third
In the step, a light emitting layer containing ZnS as a base material is formed on the first insulating layer by sputtering at 400 to 500 ° C. For the light emitting layer, Zn using Mn as an activator
S: Mn, ZnS: Tb using TbF 3 as an activator
F 3 can be adopted. If the light emitting layer is formed at a temperature of less than 400 ° C. by the sputtering method, the crystal will be (111).
In addition to having a zincblende structure oriented in a vertical direction, the size of the crystal grains is about several tens of μm, and the crystals exhibit a relatively weak orientation strength, the transmissive EL element obtained cannot exhibit sufficient luminous efficiency. .. The light emitting layer is formed by the sputtering method.
If the temperature is higher than 00 ° C., the transparent substrate is likely to be distorted and the product yield is reduced. Further, even if the light emitting layer is formed by MOCVD (metal organic chemical vapor deposition) method or ALE (atomic layer epitaxy) method instead of the sputtering method by the sputtering device, the crystal grains of the light emitting layer can be grown large. The method causes complication of the device. In the fourth step, the second insulating layer and the second transparent electrode layer are sequentially formed on the light emitting layer. Examples of the second insulating layer include ZnO similar to that of the first insulating layer, Y 2 O 3 , Ta 2 O 5 , and Si.
A high dielectric material such as 3 N 4 , Sm 2 O 3 , or Al 2 O 3 can be used. In order to form this second insulating layer, a known film forming method such as a sputtering method, a vacuum evaporation method, a CVD method can be adopted. For the same reason as in the first step, ZnO is preferably used as the second insulating layer, and the transparent substrate is preferably formed by a sputtering method in which the temperature is 200 to 400 ° C. As the second transparent electrode layer, in addition to the same ZnO: Al as the first transparent electrode layer, ITO, SnO 2 ,
In 2 O 3 or the like can be used. To form this second transparent electrode layer, a sputtering method, a vacuum deposition method,
A known film forming method such as a CVD method can be used. For the same reason as in the first step, ZnO: Al was used as the second transparent electrode layer.
It is preferable that the transparent substrate is formed by a sputtering method in which the temperature is 200 to 400 ° C.

【0011】[0011]

【作用】本発明者は、鋭意研究の結果、上記第1電極
層、第1絶縁層及び発光層の採用により上記目的を達成
できることを発見し、本発明を完成するに至った。すな
わち、本発明の製造方法では、まず透明基板上にZn
O:Alの第1透明電極層が形成される。この第1透明
電極層は、透明基板が透明ガラス基板のように非晶質の
ものであっても、ZnOが透明基板上に(001)方向
のウルツ鉱構造で強く配向され、内部にAlが数%添加
されることにより10-3Ω・cm以下の導電性を示す。
As a result of earnest research, the present inventor has found that the above object can be achieved by employing the first electrode layer, the first insulating layer and the light emitting layer, and has completed the present invention. That is, in the manufacturing method of the present invention, Zn is first formed on the transparent substrate.
A first transparent electrode layer of O: Al is formed. In this first transparent electrode layer, ZnO is strongly oriented with a wurtzite structure in the (001) direction on the transparent substrate even if the transparent substrate is an amorphous one such as a transparent glass substrate, and Al is contained inside. Addition of a few% shows conductivity of 10 −3 Ω · cm or less.

【0012】次いで、この第1透明電極層上にはZnO
からなる第1絶縁層が形成される。この第1絶縁層で
は、既に(001)方向でZnOが強く配向した第1透
明電極層上に更に同一元素からなるZnOが形成される
ため、より強くZnOが(001)方向のウルツ鉱構造
で配向される。そして、第1絶縁層上にはZnSを母材
とする発光層が形成される。この発光層は、第1透明電
極層及び第1絶縁層におけるZnOと同一の結晶構造を
もつZnSを母材としているため、ZnO結晶の影響を
受け、より向上した結晶性の下で形成されると考えられ
る。このため、第1絶縁層と発光層との界面付近に品質
の悪い層が存在しにくく、発光層の結晶粒も百数十μm
以上に成長する。
Next, ZnO is formed on the first transparent electrode layer.
Forming a first insulating layer. In this first insulating layer, ZnO composed of the same element is further formed on the first transparent electrode layer in which ZnO is already strongly oriented in the (001) direction, so that ZnO has a stronger wurtzite structure in the (001) direction. Be oriented. Then, a light emitting layer containing ZnS as a base material is formed on the first insulating layer. This light emitting layer uses ZnS having the same crystal structure as ZnO in the first transparent electrode layer and the first insulating layer as a base material, and therefore is affected by ZnO crystals and is formed with improved crystallinity. it is conceivable that. For this reason, it is difficult for a poor quality layer to exist near the interface between the first insulating layer and the light emitting layer, and the crystal grains of the light emitting layer have a grain size of a few hundreds of μm.
To grow above.

【0013】この後、発光層上には第2絶縁層と第2透
明電極層とが順次形成され、透過型EL素子が得られ
る。こうして得られた透過型EL素子は、上記のように
発光層が第1絶縁層との界面に品質の悪い層を存在させ
にくいとともに充分に結晶粒を成長させているため、発
光層の母材たるZnSによる優れた発光効率を充分に発
揮する。
After that, a second insulating layer and a second transparent electrode layer are sequentially formed on the light emitting layer to obtain a transmissive EL device. In the transmissive EL device thus obtained, as described above, since it is difficult for the light emitting layer to have a poor quality layer at the interface with the first insulating layer and crystal grains are sufficiently grown, the base material of the light emitting layer is formed. The excellent luminous efficiency of the barrel ZnS is sufficiently exhibited.

【0014】[0014]

【実施例】以下、本発明を具体化した実施例を図面を参
照しつつ説明する。 (実施例1){第1工程}透明基板として厚さ1.1m
mの無アルカリ透明ガラス基板1を用意し、この透明ガ
ラス基板1を洗浄後、乾燥させてマグネトロン型スパッ
タ装置にセットする。そして、スパッタ装置の成膜チャ
ンバー内を2×10-6Torr以下に排気し、透明ガラ
ス基板1を200〜400℃に加熱した後、ZnOとA
lとを各ターゲットとして、(Ar+O2 )スパッタガ
ス中でスパッタする。このとき、ZnO中のAl濃度が
2wt%程度になるように各ターゲットに投入するスパ
ッタ電力を調整する。こうして、透明ガラス基板1上に
ZnO:Alの第1透明電極層2を厚さ200nmで成
膜する。
Embodiments of the present invention will be described below with reference to the drawings. (Example 1) {First step} 1.1 m thick as a transparent substrate
m non-alkali transparent glass substrate 1 is prepared, the transparent glass substrate 1 is washed, dried and set in a magnetron type sputtering apparatus. Then, the inside of the film forming chamber of the sputtering apparatus was evacuated to 2 × 10 −6 Torr or less, the transparent glass substrate 1 was heated to 200 to 400 ° C., and then ZnO and A were added.
1 and 2 are used as targets and are sputtered in an (Ar + O 2 ) sputter gas. At this time, the sputtering power applied to each target is adjusted so that the Al concentration in ZnO is about 2 wt%. In this way, the first transparent electrode layer 2 of ZnO: Al is formed to a thickness of 200 nm on the transparent glass substrate 1.

【0015】{第2工程}続いて、透明ガラス基板1を
200〜400℃に加熱した状態で、ZnOをターゲッ
トとして、(Ar+O2 )スパッタガス中でスパッタす
る。こうして、第1透明電極層2上にZnOからなる第
1絶縁層3を厚さ200〜400nmで成膜する。
{Second Step} Subsequently, while the transparent glass substrate 1 is heated to 200 to 400 ° C., sputtering is carried out in (Ar + O 2 ) sputtering gas with ZnO as a target. Thus, the first insulating layer 3 made of ZnO is formed on the first transparent electrode layer 2 with a thickness of 200 to 400 nm.

【0016】{第3工程}透明ガラス基板1を400℃
に加熱した状態で、ZnSとMnとを各ターゲットとし
て、Arスパッタガス中でスパッタする。このとき、Z
nSが99.5wt%、Mnが0.5wt%になるよう
に各ターゲットに投入するスパッタ電力を調整する。こ
うして、第1絶縁層3上にZnS:Mnの発光層4を厚
さ400〜600nmで成膜する。
{Third step} The transparent glass substrate 1 is heated to 400 ° C.
In the state of being heated to, the targets are ZnS and Mn, and sputtering is performed in an Ar sputtering gas. At this time, Z
The sputtering power to be applied to each target is adjusted so that nS is 99.5 wt% and Mn is 0.5 wt%. Thus, the ZnS: Mn light emitting layer 4 is formed on the first insulating layer 3 to have a thickness of 400 to 600 nm.

【0017】{第4工程}透明ガラス基板1を100〜
300℃に加熱した状態で、Y2 3 をターゲットとし
て、(Ar+O2 )スパッタガス中でスパッタする。こ
うして、発光層4上にY2 3 からなる第2絶縁層5を
厚さ400nmで成膜する。また、透明ガラス基板1を
200〜400℃に加熱した状態で、ZnOとAlとを
ターゲットとして、(Ar+O2 )スパッタガス中でス
パッタする。このとき、ZnO中のAl濃度が2wt%
程度になるように各ターゲットに投入するスパッタ電力
を調整する。こうして、第2絶縁層5上にZnO:Al
の第2透明電極層6を厚さ200nmで成膜し、透過型
EL素子を得る。
{Fourth step} 100 to 100% transparent glass substrate 1
Sputtering is performed in a (Ar + O 2 ) sputter gas using Y 2 O 3 as a target while heating at 300 ° C. Thus, the second insulating layer 5 made of Y 2 O 3 is formed on the light emitting layer 4 to have a thickness of 400 nm. Further, while the transparent glass substrate 1 is heated to 200 to 400 ° C., sputtering is performed in (Ar + O 2 ) sputtering gas with ZnO and Al as targets. At this time, the Al concentration in ZnO is 2 wt%
The sputtering power to be applied to each target is adjusted so as to be about the same level. Thus, ZnO: Al is formed on the second insulating layer 5.
The second transparent electrode layer 6 is formed to a thickness of 200 nm to obtain a transmissive EL element.

【0018】この透過型EL素子は、図1に示すよう
に、透明ガラス基板1上に、ZnO:Alの第1透明電
極層2と、ZnOからなる第1絶縁層3と、ZnS:M
nの発光層4と、Y2 3 からなる第2絶縁層5と、Z
nO:Alの第2透明電極層6とが順次積層されてい
る。 (実施例2)上記{第3工程}において透明ガラス基板
1の加熱温度を450℃とし、他の工程及び条件は実施
例1と同一で透過型EL素子を得る。 (実施例3)上記{第3工程}において透明ガラス基板
1の加熱温度を500℃とし、他の工程及び条件は実施
例1と同一で透過型EL素子を得る。 (比較例1)上記{第2工程}においてY2 3 をター
ゲットとして、第1透明電極層上にY2 3 からなる第
1絶縁層を厚さ400nmで成膜し、他の工程及び条件
は実施例1と同一で透過型EL素子を得る。
As shown in FIG. 1, this transmissive EL device comprises a transparent glass substrate 1, a first transparent electrode layer 2 of ZnO: Al, a first insulating layer 3 of ZnO, and ZnS: M.
n light emitting layer 4, a second insulating layer 5 made of Y 2 O 3 , and Z
A second transparent electrode layer 6 of nO: Al is sequentially laminated. (Example 2) In the above {third step}, the heating temperature of the transparent glass substrate 1 was set to 450 ° C, the other steps and conditions were the same as in Example 1 to obtain a transmissive EL device. (Example 3) In the above {third step}, the heating temperature of the transparent glass substrate 1 was set to 500 ° C, and the other steps and conditions were the same as in Example 1 to obtain a transmissive EL device. (Comparative Example 1) In the above {second step}, by using Y 2 O 3 as a target, a first insulating layer made of Y 2 O 3 having a thickness of 400 nm was formed on the first transparent electrode layer, and other steps and The conditions are the same as in Example 1 to obtain a transmissive EL device.

【0019】この透過型EL素子は、図2に示すよう
に、透明ガラス基板11上に、ZnO:Alの第1透明
電極層12と、Y2 3 からなる第1絶縁層13と、Z
nS:Mnの発光層14と、Y2 3からなる第2絶縁
層15と、ZnO:Alの第2透明電極層16とが順次
積層されている。 (比較例2)上記{第3工程}において透明ガラス基板
1の加熱温度を350℃とし、他の工程及び条件は実施
例1と同一で透過型EL素子を得る。 (評価)これら実施例1〜3及び比較例1、2の透過型
EL素子に交流電界を印加し、発光効率を測定したとこ
ろ、実施例1の透過型EL素子の発光効率は4.3(l
m/W)、実施例2の透過型EL素子の発光効率は4.
9(lm/W)、実施例3の透過型EL素子の発光効率
は4.7(lm/W)であった。一方、比較例1の透過
型EL素子の発光効率は2.0(lm/W)、比較例2
の透過型EL素子の発光効率は1.6(lm/W)であ
った。
As shown in FIG. 2, this transmission type EL device comprises a transparent glass substrate 11, a first transparent electrode layer 12 of ZnO: Al, a first insulating layer 13 made of Y 2 O 3, and a Z layer.
A light emitting layer 14 of nS: Mn, a second insulating layer 15 of Y 2 O 3, and a second transparent electrode layer 16 of ZnO: Al are sequentially laminated. (Comparative Example 2) In the above {third step}, the heating temperature of the transparent glass substrate 1 was set to 350 ° C, the other steps and conditions were the same as in Example 1, and a transmissive EL element was obtained. (Evaluation) An alternating electric field was applied to the transmissive EL elements of Examples 1 to 3 and Comparative Examples 1 and 2 to measure the luminous efficiency. The luminous efficiency of the transmissive EL element of Example 1 was 4.3 ( l
m / W), and the luminous efficiency of the transmissive EL device of Example 2 is 4.
The luminous efficiency of the transmissive EL device of Example 3 was 9 (lm / W) and 4.7 (lm / W). On the other hand, the luminous efficiency of the transmissive EL device of Comparative Example 1 is 2.0 (lm / W), and Comparative Example 2
The light emission efficiency of the transmissive EL element of was 1.6 (lm / W).

【0020】また、実施例1〜3及び比較例1、2の透
過型EL素子の発光層の結晶構造等を調べたところ、実
施例1〜3の透過型EL素子では(001)に配向した
ウルツ鉱構造、結晶粒の大きさは150〜200μm程
度であり、強い配向強度を示していた。一方、比較例
1、2の透過型EL素子では(111)に配向した閃亜
鉛鉱構造、結晶粒の大きさは30〜50μm程度であ
り、実施例1〜3のものと比較して弱い配向強度を示し
ていた。特に、比較例1の透過型EL素子では、第1絶
縁層13と発光層14との界面付近に品質の悪い層が大
きな厚さで存在していた。
When the crystal structures of the light emitting layers of the transmissive EL elements of Examples 1 to 3 and Comparative Examples 1 and 2 were examined, the transmissive EL elements of Examples 1 to 3 were oriented in (001). The wurtzite structure and the size of the crystal grains were about 150 to 200 μm, indicating strong orientation strength. On the other hand, in the transmission type EL elements of Comparative Examples 1 and 2, the (111) -oriented zincblende structure and the size of the crystal grains are about 30 to 50 μm, which is weaker than those of Examples 1 to 3. Showed strength. In particular, in the transmissive EL device of Comparative Example 1, a poor quality layer was present with a large thickness in the vicinity of the interface between the first insulating layer 13 and the light emitting layer 14.

【0021】したがって、比較例1、2では、発光層の
母材として優れた発光効率が期待できるZnSを採用し
たとしても、充分な発光効率を発揮できない透過型EL
素子を製造してしまうことがわかる。一方、実施例1〜
3では、ZnS:Mnによる優れた発光効率を充分に発
揮できる透過型EL素子を容易に製造できることがわか
る。
Therefore, in Comparative Examples 1 and 2, even if ZnS, which can be expected to have excellent light emitting efficiency, is used as the base material of the light emitting layer, the transmissive EL cannot exhibit sufficient light emitting efficiency.
It turns out that the element is manufactured. On the other hand, Examples 1 to
It can be seen that in No. 3, it is possible to easily manufacture the transmissive EL element that can sufficiently exhibit the excellent luminous efficiency by ZnS: Mn.

【0022】[0022]

【発明の効果】以上詳述したように、本発明の製造方法
では、透明基板上にZnO:Alの第1透明電極層を形
成し、この第1透明電極層上にZnOからなる第1絶縁
層を形成し、この第1絶縁層上にZnSを母材とする発
光層をスパッタリング法により400〜500℃にて形
成しているため、ZnSによる優れた発光効率を充分に
発揮できる透過型EL素子を容易に製造できる。
As described above in detail, in the manufacturing method of the present invention, the first transparent electrode layer of ZnO: Al is formed on the transparent substrate, and the first insulating layer made of ZnO is formed on the first transparent electrode layer. Since a layer is formed and a light emitting layer containing ZnS as a base material is formed on the first insulating layer at 400 to 500 ° C. by a sputtering method, a transmissive EL device capable of sufficiently exhibiting excellent light emitting efficiency by ZnS. The device can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の透過型EL素子の断面図である。FIG. 1 is a cross-sectional view of a transmissive EL element of Example 1.

【図2】比較例1の透過型EL素子の断面図である。FIG. 2 is a cross-sectional view of a transmissive EL element of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…透明ガラス基板 2…第1透明電極層 3
…第1絶縁層 4…発光層 5…第2絶縁層 6
…第2透明電極層
1 ... Transparent glass substrate 2 ... First transparent electrode layer 3
... first insulating layer 4 ... light emitting layer 5 ... second insulating layer 6
... Second transparent electrode layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】透明基板上にZnOとAlとからなる第1
透明電極層を形成する第1工程と、 該第1透明電極層上にZnOからなる第1絶縁層を形成
する第2工程と、 該第1絶縁層上にZnSを母材とする発光層をスパッタ
リング法により400〜500℃にて形成する第3工程
と、 該発光層上に第2絶縁層と第2透明電極層とを順次形成
する第4工程と、を含むことを特徴とする透過型エレク
トロルミネッセンス素子の製造方法。
1. A first substrate comprising ZnO and Al on a transparent substrate.
A first step of forming a transparent electrode layer, a second step of forming a first insulating layer made of ZnO on the first transparent electrode layer, and a light emitting layer containing ZnS as a base material on the first insulating layer. Transmission type including a third step of forming at 400 to 500 ° C. by a sputtering method and a fourth step of sequentially forming a second insulating layer and a second transparent electrode layer on the light emitting layer. Manufacturing method of electroluminescent element.
JP3273981A 1991-10-22 1991-10-22 Manufacture of transmission type electroluminescent element Pending JPH05114482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273981A JPH05114482A (en) 1991-10-22 1991-10-22 Manufacture of transmission type electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273981A JPH05114482A (en) 1991-10-22 1991-10-22 Manufacture of transmission type electroluminescent element

Publications (1)

Publication Number Publication Date
JPH05114482A true JPH05114482A (en) 1993-05-07

Family

ID=17535276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273981A Pending JPH05114482A (en) 1991-10-22 1991-10-22 Manufacture of transmission type electroluminescent element

Country Status (1)

Country Link
JP (1) JPH05114482A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353578C (en) * 2005-11-18 2007-12-05 浙江大学 UV electroluminescence device of silicon base zinc oxide and preparation process thereof
WO2008099702A1 (en) * 2007-02-13 2008-08-21 Sony Corporation Electrowetting device and method for manufacturing the same
KR100857472B1 (en) * 2007-05-29 2008-09-08 한국전자통신연구원 Organic light emitting device and method for fabricating the same
JP2010192441A (en) * 2009-02-17 2010-09-02 Samsung Mobile Display Co Ltd Organic light emitting element, and manufacturing method thereof
US8569095B2 (en) 2009-07-08 2013-10-29 Nikon Corporation Optical device, optical equipment and method for manufacturing Optical Device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100353578C (en) * 2005-11-18 2007-12-05 浙江大学 UV electroluminescence device of silicon base zinc oxide and preparation process thereof
WO2008099702A1 (en) * 2007-02-13 2008-08-21 Sony Corporation Electrowetting device and method for manufacturing the same
JP2008197296A (en) * 2007-02-13 2008-08-28 Sony Corp Electrowetting device and its manufacturing method
US8081389B2 (en) 2007-02-13 2011-12-20 Sony Corporation Electro-wetting device and a method of manufacturing the same
KR100857472B1 (en) * 2007-05-29 2008-09-08 한국전자통신연구원 Organic light emitting device and method for fabricating the same
JP2010192441A (en) * 2009-02-17 2010-09-02 Samsung Mobile Display Co Ltd Organic light emitting element, and manufacturing method thereof
US8383431B2 (en) 2009-02-17 2013-02-26 Samsung Display Co., Ltd. Organic light-emitting diode and method of manufacturing the same
US8569095B2 (en) 2009-07-08 2013-10-29 Nikon Corporation Optical device, optical equipment and method for manufacturing Optical Device

Similar Documents

Publication Publication Date Title
JP3797317B2 (en) Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element
JPS60182692A (en) Thin film el element and method of producing same
US4975338A (en) Thin film electroluminescence device
JPH0547473A (en) Electroluminescence display device and manufacture thereof
JPH05114482A (en) Manufacture of transmission type electroluminescent element
US4737684A (en) Thin film EL element having a crystal-orientable ZnO sublayer for a light-emitting layer
US7557374B2 (en) Substrates and methods for fabricating the same
US20030189399A1 (en) Thin film electroluminescent device
JPH046279B2 (en)
JP3537468B2 (en) Method for manufacturing electroluminescence device
JPH046278B2 (en)
JPH06251873A (en) Forming method of electroluminescent element
JPS6213798B2 (en)
JPH02306591A (en) Manufacture of thin film electroluminescence element
JPH0562778A (en) Thin film electroluminescence element
JP3349221B2 (en) Electroluminescent device and method for manufacturing the same
JPS61253797A (en) Manufacture of electroluminescence element
JPH0574571A (en) Electroluminescence element
JP2837359B2 (en) Method for manufacturing thin film EL element
JPH04249094A (en) Manufacture of film type electroluminescence element
JPH05114484A (en) Manufacture of thin film electroluminescent element
JPH0290493A (en) Alternating current drive type thin film el element
JPH06295787A (en) Thin film luminous element
JPH046275B2 (en)
JPH01120793A (en) Thin film type electroluminiscence element