CN100353578C - UV electroluminescence device of silicon base zinc oxide and preparation process thereof - Google Patents

UV electroluminescence device of silicon base zinc oxide and preparation process thereof Download PDF

Info

Publication number
CN100353578C
CN100353578C CNB2005100616033A CN200510061603A CN100353578C CN 100353578 C CN100353578 C CN 100353578C CN B2005100616033 A CNB2005100616033 A CN B2005100616033A CN 200510061603 A CN200510061603 A CN 200510061603A CN 100353578 C CN100353578 C CN 100353578C
Authority
CN
China
Prior art keywords
film
silicon base
zinc oxide
electroluminescence device
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100616033A
Other languages
Chinese (zh)
Other versions
CN1787246A (en
Inventor
马向阳
杨德仁
陈培良
阙端麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CNB2005100616033A priority Critical patent/CN100353578C/en
Publication of CN1787246A publication Critical patent/CN1787246A/en
Application granted granted Critical
Publication of CN100353578C publication Critical patent/CN100353578C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The present invention discloses a UV electroluminescence device made of silicon base zinc oxide and a preparing method thereof. The UV electroluminescence device made of silicon base zinc oxide is characterized in that a ZnO film, a SiO2 film and electrodes are deposited on the front side of a silicon base from bottom to top, and ohmic contact electrodes are deposited on the back side of the silicon base. The preparing method of the UV electroluminescence device made of silicon base zinc oxide comprises the following steps: firstly, an N type silicon chip is put into a reaction chamber of a DC reactive magnetron sputtering device after the N type silicon chip is cleaned, the reaction chamber is evacuated in a vacuum state, Zn is adopted as target materials, O2 and Ar are adopted as the sputtering atmosphere, and the sputtering growth is carried out to obtain the ZnO film; secondly, the SiO2 film is deposited on the ZnO film through a chemical vapor deposition technique, or an evaporation technique, or a sputtering technique or a sol-gel technique; finally, the electrodes are sputtered on the SiO2 film, and the ohmic contact electrodes are spattered on the back side of the silicon base. The UV electroluminescence device made of silicon base zinc oxide of the present invention has simple structure, simple realizing method and no need of a P type film, and thus, the problem that the P type film is difficult to dope into the ZnO film is avoided. Apparatuses used by the preparing method of the UV electroluminescence device made of silicon base zinc oxide have compatibility with the existing mature silicon device planar technology.

Description

A kind of UV electroluminescence device of silicon base zinc oxide and preparation method thereof
Technical field
The present invention relates to UV electroluminescence device of silicon base zinc oxide and preparation method thereof.
Background technology
Because ZnO at room temperature has the exciton bind energy of direct band gap and the 60mev of 3.37eV, so it is a desirable photoelectron material of realizing ultra-violet light-emitting.But the electricity of ZnO causes ultraviolet light-emitting diode and laser diode is difficult to realize, the biggest obstacle that it runs into is that the P type doping of ZnO high concentration exists suitable difficulty.In order to avoid this difficulty, people had once attempted the electroluminescence of multiple heterojunction structure with the realization zno-based, as: n-ZnO/p-GaN, p-AlGaN/n-ZnO and p-SrCu 2O 2/ n-ZnO, the report document has: Ya.I.Alivov, J.E.Van Nostrand, D.C.Look, M.V.Chukichev, and B.M.Ataev, Appl.Phys.Lett.83,2943 (2003); Ya.I.Alivov, E.V.Kalinina, A.E.Cherenkov, D.C.Look, B.M.Ataev, A.K.Omaev, M.V.Chukichev, D.M.Bagnall, Appl.Phys.Lett.83,4719 (2003); H.Ohta, M.Orita, and M.Hirano, and H.Hosono, J.Appl.Phys.89,5720 (2001).At the homogeneity LED aspect of ZnO, people such as Toru Aoki have reported with laser doping and have realized the ZnO diode, and obtained ultra-violet light-emitting (list of references T.Aoki under 110K, Y.Hatanaka, and D.C.Look, Appl.Phys.Lett.76,3257 (2000)); People such as Xin-Li Guo utilize N 2O plasma intensifier pulse laser reactive sedimentation has realized that the P type of ZnO mixes, thereby obtains the ZnO light-emitting diode, but at luminous very faint (the list of references X.L.Guo of ultraviolet region, J.H.Choi, H.Tabata, and T.Kawai, Jpn.J.Appl.Phys.40, L177 (2001)); People such as Atsushi Tsukazaki have reported that repeated temperature modulation epitaxy realizes that the P type mixes, thereby prepared the ZnO diode, and obtained electroluminescence from ultraviolet to the green glow zone, yet luminous still more weak (list of references A.Tsukazaki, A.Ohtomo, the T.Onuma of ultraviolet region, M.Ohtani, T.Makino, M.Sumiya, K.Ohtani, S.F.Chichibu, S.Fuke, Y.Segawa, H.Ohno, H.Koinuma, and M.Kawasaki, NatureMater.4,42 (2005)).Under but the practicability P of ZnO type mixes the situation that does not also have at present thoroughly to solve, adopt MIS structure to remain the electroluminescent approach of ZnO that realizes based on ZnO.In fact, just reported the ultra-violet light-emitting of Ag/SiO/ZnO and Au/SiO/ZnO structure in the 1970's, should be noted that, what adopt in these structures is the ZnO monocrystal, and luminous (the list of references B.W.Thomas and D.Walsh that under high bias voltage (tens volts even 200V), produces, Electron.Lett.9,362 (1973); T.Minami, M.Tanigawa, M.Yamanishi, and T.Kawamura, Jpn.J.Appl.Phys.13,1475 (1974)).Recently, people such as Ya.I.Alivov utilizes the nitrogen ion to be infused in Al 2O 3Form insulating barrier in the base n type ZnO film, thereby form zno-based MIS structure and obtained ultra-violet light-emitting (list of references Ya.I.Alivov, D.C.Look, B.M.Ataev, M.V.Chukichev, V.V.Mamedov, V.I.Zinenko, Yu.A.Agafonov, and A.N.Pustovit, Solid-State Electron.48,2343 (2004)).Up to the present, some progress have been obtained though cause the exploitation of ultra-violet light-emitting device based on the electricity of ZnO, but all adopted comparatively complicated implementation method, such as: prepare P type compound semiconductor film with molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition equipment (MOCVD) method.
Summary of the invention
The objective of the invention is to propose a kind of simple UV electroluminescence device of silicon base zinc oxide and preparation method thereof.
UV electroluminescence device of silicon base zinc oxide of the present invention is characterized in that depositing ZnO film, SiO from bottom to top successively in the front of silicon substrate 2Film and electrode have Ohm contact electrode at the silicon substrate backside deposition.
The preparation method of the UV electroluminescence device of silicon base zinc oxide of invention may further comprise the steps:
1) be 0.005-50 ohm with resistivity. centimetre N type silicon chip put into the reative cell of direct current reaction magnetron sputtering device after cleaning, reative cell vacuum degree is evacuated to 1~5 * 10 -3Pa is a target with Zn, with O 2With Ar as sputtering atmosphere, O 2With the flow-rate ratio of Ar be O 2: Ar=1: 2~1: 5, under 10~20Pa pressure, underlayer temperature is 300 ℃~600 ℃, carries out the sputter growth, obtains ZnO film;
2) utilize conventional chemical vapour deposition technique or evaporation or sputtering method or sol-gel process on ZnO film, to deposit SiO 2Film;
3) at SiO 2Sputter semitransparent electrode on the film is at N type silicon substrate back spatter Ohm contact electrode.
Above-mentioned semitransparent electrode can be the thick golden film of ito thin film or 2-10nm.
The present invention can change the crystalline state of ZnO film by the adjusting underlayer temperature, by adjusting the thickness that sputtering time changes ZnO film.
Beneficial effect of the present invention is: the structure and the implementation of device are simple, do not need to adopt complicated molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition equipment means such as (MOCVD).This device need not to adopt P type ZnO film, thereby has avoided the problem of ZnO film P type doping difficulty.In addition, used equipment and the existing mature silicon device plane process compatibility of this preparation of devices method.
Description of drawings
Fig. 1 is the UV electroluminescence device of silicon base zinc oxide schematic diagram;
Fig. 2 is the electroluminescence spectrum that UV electroluminescence device of silicon base zinc oxide obtains under different forward bias.
Embodiment
Further specify the present invention below in conjunction with accompanying drawing.
With reference to Fig. 1, the UV electroluminescence device of silicon base zinc oxide of invention deposits ZnO film 2, SiO from bottom to top successively in the front of silicon substrate 1 2 Film 3 and electrode 4 have Ohm contact electrode 5 at the silicon substrate backside deposition.
Embodiment 1
Take following processing step: 1) clean N type<100 〉, resistivity is 0.005 ohm. centimetre, size is 15 * 15mm 2, thickness is 675 microns silicon chip, puts into the reative cell of direct current reaction magnetron sputtering device after the cleaning, reative cell vacuum degree is evacuated to 1 * 10 -3Pa; On silicon chip, utilize the method deposit thickness that reacts direct current sputtering to be about the ZnO film of 300nm, when sputter, adopt Zn target, 300 ℃ of underlayer temperatures, sputtering power 120W, pass to O 2With Ar mist, O 2With the flow-rate ratio of Ar be 1: 2, operating pressure is 10Pa; 2) adopting mol ratio is positive tetraethyl orthosilicate (TEOS): ethanol (EtOH): H 2O=1: 10: 10 precursor solution, and add an amount of HCl as catalyst, utilize so-gel method spin-on deposition thickness on ZnO film to be about the SiO of 200nm 2Film, after the spin coating 80 ℃ of down oven dry 20 minutes, then 650 ℃ of heat treatments 2 hours under oxygen; 3) at SiO 2On the film and the silicon substrate back side is sputter 10nm and the thick Au film of 100nm, wherein the former area 10 * 10mm respectively 2
Embodiment 2
Take following processing step: 1) clean N type<100 〉, resistivity is 0.5 ohm. centimetre, size is 15 * 15mm 2, thickness is 675 microns silicon chip, puts into the reative cell of direct current reaction magnetron sputtering device after the cleaning, reative cell vacuum degree is evacuated to 5 * 10 -3Pa; On silicon chip, utilize the method deposit thickness that reacts direct current sputtering to be about the ZnO film of 300nm, when sputter, adopt Zn target, 500 ℃ of underlayer temperatures, sputtering power 120W, pass to O 2With Ar mist, O 2With the flow-rate ratio of Ar be 1: 3, operating pressure is 20Pa, 2) with SiO 2Be target, utilize RF sputtering method deposit thickness on ZnO film to be about the SiO of 100nm 2Film, sputtering power are 100W, and working gas is an argon gas, and operating pressure is 10Pa; 3) at SiO 2The thick ito thin film of sputtering sedimentation 50nm on the film is at the thick Au film of silicon substrate back spatter 100nm, wherein the former area 10 * 10mm 2
Embodiment 3
Take following processing step: 1) clean N type<100 〉, resistivity is 50 ohm. centimetre, size is 15 * 15mm 2, thickness is 675 microns silicon chip, puts into the reative cell of direct current reaction magnetron sputtering device after the cleaning, reative cell vacuum degree is evacuated to 3 * 10 -3Pa; On silicon chip, utilize the method deposit thickness that reacts direct current sputtering to be about the ZnO film of 300nm, when sputter, adopt Zn target, 500 ℃ of underlayer temperatures, sputtering power 120W, pass to O 2With Ar mist, O 2With the flow-rate ratio of Ar be 1: 3, operating pressure is 20Pa; 2) be source of the gas with positive tetraethyl orthosilicate (TEOS), utilize chemical gaseous phase depositing process deposit thickness on ZnO film to be about the SiO of 100nm 2Film, depositing temperature are 500 ℃, and operating pressure is 100Torr; 3) at SiO 2The thick ito thin film of sputtering sedimentation 50nm on the film is at the thick Au film of silicon substrate back spatter 100nm, wherein the former area 10 * 10mm 2
Fig. 2 has provided the different driving voltage/current electroluminescence (EL) down that the device that obtains by said method at room temperature records and has composed, and during forward bias, negative pressure is added on the silicon substrate.As can be seen from the figure, along with the increase of current/voltage, electroluminescent intensity is also along with increase, and this is typical electroluminescent feature.In addition, the position of glow peak is near 388nm, and this derives from the ultraviolet light emission that the nearly band edge transition of ZnO produces.

Claims (2)

1. UV electroluminescence device of silicon base zinc oxide is characterized in that depositing ZnO film (2), SiO from bottom to top successively in the front of silicon substrate (1) 2Film (3) and electrode (4) have Ohm contact electrode (5) at the silicon substrate backside deposition.
2. the preparation method of UV electroluminescence device of silicon base zinc oxide according to claim 1 is characterized in that may further comprise the steps:
1) be the reative cell of putting into the direct current reaction magnetron sputtering device after the N type silicon chip of 0.005-50 ohmcm cleans with resistivity, reative cell vacuum degree is evacuated to 1~5 * 10 -3Pa is a target with Zn, with O 2With Ar as sputtering atmosphere, O 2With the flow-rate ratio of Ar be O 2: Ar=i: 2~1: 3, under 10~20Pa pressure, underlayer temperature is 300 ℃~500 ℃, carries out the sputter growth, obtains ZnO film;
2) utilize chemical vapour deposition technique or evaporation or sputtering method or sol-gel process on ZnO film, to deposit SiO 2Film;
3) at SiO 2Sputter semitransparent electrode on the film is at N type silicon substrate back spatter Ohm contact electrode.
CNB2005100616033A 2005-11-18 2005-11-18 UV electroluminescence device of silicon base zinc oxide and preparation process thereof Expired - Fee Related CN100353578C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100616033A CN100353578C (en) 2005-11-18 2005-11-18 UV electroluminescence device of silicon base zinc oxide and preparation process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100616033A CN100353578C (en) 2005-11-18 2005-11-18 UV electroluminescence device of silicon base zinc oxide and preparation process thereof

Publications (2)

Publication Number Publication Date
CN1787246A CN1787246A (en) 2006-06-14
CN100353578C true CN100353578C (en) 2007-12-05

Family

ID=36784617

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100616033A Expired - Fee Related CN100353578C (en) 2005-11-18 2005-11-18 UV electroluminescence device of silicon base zinc oxide and preparation process thereof

Country Status (1)

Country Link
CN (1) CN100353578C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413114C (en) * 2006-09-30 2008-08-20 浙江大学 Zinc oxide negative resistance device and producing method thereof
CN100449810C (en) * 2006-12-30 2009-01-07 浙江大学 Silicon based MgxZn1-xO ultraviolet electroluminescent device and method for producing the same
CN102040187B (en) * 2010-11-12 2012-12-26 浙江大学 Method for growing core-shell structure ZnO nanowire array
CN102931583B (en) * 2012-11-26 2014-06-25 浙江大学 Electrically pumped random laser device based on dual SiO2-ZnO structure and preparation method and application thereof
CN104934501B (en) * 2015-05-30 2017-03-22 浙江理工大学 Preparation method for ultraviolet photoelectric device based on Sm2O3/n-Si heterostructure

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114482A (en) * 1991-10-22 1993-05-07 Toyota Motor Corp Manufacture of transmission type electroluminescent element
JP2000036618A (en) * 1998-07-21 2000-02-02 Murata Mfg Co Ltd SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND METHOD FOR FORMING ZnO FILM
US20020060324A1 (en) * 1999-02-19 2002-05-23 Michio Kadota Zinc oxide crystal luminescent element with improved orientation/crystallinity
CN1377992A (en) * 2002-01-14 2002-11-06 浙江大学 Method for preparing p-type zinc oxide film
CN1385864A (en) * 2002-06-19 2002-12-18 浙江大学 S-type negative resistance device and preparation method thereof
CN1391259A (en) * 2002-07-17 2003-01-15 浙江大学 Process for growing P-type ZnO crystal film by real-time doping nitrogen
CN1400331A (en) * 2002-08-07 2003-03-05 浙江大学 Method for growing ZnO film by solid source chemical gas-phase deposition
CN1400674A (en) * 2002-08-05 2003-03-05 浙江大学 Preparation method of zinc oxide UV photodetector prototype device
CN1461044A (en) * 2003-06-11 2003-12-10 浙江大学 Method for preparing p-type zinc oxide film
CN1542916A (en) * 2003-11-04 2004-11-03 浙江大学 Method for preparing p type crystal film
CN1542171A (en) * 2003-11-04 2004-11-03 浙江大学 Metal organic compound vapor deposition device for the growth of zinc oxide semiconductor film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114482A (en) * 1991-10-22 1993-05-07 Toyota Motor Corp Manufacture of transmission type electroluminescent element
JP2000036618A (en) * 1998-07-21 2000-02-02 Murata Mfg Co Ltd SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND METHOD FOR FORMING ZnO FILM
US20020060324A1 (en) * 1999-02-19 2002-05-23 Michio Kadota Zinc oxide crystal luminescent element with improved orientation/crystallinity
CN1377992A (en) * 2002-01-14 2002-11-06 浙江大学 Method for preparing p-type zinc oxide film
CN1385864A (en) * 2002-06-19 2002-12-18 浙江大学 S-type negative resistance device and preparation method thereof
CN1391259A (en) * 2002-07-17 2003-01-15 浙江大学 Process for growing P-type ZnO crystal film by real-time doping nitrogen
CN1400674A (en) * 2002-08-05 2003-03-05 浙江大学 Preparation method of zinc oxide UV photodetector prototype device
CN1400331A (en) * 2002-08-07 2003-03-05 浙江大学 Method for growing ZnO film by solid source chemical gas-phase deposition
CN1461044A (en) * 2003-06-11 2003-12-10 浙江大学 Method for preparing p-type zinc oxide film
CN1542916A (en) * 2003-11-04 2004-11-03 浙江大学 Method for preparing p type crystal film
CN1542171A (en) * 2003-11-04 2004-11-03 浙江大学 Metal organic compound vapor deposition device for the growth of zinc oxide semiconductor film

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZnO薄膜生长技术的最新研究进展 汪雷.材料导报,第16卷第9期 2002 *
多孔硅基体系发光特性研究进展 赵毅,杨德仁,周成瑶,阙端麟.材料导报,第17卷第9期 2003 *
直流磁控溅射ZnO薄膜的结构和室温PL谱 叶志镇,陈汉鸿,刘榕,张昊翔,赵炳辉.半导体学报,第22卷第8期 2001 *

Also Published As

Publication number Publication date
CN1787246A (en) 2006-06-14

Similar Documents

Publication Publication Date Title
CN100533784C (en) Method for preparing zinc oxide/p type silicon heterojunction ultraviolet electroluminescent device
JP6685896B2 (en) Solar cell and manufacturing method thereof
CN102738325B (en) Metal substrate vertical GaN-based LED (Light-Emitting Diode) chip and manufacturing method thereof
JP2001210864A (en) Light emitting diode and semiconductor laser
CN100353578C (en) UV electroluminescence device of silicon base zinc oxide and preparation process thereof
KR20070074257A (en) Inorganic electroluminescent diode and process for preparing the same
TWI330896B (en)
CN107681025B (en) GaN-based white light L ED epitaxial structure and preparation method thereof
CN111341942B (en) Electric injection yellow light-emitting diode (LED) based on lead-free copper-based iodide and preparation method thereof
CN103077963A (en) Ohmic contact electrode, preparation method of ohmic contact electrode and semiconductor element comprising ohmic contact electrode
CN110600627B (en) Electron transport layer, light emitting device and preparation method thereof
WO2008041499A1 (en) Filming method for iii-group nitride semiconductor laminated structure
CN108417676A (en) Nucleocapsid perovskite LED based on plasma enhancing effect and preparation method thereof
CN101299513A (en) Electric field inducement light pumping silicon-based zinc oxide thin film accidental laser and preparation method thereof
CN101630713B (en) Ultraviolet electroluminescence device based on titanium dioxide film
CN109390489A (en) Light emitting diode and the preparation method and application thereof
CN107706278B (en) Preparation method and application of transparent electrode of ultraviolet light-emitting diode
CN105336820B (en) The preparation method of electroluminescent device that is a kind of ultraviolet and visible and depositing
CN203026510U (en) Ohmic contact electrode and semiconductor element comprising same
CN109786514A (en) A kind of manufacturing method of LED epitaxial slice
CN101692751B (en) Device structure for realizing ZnO film pure ultraviolet electroluminescence on p-type silicon
CN100449810C (en) Silicon based MgxZn1-xO ultraviolet electroluminescent device and method for producing the same
CN104332540B (en) A kind of method for preparing high luminescence energy p-type ZnO film
CN101404313B (en) Silicon based zinc oxide bidirectional direct current ultraviolet electroluminescent device and production method thereof
CN102610724B (en) Electroluminescent device based on CdZnO thin film and preparation method of electroluminescent device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071205

Termination date: 20121118