JPH06251873A - Forming method of electroluminescent element - Google Patents

Forming method of electroluminescent element

Info

Publication number
JPH06251873A
JPH06251873A JP5037620A JP3762093A JPH06251873A JP H06251873 A JPH06251873 A JP H06251873A JP 5037620 A JP5037620 A JP 5037620A JP 3762093 A JP3762093 A JP 3762093A JP H06251873 A JPH06251873 A JP H06251873A
Authority
JP
Japan
Prior art keywords
light emitting
emitting layer
zinc sulfide
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5037620A
Other languages
Japanese (ja)
Other versions
JP3381292B2 (en
Inventor
Shunji Wada
俊司 和田
Toshiaki Anzaki
利明 安崎
Tetsuro Yoshii
哲朗 吉井
Shiro Kobayashi
史朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP03762093A priority Critical patent/JP3381292B2/en
Publication of JPH06251873A publication Critical patent/JPH06251873A/en
Application granted granted Critical
Publication of JP3381292B2 publication Critical patent/JP3381292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a method for forming a light emitting layer for EL element with excellent luminous efficiency which has a luminescence center consisting of zinc sulfide by means of spattering. CONSTITUTION:A target obtained by adding and mixing a material forming a luminescence center into zinc sulfide fine powder followed by sintering is spattered with a pure inert gas reduced in pressure. The spattered molecules are formed on a base kept at 500-650 deg.C at a film forming speed of 70nm/min-150 nm/min to form a light emitting layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の表示装置と
して用いられるエレクトロルミネッセンス(以下ELと
いう)素子を基板上に形成する方法に関し、さらに詳述
すれば発光効率が改善されたEL素子を基板上に形成す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an electroluminescence (hereinafter referred to as EL) element used as a display device of an electronic device on a substrate. More specifically, an EL element having improved luminous efficiency is provided. A method of forming on a substrate.

【0002】[0002]

【従来の技術】マンガン(Mn)または希土類元素など
の活性物質を含む硫化亜鉛薄膜は、EL素子の発光層と
して用いられ、真空蒸着法や高周波スパッタリング法で
形成される。硫化亜鉛薄膜からなる発光層は、真空蒸着
法によって優れた発光特性を有するものが形成できるこ
とが知られているが、スパッタリングによる方法では良
好な発光特性を有するものが得られていない。たとえ
ば、光電相互変換第125委員会ELの特性評価基準分
科会第2回研究会資料21頁およびJpn.J.Appl.Phys.27
(1988)p.592.に記載されたT.Matsuokaの論文(従来技術
1)には、スパッタリングガスとして純不活性ガスを用
いて、基板温度を200℃〜350℃とし、成膜速度を
20nm/分〜65nm/分で成膜した硫化亜鉛を発光
層とするEL素子が報告されている。この従来技術1に
よる発光層の成膜条件は、図1の斜線部分2の範囲に示
される。また、得られた硫化亜鉛の結晶構造は、ジンク
ブレンド型である。
2. Description of the Related Art A zinc sulfide thin film containing an active substance such as manganese (Mn) or a rare earth element is used as a light emitting layer of an EL element and is formed by a vacuum deposition method or a high frequency sputtering method. It is known that a light emitting layer made of a zinc sulfide thin film can be formed by a vacuum vapor deposition method and has excellent light emitting characteristics, but a method by sputtering has not been obtained. For example, page 21 of the 2nd study group material of the characteristic evaluation standard subcommittee of the 125th committee of photoelectric conversion and the Jpn.J.Appl.Phys.27.
(1988) p.592. T. Matsuoka's paper (prior art 1) uses a pure inert gas as a sputtering gas, the substrate temperature is 200 ° C. to 350 ° C., and the deposition rate is 20 nm. An EL device has been reported which uses zinc sulfide as a light emitting layer and is formed at a rate of / min to 65 nm / min. The conditions for forming the light emitting layer according to the prior art 1 are shown in the range of the shaded portion 2 in FIG. Further, the crystal structure of the obtained zinc sulfide is a zinc blend type.

【0003】また、スパッタリングガスとして不活性ガ
スであるアルゴンと硫化水素の混合ガスを用いた方法
が、SID(SOCIETY FOR INFORMATION DISPLAY)84,Diges
t, p.245のM.I.Abdallaの論文(従来技術2)に報告さ
れている。
Further, a method using a mixed gas of argon and hydrogen sulfide which is an inert gas as a sputtering gas is known as SID (SOCIETY FOR INFORMATION DISPLAY) 84, Diges.
T., p. 245 in M. Abdalla's paper (Prior Art 2).

【0004】[0004]

【発明が解決しようとする課題】良好なEL特性を示す
発光層をスパッタリング法により得るには、結晶の粒径
を大きくすることおよび化学量論的組成からのずれの小
さい硫化亜鉛膜を形成することが重要である。硫化亜鉛
の結晶粒径を大きくするためには、膜の成長初期段階に
おいて粒径が小さくなる原因となる不安定核を取り除く
ために高い基板温度が必要である。しかし、硫化亜鉛薄
膜は、その膜を形成するときの基板の温度を高くすれば
する程、硫黄の蒸気圧が亜鉛の蒸気圧に比べて高いた
め、基板表面からの硫黄の再蒸発量が亜鉛より多くな
り、形成される膜の化学量論的組成からのずれが生じる
という欠点がある。したがって、膜の結晶性を良くする
ために必要な基板温度に上限があり、このことは、良い
結晶性の薄膜を得る上で妨げとなり、得られるEL素子
の発光輝度、発光効率ともに低いという問題があった。
In order to obtain a light emitting layer exhibiting good EL characteristics by a sputtering method, the crystal grain size is increased and a zinc sulfide film having a small deviation from the stoichiometric composition is formed. This is very important. In order to increase the crystal grain size of zinc sulfide, a high substrate temperature is required to remove the unstable nuclei that cause the grain size to decrease in the initial stage of film growth. However, in the zinc sulfide thin film, the vapor pressure of sulfur is higher than the vapor pressure of zinc as the temperature of the substrate for forming the film is increased, so that the re-evaporation amount of sulfur from the substrate surface is zinc. There is a drawback that the amount becomes larger and the deviation from the stoichiometric composition of the formed film occurs. Therefore, there is an upper limit to the substrate temperature necessary for improving the crystallinity of the film, which is an obstacle to obtaining a thin film with good crystallinity, and the EL device obtained has low emission luminance and emission efficiency. was there.

【0005】スパッタリングするときに硫化水素を混入
し、膜中の硫黄の欠損(化学量論量よりも硫黄が少ない
こと)を補う上記M.I.Abdallaの論文に記載の従来技術
2では、硫化水素ガスを用いることから、成膜装置を腐
食して工業的に実施する上で問題があった。本発明は、
上記問題点を解決するためになされたものであって、発
光効率の大きいEL素子を、その発光層をスパッタリン
グ法により形成して製造する方法を提供することを目的
としている。
In the prior art 2 described in the above-mentioned article of MIAbdalla, in which hydrogen sulfide is mixed at the time of sputtering to compensate for the lack of sulfur in the film (the amount of sulfur is less than the stoichiometric amount), hydrogen sulfide gas is used. Therefore, there has been a problem in corroding the film forming apparatus and implementing it industrially. The present invention is
The present invention has been made in order to solve the above-mentioned problems, and an object thereof is to provide a method for manufacturing an EL element having a high light emission efficiency by forming its light emitting layer by a sputtering method.

【0006】[0006]

【課題を解決するための手段】本発明は、発光中心がド
ープされた硫化亜鉛からなる発光層を有するエレクトロ
ルミネッセンス素子を基板上に形成する方法であって、
前記発光層を、硫化亜鉛微粉末に発光中心となる物質を
添加混合し焼結したターゲットを減圧した純不活性ガス
でスパッタリングし、前記スパッタリングされた分子を
500℃〜650℃に維持した前記基板上に、70nm
/分〜150nm/分の成膜速度で形成することを特徴
とするエレクトロルミネッセンス素子の形成方法であ
る。
The present invention provides a method for forming on a substrate an electroluminescent device having a light emitting layer made of zinc sulfide doped with an emission center, comprising:
The substrate in which the light emitting layer is sputtered with a pure inert gas under reduced pressure by sputtering a target obtained by adding and mixing a substance to be an emission center to zinc sulfide fine powder, and maintaining the sputtered molecules at 500 ° C to 650 ° C. 70nm above
The method for forming an electroluminescence element is characterized in that the electroluminescence element is formed at a film formation rate of from 1 / min to 150 nm / min.

【0007】本発明にかかる発光層を形成するときの基
板温度は、500℃〜650℃に維持され、発光層の成
膜速度が70nm/分〜150nm/分になるようにタ
ーゲットに印加するスパッタリングパワーがを調節され
る。図1の斜線部分1に、本発明にかかる発光層を形成
するときの成膜速度と基板温度の範囲を示す。基板温度
を500℃以上とすることにより、膜の結晶性が良くな
る。また、基板温度を約650℃より高くすることは、
亜鉛と硫黄の両者の基板表面からの再蒸発量が大きくな
り、ターゲットを有効に使えないばかり、大きなスパッ
タリングパワーをターゲットに印加する必要があるので
ターゲット表面を劣化させ安定して成膜する上で好まし
くない。さらに基板にホーヤ製NA40や、コーニング
ガラス製7059ガラス板を用いる場合には、基板の変
形が生じるので好ましくない。
The substrate temperature at the time of forming the light emitting layer according to the present invention is maintained at 500 ° C. to 650 ° C., and sputtering is applied to the target so that the film forming rate of the light emitting layer is 70 nm / min to 150 nm / min. The power is adjusted. The shaded area 1 in FIG. 1 shows the range of the film formation rate and the substrate temperature when the light emitting layer according to the present invention is formed. By setting the substrate temperature to 500 ° C. or higher, the crystallinity of the film is improved. Also, raising the substrate temperature above about 650 ° C.
The amount of re-evaporation of both zinc and sulfur from the substrate surface becomes large, the target cannot be used effectively, and it is necessary to apply a large sputtering power to the target. Not preferable. Furthermore, when Hoya NA40 or Corning Glass 7059 glass plate is used as the substrate, the substrate is deformed, which is not preferable.

【0008】発光層の成膜速度が70nm/分より小さ
いと、形成される発光層は、化学量論的組成からのずれ
が大きくなり、良好な発光効率を示す発光層を得ること
が困難になる。成膜速度が150nm/分より大きい
と、化学量論組成からのずれは小さいが、成膜された発
光層の結晶粒径が小さくなってしまうという不都合を生
じる。本発明のスパッタリング法の成膜条件の範囲内で
形成される硫化亜鉛の結晶構造は、ウルツ型結晶構造と
なる。
When the film formation rate of the light emitting layer is less than 70 nm / min, the formed light emitting layer has a large deviation from the stoichiometric composition, and it is difficult to obtain a light emitting layer exhibiting good light emitting efficiency. Become. When the film formation rate is higher than 150 nm / min, the deviation from the stoichiometric composition is small, but the disadvantage is that the crystal grain size of the formed light emitting layer becomes small. The crystal structure of zinc sulfide formed within the film forming conditions of the sputtering method of the present invention is a wurtz type crystal structure.

【0009】[0009]

【作用】本発明によれば、高い基板温度に維持された基
板に硫化亜鉛が堆積し充分な沿面運動を行いながら膜が
形成されるので、比較的膜の成長初期段階から結晶粒径
の大きな硫化亜鉛薄膜を得ることができる。基板表面で
は硫黄と亜鉛の蒸気圧の差により、硫黄欠陥の多い(化
学量論量よりも亜鉛が多い)硫化亜鉛薄膜ができる傾向
を有するが、本発明の方法では、硫化亜鉛の成膜速度を
大きくすることにより、化学量論的組成からのずれの小
さい硫化亜鉛薄膜とすることができる。すなわち、本発
明では基板温度を高温度にすると同時に、基板表面から
の亜鉛と硫黄の再蒸発量よりも、はるかに多くの亜鉛と
硫黄の等量を、基板表面に到達させるように成膜速度を
選んでいるので、亜鉛と硫黄のそれぞれの基板表面に堆
積し薄膜として成長するものをほぼ同じ量にすることが
でき、基板上に形成される硫化亜鉛薄膜の化学量論量か
らのズレを小さくすることができる。
According to the present invention, zinc sulfide is deposited on a substrate maintained at a high substrate temperature and a film is formed while performing sufficient creeping motion, so that the crystal grain size is relatively large from the initial stage of film growth. A zinc sulfide thin film can be obtained. The substrate surface tends to form a zinc sulfide thin film having many sulfur defects (more zinc than stoichiometric amount) due to the difference in vapor pressure between sulfur and zinc. By increasing the value, a zinc sulfide thin film with a small deviation from the stoichiometric composition can be obtained. That is, in the present invention, at the same time when the substrate temperature is set to a high temperature, the film formation rate is set so that a much larger amount of zinc and sulfur than the re-evaporated amount of zinc and sulfur from the substrate surface reaches the substrate surface. Since it is selected, the amount of zinc and sulfur deposited on the surface of each substrate and growing as a thin film can be made approximately the same amount, and the deviation from the stoichiometric amount of the zinc sulfide thin film formed on the substrate can be made. Can be made smaller.

【0010】[0010]

【実施例】【Example】

実施例1 図5の模式的断面図で示されるEL素子を製作した。透
明ガラス基板の加熱温度を500℃とした。まずこのガ
ラス基上に200nmの厚みのITO透明導電膜(IT
O:錫ドープ酸化インジウム膜)を3mTorrのアル
ゴンの圧力下でITOターゲットをスパッタリングして
形成し、その上に絶縁膜としてシリコンターゲットをア
ルゴンと窒素と酸素の6:2:2で、その圧力が5mT
orrの混合ガス中でスパッタリングして220nmの
厚みのシリコンオキシナイトライド膜を形成し、その上
に0.125重量%のマンガンを混合した硫化亜鉛ター
ゲットを20mTorrのアルゴンガスで約85nm/
分の成膜速度でスパッタリングし700nmの厚みのマ
ンガンドープ硫化亜鉛発光層を形成し、その上に第2層
目のシリコンオキシナイトライド絶縁膜を第1層目と同
じように形成し、最後にアルミニウム電極膜を真空中で
電子銃蒸着法により形成した。得られたEL素子を室温
まで冷却し、スパッタリング装置より取り出して、図5
に示すようにITO電極とアルミニウム電極との間に両
極性パルス波を印加し、ソイヤータワー回路を用いてE
L素子内を流れる移動電荷量を測定することにより、E
L素子の発光効率を求めた。実施例1の発光層の成膜条
件と、得られた発光層の結晶構造、結晶粒径、エネルギ
ーバンドギャップEg、化学組成比およびEL素子の発
光効率を表1に示す。また、このEL素子の発光効率の
素子駆動時の印加電圧依存性を、従来技術1で得られる
EL素子(図4中の2で示される)と比較できるように
図4中の1で示した。
Example 1 An EL device shown in the schematic sectional view of FIG. 5 was manufactured. The heating temperature of the transparent glass substrate was 500 ° C. First, an ITO transparent conductive film (IT
(O: tin-doped indium oxide film) is formed by sputtering an ITO target under a pressure of argon of 3 mTorr, and a silicon target as an insulating film is 6: 2: 2 of argon, nitrogen, and oxygen at a pressure of 5mT
A silicon oxynitride film having a thickness of 220 nm is formed by sputtering in a mixed gas of orr, and a zinc sulfide target mixed with 0.125% by weight of manganese is deposited on the silicon oxynitride target with an argon gas of 20 mTorr to about 85 nm /
The manganese-doped zinc sulfide light-emitting layer having a thickness of 700 nm is formed by sputtering at a film forming speed of 1 minute, a second layer of silicon oxynitride insulating film is formed thereon in the same manner as the first layer, and finally, The aluminum electrode film was formed in vacuum by an electron gun vapor deposition method. The obtained EL element was cooled to room temperature, taken out from the sputtering device, and then, as shown in FIG.
A bipolar pulse wave is applied between the ITO electrode and the aluminum electrode as shown in FIG.
By measuring the amount of mobile charge flowing in the L element, E
The luminous efficiency of the L element was determined. Table 1 shows the film forming conditions of the light emitting layer of Example 1, the crystal structure of the obtained light emitting layer, the crystal grain size, the energy band gap Eg, the chemical composition ratio, and the light emission efficiency of the EL device. Further, the dependence of the luminous efficiency of this EL element on the applied voltage at the time of driving the element is shown by 1 in FIG. 4 so that it can be compared with the EL element obtained by the conventional technique 1 (shown by 2 in FIG. 4). .

【0011】[0011]

【表1】 [Table 1]

【0012】実施例2〜7 硫化亜鉛発光層の成膜速度と成膜時の基板温度を種々変
えた他は、実施例1と同じようにして、EL素子を作成
した。成膜条件および得られた結果を表1に示す。実施
例2〜7の発光層はいずれもウルツ型結晶構造をとり、
結晶粒径が150nm以上と大きく、膜のZnとSの化
学組成比は化学量論量である1にほぼ近い値を示してい
ることが分かる。また、発光効率は、1.9ルーメン/
ワット(lm/W)以上と大きい値であった。
Examples 2 to 7 EL elements were prepared in the same manner as in Example 1 except that the film formation rate of the zinc sulfide light emitting layer and the substrate temperature during film formation were variously changed. Table 1 shows the film forming conditions and the obtained results. Each of the light emitting layers of Examples 2 to 7 has a wurtz type crystal structure,
It can be seen that the crystal grain size is as large as 150 nm or more, and the chemical composition ratio of Zn and S of the film shows a value close to 1 which is a stoichiometric amount. The luminous efficiency is 1.9 lumen /
It was a large value of watt (lm / W) or more.

【0013】比較例1〜7 硫化亜鉛発光層の成膜速度と成膜時の基板温度を種々変
えた他は、実施例1と同じようにしてEL素子を作成し
た。発光層の成膜条件と得られた発光層の特性およびE
L素子特性を表1に示す。これより、基板温度が500
℃以上としても、発光層の成膜速度が70nm/分より
小さければ、結晶性が良く、かつ、化学量論的組成から
のずれの小さい硫化亜鉛膜を得ることはできず、得られ
たEL素子は大きい発光効率を示さないことが分かる。
また、成膜速度が70nm/分以上であっても基板温度
が500℃未満であれば、化学量論的組成のずれは小さ
いが、結晶粒径は小さく、そのEL素子は大きい発光効
率を示さないことが分かる。
Comparative Examples 1 to 7 EL devices were prepared in the same manner as in Example 1 except that the film formation rate of the zinc sulfide light emitting layer and the substrate temperature during film formation were variously changed. Film-forming conditions of the light-emitting layer, characteristics of the obtained light-emitting layer and E
The L element characteristics are shown in Table 1. From this, the substrate temperature is 500
If the film formation rate of the light emitting layer is less than 70 nm / min even at a temperature of not less than 0 ° C, it is not possible to obtain a zinc sulfide film having good crystallinity and a small deviation from the stoichiometric composition. It can be seen that the device does not show a large luminous efficiency.
Further, even if the film formation rate is 70 nm / min or more, if the substrate temperature is lower than 500 ° C., the deviation of the stoichiometric composition is small, but the crystal grain size is small, and the EL element exhibits high luminous efficiency. I know there isn't.

【0014】実施例1〜7および比較例1〜7で得たサ
ンプルについて、発光層の成膜速度が及ぼす発光層の化
学組成比とエネルギーバンドギャップEgへの影響を図
3に示した。図3から、発光層の成膜速度が70nm/
分以上であるときに、硫化亜鉛のZnとSの原子組成比
が1(硫化亜鉛の化学量論組成)に近づき、エネルギー
バンドギャップが3.60eV以上になる。実用的な輝
度を有する発光を得るためには、発光層のエネルギーバ
ンドギャップは3.59以上が必要で、3.60以上が
好ましい値である。また、70nm/分以上の速い成膜
速度で形成した発光層は、外部からの不純物の混入を減
らすこともできる。図2に、70nm/分の一定成膜速
度のとき、発光層を形成するときの基板温度が発光層の
結晶粒径に与える影響を示したものを示す。図2から、
基板温度を高くすることにより結晶粒径は大きくなり、
大きな結晶粒径が得られる温度は、図2から500℃〜
650℃であることが分かる。この基板温度をこの温度
範囲でとし、発光層の成膜速度を70nm/分とするこ
とにより、発光層を化学量論組成にほぼ近い組成で、か
つエネルギーバンドギャップが3.60またはそれ以上
のマンガンがドープされた硫化亜鉛薄膜とすることがで
きる。
With respect to the samples obtained in Examples 1 to 7 and Comparative Examples 1 to 7, the influence of the film forming rate of the light emitting layer on the chemical composition ratio of the light emitting layer and the energy band gap Eg is shown in FIG. From FIG. 3, the film formation rate of the light emitting layer is 70 nm /
When it is at least minutes, the atomic composition ratio of Zn and S of zinc sulfide approaches 1 (stoichiometric composition of zinc sulfide), and the energy band gap becomes 3.60 eV or more. In order to obtain light emission with practical brightness, the energy band gap of the light emitting layer must be 3.59 or more, and 3.60 or more is a preferable value. In addition, the light emitting layer formed at a high film forming rate of 70 nm / min or more can reduce contamination of impurities from the outside. FIG. 2 shows the effect of the substrate temperature when forming the light emitting layer on the crystal grain size of the light emitting layer at a constant film forming rate of 70 nm / min. From FIG.
By increasing the substrate temperature, the crystal grain size increases,
The temperature at which a large crystal grain size is obtained is 500 ° C. from FIG.
It can be seen that the temperature is 650 ° C. By setting the substrate temperature in this temperature range and the film formation rate of the light emitting layer to 70 nm / min, the light emitting layer has a composition close to the stoichiometric composition and an energy band gap of 3.60 or more. It can be a zinc sulfide thin film doped with manganese.

【0015】[0015]

【発明の効果】本発明の方法によれば、スパッタリング
ガスとして有毒性で腐食性の硫化水素ガスを用いること
なく、化学量論的組成からのずれが小さく結晶粒径の大
きい硫化亜鉛を発光層とする高発光効率EL素子を作成
することができる。また、結晶欠陥の少ない発光層がそ
の成膜工程で得られるので、EL素子作成後のアニーリ
ング工程が不要になるとともに、硫化水素ガスを使用し
ないので設備の腐食による劣化がなく、設備コストが小
さくなる。
According to the method of the present invention, zinc sulfide having a small deviation from the stoichiometric composition and a large crystal grain size is used as a light emitting layer without using toxic and corrosive hydrogen sulfide gas as a sputtering gas. It is possible to produce an EL device having high luminous efficiency. In addition, since the light emitting layer with few crystal defects can be obtained in the film forming process, the annealing process after the EL element is not necessary, and since hydrogen sulfide gas is not used, there is no deterioration due to corrosion of the equipment and the equipment cost is small. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる発光層を形成するときの成膜速
度とそのときの基板温度の範囲を示す図である。
FIG. 1 is a diagram showing a film formation rate when forming a light emitting layer according to the present invention and a range of a substrate temperature at that time.

【図2】発光層の結晶粒径に及ぼす発光層を形成すると
きの基板温度の影響を示す図である。
FIG. 2 is a diagram showing an influence of a substrate temperature when forming a light emitting layer on a crystal grain size of the light emitting layer.

【図3】硫化亜鉛発光層の化学組成およびエネルギーバ
ンドギャップに及ぼす発光層の成膜速度の影響を示す図
である。
FIG. 3 is a diagram showing the influence of the film formation rate of the light emitting layer on the chemical composition and energy band gap of the zinc sulfide light emitting layer.

【図4】実施例1で得られたEL素子の発光効率の素子
駆動時の印加電圧依存性を示す図である。
FIG. 4 is a diagram showing the dependence of the luminous efficiency of the EL element obtained in Example 1 on the applied voltage when the element is driven.

【図5】本発明を用いて製作したEL素子の発光効率を
測定評価するために試作したEL素子の模式的断面図で
ある。
FIG. 5 is a schematic cross-sectional view of an EL device prototyped to measure and evaluate the luminous efficiency of the EL device manufactured by using the present invention.

【符号の説明】[Explanation of symbols]

1・・・ガラス板、2・・・透明電極、3・・・絶縁
層、4・・・発光層、5・・・背面電極、6・・・交流
電源、7・・・センスキャパシタ
DESCRIPTION OF SYMBOLS 1 ... Glass plate, 2 ... Transparent electrode, 3 ... Insulating layer, 4 ... Light emitting layer, 5 ... Back electrode, 6 ... AC power supply, 7 ... Sense capacitor

フロントページの続き (72)発明者 小林 史朗 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内Front Page Continuation (72) Inventor Shiro Kobayashi 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発光中心がドープされた硫化亜鉛からなる
発光層を有するエレクトロルミネッセンス素子を基板上
に形成する方法において、前記発光層を、硫化亜鉛微粉
末に発光中心となる物質を添加混合し焼結したターゲッ
トを減圧した純不活性ガスでスパッタリングし、前記ス
パッタリングされた分子を500℃〜650℃に維持し
た前記基板上に70nm/分〜150nm/分の成膜速
度で形成することを特徴とするエレクトロルミネッセン
ス素子の形成方法。
1. A method for forming an electroluminescent device having a light emitting layer made of zinc sulfide doped with a light emitting center on a substrate, wherein the light emitting layer is prepared by adding a substance to be a light emitting center to zinc sulfide fine powder. The sintered target is sputtered with a depressurized pure inert gas to form the sputtered molecules on the substrate maintained at 500 ° C. to 650 ° C. at a film formation rate of 70 nm / min to 150 nm / min. And a method for forming an electroluminescent element.
JP03762093A 1993-02-26 1993-02-26 Method for forming electroluminescent element Expired - Fee Related JP3381292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03762093A JP3381292B2 (en) 1993-02-26 1993-02-26 Method for forming electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03762093A JP3381292B2 (en) 1993-02-26 1993-02-26 Method for forming electroluminescent element

Publications (2)

Publication Number Publication Date
JPH06251873A true JPH06251873A (en) 1994-09-09
JP3381292B2 JP3381292B2 (en) 2003-02-24

Family

ID=12502679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03762093A Expired - Fee Related JP3381292B2 (en) 1993-02-26 1993-02-26 Method for forming electroluminescent element

Country Status (1)

Country Link
JP (1) JP3381292B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503139B1 (en) * 2002-01-23 2005-07-21 세이코 엡슨 가부시키가이샤 Manufacturing method of organic el device and manufacturing apparatus thereof, organic el device, electronics equipment and liquid droplet ejecting device
JP2008214461A (en) * 2007-03-02 2008-09-18 Canon Inc Phosphor film and phosphor film production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503139B1 (en) * 2002-01-23 2005-07-21 세이코 엡슨 가부시키가이샤 Manufacturing method of organic el device and manufacturing apparatus thereof, organic el device, electronics equipment and liquid droplet ejecting device
JP2008214461A (en) * 2007-03-02 2008-09-18 Canon Inc Phosphor film and phosphor film production method

Also Published As

Publication number Publication date
JP3381292B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
JP3797317B2 (en) Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element
JP3428152B2 (en) Manufacturing method of organic EL element
JP4269986B2 (en) Oxide sintered compact target for manufacturing transparent conductive thin film, transparent conductive thin film, transparent conductive substrate, display device, and organic electroluminescence element
JPH0487187A (en) Organic electroluminescence element
JPH1167460A (en) Organic electroluminescent element and its manufacture
JP3381292B2 (en) Method for forming electroluminescent element
JPH077713B2 (en) Thin film EL device
JPH10199675A (en) Manufacture of thin film electroluminescence element
JP3487618B2 (en) Electroluminescence element
JPS6047718B2 (en) Manufacturing method of thin film light emitting device
US7557374B2 (en) Substrates and methods for fabricating the same
JPH01263188A (en) Calcium tungstate luminescent thin layer and its production
JP3285234B2 (en) Electroluminescence element
JPH02306591A (en) Manufacture of thin film electroluminescence element
JP2905657B2 (en) Method for manufacturing electroluminescent element
JPH07122363A (en) Manufacture of electroluminescence element
JPS61253797A (en) Manufacture of electroluminescence element
JPS60172196A (en) Electroluminescent element and method of producing same
Chia et al. Improved optical transmittance and crystal characteristics of ZnS: TbOF thin film on Bi4Ti3O12/indium tin oxide/glass substrate by using a SiO2 buffer layer
JPS62157695A (en) Manufacture of thin film el device
KR20040065503A (en) Method for formation of indium-tin oxide film
JPH0532877B2 (en)
JPH06231884A (en) Manufacture of thin film electroluminescent element
JPH0562778A (en) Thin film electroluminescence element
JPH04169094A (en) Manufacture of thin film electroluminescence element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees