TW201026960A - Reducing accumulation of dust particles on a heat dissipating arrangement - Google Patents

Reducing accumulation of dust particles on a heat dissipating arrangement Download PDF

Info

Publication number
TW201026960A
TW201026960A TW098131532A TW98131532A TW201026960A TW 201026960 A TW201026960 A TW 201026960A TW 098131532 A TW098131532 A TW 098131532A TW 98131532 A TW98131532 A TW 98131532A TW 201026960 A TW201026960 A TW 201026960A
Authority
TW
Taiwan
Prior art keywords
fan
pulsating
heat exchanger
angle
air
Prior art date
Application number
TW098131532A
Other languages
Chinese (zh)
Other versions
TWI444538B (en
Inventor
Nitin Goel
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of TW201026960A publication Critical patent/TW201026960A/en
Application granted granted Critical
Publication of TWI444538B publication Critical patent/TWI444538B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A method and apparatus to reduce dust particles accumulated on one or more surfaces provisioned proximate to the pulsating fan. The surfaces may include a heat exchanger provisioned proximate to the pulsating fan and the blades of the pulsating fan or any other such surface. The pulsating fan may be rotated in a first direction for a first time duration and in a second direction for a second time duration. The dust particles that are accumulated on the one or more surfaces provisioned proximate to the pulsating fan is reduced while the pulsating fan is rotated in the second direction. The second direction of rotation is reverse to the first direction of rotation. The pulsating fan may comprise an axial fan or a centrifugal fan.

Description

201026960 六、發明說明: 【發明戶斤屬之技術領域3 本發明係有關於減少散熱裝置上塵粒累積之技術。 t先前技神r 3 背景 包括一電子或一汽車或一空調系統之一系統可包含產 熱元件。在一電子裝置中,一微處理器或一圖形裝置或任 意其它這樣的裝置可產生熱。該產生的熱可利用一散熱裝 置散發。該散熱裝置可包含一風扇及一熱交換器或空氣冷 卻裝置之一組合。藉由這些裝置產生的熱可藉由使空氣流 過該產熱裝置而散發。當空氣正在流動時,產生的熱可被 轉移進而散熱。 通常,一風扇包含耦接於沿風扇軸所提供的一構件之 葉片且這些葉片之旋轉使空氣流動。而且,包含高導熱材 料之熱交換器可鄰近於該風扇被提供且這樣的一裝置可以 一較快的速率散熱。然而,當旋轉時,空氣流動可導致大 量塵粒累積在該熱交換器及風扇葉片表面上。經過一段時 間,這樣的塵粒累積可形成一絕緣且不透明層,其可阻礙 空氣通道。這樣的一狀態可減少散熱量,其可造成性能、 人體工學及諸如此類的其它問題。 【發明内容】 依據本發明之一實施例,係特地提出一種裝置,其包 含:一脈動風扇,其中該脈動風扇以一第一方向旋轉一第 一持續時間、及以一第二方向旋轉一第二持續時間;及相 201026960 鄰於該脈動風扇之多個表面,其中當該脈動風扇以气第 方向旋轉時,累積於該等多個表面上之塵粒即減小,一 夕,其中 該第二旋轉方向相反於該第一旋轉方向,其中該等多 面包括一熱交換器及該脈動風扇之葉片。 圖式簡單說明 本文描述的本發明藉由舉例方式而非限制方气在 中説明。為了説明之簡單明了性,在這些圖 、圖 —y八τ死明的元 件不一定按比例繪製。例如,為了清晰,一些元件之201026960 VI. Description of the Invention: [Technical Field 3 of Inventions] The present invention relates to a technique for reducing dust accumulation on a heat sink. t Previous technology r 3 Background A system including an electronic or a car or an air conditioning system may contain heat generating components. In an electronic device, a microprocessor or a graphics device or any other such device can generate heat. The generated heat can be dissipated using a heat sink. The heat sink can comprise a combination of a fan and a heat exchanger or air cooling device. The heat generated by these devices can be dissipated by flowing air through the heat generating device. When the air is flowing, the heat generated can be transferred to dissipate heat. Typically, a fan includes blades coupled to a member provided along the fan shaft and the rotation of the blades causes air to flow. Moreover, a heat exchanger comprising a high thermal conductivity material can be provided adjacent to the fan and such a device can dissipate heat at a faster rate. However, when rotated, air flow can cause a large amount of dust to accumulate on the heat exchanger and fan blade surfaces. Over time, such dust accumulation can form an insulating and opaque layer that can block the air passage. Such a state can reduce heat dissipation, which can cause performance, ergonomics, and the like. SUMMARY OF THE INVENTION According to an embodiment of the present invention, a device is specifically provided, comprising: a pulsating fan, wherein the pulsating fan rotates in a first direction for a first duration and rotates in a second direction Two durations; and phase 201026960 is adjacent to a plurality of surfaces of the pulsating fan, wherein when the pulsating fan rotates in the first direction of the gas, the dust particles accumulated on the plurality of surfaces are reduced, and the The two directions of rotation are opposite to the first direction of rotation, wherein the plurality of faces comprise a heat exchanger and blades of the pulsating fan. BRIEF DESCRIPTION OF THE DRAWINGS The invention described herein is illustrated by way of example and not limitation. For the sake of simplicity and clarity, the elements in these figures and figures are not necessarily drawn to scale. For example, for clarity, some components

可能相對於其它元件被誇大。而且,在認為適當的情況下、 參考標籤在這些圖式中被重複的以指示相對應的或類 元件。 、 第1圖根據-實施例説明了包含一脈動轴流式風扇之 -裝置11G及15G’其分別以―第—方向及—第二方向旋轉 以減少熱交換器上之塵粒累積。 第2圖説明了一線形圖21〇及25〇,其描述當該脈動袖流It may be exaggerated relative to other components. Moreover, where considered appropriate, reference labels are repeated in these figures to indicate corresponding or class elements. Figure 1 illustrates, according to an embodiment, a device 11G and 15G' comprising a pulsating axial flow fan that rotates in a "first" direction and a second direction, respectively, to reduce dust accumulation on the heat exchanger. Figure 2 illustrates a line graph 21〇 and 25〇, which describes when the pulsating cuff

式風扇分別以該第—方向及該第二方向旋轉時空氣流動之 方向。 第3圖説明了該散熱裝置110之-圖片。 第4圖描述了包含可以以第一及第二方向旋轉之 動軸流式風扇之該軸裝置150之-圖片。 第5圖根據一實施例說明了包含一脈動離心式風; -裝置5H)及550,其分別以一第三及第四方向旋轉⑴ 熱交換器上之塵粒累積。 第6圖説明了—線形圖_及_,其描述當該脈動萬 4 201026960 式風扇分別Μ第三及第財向旋轉_ 第7圖描述了該散熱裝置510之―圖片。 第8圖描述了包含可以第三及第四方向 離心式風扇之該散熱裝置㈣之—㈣。讀之一脈動 第9圖根據一實施例説明了 動風扇裝置心減少在熱交難上㈣粒^。’其中該脈 【實施方式jThe direction in which the air flows when the fan rotates in the first direction and the second direction, respectively. Figure 3 illustrates the picture of the heat sink 110. Figure 4 depicts a picture of the shaft assembly 150 including a moving axial fan that can be rotated in the first and second directions. Figure 5 illustrates the inclusion of a pulsating centrifugal wind according to an embodiment; - means 5H) and 550 which respectively rotate (1) the accumulation of dust particles on the heat exchanger in a third and fourth direction. Figure 6 illustrates a line graph _ and _, which describes a picture of the heat sink 510 when the pulsating fan 4 201026960 type fan respectively Μ third and the fiscal rotation _ Fig. 7. Figure 8 depicts the heat sink (4) including the third and fourth direction centrifugal fans - (d). Reading one of the pulsations Fig. 9 illustrates, according to an embodiment, that the fan unit is reduced in heat (4). Where the vein [embodiment j

詳細描述 下面的描述描述了減少—散埶 下面的描述中,提出了大量特定:節,: :Γ:Γ、元件之類型及相互關係,以提供_ 月之-較透徹的了解。然而,明顯的是,在沒有這此特定 細節的情況下,本發明也可由熟於此技者實施。在其它實 例中’結構並未詳細顯相免_本發明。㈣所附的説 明,在該領域具有-般技藝者將_實施適#的功能而益 需不當實驗。 ” 本説明書中提及的“一個實施例,,、“—實施例”、‘‘― 範例實施例”指示所描述的實施例可包括一特定特徵妗 或特性,但每一實施例可未必包括該特定特徵、結構^特 性。此外,這樣的措辭未必指的是同一實施例。而且當 特久特徵、結構或特性結合一實施例被描述時,可嘴為 其在熟於此技者的知識範圍内結合其他實施例影響此特 徵、結構或特性,無論是否有作明確的描述。 用在一散熱裝置110及150中以減少一熱交換器上的塵 201026960 累積之-脈動抽流式風扇之一實施例在第【圖中予以説 明二在:個實施例中,該農置110包含一脈動軸流式風扇12〇 ,、熱父換器130。在—個實施例中,該脈動軸流式風扇㈣ 可以—方向135旋轉且方向1()5及1()6可分別表示空氣流入 及4出方向。在—個實施财,沿著該脈動軸流式風扇120 之抽(方向1G5)轉移的空氣可能包含塵粒。 個實施例中,沿著該方向1〇5流動的空氣可將塵粒 帶向該脈動軸流式風扇12()之料葉片及軸交換器⑽。 在個實施例中,該等塵粒可累積於該脈動轴流式風扇⑽ 之該等葉片上及該熱交姉m在__個實麵中該塵 粒之累積可形成-塵埃層14G。在__個實施例中該塵埃層 14〇可減少空氣之通道且進而降低散熱量。在一個實施例 中’散熱的減少可提高—產熱元件之熱程度且該產熱元件 之性能可因此降低。在—個實施财,該域裝置110之圖 片描述於第3®中,其朗了紐動轴流式風扇12〇之葉片 上及該熱交換器370上的塵粒累積34〇。 在-個實施例中,該等塵粒可包含微小的固體顆粒或 纖維介質或諸如此賴其它成分。在-個實施财,該等 塵粒可發生於各種來源,諸如土、人類皮膚細胞、植物花 粉、動物毛、紡織纖維、紙纖維及此類其他顆粒。 在-個實施例中,該散熱裝置15〇可包含該脈動轴流式 風扇120及該熱交換器13〇。然而,如該第二方向185所示, 該脈動抽流式風扇12G之旋轉方向可被反轉。在—個實施例 中,該脈動軸流式風扇120可以一第一方向旋轉達一實質的 201026960 時間段,JL還可立刻以該第二方向旋轉,該第二方向是該 第一方向之相反方向。在一個實施例中,以該第二方向185 旋轉之該脈動軸流式風扇120可沿著方向155-156產生吸氣 壓力。在一個實施例中,藉由該脈動軸流式風扇12〇之旋轉 產生之該吸氣壓力可趕出該塵埃層140中的塵粒。在一個實 施例中,將該等塵粒從該塵埃層14 0中趕出可減少在該脈動 軸流式風扇120之葉片及該熱交換器130上的塵粒累積。在 一個實施例中’包含可以第一及第二方向旋轉之一脈動軸 流式風扇之該散熱裝置150之圖片描述於第4圖中。在一個 實施例中,第4圖之圖片説明了當該脈動轴流式風扇31〇週 期性地以該第一方向135及該第二方向185旋轉時,塵粒累 積340的減少。在一個實施例中,該脈動軸流式風扇31〇以 該第一方向135旋轉之持續時間可實質上超過該脈動軸流 式風扇310以該第二方向185旋轉之持續時間。 在一個實施例中,趕出該等塵粒可使該熱交換器實質 上不受該塵埃層340之擾。這樣的一方式可允許該等產熱裝 置以一預期的性能水準運轉。在一個實施例中,這樣的一 方式可實質上避免對散熱之阻礙。在一個實施例中,避免 對散熱之阻礙也可避免該產熱裝置過熱,從而保持該等裝 置之熱程度在人體工學限制内。這樣的一方式也可保持哼 脈動轴流式風扇31〇之葉片表面及該熱交換器370之清潔, 進而提高該裝置之審美層面。 在一個實施例中,該脈動轴流式風扇310可以該第一旋 轉方向135旋轉一實質的時間量。在一個實施例中,當特定 201026960 事件發生時,該脈動軸流式風扇310可以該第二方向185旋 轉一小段時間,該第二方向185是相反於該第一方向135之 一方向。在一個實施例中,該等特定事件可包含該脈動軸 流式風扇310於其間可以該第一方向13 5旋轉之一指定的持 續時間之消逝或如果該產熱裝置之熱程度超出一預設程度 或開啓及關閉事件及諸如此類的其它事件^在一個實施例 中,時間追蹤裝置可被用以追蹤時間,及溫度感測器可被 用以感測該等產熱裝置之溫度。 一線形圖210及250被説明於第2圖中,其描述當該脈動 軸流式風扇120分別以方向135及185旋轉時空氣流動之方 向。在一個實施例中’以該方向135旋轉之該脈動軸流式風 扇120可使空氣沿著該方向105_106流動,其促成該脈動軸 流式風扇120之葉片上及該熱交換器13〇上的塵粒累積。在 一個實施例中,當使該脈動軸流式風扇12〇之旋轉方向反轉 時,該脈動軸流式風扇120可產生沿著該方向155_156吸入 空氣,該方向155-156可實質上相反於該方向1〇5_1〇6。由於 在—相反方向(155-156)之空氣流動,在該脈動軸流式風扇 120之葉片上及該熱交換器130之上的該等塵粒可被排出。 因此,該散熱裝置150可減少該脈動軸流式風扇12〇之葉片 上及該熱交換器130上的塵粒累積。 用在一散熱裝置510及550中以減少一脈動離心式風扇 之葉片上及-熱交換ϋ上之塵粒累積之—離心式脈動風扇 之—實施例被説明於第5圖中。在一個實施例中,該裝置51〇 匕3熱父換器520及一脈動離心式風扇530。在一個實施 201026960 例中,該脈動離心式風扇530可以第三 二方向515旋轉。在一DETAILED DESCRIPTION The following description describes the reduction-distribution. In the following description, a number of specific sections are proposed: Sections::Γ:Γ, types of components, and interrelationships to provide a more thorough understanding of _months. However, it will be apparent that the invention may be practiced by those skilled in the art without this particular detail. In other examples, the structure has not been shown in detail. (4) The accompanying explanations, in which the general practitioners in the field will implement the functions of the appropriate #, and may need improper experimentation. "One embodiment," "an embodiment," and "an example embodiment" as used in this specification means that the described embodiments may include a particular feature or feature, but each embodiment may not necessarily This particular feature, structure, and characteristic are included. In addition, such a word is not necessarily referring to the same embodiment, and when the features, structures, or characteristics are described in connection with an embodiment, the mouth can be used by those skilled in the art. This feature, structure, or characteristic is affected by other embodiments in combination with other embodiments, whether or not explicitly described. Used in a heat sink 110 and 150 to reduce dust on a heat exchanger 201026960 Accumulated - pulsating draft fan One embodiment is illustrated in the drawings. In one embodiment, the farm 110 includes a pulsating axial fan 12 〇, a hot parent 130. In one embodiment, the pulsation axis The flow fan (4) can be rotated in the direction 135 and the directions 1 () 5 and 1 () 6 can respectively indicate the air inflow and the 4 out direction. In the implementation, the pumping of the axial fan 120 along the pulsation (direction 1G5) The transferred air may contain In one embodiment, air flowing along the direction 1〇5 can carry dust particles to the blades of the pulsating axial fan 12() and the shaft exchanger (10). In one embodiment, such Dust particles may accumulate on the blades of the pulsating axial fan (10) and the heat transfer m may accumulate in the __ solid surface to form a dust layer 14G. In the embodiment The dust layer 14 〇 can reduce the passage of the air and thereby reduce the amount of heat dissipation. In one embodiment, the reduction in heat dissipation can increase the heat level of the heat generating component and the performance of the heat generating component can be reduced. A picture of the domain device 110 is described in Section 3®, which summarizes the accumulation of dust particles on the blades of the axial fan 12 及 and the heat exchanger 370. In one embodiment, such The dust particles may contain tiny solid particles or fibrous media or other components such as this. In practice, the dust particles may occur in various sources such as soil, human skin cells, plant pollen, animal hair, textile fibers, Paper fibers and such other particles. In one embodiment, the heat sink The pulsating axial fan 120 and the heat exchanger 13A may be included. However, as indicated by the second direction 185, the direction of rotation of the pulsating fan 12G may be reversed. The pulsating axial fan 120 can be rotated in a first direction for a substantial period of 201026960, and the JL can also be immediately rotated in the second direction, the second direction being the opposite direction of the first direction. In the example, the pulsating axial fan 120 rotating in the second direction 185 can generate an intake pressure in directions 155-156. In one embodiment, the pulsating axial fan 12 turns. The suction pressure can drive out the dust particles in the dust layer 140. In one embodiment, the dust particles are ejected from the dust layer 140 to reduce the blades of the pulsating axial fan 120 and the The dust particles on the heat exchanger 130 accumulate. A picture of the heat sink 150 containing a pulsating axial fan that can be rotated in the first and second directions in one embodiment is depicted in FIG. In one embodiment, the picture in Fig. 4 illustrates the reduction in dust particle accumulation 340 as the pulsating axial fan 31 is periodically rotated in the first direction 135 and the second direction 185. In one embodiment, the duration of rotation of the pulsating axial fan 31 in the first direction 135 may substantially exceed the duration of rotation of the pulsating axial fan 310 in the second direction 185. In one embodiment, escaping the dust particles may cause the heat exchanger to be substantially undisturbed by the dust layer 340. Such an approach would allow the heat producing devices to operate at an expected level of performance. In one embodiment, such an approach substantially avoids obstruction to heat dissipation. In one embodiment, avoiding heat dissipation can also prevent the heat generating device from overheating, thereby maintaining the thermal extent of the devices within ergonomic limits. Such a manner also maintains the blade surface of the pulsating axial fan 31 and the cleaning of the heat exchanger 370, thereby improving the aesthetic aspect of the device. In one embodiment, the pulsating axial fan 310 can be rotated in the first rotational direction 135 for a substantial amount of time. In one embodiment, the pulsating axial fan 310 can be rotated in the second direction 185 for a short period of time when a particular 201026960 event occurs, the second direction 185 being opposite one of the first directions 135. In one embodiment, the specific events may include the elapse of a duration specified by the pulsating axial fan 310 during which the first direction 13 5 is rotated or if the heat of the heat generating device exceeds a preset Degree or opening and closing events and the like, in one embodiment, a time tracking device can be used to track time, and a temperature sensor can be used to sense the temperature of the heat generating devices. The one-line diagrams 210 and 250 are illustrated in Figure 2, which depicts the direction of air flow as the pulsating axial fan 120 rotates in directions 135 and 185, respectively. In one embodiment, the pulsating axial fan 120 rotating in the direction 135 causes air to flow in the direction 105_106, which contributes to the blade of the pulsating axial fan 120 and to the heat exchanger 13 Dust accumulation. In one embodiment, when the direction of rotation of the pulsating axial fan 12 is reversed, the pulsating axial fan 120 can generate air intake in the direction 155_156, which can be substantially opposite to The direction is 1〇5_1〇6. Due to the air flow in the opposite direction (155-156), the dust particles on the blades of the pulsating axial fan 120 and above the heat exchanger 130 can be discharged. Therefore, the heat sink 150 can reduce the accumulation of dust particles on the blades of the pulsating axial fan 12 and the heat exchanger 130. An embodiment of a centrifugal pulsating fan for use in a heat sink 510 and 550 to reduce the accumulation of dust particles on the blades of a pulsating centrifugal fan and on the heat exchange ports is illustrated in FIG. In one embodiment, the device 51 热 3 hot parent 520 and a pulsating centrifugal fan 530. In one implementation, the 201026960 example, the pulsating centrifugal fan 530 can be rotated in the third direction 515. In a

該方向505成大約90度之一角度之方向The direction 505 is in the direction of an angle of about 90 degrees

中,在該熱交換器520上的塵粒累積可在該風扇53〇之葉片 上及該熱父換器520上形成一塵埃層540。在一個實施例 中,該散熱裝置510之圖片被描述在第7圖中,其説明了在 一脈動離心式風扇710之葉片上及熱交換器77〇上的塵粒累 積 740。 在一個實施例中,在該散熱裝置550中,該脈動離心式 風扇530之旋轉方向可被反轉。在一個實施例中,第四方向 565可實質上相反於該第三方向515之方向。在一個實施例 中,如果該脈動離心式風扇530以該第四方向565旋轉,則 空氣流動可以一衝擊方向575衝擊該熱交換器520。在一個 實施例中,該衝擊方向575可與該衝擊方向525成一角度 theta-l(‘01’)。在一個實施例中,由於該衝擊方向575之角 度,沿著該衝擊方向575之空氣流動可將該等塵粒趕出該風 扇530之葉片及該熱交換器520。在一個實施例中,以該第 9 201026960 四方向565旋轉該離心式風扇53〇可減少該風扇53〇之葉片 上及該熱交換器520上的塵粒累積。在—個實施例中,包含 : 可以第三方向及第四方向兩方向旋轉之—脈動離心式㈣ . 之該散熱褒置550之圖片被描述在第8圖中。在一個實施例 中’第8圖之圖片説明了當該脈動離心式風扇71〇週期性地 在第三及第四方向之間旋轉時塵粒累積74〇之減少。在一個 實施例中,該脈動離心式風扇710以第三方向515旋轉之持 續時間可實質上超過該脈動離心式風扇71〇以該第四方向 565旋轉之持續時間。 φ 一線形圖在第6圖中予以説明,其描述隨該脈動離心式 風扇530之旋轉方向之一變化,空氣流動發生之衝擊方向。 在線形圖610中,該脈動離心式風扇530可以該第三方 向515旋轉且使該空氣流入5〇5在衝擊方向525上衝擊該熱 ' 交換器520。在其它實施例中,該脈動離心式風扇530可以 該第三方向515旋轉且使在方向505上之該空氣流入在一衝 擊方向526上衝擊該熱交換器520。在一個實施例中,在方 向525及526上的空氣之衝擊可分別以一第一角度與一第二 角度發生。在一個實施例中,在該衝擊方向525及/或526上 的空氣之衝擊可導致在該空氣中的該等塵粒累積在該風扇 530之葉片上及該熱交換器520上。 在線形圖650中,該脈動離心式風扇530可以第四方向 565旋轉,其可相反於該第三方向515。在一個實施例中, 該脈動離心式風扇530在方向565上之旋轉可使該空氣在衝 擊方向575上衝擊該熱交換器520。在其它實施例中,該脈 10 201026960 動離心式風扇530可以該第四方向565旋轉且使該空氣流入 505在方向576上衝擊該熱交換器520。在一個實施例中,在 方向575及576上之空氣之衝擊可分別以一第三角度與一第 四角度發生。 在一個實施例中,方向575可與方向525形成一角度 theta-l(ei)。在一個實施例中,該角度theta-Ι可表示一鈍角 (大於90度)。在其它實施例中,方向576可與方向576形成一 角度theta-2(02)。在一個實施例中,該角度theta-2(02)可表 示一銳角(小於90度)。在一個實施例中,累積在該熱交換器 520上的該等塵粒可由於在該衝擊方向575及/或576上的空 氣流動而被排出。 包含該散熱裝置之一電腦系統900之一實施例在第9圖 中予以説明,該散熱裝置包括一脈動軸流式或離心式風 扇。在一個實施例中,該電腦系統900可包含一處理器91〇、 一冷卻單元930、一記憶體940、一圖形裝置950、一冷卻單 元960、一控制器中樞970及I/O裝置980。 在一個實施例中,記憶體940可被用以儲存可由該處理 器910使用的指令及資料值。在一個實施例中,該控制器中 樞970可提供該處理器910與該記憶體94〇之間及該處理器 910與該等I/O裝置98〇之間的一介面。在一個實施例中一 冷卻單元可被提供相鄰於可能需要散熱之元件。在一個實 奴例中,為了説明,冷卻單元93〇及96〇可分別被提供以相 鄰於該處理器91〇及該圖形裝置95〇。 在一個實施例中,該處理器910可包括一單一核心或一 11 201026960 雙核心或一多核心處理器。在一個實施例中,該處理器910 可表示一產熱裝置及由該處理器910產生之熱量可利用該 冷卻單元930散發。在一個實施例中,該冷卻單元93〇可包 含一風扇935及一熱交換器HE 938。在一個實施例中,該風 扇935可包括一脈動轴流式或一脈動離心式風扇,其可以一 個方向旋轉一實質的時間量且可以一相反方向旋轉一小段 時間。在一個實施例中,該脈動風扇930之旋轉方向從一個 方向到相反方向之改變可基於一事件之發生,諸如預設持 續時間之消逝、該處理器910之熱程度超出一預設程度或該 處理器910之處理負載超出一預設工作負載值。 在一個實施例中,旋轉方向之反轉可趕出該等塵粒且 因此可減少該風扇935及該熱交換器HE 938或其它任何相 鄰於該冷卻單元930之表面上的塵粒累積。在一個實施例 中,這樣的一方式可減少與該風扇935及該HE 938及其它任 何相鄰於該冷卻單元930之表面上的塵粒累積相關之問題 發生的機會。 在一個實施例中’該圖形裝置950可包括一圖形控制 器、顯示控制器及可執行處理圖片資料而可能需要大量處 理資源之§#如此類的其它單元。在一個實施例中,該圖形 裝置950可因此產生熱,可能需要散熱以保護性能水準。在 一個實施例中,可位於相鄰於該圖形單元950之冷卻單元 960可散發由該圖形裝置950產生的熱。在一個實施例中, 該冷卻單元960可包含一風扇965及一熱交換器HE 968。在 一個實施例中,該風扇965可包含一脈動轴流式或一脈動離 12 201026960 心式風扇’當其以一個方向旋轉時,其可導致該風扇965及 該HE 968或任何其它相鄰於該冷卻單元96〇之表面上的塵 粒累積。在一個實施例中,該脈動風扇965可以一反方向旋 轉以趕出累積於該HE 968上的該等塵粒。這樣的一方式可 以使散熱及性能水準得以保持。 本發明之某些特徵已關於示範性實施例予以描述。然 而,該描述不是為了在一限制意義中被理解。對於熟於本 發明所屬之技藝者來説是清楚的該“範性實施例及本發 明之其它實施狀各種修改被視為在本發明之精神及範圍 之内。 【圖式簡翠說*明】 第1圖根據-實施例説明了包含一脈動轴流式風扇之 -裝置則及15(),其分別以—第—方向及_第二方向旋轉 以減少熱交換器上之塵粒累積。 第2圖説明了-_圖2職25G,其描述當該脈動轴流 式風扇分別以該第一方向及該第二方向旋轉時空氣流動之 方向。 第3圖説明了該散熱裝置ι1〇之一圖片。 第4圖描述了包含可以以第一及第二方向旋轉之一脈 動軸流式風扇之該散熱裝置150之一圖片。 第5圖根據一實施例説明了包含一脈動離心式風扇之 -裝置510及550,其分別以一第三及第四方向旋轉以減少 熱交換器上之塵粒累積。 第6圖説明了一線形圖610及650,其描述當該脈動離心 13 201026960 式風扇分別以該第三及第四方向旋轉時衝擊之方向。 第7圖描述了該散熱裝置510之一圖片。 第8圖描述了包含可以第三及第四方向旋轉之一脈動 離心式風扇之該散熱裝置550之一圖片。 第9圖根據一實施例説明了一電腦系統900,其中該脈 動風扇裝置用以減少在熱交換器上的塵粒累積。 【主要元件符號說明】 105Ί06Ί55Ί56 '506 '576... 方向 110、150、510、550...散熱裝 置 120、310...脈動軸流式風扇 130、370、520、770...熱交換 器 135.. .第一旋轉方向 140、540...塵埃層 185…第二方向 210、250、610'650···線形圖 340、740...塵粒累積 505.. .方向、空氣流入 515…第三方向 525、526、575...衝擊方向 530、710...脈動離心式風扇 565…第四方向 900.. .電腦系統 910.. .處理器 930、960…冷卻單元 935.. .風扇The accumulation of dust particles on the heat exchanger 520 forms a dust layer 540 on the blades of the fan 53 and on the hot parent 520. In one embodiment, a picture of the heat sink 510 is depicted in Figure 7, which illustrates the accumulation of dust particles 740 on the blades of a pulsating centrifugal fan 710 and on the heat exchanger 77. In one embodiment, in the heat sink 550, the direction of rotation of the pulsating centrifugal fan 530 can be reversed. In one embodiment, the fourth direction 565 can be substantially opposite to the direction of the third direction 515. In one embodiment, if the pulsating centrifugal fan 530 is rotated in the fourth direction 565, the air flow can impact the heat exchanger 520 in an impact direction 575. In one embodiment, the impact direction 575 can be at an angle to the impact direction 525, theta-l ('01'). In one embodiment, due to the angle of impact direction 575, air flow along the impact direction 575 can drive the dust particles out of the blades of the fan 530 and the heat exchanger 520. In one embodiment, rotating the centrifugal fan 53 in the fourth direction 565 of the ninth 201026960 reduces dust accumulation on the blades of the fan 53 and on the heat exchanger 520. In one embodiment, the method includes: a pulsating centrifugal type (four) that can be rotated in both the third direction and the fourth direction. A picture of the heat dissipation device 550 is depicted in FIG. In one embodiment, the picture of Fig. 8 illustrates the reduction in dust accumulation 74 当 as the pulsating centrifugal fan 71 is periodically rotated between the third and fourth directions. In one embodiment, the duration of rotation of the pulsating centrifugal fan 710 in the third direction 515 may substantially exceed the duration of rotation of the pulsating centrifugal fan 71 in the fourth direction 565. The φ line diagram is illustrated in Fig. 6, which describes the direction of impact of air flow as one of the directions of rotation of the pulsating centrifugal fan 530 changes. In line graph 610, the pulsating centrifugal fan 530 can be rotated by the third direction 515 and the air inflow 5 〇 5 impacts the heat exchanger 520 in the impact direction 525. In other embodiments, the pulsating centrifugal fan 530 can rotate in the third direction 515 and cause the air in the direction 505 to flow in an impact direction 526 to impact the heat exchanger 520. In one embodiment, the impact of air in directions 525 and 526 can occur at a first angle and a second angle, respectively. In one embodiment, the impact of air in the direction of impact 525 and/or 526 may cause the dust particles in the air to accumulate on the blades of the fan 530 and on the heat exchanger 520. In line graph 650, the pulsating centrifugal fan 530 can be rotated in a fourth direction 565, which can be opposite the third direction 515. In one embodiment, rotation of the pulsating centrifugal fan 530 in direction 565 causes the air to impinge on the heat exchanger 520 in an impact direction 575. In other embodiments, the pulse 10 201026960 dynamic centrifugal fan 530 can rotate in the fourth direction 565 and cause the air inflow 505 to impact the heat exchanger 520 in direction 576. In one embodiment, the impact of air in directions 575 and 576 can occur at a third angle and a fourth angle, respectively. In one embodiment, the direction 575 can form an angle theta-l(ei) with the direction 525. In one embodiment, the angle theta-Ι can represent an obtuse angle (greater than 90 degrees). In other embodiments, the direction 576 can form an angle theta-2 (02) with the direction 576. In one embodiment, the angle theta-2 (02) may represent an acute angle (less than 90 degrees). In one embodiment, the dust particles accumulated on the heat exchanger 520 may be expelled due to air flow in the impact direction 575 and/or 576. An embodiment of a computer system 900 incorporating one of the heat sinks is illustrated in Figure 9, which includes a pulsating axial or centrifugal fan. In one embodiment, the computer system 900 can include a processor 91, a cooling unit 930, a memory 940, a graphics device 950, a cooling unit 960, a controller hub 970, and an I/O device 980. In one embodiment, memory 940 can be used to store instructions and data values that can be used by processor 910. In one embodiment, the controller hub 970 can provide an interface between the processor 910 and the memory 94 and between the processor 910 and the I/O devices 98A. In one embodiment a cooling unit can be provided adjacent to an element that may require heat dissipation. In a real slave, for purposes of illustration, cooling units 93A and 96'' are respectively provided adjacent to the processor 91 and the graphics device 95A. In one embodiment, the processor 910 can include a single core or an 11 201026960 dual core or a multi-core processor. In one embodiment, the processor 910 can represent a heat generating device and the heat generated by the processor 910 can be dissipated by the cooling unit 930. In one embodiment, the cooling unit 93A may include a fan 935 and a heat exchanger HE 938. In one embodiment, the fan 935 can include a pulsating axial flow or a pulsating centrifugal fan that can be rotated in one direction for a substantial amount of time and can be rotated in the opposite direction for a short period of time. In one embodiment, the change of the direction of rotation of the pulsating fan 930 from one direction to the opposite direction may be based on the occurrence of an event, such as the lapse of a preset duration, the degree of heat of the processor 910 exceeding a predetermined level, or The processing load of processor 910 exceeds a predetermined workload value. In one embodiment, the reversal of the direction of rotation can drive out the dust particles and thus reduce the accumulation of dust particles on the fan 935 and the heat exchanger HE 938 or any other surface adjacent to the cooling unit 930. In one embodiment, such an approach may reduce the chance of problems associated with accumulation of dust particles on the fan 935 and the HE 938 and any other surfaces adjacent to the cooling unit 930. In one embodiment, the graphics device 950 can include a graphics controller, a display controller, and other units that can perform processing of picture material and may require a large amount of processing resources. In one embodiment, the graphics device 950 may thus generate heat and may require heat dissipation to protect performance levels. In one embodiment, the cooling unit 960, which may be located adjacent to the graphics unit 950, may dissipate heat generated by the graphics device 950. In one embodiment, the cooling unit 960 can include a fan 965 and a heat exchanger HE 968. In one embodiment, the fan 965 can include a pulsating axial flow or a pulsating distance 12 201026960 a heart fan's which, when rotated in one direction, can cause the fan 965 and the HE 968 or any other adjacent Dust particles on the surface of the cooling unit 96 are accumulated. In one embodiment, the pulsating fan 965 can be rotated in the reverse direction to drive out the dust particles accumulated on the HE 968. Such a way to maintain heat dissipation and performance levels. Certain features of the invention have been described in connection with the exemplary embodiments. However, the description is not intended to be understood in a limiting sense. It will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Fig. 1 illustrates, according to an embodiment, a device comprising a pulsating axial flow fan and 15(), which are rotated in a -first direction and a second direction, respectively, to reduce dust accumulation on the heat exchanger. Figure 2 illustrates - Figure 2, 25G, which describes the direction of air flow as the pulsating axial fan rotates in the first direction and the second direction, respectively. Figure 3 illustrates the heat sink ι1 A picture. Figure 4 depicts a picture of the heat sink 150 including a pulsating axial fan that can be rotated in the first and second directions. Figure 5 illustrates an embodiment comprising a pulsating centrifugal fan according to an embodiment. Means 510 and 550, respectively, rotated in a third and fourth direction to reduce dust accumulation on the heat exchanger. Figure 6 illustrates a line graph 610 and 650 depicting the pulsating centrifuge 13 201026960 fan Rotating in the third and fourth directions respectively The direction of the impact. Figure 7 depicts a picture of the heat sink 510. Figure 8 depicts a picture of the heat sink 550 including a pulsating centrifugal fan that can be rotated in the third and fourth directions. One embodiment illustrates a computer system 900 in which the pulsating fan assembly is used to reduce dust accumulation on the heat exchanger. [Major component symbol description] 105Ί06Ί55Ί56 '506 '576... Directions 110, 150, 510, 550 ...heat sink 120, 310...pulsating axial fan 130, 370, 520, 770... heat exchanger 135.. first direction of rotation 140, 540... dust layer 185... second direction 210, 250, 610'650···Line diagram 340, 740... dust accumulation 505.. direction, air inflow 515... third direction 525, 526, 575... impact direction 530, 710... Pulsating centrifugal fan 565...fourth direction 900.. computer system 910.. processor 930, 960...cooling unit 935.. fan

938、968…熱交換器HE 940.. .記憶體 950.. .圖形裝置 965.. .脈動風扇 970.. .控制器中樞 980.. .1.O 裝置 Θ卜Θ2·..角度938, 968... heat exchanger HE 940.. memory 950.. graphics device 965.. pulsating fan 970.. controller center 980.. .1.O device Θ卜Θ2·.. angle

1414

Claims (1)

201026960 七、申請專利範圍: 1. 一種裝置,其包含: 一脈動風扇,其中該脈動風扇以一第一方向旋轉一 第一持續時間、及以一第二方向旋轉一第二持續時間, 及 相鄰於該脈動風扇之多個表面, 其中當該脈動風扇以該第二方向旋轉時,累積於該 等多個表面上之塵粒即減少, 其中該第二旋轉方向反向於該第一旋轉方向, 其中該等多個表面包括一熱交換器及該脈動風扇 之葉片。 2. 如申請專利範圍第1項所述之裝置,其中該脈動風扇是 一軸流式風扇。 3. 如申請專利範圍第2項所述之裝置,其中該軸流式風扇 以該第一方向旋轉使空氣以一第三方向流動,及該軸流 式風扇以該第二方向旋轉使該空氣以一第四方向流 動,其中該第四方向實質上相反於該第三方向。 4. 如申請專利範圍第3項所述之裝置,其中以該第二方向 旋轉該軸流式風扇是基於一事件之發生而啓動,其中該 事件包含要被散熱的一產熱裝置之熱程度超出一設定 程度。 5. 如申請專利範圍第1項所述之裝置,其中該脈動風扇是 一離心式風扇。 6. 如申請專利範圍第5項所述之裝置,其中該離心式風扇 15 201026960 以該第一方向旋轉使空氣以一第五方向衝擊該熱交換 器,及該離心式風扇以該第二方向旋轉使該空氣以一第 六方向衝擊該熱交換器,其中以該第六方向衝擊該熱交 換器的該空氣會趕出該等塵粒。 7. 如申請專利範圍第6項所述之裝置,其中該第六方向與 該第五方向形成一第一角度,其中該第一角度是一銳 角,其中以該第一角度衝擊該熱交換器的該空氣會趕出 累積於該熱交換器上的該等塵粒。 8. 如申請專利範圍第6項所述之裝置,其中該第六方向與 該第五方向形成一第二角度,其中該第二角度是一鈍 角,其中以該第二角度衝擊該熱交換器的該空氣會趕出 累積於該熱交換器上的該等塵粒。 9. 如申請專利範圍第5項所述之裝置,其中以該第二方向 旋轉該離心式風扇是基於一事件之發生而啓動,其中該 事件包含該第一持續時間之消逝。 10. —種方法,其包含以下步驟: 使一脈動風扇以一第一方向旋轉一第一持續時 間、及以一第二方向旋轉一第二持續時間,及 提供相鄰於該脈動風扇之多個表面, 其中當該脈動風扇以該第二方向旋轉時,累積於該 等多個表面上之塵粒被減少, 其中該第二旋轉方向反向於該第一旋轉方向, 其中該等多個表面包括一熱交換器及該脈動風扇 之葉片。 16 201026960 11. 如申請專利範圍第10項所述之方法,其中該脈動風扇是 一轴流式風扇。 12. 如申請專利範圍第11項所述之方法,其中該軸流式風扇 以該第一方向旋轉使空氣以一第三方向流動,及該軸流 式風扇以該第二方向旋轉使該空氣以一第四方向流 動,其中該第四方向實質上相反於該第三方向。 13. 如申請專利範圍第12項所述之方法,其中以該第二方向 旋轉該軸流式風扇是基於一事件之發生而啓動,其中該 事件包含要被散熱的一產熱裝置之熱程度超出一設定 程度。 14. 如申請專利範圍第10項所述之方法,其中該脈動風扇是 一離心式風扇。 15. 如申請專利範圍第14項所述之方法,其中該離心式風扇 以該第一方向旋轉使空氣以一第五方向衝擊該熱交換 器,及該離心式風扇以該第二方向旋轉使該空氣以一第 六方向衝擊該熱交換器,其中以該第六方向衝擊該熱交 換器之空氣會趕出該等塵粒。 16. 如申請專利範圍第15項所述之方法,其中該第六方向與 該第五方向形成一第一角度,其中該第一角度是一銳 角,其中以該第一角度衝擊該熱交換器之該空氣會趕出 該等塵粒。 17. 如申請專利範圍第15項所述之方法,其中該第六方向與 該第五方向形成一第二角度,其中該第二角度是一鈍 角,其中以該第二角度衝擊該熱交換器之該空氣會趕出 17 201026960 該等塵粒。 18. 如申請專利範圍第14項所述之方法,其中以該第二方向 旋轉該離心式風扇是基於〆事件之發生而啓動,其中該 事件包含該第一持續時間之消逝。 19. 一種系統,其包含: 一產熱裴置,及 散熱裝置,其中該散熱裝置相鄰於該產熱裝置而被 提供, 其中該散熱裝置包含〆脈動風扇,其中該脈動風扇 〇 以一第一方向旋轉一第一持續時間、及以一第二方向旋 轉一第二持續時間,且多個表面相鄰於該脈動風扇被提 供, 其中當該脈動風扇以該第二方向旋轉時,累積於該 。 等多個表面上的塵粒被減少’ 其中該第二旋轉方向相反於該第一旋轉方向’ 其中該等多個表面包括一熱交換器及該脈動風扇 參 之葉片。 20. 如申請專利範圍第19項所述之系統,其中該產熱袈置是 一處理器。 21. 如申請專利範圍第19項所述之系統,其中該脈動風扇是 一軸流式風扇。 22. 如申請專利範圍第2〇項所述之系統,其中以該第—方向 之該旋轉使該空氣以一第三方向流動,及以該第二方向 之該旋轉使該空氣以一第四方向流動,其中該第四方向 18 201026960 實質上相反於該第三方向。 23. 如申請專利範圍第19項所述之系統,其中該產熱裝置是 一圖形裝置。 24. 如申請專利範圍第19項所述之系統,其中該脈動風扇是 一離心式風扇。 25·如申請專利範圍第20項所述之系統,其中該離心式風扇 以該第一方向旋轉使空氣以一第五方向衝擊該熱交換 器,及該離心式風扇以該第二方向旋轉使該空氣以一第 六方向衝擊該熱交換器。 26. 如申請專利範圍第25項所述之系統,其中空氣以該第六 方向之該衝擊趕出累積在該熱交換器上的該等塵粒。 27. 如申請專利範圍第25項所述之系統,其中該第六方向與 該第五方向形成一第一角度,其中該第一角度是一銳 角,其中以該第一角度衝擊該熱交換器的該空氣會趕出 該等塵粒。 28. 如申請專利範圍第25項所述之系統,其中該第六方向與 該第五方向形成一第二角度,其中該第二角度是一鈍 角,其中以該第二角度衝擊該熱交換器的該空氣會趕出 該等塵粒。 19201026960 VII. Patent Application Range: 1. A device comprising: a pulsating fan, wherein the pulsating fan rotates in a first direction for a first duration, and in a second direction for a second duration, and Adjacent to a plurality of surfaces of the pulsating fan, wherein when the pulsating fan rotates in the second direction, dust particles accumulated on the plurality of surfaces are reduced, wherein the second rotational direction is opposite to the first rotation Direction, wherein the plurality of surfaces comprise a heat exchanger and a vane of the pulsating fan. 2. The device of claim 1, wherein the pulsating fan is an axial fan. 3. The device of claim 2, wherein the axial fan rotates in the first direction to cause air to flow in a third direction, and the axial fan rotates in the second direction to make the air Flowing in a fourth direction, wherein the fourth direction is substantially opposite to the third direction. 4. The device of claim 3, wherein rotating the axial fan in the second direction is initiated based on an event, wherein the event includes a heat level of a heat generating device to be dissipated Exceeded a set level. 5. The device of claim 1, wherein the pulsating fan is a centrifugal fan. 6. The device of claim 5, wherein the centrifugal fan 15 201026960 rotates in the first direction to cause air to impinge on the heat exchanger in a fifth direction, and the centrifugal fan is in the second direction Rotation causes the air to impinge on the heat exchanger in a sixth direction, wherein the air impinging on the heat exchanger in the sixth direction will drive out the dust particles. 7. The device of claim 6, wherein the sixth direction forms a first angle with the fifth direction, wherein the first angle is an acute angle, wherein the heat exchanger is impacted at the first angle This air will drive out the dust particles accumulated on the heat exchanger. 8. The device of claim 6, wherein the sixth direction forms a second angle with the fifth direction, wherein the second angle is an obtuse angle, wherein the heat exchanger is impacted at the second angle This air will drive out the dust particles accumulated on the heat exchanger. 9. The device of claim 5, wherein rotating the centrifugal fan in the second direction is initiated based on an occurrence of an event, wherein the event comprises the elapse of the first duration. 10. A method comprising the steps of: rotating a pulsating fan in a first direction for a first duration, and rotating in a second direction for a second duration, and providing a plurality of adjacent pulsating fans a surface, wherein when the pulsating fan rotates in the second direction, dust particles accumulated on the plurality of surfaces are reduced, wherein the second direction of rotation is opposite to the first direction of rotation, wherein the plurality of The surface includes a heat exchanger and blades of the pulsating fan. The method of claim 10, wherein the pulsating fan is an axial fan. 12. The method of claim 11, wherein the axial fan rotates in the first direction to cause air to flow in a third direction, and the axial fan rotates in the second direction to cause the air Flowing in a fourth direction, wherein the fourth direction is substantially opposite to the third direction. 13. The method of claim 12, wherein rotating the axial fan in the second direction is initiated based on an event, wherein the event includes a heat level of a heat generating device to be dissipated Exceeded a set level. 14. The method of claim 10, wherein the pulsating fan is a centrifugal fan. 15. The method of claim 14, wherein the centrifugal fan rotates in the first direction to cause air to impinge on the heat exchanger in a fifth direction, and the centrifugal fan rotates in the second direction The air impinges on the heat exchanger in a sixth direction, wherein the air impinging on the heat exchanger in the sixth direction will drive out the dust particles. 16. The method of claim 15, wherein the sixth direction forms a first angle with the fifth direction, wherein the first angle is an acute angle, wherein the heat exchanger is impacted at the first angle The air will drive out the dust particles. 17. The method of claim 15, wherein the sixth direction forms a second angle with the fifth direction, wherein the second angle is an obtuse angle, wherein the heat exchanger is impacted at the second angle The air will drive out the dust particles of 17 201026960. 18. The method of claim 14, wherein the rotating the fan in the second direction is initiated based on the occurrence of a chirp event, wherein the event includes the elapse of the first duration. 19. A system, comprising: a heat generating device, and a heat sink, wherein the heat sink is provided adjacent to the heat generating device, wherein the heat sink comprises a 〆 pulsating fan, wherein the pulsating fan is Rotating in one direction for a first duration and in a second direction for a second duration, and a plurality of surfaces are provided adjacent to the pulsating fan, wherein when the pulsating fan rotates in the second direction, That. The dust particles on the plurality of surfaces are reduced 'where the second direction of rotation is opposite to the first direction of rotation' wherein the plurality of surfaces comprise a heat exchanger and the blades of the pulsating fan. 20. The system of claim 19, wherein the heat generating device is a processor. 21. The system of claim 19, wherein the pulsating fan is an axial fan. 22. The system of claim 2, wherein the rotation of the first direction causes the air to flow in a third direction, and the rotation of the second direction causes the air to be a fourth The direction flows, wherein the fourth direction 18 201026960 is substantially opposite to the third direction. 23. The system of claim 19, wherein the heat generating device is a graphic device. 24. The system of claim 19, wherein the pulsating fan is a centrifugal fan. The system of claim 20, wherein the centrifugal fan rotates in the first direction to cause air to impinge on the heat exchanger in a fifth direction, and the centrifugal fan rotates in the second direction The air impinges on the heat exchanger in a sixth direction. 26. The system of claim 25, wherein the impact of the air in the sixth direction drives the dust particles accumulated on the heat exchanger. 27. The system of claim 25, wherein the sixth direction forms a first angle with the fifth direction, wherein the first angle is an acute angle, wherein the heat exchanger is impacted at the first angle The air will drive out the dust particles. 28. The system of claim 25, wherein the sixth direction forms a second angle with the fifth direction, wherein the second angle is an obtuse angle, wherein the heat exchanger is impacted at the second angle The air will drive out the dust particles. 19
TW098131532A 2008-09-19 2009-09-18 Apparatus, method and system for reducing accumulation of dust particles on a heat dissipating arrangement TWI444538B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IN2198DE2008 2008-09-19

Publications (2)

Publication Number Publication Date
TW201026960A true TW201026960A (en) 2010-07-16
TWI444538B TWI444538B (en) 2014-07-11

Family

ID=42036435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098131532A TWI444538B (en) 2008-09-19 2009-09-18 Apparatus, method and system for reducing accumulation of dust particles on a heat dissipating arrangement

Country Status (5)

Country Link
US (1) US20100071877A1 (en)
JP (1) JP2010116915A (en)
CN (1) CN101783185B (en)
DE (1) DE102009042138A1 (en)
TW (1) TWI444538B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2469440T3 (en) * 2009-05-06 2014-06-18 Munters Corporation Fan for use in agriculture
US9845805B2 (en) * 2010-07-29 2017-12-19 Dell Products, L.P. Dual operation centrifugal fan apparatus and methods of using same
TWI487841B (en) * 2011-05-12 2015-06-11 Adda Corp Heat dissipation fan
US8899066B2 (en) 2011-09-07 2014-12-02 General Electric Company System for environmental protection of a heat exchanger
CN102672513A (en) * 2012-05-16 2012-09-19 神龙汽车有限公司 Scrap removing method of cutter of machine tool
US9625223B2 (en) * 2014-08-18 2017-04-18 Atieva, Inc. Self-cleaning fan assembly
CN104564765B (en) * 2014-12-24 2016-07-06 大连尚能科技发展有限公司 A kind of cooler fan automatic dust removing method
CN104534072B (en) * 2014-12-24 2017-03-22 大连尚能科技发展有限公司 Cooling and dedusting method of gearbox lubricating and cooling system
CN104607417B (en) * 2014-12-24 2016-08-24 大连尚能科技发展有限公司 A kind of sweep-out method of cooler oil film
CN104564769B (en) * 2015-01-28 2017-01-18 合肥联宝信息技术有限公司 Automatic dust removal control method and automatic dust removal control device for fans
DE102015122132A1 (en) * 2015-12-17 2017-06-22 Ebm-Papst Mulfingen Gmbh & Co. Kg Edgebanding of a rotating element and impeller
CN107084150A (en) * 2016-11-10 2017-08-22 上海沃克通用设备有限公司 Resisting blower axle
US11162507B2 (en) 2019-01-18 2021-11-02 Deere & Company Variable pitch fan pitch limit
CN111336128A (en) * 2020-04-09 2020-06-26 刘兴丹 Method and device for self-dedusting fan

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2444181A1 (en) * 1978-12-15 1980-07-11 Serva Soc Reversible centrifugal fan - uses async. monophase motor with fan blades not overlapping
JPS6252300U (en) * 1985-09-19 1987-04-01
JPH02163498A (en) * 1988-12-19 1990-06-22 Matsushita Electric Ind Co Ltd Fan controller
JPH02223771A (en) * 1989-02-23 1990-09-06 Fuji Electric Co Ltd Air cooling control device for condenser
JP2749905B2 (en) * 1989-10-06 1998-05-13 三菱重工業株式会社 Dry air flow adjustment method for dry cleaner
US5226285A (en) * 1989-12-18 1993-07-13 Danhard, Inc. Self-cleaning heat exchanger fan assembly and controls
JPH05126091A (en) * 1991-10-30 1993-05-21 Nec Eng Ltd Fan drive circuit
JP2901867B2 (en) * 1993-03-19 1999-06-07 富士通株式会社 Heat sink and heat sink mounting structure
TW590169U (en) * 2000-12-27 2004-06-01 Delta Electronics Inc Embedded centrifugal cooling device
US6532151B2 (en) * 2001-01-31 2003-03-11 Hewlett-Packard Company Method and apparatus for clearing obstructions from computer system cooling fans
CA2440132C (en) * 2001-03-06 2011-10-11 True Manufacturing Co., Inc. Cleaning system for refrigerator condenser
JP4588350B2 (en) * 2004-04-12 2010-12-01 三菱電機株式会社 Blower
US20060080982A1 (en) * 2004-10-20 2006-04-20 Liebert Corporation Self-cleaning condenser
TWI247190B (en) * 2004-11-09 2006-01-11 Coretronic Corp Self dust-off apparatus and method thereof
TWI308678B (en) * 2005-11-03 2009-04-11 Wistron Corp Dust-cleaning device for computes and method using the same with a computer fan
CN100478837C (en) * 2005-11-18 2009-04-15 纬创资通股份有限公司 Method for dedusting by radiator fan and dust cleaning apparatus for computer device
CN100464621C (en) * 2006-05-12 2009-02-25 富准精密工业(深圳)有限公司 Radiating device
JP2008140943A (en) * 2006-11-30 2008-06-19 Toshiba Tec Corp Information processing device
JP2008142580A (en) * 2006-12-06 2008-06-26 Matsushita Electric Ind Co Ltd Filter unit and dust removing apparatus
US7348743B1 (en) * 2007-10-30 2008-03-25 International Business Machines Corporation Apparatus to remove foreign particles from heat transfer surfaces of heat sinks

Also Published As

Publication number Publication date
CN101783185B (en) 2013-07-17
JP2010116915A (en) 2010-05-27
DE102009042138A1 (en) 2010-04-29
CN101783185A (en) 2010-07-21
TWI444538B (en) 2014-07-11
US20100071877A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
TW201026960A (en) Reducing accumulation of dust particles on a heat dissipating arrangement
TW523652B (en) Combination fan and applied fan frame structure
JP4077746B2 (en) Axial fan with multi-segment blade
TWI300284B (en) Heat-dissipation structure of motor
US20140030104A1 (en) Fan device and vane thereof
CN108869337B (en) Fan with cooling device
JP2012026291A (en) Axial fan
JP2004169680A (en) Blade structure and heat radiator using it
CN102762080A (en) Electronic device
JP4757656B2 (en) Fan motor and electric device
CN109933175A (en) A kind of heat dissipation detection method, device and electronic equipment
Amer A novel bionic impeller for laptop cooling fan system
US7377751B2 (en) Cooling fan and shroud with modified profiles
JP5609442B2 (en) Radiators and electronic devices
JP4251114B2 (en) Heat dissipation device, electronic device, and dust adhesion prevention method
CN105201876A (en) Fan and electronic equipment
JP2006235915A (en) Liquid cooling system, and radiating device for the system
US20200300255A1 (en) Fan System with Control Cooling and Method
TWI397666B (en) Heat-dissipating device and display device with a dust removal function
CN102591433B (en) Heat radiation module and the electronic installation having heat radiation module
TW200521333A (en) Blade unit of centrifugal fan
JP4875453B2 (en) Heat sink with centrifugal fan for heat dissipation
柯羅尼 DEVELOPMENT OF A LOW NOISE HIGH EFFICIENCY CPU WATER COOLING SYSTEM WITH CFD
Aizawa Cooling System Technology That Changes The Conventional Trend
CN101173685A (en) Fan and its frame

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees