JP4251114B2 - Heat dissipation device, electronic device, and dust adhesion prevention method - Google Patents

Heat dissipation device, electronic device, and dust adhesion prevention method Download PDF

Info

Publication number
JP4251114B2
JP4251114B2 JP2004164208A JP2004164208A JP4251114B2 JP 4251114 B2 JP4251114 B2 JP 4251114B2 JP 2004164208 A JP2004164208 A JP 2004164208A JP 2004164208 A JP2004164208 A JP 2004164208A JP 4251114 B2 JP4251114 B2 JP 4251114B2
Authority
JP
Japan
Prior art keywords
heat
gap
fan
heat radiating
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004164208A
Other languages
Japanese (ja)
Other versions
JP2005347450A (en
Inventor
誠二 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004164208A priority Critical patent/JP4251114B2/en
Publication of JP2005347450A publication Critical patent/JP2005347450A/en
Application granted granted Critical
Publication of JP4251114B2 publication Critical patent/JP4251114B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放熱フィンを備えた放熱装置と、これを内部の発熱電子部品を冷却する冷却装置に搭載した電子機器、及び放熱フィンに対する塵埃付着防止方法に関するものである。   The present invention relates to a heat radiating device including a heat radiating fin, an electronic device in which the heat radiating device is mounted on a cooling device that cools an internal heat generating electronic component, and a dust adhesion preventing method for the heat radiating fin.

最近のコンピュータにおける高速化の動きはきわめて急速であり、CPUのクロック周波数は以前と比較して格段に大きなものになってきている。この結果、CPUの発熱量が増し、従来のようにヒートシンクで空冷するだけでは能力不足で、高効率の冷却装置が不可欠になっている。そこでこのような冷却装置として、冷媒を循環させて冷却する冷却装置が提案された(特許文献1参照)。   The recent trend of speeding up in computers is extremely rapid, and the clock frequency of the CPU has become much larger than before. As a result, the amount of heat generated by the CPU is increased, and it is not sufficient to perform air cooling with a heat sink as in the prior art, and a highly efficient cooling device is indispensable. Therefore, as such a cooling device, a cooling device that circulates and cools the refrigerant has been proposed (see Patent Document 1).

以下、このような冷媒を循環させて冷却する従来の電子機器の冷却装置について説明する。なお、本明細書において電子機器というのは、CPU等にプログラムをロードして処理を行う装置、中でもパソコンのようなコンピュータ装置を中核とするが、ほかにも通電により発熱する発熱電子部品を搭載した機器を含むものである。この従来の電子機器の冷却装置は、例えば図8に示すようなものが知られている。図8は従来の電子機器の冷却装置の構成図である。   Hereinafter, a conventional electronic apparatus cooling apparatus that circulates and cools such a refrigerant will be described. In this specification, an electronic device is a device that loads a program to a CPU or the like and performs processing, especially a computer device such as a personal computer, but also has other heat generating electronic components that generate heat when energized. Equipment included. For example, such a conventional electronic apparatus cooling apparatus as shown in FIG. 8 is known. FIG. 8 is a block diagram of a conventional electronic apparatus cooling apparatus.

図8において、100は筐体であり、101は発熱電子部品、102は発熱電子部品101を実装した基板、103は発熱電子部品101と冷媒との間で熱交換を行ない、発熱電子部品101を冷却する受熱部、104は冷媒から熱を取り除く放熱装置、105は冷媒を循環させるポンプ、106はこれらを接続する配管、107は放熱装置104を空冷するファンである。   In FIG. 8, 100 is a housing, 101 is a heat generating electronic component, 102 is a substrate on which the heat generating electronic component 101 is mounted, 103 is heat exchange between the heat generating electronic component 101 and the refrigerant, A heat receiving unit for cooling, 104 is a heat radiating device that removes heat from the refrigerant, 105 is a pump that circulates the refrigerant, 106 is a pipe that connects them, and 107 is a fan that air-cools the heat radiating device 104.

この従来の冷却装置の動作を説明すると、ポンプ105から吐出された冷媒は、配管106を通って受熱部103に送られる。ここで発熱電子部品101の熱を奪うことでその温度が上昇し、放熱装置104に送られる。この放熱装置104でファン107によって強制空冷されてその温度が降下し、再びポンプ105へ戻ってこれを繰り返す。このように、冷媒を循環させて発熱電子部品101から熱を奪って冷却するものであった。   The operation of this conventional cooling device will be described. The refrigerant discharged from the pump 105 is sent to the heat receiving unit 103 through the pipe 106. Here, the heat of the heat-generating electronic component 101 is removed, and the temperature rises and is sent to the heat dissipation device 104. This heat radiating device 104 is forcibly air-cooled by the fan 107 and its temperature drops, and then returns to the pump 105 and repeats this. In this way, the refrigerant is circulated to remove heat from the heat generating electronic component 101 and cool it.

そしてこの従来の冷却装置に搭載された放熱装置104の構成について説明すると、図9に示すように110が放熱フィン、111が冷媒液を流すパイプである。冷媒液の流路を伝熱性の高い金属管のパイプ111で構成し、このパイプ111の表面積を増大させるように、放熱フィン110を設けている。このためパイプ111を温度上昇した冷媒液が通過すると、保有している熱をパイプ111内表面から外表面に伝播し、外表面から放熱フィンに伝える。この放熱フィン110にファン107から空気を当ることによって、大気中に放熱するように構成されている。
特開平7−142886号公報
The configuration of the heat radiating device 104 mounted on this conventional cooling device will be described. As shown in FIG. 9, 110 is a heat radiating fin, and 111 is a pipe through which a refrigerant liquid flows. The flow path of the refrigerant liquid is constituted by a pipe 111 of a metal pipe having high heat conductivity, and the heat radiation fins 110 are provided so as to increase the surface area of the pipe 111. For this reason, when the refrigerant liquid whose temperature has risen passes through the pipe 111, the retained heat is propagated from the inner surface of the pipe 111 to the outer surface, and is transmitted from the outer surface to the radiating fin. The heat radiation fin 110 is configured to radiate heat into the atmosphere by hitting air from the fan 107.
JP-A-7-142886

以上説明したように、従来の冷却装置に搭載される放熱装置104は放熱フィン110を備えており、この放熱フィン110の間をファン107によって送られた空気が直接通過する。従って、大気中の塵や埃も同時に放熱フィン110の間を通過することになるが、塵や埃の大きさやその他の条件によって塵埃112が放熱フィン110の間を通過することができず、放熱フィンの入口や、放熱フィンの表面に付着することが発生する。この
放熱装置104の運転を続けると、図9に示すように塵や埃が放熱フィン110間に溜まって空気の通路を塞ぎ、この流路抵抗によって空気の流れが抑えられ、さらに塵埃112が付着し易い状態になってしまう。この結果、放熱フィンの間を空気が流れず、放熱性能が低下するようになった。
As described above, the heat radiating device 104 mounted on the conventional cooling device includes the heat radiating fins 110, and the air sent by the fan 107 directly passes between the heat radiating fins 110. Accordingly, dust and dirt in the atmosphere also pass between the heat radiating fins 110 at the same time, but the dust 112 cannot pass between the heat radiating fins 110 depending on the size of the dust and the dust and other conditions. It may occur that it adheres to the inlet of the fin or the surface of the radiating fin. When the operation of the heat dissipating device 104 is continued, as shown in FIG. 9, dust and dirt accumulate between the heat dissipating fins 110 to block the air passage, and the air flow is suppressed by this flow path resistance, and the dust 112 adheres. It will be easy to do. As a result, air does not flow between the radiating fins, and the radiating performance is lowered.

これらの対策として、放熱フィン110の入口側にフィルターを設けたり、塵埃112が捕まらないように放熱フィン110の隙間を広げたりする方法がとられる。しかし、この場合でもフィルターの定期的なメンテナンスが必要で、これを怠れば表面積の減少による放熱効果が低下してしまう。そして、放熱フィン110に溜まったごみを除かずにいると、時間の経過とともに放熱フィン110に固着してしまい、これを取り除くことが次第に困難になっていく。   As measures against these, a method of providing a filter on the inlet side of the radiating fin 110 or widening the gap between the radiating fins 110 so as to prevent the dust 112 from being trapped is taken. However, even in this case, regular maintenance of the filter is necessary, and if this is neglected, the heat dissipation effect due to the reduction in surface area will be reduced. And if it does not remove the dust collected in the radiation fin 110, it will adhere to the radiation fin 110 with progress of time, and it will become difficult to remove this gradually.

そこで本発明は、放熱フィンに塵埃が付着し難い放熱装置と電子機器、放熱フィンに塵埃が付着し難い塵埃付着防止方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a heat dissipation device and an electronic device in which dust is difficult to adhere to the radiation fin, and a dust adhesion prevention method in which dust is less likely to adhere to the radiation fin.

本発明の放熱装置は、複数の放熱板が所定の間隔で配列されて冷媒を流すためのパイプに固定された放熱フィンと、放熱板間に形成された間隙に空気を流して冷却するファンを備え、放熱動作時に空気の入口側に設けられた間隙が出口側の間隙より狭く形成されたことを主要な特徴とする。   The heat dissipating device of the present invention includes a heat dissipating fin fixed to a pipe for flowing a refrigerant by arranging a plurality of heat dissipating plates at predetermined intervals, and a fan for cooling by flowing air through a gap formed between the heat dissipating plates. The main feature is that the gap provided on the air inlet side during the heat radiation operation is formed narrower than the gap on the outlet side.

本発明によれば、放熱フィンの内部に塵埃が付着しにくいだけでなく、付着した塵埃を容易に除去することができる。   According to the present invention, not only is it difficult for dust to adhere to the inside of the radiating fins, but also dust that has adhered can be easily removed.

本発明を実施するための最良の第1の形態は、複数の放熱板が所定の間隔で配列されて冷媒を流すためのパイプに固定された放熱フィンと、放熱板間に形成された間隙に空気を流して冷却するファンを備え、放熱動作時に空気の入口側に設けられた間隙が出口側の間隙より狭く形成された放熱装置であり、放熱動作時に大きな塵埃は放熱フィン内に侵入することができず、小さな塵埃が放熱フィン内に侵入しても内部に蓄積され難くなる。   The best first mode for carrying out the present invention is that a plurality of heat sinks are arranged at predetermined intervals and a heat sink fin fixed to a pipe for flowing a refrigerant and a gap formed between the heat sinks. It is a heat dissipation device with a fan that cools by flowing air, and the gap provided on the air inlet side is narrower than the gap on the outlet side during the heat dissipation operation, and large dust enters the heat dissipation fins during the heat dissipation operation. Even if small dust enters the radiating fin, it is difficult to accumulate inside.

本発明の第2の形態は、第1の形態に従属する形態であって、ファンが放熱動作時の出口側に設けられている放熱装置であり、入口側でなく出口側から吸引するため塵埃が入口側に溜まった塵埃を外部に排出することができる。   The second form of the present invention is a form subordinate to the first form, and is a heat dissipating device provided on the outlet side during the heat dissipating operation, and dust is sucked from the outlet side instead of the inlet side. Can be discharged to the outside.

本発明の第3の形態は、第1または2の形態に従属する形態であって、放熱動作後に、ファンが逆回転されて逆方向に空気が流される放熱装置であり、逆回転することによりノズル状になった間隙から空気を噴出させ、入口側に付着している塵埃を剥落させることができる。   A third form of the present invention is a form subordinate to the first or second form, and is a heat dissipating device in which air is flown in the reverse direction after the heat dissipating operation. Air can be ejected from the nozzle-shaped gap to remove dust adhering to the inlet side.

本発明の第4の形態は、第1〜3のいずれかの形態に従属する形態であって、放熱板の断面が楔状の形状を備え、放熱動作時に空気の入口側に設けられた間隙を出口側の間隙より狭く形成する放熱装置であり、放熱板の断面形状を楔形にすることだけで入口側を出口側より狭くできる。   The fourth form of the present invention is a form subordinate to any one of the first to third forms, wherein the heat radiating plate has a wedge-shaped cross section, and a gap provided on the air inlet side during the heat radiating operation is provided. The heat radiating device is formed narrower than the gap on the outlet side, and the inlet side can be made narrower than the outlet side only by making the cross-sectional shape of the heat radiating plate wedge-shaped.

本発明の第5の形態は、第1〜3のいずれかの形態に従属する形態であって、放熱板が放熱動作時に入口側に設けられた間隙内に突出する屈曲部を有し、該屈曲部によって入口側に設けられた間隙を出口側の間隙より狭く形成する放熱装置であり、屈曲部を設けるだけで入口側を出口側より狭くできる。   A fifth form of the present invention is a form subordinate to any one of the first to third forms, wherein the heat radiating plate has a bent portion protruding into a gap provided on the inlet side during a heat radiating operation, The heat dissipating device forms the gap provided on the inlet side by the bent portion so as to be narrower than the gap on the outlet side, and the inlet side can be made narrower than the outlet side simply by providing the bent portion.

本発明の第6の形態は、冷媒が循環するための閉循環路に、発熱電子部品から受熱する受熱部と、冷媒を循環するためのポンプと、第1〜5のいずれかの形態の放熱装置と、が設けられた電子機器であって、受熱部が発熱電子部品から熱を奪い、この熱を冷媒により移送し、放熱装置から放熱する電子機器であり、電子機器の放熱装置、電子機器内部に塵埃を取り込む量を低減できる。   According to a sixth aspect of the present invention, in a closed circuit for circulating the refrigerant, a heat receiving portion that receives heat from the heat generating electronic component, a pump for circulating the refrigerant, and heat dissipation in any one of the first to fifth aspects. An electronic device provided with a heat receiving part that takes heat from a heat-generating electronic component, transfers the heat using a refrigerant, and dissipates heat from the heat dissipation device. The amount of dust taken in can be reduced.

本発明の第7の形態は、複数の放熱板を備えた放熱フィンの一方端側の間隙を他方端側の間隔より狭く形成し、放熱動作時には一方端側の間隙から他方端側へ流し、メンテナンス動作時には逆方向に空気を流す塵埃付着防止方法であり、放熱動作時に大きな塵埃は放熱フィン内に侵入することができず、小さな塵埃が放熱フィン内に侵入しても内部に蓄積され難くなり、メンテナンス動作時には逆方向に空気を流すだけで付着している塵埃を剥落できる。   In the seventh aspect of the present invention, the gap on one end side of the heat dissipating fin provided with a plurality of heat dissipating plates is formed narrower than the distance on the other end side, and flows from the gap on one end side to the other end side during heat radiation operation, This is a dust prevention method that allows air to flow in the opposite direction during maintenance operations. Large heat particles cannot enter the heat radiating fins during heat radiating operations, and even if small dust enters the radiating fins, it is difficult to accumulate inside. During maintenance operation, dust can be removed by simply flowing air in the opposite direction.

本発明の第8の形態は、第7の形態に従属する形態であって、放熱動時にファンを正回転させて放熱フィンを強制冷却し、メンテナンス動作時にはファンを逆回転させる放熱フィンに対する塵埃付着防止方法であり、ファンの回転方向を切り替えるだけで放熱フィンの強制冷却と塵埃の剥落の2つを実施できる。   The eighth form of the present invention is a form subordinate to the seventh form, in which dust is attached to the radiating fin that rotates the fan in the forward direction during the heat radiating operation to forcibly cool the radiating fin and reverses the fan during the maintenance operation. This is a prevention method, and it is possible to carry out forced cooling of the radiating fins and dust removal by simply switching the rotation direction of the fan.

(実施例1)
本発明の実施例1は、電子機器がコンピュータ装置の場合であり、このコンピュータ装置の冷却装置に搭載する放熱装置に関するものである。図1は本発明の実施例1における放熱装置を搭載したコンピュータ装置の構成図、図2は本発明の実施例1における放熱装置の斜視図、図3は本発明の実施例1における放熱装置の放熱フィンの断面図である。なお、従来の放熱装置の説明で用いた符号と同一符号のものは本実施例の放熱装置においても基本的に同一であるため、詳細な説明は従来の放熱装置の説明に譲って省略する。
Example 1
Embodiment 1 of the present invention relates to a case where an electronic device is a computer device, and relates to a heat dissipation device mounted on a cooling device of the computer device. FIG. 1 is a configuration diagram of a computer device equipped with a heat dissipation device in Embodiment 1 of the present invention, FIG. 2 is a perspective view of the heat dissipation device in Embodiment 1 of the present invention, and FIG. 3 is a diagram of the heat dissipation device in Embodiment 1 of the present invention. It is sectional drawing of a radiation fin. In addition, since the thing of the code | symbol same as the code | symbol used in description of the conventional heat radiating device is fundamentally the same also in the heat radiating device of a present Example, detailed description is left to description of the conventional heat radiating device, and is abbreviate | omitted.

図1において、1はコンピュータ装置の筐体であり、2はこのコンピュータ装置の演算処理を行う発熱電子部品であるCPU、3はCPU2を実装した基板である。このコンピュータ装置に搭載されたCPU2は、コンピュータ装置の中央演算機能を担うもので、その動作に伴って熱を発生する。4はCPU2と接触され冷媒との間で熱交換してCPU2から熱を奪う受熱部、5はアルミニウムや銅等の熱伝導性の良好な金属の放熱板12(後述する)を備えて冷媒から熱を取り除く放熱装置、6は冷媒を循環させるポンプ、7は冷媒液の減少時に冷媒液を補充するためにこれを保持しておくリザーブタンク、8はこれらを接続し循環路を形成するフレキシブルな配管、9は放熱装置5に設けられた強制冷却用のファンである。受熱部4内部には冷媒通路が形成されており、CPU2で発生した熱をCPU2に接触された受熱部4から低温の冷媒に伝熱する。冷媒は、寒冷地や冬場の凍結により冷却装置が故障しないように不凍液とするのが好ましい。   In FIG. 1, reference numeral 1 denotes a casing of a computer device, 2 denotes a CPU which is a heat generating electronic component that performs arithmetic processing of the computer device, and 3 denotes a board on which the CPU 2 is mounted. The CPU 2 mounted on the computer device is responsible for the central processing function of the computer device, and generates heat in accordance with its operation. Reference numeral 4 denotes a heat receiving portion that contacts the CPU 2 and exchanges heat with the refrigerant to take heat away from the CPU 2. Reference numeral 5 denotes a heat radiating plate 12 (described later) made of a metal having good thermal conductivity such as aluminum or copper. A heat radiating device that removes heat, 6 is a pump that circulates the refrigerant, 7 is a reserve tank that holds the refrigerant liquid to be replenished when the refrigerant liquid is reduced, and 8 is a flexible that connects these to form a circulation path A pipe 9 is a forced cooling fan provided in the heat radiating device 5. A refrigerant passage is formed inside the heat receiving unit 4, and heat generated by the CPU 2 is transferred from the heat receiving unit 4 in contact with the CPU 2 to a low-temperature refrigerant. The refrigerant is preferably an antifreeze liquid so that the cooling device does not break down due to freezing in a cold region or winter.

放熱装置5はポンプ6から送り出された冷媒液が保有する熱を大気中に放出する。この放熱装置5の構造について説明する。図2において、11は複数の放熱板が所定の間隔で配列された放熱フィン、12は放熱フィン11を構成し両側面を空気が流れる複数の放熱板、13はフィン11に貫通され、受熱部4で加熱され温度の上がった冷媒液が通るパイプ、14はごみ等の塵埃である。放熱フィン11は伝熱面積を広くするため複数の放熱板12が所定の間隔で配列されてパイプ13に固定される。なお、放熱板12は、積層するときスペーサを設置しないような場合は単純な平板状でよいが、スペーサを介在して積み重ねるような場合には、図2のように放熱板12自身の両端縁をコ字状に折り曲げてスペーサとして構成する場合もある。しかし、以下放熱板12というときはこの部分を含まず、両側面上を空気が流れる放熱板12の本体部分を放熱板12という。   The heat dissipation device 5 releases the heat held by the refrigerant liquid sent out from the pump 6 into the atmosphere. The structure of the heat dissipation device 5 will be described. In FIG. 2, 11 is a heat radiating fin in which a plurality of heat radiating plates are arranged at a predetermined interval, 12 is a plurality of heat radiating plates constituting the heat radiating fin 11 and air flows on both side surfaces, and 13 is penetrated by the fin 11 to receive heat. A pipe through which the refrigerant liquid heated at 4 and heated is passed, and 14 is dust such as dust. The heat dissipating fins 11 are fixed to the pipe 13 by arranging a plurality of heat dissipating plates 12 at a predetermined interval in order to increase the heat transfer area. The heat sink 12 may be a simple flat plate when no spacers are provided when stacked, but when stacked with spacers interposed, both end edges of the heat sink 12 itself as shown in FIG. May be bent into a U shape to constitute a spacer. However, when the heat sink 12 is referred to below, this portion is not included, and the main body portion of the heat sink 12 in which air flows on both side surfaces is referred to as the heat sink 12.

実施例1においては、放熱板12は後述するように平板ではない略三角形の楔形状を有する放熱板12aが採用されている。この放熱フィン11には空気が複数の放熱板12に沿って流れるようにファン9が配置され、フィン表面から熱を強制冷却する。冷却時のファン9の吐出方向は図1の矢印Aの向きで、筐体1の外から内部に向かって吐出する。すなわち、冷却動作時には筐体1の外部の空気は放熱装置5を通って筐体1の内部に入り、ファン9を通って別途設けられた排気口から筐体1の外部に排出される。この流入から排出までの流れにより、放熱装置5の熱を奪うとともに、筐体1内に滞っている熱を排出する。   In the first embodiment, the heat radiating plate 12 is a heat radiating plate 12a having a substantially triangular wedge shape that is not a flat plate, as will be described later. A fan 9 is disposed on the heat radiating fin 11 so that air flows along the heat radiating plates 12, and heat is forcibly cooled from the fin surface. The discharge direction of the fan 9 at the time of cooling is the direction of the arrow A in FIG. That is, during the cooling operation, the air outside the housing 1 enters the housing 1 through the heat radiating device 5, and is discharged to the outside of the housing 1 through an exhaust port provided separately through the fan 9. With this flow from inflow to discharge, the heat of the heat radiating device 5 is taken and the heat remaining in the housing 1 is discharged.

次に、図3に基づいて実施例1の放熱フィン11の放熱板12について説明する。図3において、12aは放熱フィン11を構成し断面が一方端で最も厚く、徐々に厚さが薄くなって他端(尖端)で最も薄くなる楔状の放熱板である。冷却時のファン9の吐出方向は上述したとおり矢印Aの方向であるから、実施例1ではこの矢印A方向に放熱板12aの尖端を向けて配列する。このときの放熱板12a間の間隙を入口側でT1、出口側でT2とすると、図3に示すようにT1<T2となる。すなわち、放熱板12a間の間隙は放熱フィン11の入口側が小さく、出口側が広くなっている。   Next, the heat radiating plate 12 of the radiating fin 11 according to the first embodiment will be described with reference to FIG. In FIG. 3, 12a is a wedge-shaped heat radiation plate which constitutes the heat radiation fin 11 and has a thickest cross section at one end, and gradually becomes thinner and thinnest at the other end (pointed end). Since the discharge direction of the fan 9 at the time of cooling is the direction of the arrow A as described above, in the first embodiment, the heat sinks 12a are arranged with the tips of the heat sinks 12a facing in the direction of the arrow A. If the gap between the heat sinks 12a at this time is T1 on the inlet side and T2 on the outlet side, T1 <T2 as shown in FIG. That is, the gap between the heat radiating plates 12a is small on the inlet side of the heat radiating fin 11 and wide on the outlet side.

従って、入口側の放熱板12a間の間隙T1よりも大きい塵埃14は、放熱フィン11の入口から放熱フィン11内に入ることができず、放熱フィン11の入口で捕捉される。これに対し、小さい塵埃14は放熱フィン11内に入ることができるが、放熱板12a間の間隙が徐々に広くなっているので、慣性により流されて放熱板12aに捕まることはなく、そのまま通過する。またこの塵埃14が重力等で放熱板12a上に接近するような場合においても、放熱板12aに接近する法線方向成分は小さく、むしろ放熱板12aの表面をスリップさせる成分の存在で塵埃14の回転運動を促し、表面に付着する可能性が低下する。これによって各放熱板12aの対向面に塵埃14が付着することなく、放熱フィン11の入口で放熱板12aの端部に付着するだけとなる。   Accordingly, the dust 14 larger than the gap T1 between the inlet side heat radiating plates 12a cannot enter the heat radiating fin 11 from the inlet of the radiating fin 11 and is captured at the inlet of the radiating fin 11. On the other hand, although the small dust 14 can enter the radiating fins 11, the gap between the radiating plates 12 a is gradually widened. To do. Even when the dust 14 approaches the heat radiating plate 12a due to gravity or the like, the normal direction component approaching the heat radiating plate 12a is small, but rather the presence of a component that slips the surface of the heat radiating plate 12a Accelerates rotational movement and reduces the possibility of sticking to the surface. As a result, the dust 14 does not adhere to the opposing surface of each heat radiating plate 12 a, but only adheres to the end of the heat radiating plate 12 a at the entrance of the heat radiating fin 11.

さらに本発明の実施例1においては、ファン9を逆方向に回転させ、矢印B方向に送風する。この圧力で放熱フィン11の入口の塵埃14は簡単に剥落し外部に排出される。すなわち、実施例1のファン9が放熱フィン11の入口側でなく出口側に設けられているため、入口部分には物が設置されておらず、塵埃14が入口側に溜まったとき風圧でそのまま剥落させ外部に排出することができる。また、このとき矢印A方向の風量よりも矢印B方向の風量を多くすれば、塵埃14の排出をより効果的に行える。ターボ型のファン9の場合、各羽根はそれぞれ入口角、出口角を有しており、回転方向を逆にすると通常風量が変化する。双方向に高効率で吐出できる軸流型のリバーシブルファンを採用し、吐出方向で特性に若干の差をもたすのがよい。そして、同一電力を印加したときに矢印A方向の風量よりも矢印B方向の風量が所定量だけ多くなるような羽根を採用して、複雑な制御回路を設けることなく安価に塵埃14の除去を行うことができる。   Furthermore, in Example 1 of this invention, the fan 9 is rotated in the reverse direction and it blows in the arrow B direction. With this pressure, the dust 14 at the entrance of the radiating fin 11 is easily peeled off and discharged to the outside. That is, since the fan 9 of the first embodiment is provided not on the inlet side of the radiating fin 11 but on the outlet side, no object is installed in the inlet portion, and when the dust 14 accumulates on the inlet side, the wind pressure remains unchanged. It can be peeled off and discharged to the outside. At this time, if the air volume in the direction of arrow B is larger than the air volume in the direction of arrow A, the dust 14 can be discharged more effectively. In the case of the turbo type fan 9, each blade has an inlet angle and an outlet angle, respectively, and the normal air volume changes when the rotation direction is reversed. An axial flow type reversible fan that can discharge in both directions with high efficiency should be adopted, and it should have a slight difference in characteristics in the discharge direction. Then, when the same electric power is applied, the blades in which the air volume in the direction of arrow B is larger than the air volume in the direction of arrow A by a predetermined amount are adopted, and dust 14 can be removed at low cost without providing a complicated control circuit. It can be carried out.

本発明の実施例1の塵埃付着防止方法は、この塵埃14除去を行うため図4、図5、図6のフローチャートに基づいて以下のように運転する。図4は本発明の実施例1における放熱装置塵埃を剥落させるための運転を電源ON時に行うフローチャート、図5は本発明の実施例1における放熱装置の塵埃を剥落させるための運転を一定時間間隔で繰り返すフローチャート、図6は本発明の実施例1における放熱装置の塵埃を剥落させるための運転を電源OFF時に行うフローチャートである。   The dust adhesion preventing method according to the first embodiment of the present invention operates as follows based on the flowcharts of FIGS. 4, 5, and 6 in order to remove the dust 14. FIG. 4 is a flowchart for performing the operation for removing dust from the heat dissipation device in the first embodiment of the present invention when the power is turned on, and FIG. 5 is a time interval for the operation for removing dust from the heat dissipation device in the first embodiment of the present invention. FIG. 6 is a flowchart for performing the operation for removing dust of the heat dissipation device in Embodiment 1 of the present invention when the power is turned off.

まず、第1の塵埃除去運転として、塵埃14を放熱フィン11の入口端面から剥落させるための運転を電源ON時に行う場合を説明する。図4に示すように、電源ONすると(step1)、メンテナンス動作を行うためファン9を本来の方向とは反対方向へ逆回転させる(step2)。一定時間が経過するまでこのまま逆転を続け(step3)、経
過したら放熱動作に移行して正回転させ(step4)、放熱を行う。
First, as a first dust removal operation, a case will be described in which an operation for peeling off the dust 14 from the inlet end face of the heat radiation fin 11 is performed when the power is turned on. As shown in FIG. 4, when the power is turned on (step 1), the fan 9 is reversely rotated in the direction opposite to the original direction (step 2) in order to perform a maintenance operation. The reverse rotation is continued as it is until a predetermined time elapses (step 3), and when it elapses, the operation is shifted to the heat radiation operation to be rotated forward (step 4) to perform heat radiation.

次に、第2の塵埃除去運転として、塵埃14を放熱フィン11の入口端面から剥落させる動作を一定の時間間隔で繰り返す運転について説明する。図5に示すように、電源ONすると(step11)、一定時間が経過したか確認し(step12)、経過していなければ放熱動作としてファン9を正回転させ(step13)、step12において一定時間、例えば1時間が経過すると、メンテナンス動作を行うためファン9を逆回転させ(step14)、一定時間、例えば5分が経過すると(step15)、step12に戻って再びファン9を正回転させ、コンピュータ装置の使用中は、一定時間毎にメンテナンス動作を行ってファン9を逆回転する。   Next, as the second dust removal operation, an operation in which the operation of peeling off the dust 14 from the inlet end face of the radiation fin 11 is repeated at regular time intervals will be described. As shown in FIG. 5, when the power is turned on (step 11), it is checked whether a certain time has passed (step 12). If not, the fan 9 is rotated forward as a heat dissipation operation (step 13). When 1 hour elapses, the fan 9 is rotated in reverse to perform a maintenance operation (step 14). When a certain time, for example, 5 minutes elapses (step 15), the process returns to step 12 and the fan 9 is rotated forward again to use the computer device. During the operation, the maintenance operation is performed at regular intervals to reversely rotate the fan 9.

さらに、第3の塵埃除去運転は、コンピュータ装置をシャットダウンした後のデータ保存時間や、プロジェクターを電源OFF後のランプ冷却時間中のように、電源をOFFした後の機器が動作している間に塵埃14を剥落させる運転を行う場合である。図6に示すように、電源ONしたら(step21)、電源がOFFされたかチェックし(step22)、OFFされていなければ放熱動作としての正回転を続け(step23)、OFFされた場合にはメンテナンス動作としてファン9を逆回転させる(step24)。その後、機器の終了動作時間が経過したか確認し(step25)、経過している場合にファン9の電源をOFFする(step26)ものである。   Furthermore, the third dust removal operation is performed during the operation of the device after the power is turned off, such as the data storage time after the computer device is shut down or the lamp cooling time after the projector is turned off. This is a case where an operation for peeling off the dust 14 is performed. As shown in FIG. 6, when the power is turned on (step 21), it is checked whether the power is turned off (step 22). If it is not turned off, the forward rotation as the heat radiation operation is continued (step 23). Then, the fan 9 is reversely rotated (step 24). Thereafter, it is confirmed whether the end operation time of the device has elapsed (step 25), and when it has elapsed, the power of the fan 9 is turned off (step 26).

以上説明したような放熱装置と塵埃除去運転を行うことによって、ファン9を逆回転させ、放熱フィン11に付着した塵埃14を逆方向の送風によって外部に噴出し筐体1の外部に排出することができる。電源をOFFする場合にファン9は逆回転する場合、長期間塵埃14が付着した状態で放置されることはなく、付着した塵埃14がそのまま固着してしまうことがない。   By performing the dust removal operation with the heat radiating device as described above, the fan 9 is rotated in the reverse direction, and the dust 14 attached to the heat radiating fins 11 is blown out to the outside by the air flow in the reverse direction and discharged to the outside of the housing 1. Can do. If the fan 9 rotates in the reverse direction when the power is turned off, the dust 14 is not left in a state where the dust 14 is adhered for a long time, and the adhered dust 14 is not fixed as it is.

(実施例2)
本発明の実施例2は放熱装置に関するものである。図7は本発明の実施例2における放熱装置の放熱フィンの断面図である。実施例2においても、図1、図2、図4〜図6を参照する。図7において、12bは放熱フィン11の断面が一端を少し折り曲げた屈曲部をもつL字状の放熱板である。
(Example 2)
Embodiment 2 of the present invention relates to a heat dissipation device. FIG. 7 is a cross-sectional view of the heat dissipating fins of the heat dissipating device in Embodiment 2 of the present invention. Also in the second embodiment, reference is made to FIGS. 1, 2, and 4 to 6. In FIG. 7, reference numeral 12b denotes an L-shaped heat radiating plate having a bent portion in which the cross section of the radiating fin 11 is slightly bent at one end.

冷却時のファン9の吐出方向は上述したとおり矢印Aの方向であり、実施例2ではこの矢印A方向に放熱板12bの長手方向の先端を向けて配列する。このときの放熱板12b間の間隙を入口側でT3、出口側でT4とすると、図のようにT3<T4となる。すなわち、放熱板12bの屈曲部のため放熱フィン11への入口側が狭められ、出口側が広がっている。このため、入口側の放熱フィン11の間隙T3よりも大きい塵埃14は、放熱フィン11の入口から中には入らず、放熱フィン11に捕捉される。小さい塵埃14は、放熱フィン11の入口から入るが、その間隙は、入口よりも広いため、放熱フィン11を通過する。   The discharge direction of the fan 9 at the time of cooling is the direction of the arrow A as described above. In the second embodiment, the fan 9 is arranged with the front end in the longitudinal direction of the heat radiating plate 12b facing the arrow A direction. Assuming that the gap between the heat radiation plates 12b at this time is T3 on the inlet side and T4 on the outlet side, T3 <T4 as shown in the figure. That is, because of the bent portion of the heat radiating plate 12b, the inlet side to the radiating fin 11 is narrowed and the outlet side is widened. For this reason, the dust 14 larger than the gap T3 between the radiation fins 11 on the inlet side does not enter from the inlet of the radiation fins 11 and is captured by the radiation fins 11. Small dust 14 enters from the entrance of the radiation fin 11, but the gap is wider than the entrance, and thus passes through the radiation fin 11.

従って、放熱フィン11を構成する放熱板12bの対向面には塵埃14は付着することはなく、放熱フィン11の入口で放熱板12bの端面に付くのみである。このため、ファン9の回転方向を逆にして、矢印B方向に風を送ると塵埃14は簡単に外れて外部に排出される。   Accordingly, the dust 14 does not adhere to the opposing surface of the heat radiating plate 12 b constituting the heat radiating fin 11, but only attaches to the end surface of the heat radiating plate 12 b at the entrance of the heat radiating fin 11. For this reason, when the rotation direction of the fan 9 is reversed and the wind is sent in the direction of the arrow B, the dust 14 is easily detached and discharged to the outside.

実施例2の放熱装置の塵埃除去運転は実施例1の放熱装置の塵埃除去運転と同様であり、詳細な説明は実施例1の塵埃除去運転の説明に譲る。   The dust removal operation of the heat dissipating device of the second embodiment is the same as the dust removal operation of the heat dissipating device of the first embodiment, and a detailed description will be given to the description of the dust removing operation of the first embodiment.

このように実施例2の放熱装置は、放熱板12bに屈曲部を設けることによって入口側
の間隙を絞ることができ、塵埃の流入を防止し、一時的に付着した塵埃も流れの方向を反転させることによって容易に剥落することができる。
As described above, the heat radiating device according to the second embodiment can narrow the gap on the inlet side by providing the bent portion on the heat radiating plate 12 b, prevents the inflow of dust, and reverses the flow direction of the dust adhering temporarily. It can be easily peeled off.

本発明の塵埃付着防止方法は、放熱フィン又は放熱板を積層した放熱装置には有用である。   The dust adhesion preventing method of the present invention is useful for a heat dissipation device in which heat dissipation fins or heat dissipation plates are laminated.

本発明の実施例1における放熱装置を搭載したコンピュータ装置の構成図1 is a configuration diagram of a computer device equipped with a heat dissipation device in Embodiment 1 of the present invention. 本発明の実施例1における放熱装置の斜視図The perspective view of the heat radiator in Example 1 of this invention. 本発明の実施例1における放熱装置の放熱フィンの断面図Sectional drawing of the radiation fin of the thermal radiation apparatus in Example 1 of this invention 本発明の実施例1における放熱装置塵埃を剥落させるための運転を電源ON時に行うフローチャートThe flowchart which performs the operation for peeling off the heat dissipation device dust in the first embodiment of the present invention when the power is turned on. 本発明の実施例1における放熱装置の塵埃を剥落させるための運転を一定時間間隔で繰り返すフローチャートThe flowchart which repeats the operation | movement for peeling off the dust of the thermal radiation apparatus in Example 1 of this invention at a fixed time interval. 本発明の実施例1における放熱装置の塵埃を剥落させるための運転を電源OFF時に行うフローチャートThe flowchart which performs the driving | operation for peeling off the dust of the thermal radiation apparatus in Example 1 of this invention at the time of a power supply OFF 本発明の実施例2における放熱装置の放熱フィンの断面図Sectional drawing of the radiation fin of the thermal radiation apparatus in Example 2 of this invention 従来の電子機器の冷却装置の構成図Configuration diagram of conventional electronic equipment cooling device 従来の放熱フィンの断面図Cross-sectional view of conventional radiating fin

符号の説明Explanation of symbols

1 筐体
2 CPU
3 基板
4 受熱部
5 放熱装置
6 ポンプ
7 リザーブタンク
8 配管
9 ファン
11 放熱フィン
12 放熱板
12a,12b 放熱板
13 パイプ
1 Housing 2 CPU
Reference Signs List 3 Substrate 4 Heat receiving section 5 Heat dissipating device 6 Pump 7 Reserve tank 8 Piping 9 Fan 11 Heat dissipating fin 12 Heat dissipating plate 12a, 12b Heat dissipating plate 13 Pipe

Claims (12)

複数の放熱板が所定の間隔で配列されて冷媒を流すパイプに固定された放熱フィンと、前記放熱板間に形成された間隙に空気を流して冷却するファンを備え、放熱動作時に空気の入口側に設けられた間隙が出口側の間隙より狭く形成されたことを特徴とする放熱装置。 A plurality of heat radiating plates are arranged at predetermined intervals and include a heat radiating fin fixed to a pipe through which a refrigerant flows, and a fan that cools the air by flowing air through a gap formed between the heat radiating plates. A heat dissipating device characterized in that the gap provided on the side is formed narrower than the gap on the outlet side. 前記ファンが前記放熱動作時の出口側に設けられていることを特徴とする請求項1記載の放熱装置。 The heat dissipation device according to claim 1, wherein the fan is provided on an outlet side during the heat dissipation operation. 前記放熱動作後に、前記ファンが逆回転されて逆方向に空気が流されることを特徴とする請求項1または2に記載された放熱装置。 3. The heat dissipation device according to claim 1, wherein after the heat dissipation operation, the fan is reversely rotated and air flows in the reverse direction. 4. 前記放熱板の断面が楔状の形状を備え、放熱動作時に空気の入口側に設けられた間隙を出口側の間隙より狭く形成することを特徴とする請求項1〜3のいずれかに記載された放熱装置。 The cross section of the heat radiating plate has a wedge shape, and a gap provided on the air inlet side during heat radiating operation is formed narrower than a gap on the outlet side. Heat dissipation device. 前記放熱板が前記放熱動作時に前記入口側に設けられた間隙内に突出する屈曲部を有し、該屈曲部によって前記入口側に設けられた間隙を出口側の間隙より狭く形成することを特徴とする請求項1〜3のいずれかに記載された放熱装置。 The heat radiating plate has a bent portion that protrudes into a gap provided on the inlet side during the heat radiating operation, and the bent portion forms a gap provided on the inlet side narrower than a gap on the outlet side. The heat radiating device according to claim 1. 冷媒が循環するための閉循環路に、発熱電子部品から受熱する受熱部と、冷媒を循環するためのポンプと、請求項1〜5記載の放熱装置と、が設けられた電子機器であって、前記受熱部が前記発熱電子部品から熱を奪い、この熱を冷媒により移送し、前記放熱装置から放熱することを特徴とする電子機器。 An electronic apparatus in which a closed circuit for circulating the refrigerant is provided with a heat receiving part that receives heat from the heat-generating electronic component, a pump for circulating the refrigerant, and the heat dissipation device according to claim 1. The heat receiving portion takes heat from the heat generating electronic component, transfers the heat by a refrigerant, and dissipates heat from the heat dissipation device. 複数の放熱板を備えた放熱フィンの一方端側の間隙を他方端側の間隔より狭く形成し、放熱動作時には前記一方端側の間隙から前記他方端側へ流し、メンテナンス動作時には逆方向に空気を流すことを特徴とする放熱フィンに対する塵埃付着防止方法。 A gap on one end side of the heat dissipating fin having a plurality of heat sinks is formed to be narrower than the gap on the other end side, and flows from the gap on the one end side to the other end side during a heat radiation operation, and in the reverse direction during a maintenance operation. A method for preventing dust from adhering to a heat dissipating fin. 前記放熱動時にファンを正回転させて前記放熱フィンを強制冷却し、前記メンテナンス動作時には前記ファンを逆回転させることを特徴とする請求項7記載の放熱フィンに対する塵埃付着防止方法。 8. The method for preventing dust from adhering to a heat radiating fin according to claim 7, wherein the heat radiating fin is forcibly cooled by rotating the fan forward during the heat radiating motion, and the fan is rotated reversely during the maintenance operation. 複数の放熱板が所定の間隔で配列されて空気流路を形成し冷媒を流すパイプに固定された放熱フィンと、前記放熱板間に形成された空気流路に空気を流して冷却するファンを備え、前記放熱フィンの空気流路の隙間は一端側が他端側より広いことを特徴とする放熱装置。 A plurality of heat sinks arranged at predetermined intervals to form air flow paths and heat radiation fins fixed to pipes through which a refrigerant flows; and a fan for cooling by flowing air through the air flow paths formed between the heat radiation plates And a gap between the air flow paths of the radiating fins is wider at one end than at the other end. 前記ファンが正・逆回転されることを特徴とする請求項9記載の放熱装置。 The heat dissipation device according to claim 9, wherein the fan is rotated forward / reversely. 前記ファンを前記放熱フィンの空気流路の隙間の広い側に配設することを特徴とする請求項9記載の放熱装置。 The heat dissipating apparatus according to claim 9, wherein the fan is disposed on a wide side of the air flow path of the heat dissipating fin. 複数の放熱板が所定の間隔で配列されて冷媒を流すパイプに固定された放熱フィンと、前記放熱板間に形成された隙間に空気を流して冷却するファンを備え、前記ファンを正・逆回転し前記放熱フィンに対し正・逆の二つの方向に空気を流すことを特徴とする放熱装置。 A plurality of heat radiating plates are arranged at a predetermined interval and include a heat radiating fin fixed to a pipe through which a refrigerant flows, and a fan that cools the air by flowing air through a gap formed between the heat radiating plates. A heat dissipating device that rotates and allows air to flow in two directions, forward and reverse, with respect to the heat dissipating fins.
JP2004164208A 2004-06-02 2004-06-02 Heat dissipation device, electronic device, and dust adhesion prevention method Expired - Fee Related JP4251114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164208A JP4251114B2 (en) 2004-06-02 2004-06-02 Heat dissipation device, electronic device, and dust adhesion prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164208A JP4251114B2 (en) 2004-06-02 2004-06-02 Heat dissipation device, electronic device, and dust adhesion prevention method

Publications (2)

Publication Number Publication Date
JP2005347450A JP2005347450A (en) 2005-12-15
JP4251114B2 true JP4251114B2 (en) 2009-04-08

Family

ID=35499552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164208A Expired - Fee Related JP4251114B2 (en) 2004-06-02 2004-06-02 Heat dissipation device, electronic device, and dust adhesion prevention method

Country Status (1)

Country Link
JP (1) JP4251114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664987B2 (en) 2014-11-18 2017-05-30 Canon Kabushiki Kaisha Image display apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212376A (en) * 2008-03-05 2009-09-17 Nec Corp Dust collector for electronic equipment
JP4697307B2 (en) * 2009-01-08 2011-06-08 ソニー株式会社 Cooling device, electronic device and blower
JP2012151684A (en) * 2011-01-19 2012-08-09 Sanyo Electric Co Ltd Electrical apparatus having fan filter unit
JP6264117B2 (en) * 2014-03-18 2018-01-24 日本電気株式会社 COOLING DEVICE, ELECTRONIC DEVICE, AND COOLING METHOD
JP6691753B2 (en) * 2015-08-27 2020-05-13 キヤノンメディカルシステムズ株式会社 X-ray diagnostic device
US11259441B2 (en) 2018-03-20 2022-02-22 Sony Interactive Entertainment Inc. Electronic apparatus having foreign matter preventing element
JP7355993B2 (en) * 2019-03-28 2023-10-04 ダイキン工業株式会社 electrical equipment box

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664987B2 (en) 2014-11-18 2017-05-30 Canon Kabushiki Kaisha Image display apparatus

Also Published As

Publication number Publication date
JP2005347450A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US6695041B2 (en) Double heat exchange module for a portable computer
US7466553B2 (en) Cooling system
US7715194B2 (en) Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers
JP3757200B2 (en) Electronic equipment with cooling mechanism
US7218523B2 (en) Liquid cooling system
US7342787B1 (en) Integrated circuit cooling apparatus and method
US7155914B2 (en) Cooling structure for electronic equipment
US20070227699A1 (en) Method, apparatus and system for flow distribution through a heat exchanger
JP2009527897A5 (en)
TWI496992B (en) Heat dissipation device
US20060021737A1 (en) Liquid cooling device
JP2002182796A (en) Display-integrated type computer
WO2005027609A1 (en) Liquid cooling system
JP2007207835A (en) Electronic apparatus
JP2002151638A (en) Cooler for electronic equipment
WO2003043397A1 (en) Electronic apparatus
JP4251114B2 (en) Heat dissipation device, electronic device, and dust adhesion prevention method
US20110308776A1 (en) Dust-disposal heat-dissipation device with double cooling fans
TW556470B (en) Cooling apparatus of electronic machine
US20070076376A1 (en) Method, apparatus and computer system for providing for the transfer of thermal energy
US7463484B2 (en) Heatsink apparatus
JP2009295826A (en) Cooling device
KR100967441B1 (en) Embeded cooling system for computer based thermoelectric module
JP2005285132A (en) Cooling device for electronic device
TWI342742B (en) Liquid cooling apparatus and heat dissipating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees