TW201019800A - Inductively coupled plasma antenna and plasma process apparatus including the same - Google Patents

Inductively coupled plasma antenna and plasma process apparatus including the same Download PDF

Info

Publication number
TW201019800A
TW201019800A TW097144918A TW97144918A TW201019800A TW 201019800 A TW201019800 A TW 201019800A TW 097144918 A TW097144918 A TW 097144918A TW 97144918 A TW97144918 A TW 97144918A TW 201019800 A TW201019800 A TW 201019800A
Authority
TW
Taiwan
Prior art keywords
antenna
plasma
branch
dielectric
chamber
Prior art date
Application number
TW097144918A
Other languages
Chinese (zh)
Other versions
TWI428062B (en
Inventor
Hyun-Taek Oh
Chang-Hwan Lee
Il-Ho Noh
Byung-Yun Kong
Jeoung-In Lee
Original Assignee
Semes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semes Co Ltd filed Critical Semes Co Ltd
Publication of TW201019800A publication Critical patent/TW201019800A/en
Application granted granted Critical
Publication of TWI428062B publication Critical patent/TWI428062B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • H01Q1/366Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor using an ionized gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention discloses an inductively coupled plasma antenna and a plasma process apparatus including the same. According to one implementation of the invention, the inductively coupled plasma antenna is utilized in the inductively coupled plasma antenna of plasma generation apparatus. The inductively coupled plasma is with the following forms: receiving the power from a power source section, branching to the dielectric periphery in the branch section, and the said branching antenna is centralized and grounded to a grounding section.

Description

201019800 六、發明說明: 【發明所屬之技術領域】 本發明關於等離子天線以及含該天線的等離子處理裝置;更具體而 言,本發明係關於對大面積基板實施等離子製程處理的等離子處理裝 置中使用的等離子天線的形狀。 【先前技術】 等離子處理裝置被廣泛使用於半導體基板、液晶顯示器的製造過程。 等離子處理裝置通過使反應氣體活化變為等離子狀態,用等離子狀態的反 ® 應氣體的陽離子或自由基(Radical)處理半導體基板的規定區域。 等離子處理裝置有:用於薄膜蒸鍍的PECVD (plasmaEnhaneed Chemical Vapor Deposition)裝置。通過蝕刻蒸鍍出的薄膜,使之圖形化的 敍刻裝置,濺射(Sputter)、灰化(Ashing)裝置等。 此類等離子發生裝置的等離子源有電源耦合型等離子源(CCp· Capacitive Coupled Plasma)、介電質耦合型等離子源(ICP : Indueed c〇upled201019800 6. Technical Field of the Invention The present invention relates to a plasma antenna and a plasma processing apparatus including the same; more specifically, the present invention relates to a plasma processing apparatus for performing plasma processing on a large-area substrate The shape of the plasma antenna. [Prior Art] A plasma processing apparatus is widely used in a manufacturing process of a semiconductor substrate or a liquid crystal display. The plasma processing apparatus treats a predetermined region of the semiconductor substrate with a cation or a radical of a counter-product gas in a plasma state by activating the reaction gas to a plasma state. The plasma processing apparatus includes a PECVD (plasmaEnheded Chemical Vapor Deposition) apparatus for thin film evaporation. A device for etching a deposited film, a patterning device, a sputtering device, an ashing device, and the like. The plasma source of such a plasma generating device is a CCp·Capacitive Coupled Plasma, a dielectric coupling type plasma source (ICP: Indueed c〇upled)

Plasma) ' 使用微波的 ECR (Electron Cyclotron Resonance)等離子源 SWP (Surface Wave Plasma )等離子源等。 CCP類型通過給彼此相向的平行平板電極外加Rp電力,利用電極間垂 直形成的RF電磁%使等離子產生,ICP類型,使用由可施加高頻電力的天 線感應的感應電磁場使反應氣體變為等離子狀態。 ICP方式的等離子發生裝置採用以下結構:在製程室上部形成由絕緣材 料構成的介電質,在介電質的上部形成等離子天線。隨著近年來出現的液 晶顯示器基板的大型化趨勢,等離子處理裝置的尺寸也隨之變大,介電質 的尺寸也相應變大。 介電質一旦大型化,為了具有足以應對介電質上下部間的壓力差及自 重的強度,介電質的厚度不得不加大。然而,當介電質變厚的情況下,由 於等離子天線和等離子區域間的距離變大,存在因效能低落而產生密度較 低之等離子的問題。 201019800 減少可尺在割後支持在圖1所示的棋盤形柩架20上,即可 合㈣電質30的尺寸,因而也可減少介電質 下=的存在’使介電質3〇的有效面積減少,從而使等離子的產生效率 的中ίίί在包括介電質3〇的4個拐角部位的外周和十字形框架2〇所處 的中央部位,所產生的等離子效率較低。 蓉雜ίΐϋ決上述各處的雜子鱗祕的贿,軸研究了多種形狀的 土子線,終因其形狀複雜,難以批量生產,前述各處的等離子效率並 未能大幅提高。 (專利文獻1)韓國登錄號0775592號 【發明内容】 本發明正是為了改善上述醜而提絲的,本發_目的在於提供一 種等離子天線,其即使針對大面積基板也能使等離子均勻產生。八 本發明的另一目的在於提供一種等離子處理裝置,其即使針對大面積 基板’也能通過使等離子均勻產生來處理基板。Plasma) 'ECR (Electron Cyclotron Resonance) plasma source SWP (Surface Wave Plasma) plasma source. The CCP type generates plasma by applying Rp power to parallel plate electrodes facing each other, and generating plasma by RF electromagnetic % formed vertically between electrodes. For the ICP type, the reaction gas is changed to a plasma state by using an induced electromagnetic field induced by an antenna capable of applying high-frequency power. . The ICP plasma generator has a structure in which a dielectric material made of an insulating material is formed on the upper portion of the process chamber, and a plasma antenna is formed on the upper portion of the dielectric material. With the trend of increasing the size of the liquid crystal display substrate in recent years, the size of the plasma processing apparatus has also increased, and the size of the dielectric material has also become larger. Once the dielectric material is enlarged, the thickness of the dielectric material has to be increased in order to have a strength sufficient to cope with the pressure difference and the self-weight between the upper and lower portions of the dielectric material. However, in the case where the dielectric is thick, since the distance between the plasma antenna and the plasma region becomes large, there is a problem that the plasma having a low density is generated due to the low performance. 201019800 The reduced caliper is supported on the checkerboard truss 20 shown in Fig. 1 after cutting, that is, the size of the (4) electric quantity 30 can be combined, so that the presence of dielectric = can also be reduced to make the dielectric 3 〇 The effective area is reduced, so that the plasma generation efficiency is low in the center portion of the four corner portions including the dielectric material 3 和 and the center portion where the cruciform frame 2 〇 is located. Rong Zai ΐϋ ΐϋ ΐϋ 上述 上述 上述 上述 上述 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , (Patent Document 1) Korean Registration No. 0775592 [Disclosure] The present invention is directed to the improvement of the above-mentioned ugly, and it is an object of the present invention to provide a plasma antenna which can uniformly generate plasma even for a large-area substrate. Another object of the present invention is to provide a plasma processing apparatus which can process a substrate by uniformly generating plasma even for a large-area substrate '.

本發明的目的並不局限於以上言明的目的’未言明的目的及其它目 的’想必業内人士可從下述表述中得到明確的理解。 為了實現前述目的,本發明的實施方式的等離子天線用於等離子發生 裝置的等離子天線中,前述等離子天線具有下述形狀:其接受電源供給部 提供的電源,並在分支部向介電質的外周分支,前述分支的天線向中央集 中,並在接地部接地。 ' 為了實現前述目的’採用本發明的實施方式的等離子天線,其特徵在 於:其用於等離子發生裝置的等離子天線中,該等離子天線由下述兩部分 構成:第一天線,其具有下述形狀:其接受電源供給部提供的電源,並在 第一分支部向介電質的外周分支,前述分支後的天線向中央集中,並在接 地部接地;第二天線,其具有與前述第一天線相同的形狀,並在前述第— 天線的内側形成;前述第一天線和前述第二天線並聯連接。 201019800 為了實現前述目的,採用本發明的實施方式的等離子處理裝置其特 徵在於,包括:製程室;介電質’其形成於前述製程室的中間,以便ς前 述製程室分割為上部的天線室和下部的基板處理室;氣體供給部,其向前 述基板處理室提供氣體;等離子天線,其在前述天線室内形成;前述等離 子天線包括:第一天線,其具有下述形狀:接受電源供給部提供的電源, 並在第-分支勒介電質的相分支,前述分支制天線向巾央集中並 在接地部接地;第二天線’其具有與前述第—天線相_形狀,並在前述 第一天線内側形成;前述第一天線和前述第二天線並聯連接。 發明效果: Φ 前述本發明的等離子天線以及含有該天線的等離子處理裝置,具有下 述優點:可解決由於含基板的拐角部分在内的外周和中央部位上的等離子 產生的不均勻性,使前述位置上的等離子處理效率低落的問題。 此外,還具有下述優點:通過在並聯連接的第一等離子天線和第二等 離子天線間形成可變電容器,調節可變電容器,即可生成多種等離子環境。 【實施方式】 實施方式的具體内容包含在詳細說明及附圖中。 右參照附圖及下文詳述的實施方式,則可對本發明的優點、特徵以及 實現這些的方法有明確的瞭解。但本發明並不局限於以下公示的實施方 ® 式,可通過彼此不同的多種形態具體體現。本實施方式僅僅是為了完善本 發明的公示,使那些在本發明所屬的技術領域内具有常識人全面瞭解發明 而提供的,本發明僅可由權利要求的範圍定義。而在整個說明書中,同樣 的參照標號指同一種構成元件。 下面通過本發明的實施方式並參照用來說明等離子天線以及含該天線 在内的等離子處理裝置的附圖來說明本發明。 圖2是表示採用本發明的一種實施方式的等離子天線的立體圖,圖3 是表示採用本發明的一種實施方式的等離子處理裝置的剖面圖。 首先通過說明採用本發明的一種實施方式的等離子處理裝置1〇〇來說 明等離子處理裝置1〇〇内形成的等離子天線15〇a、15〇b的形狀。 5 201019800 本發明的一種實施方式的等離子處理裝置100可由製程室110、介電質 120、氣體供給部130、等離子天線i5〇a、150b構成。 製程室110由導電性材料,例如内壁經極性氧化處理過的鋁或鋁合金 構成’通過以能夠分解的形態組裝提供實施等離子狀態的製程處理的空間。 在製程室110的一個側面上可形成由氣體供給部13〇向製程室11〇的 内部提供反應氣體配管111。 此外,製程室110通過接地線H2接地。 還有,通過連接在製程室11〇的下部或側面上的未圖示的真空泵,即 可使製程室U0内部形成真空狀態,並形成排氣口 113,其在處理製程後, 把殘留在製程室110内的氣體排到外部。 介電質120形成於製程室110的中間,將製程室11〇分割為上部的天 線至114和下部的實施等離子製程處理的基板處理室115。圖中示出通過介 電質120將製程室no分割為上部製程室u〇b以及下部製程室u〇a兩部 分,但也可採用整體性構成製程室11〇,由介電質12〇把製程室11〇的内部 刀割為天線室114和基板處理室115的構成。如圖所示,在通過介電質12〇 把製程室110分割為上部製程室11〇b和下部製程室11〇a的情況下,通過 對分割部分實施密封處理即可把製程室11〇的内外部以及天線室114和基 板處理室II5之間密封。 翁 由於要想處理大面積基板(s) ’必須加大介電質120的尺寸,因而可 如圖1所示’通過棋盤形狀的框架分別支援分割為4部分的介電質u〇。 ;丨電質120可用陶瓷、石英等絕緣材料構成,以便把上部的等離子天 線150a、150b產生的感應電磁場傳遞到製程室的基板處理室U5内部。選 擇絕緣材料的介電質12〇的理由是通過減少等離子天線15〇a、15〇b和等離 子間的電容性耦合,即可將等離子天線15〇a、15〇b產生的能量通過電感性 輕合傳遞給等離子。 通過處於上部的等離子天線150a、150b在垂直向下的方向上產生隨時 變化的電磁場,在製程室110的内部,雖可通過隨時變化的電磁場感應出 水準方向的電磁場,而由於被此種感應電磁場加速的電子通過與中性氣體 201019800 的碰撞即可生成離子以及自由基(Radical)。此時,利用生成的離子及自 由基即可對固定在製程室110内部的基板(S)實施製程處理。 氣體供給部130給製程室11〇内部,更具體而言,給基板處理室115 提供反應氣體。氣體供給部13〇通過與製程室no内部貫通的配管U1給 製程室110内部提供反應氣體。 可在製程室110的下方形成用來固定基板(s)的基板支持台14〇。基 板支援台140可用導電材料,例如表面經極性氧化處理過的銘等構成。基 板支持台140還可利用未圖示的驅動裝置上下驅動。基板支持台14〇可與 匹配器142及高頻電源連接’並可通過高頻電源外加等離子製程處理過程 • 中的偏壓用高頻電力,調節製程室11〇内部生成的等離子中的離子向基板 (S)入射的能量。 等離子天線150a、150b位於用介電質120分割出的天線室114内,下 面參照圖3說明採用本發明的一種實施方式的等離子天線15加、15%。 等離子天線150a、150b形成於由介電質120分割出的天線室114中, 通過電源線181從電源供給部18〇接受高頻的处電源。此時,電源供給部 180形成於天線室114的頂壁上,可給等離子天線15加、働提供電力。 電源供給部180的頻率可根據符合使用等離子處理裝置1〇〇的製程的目的 來決定,因此,可由具有該技術領域常識的人來變更。在等離子天線、 ® ⑽和電源供給部180之間可形成作為匹配部的麵合器(matcher) 182, 該麵合器具姐雖抗的雜,时減量最大限度地傳遞給等離子 150a、150b。 正如圖2中所示,採用本發_ —種實施方式的轉子天線⑽、 的整體形狀為:接受魏供給部18G提供的電源,並在分支部i5i向介電 質120的外周分支,分支後的天線再次向下方的令央集中與處於中央的接 ^部連接。更具體而言,從介電質12Q的中央上方接受提供的電源之 ,,在分支部m ’相對於被框架170分割為4部分的各個介電質12〇,向 =電質的拐角(距中央最遠的拐角152)分支。並且,被分支的天線再次 與中央的接地部159連接’且在各個拐角152處再次分為服、i53b,一 /刀為二後的各天線153a、153b正如圖中所示,在介電質i2〇的上部形成四 7 201019800 方形,並再次與中央的接地部159連接。正如圖中所*,被分割為4部分 的各個天線的形狀可全部對稱性一致。 此時’正如圖2所示,等離子天線150a、150b最好由第-天線150a 和在第一天線150a内側形成的第二天線15〇b構成。 S-天線150a ’如前所述,呈以下形狀:從電源供給部⑽接受高頻 電源’並在苐-分支部151向介電質12〇的各個拐肖152分支,分支後的 天線再次向中央集中,與接地部159連接。 還有,第二天線150b具有與第一天線15〇a相同的形狀,但其尺寸小 —定比例,可在第一天線咖的内側形成。此時,第一天線膽的第一分 ❹支點151和第二天線的第二分支點155正如圖中所示,可通過電源線156 電氣性導通。因此’第-天線15〇a和第二天線膽是並聯連接。 在第-分支點151和第二分支點155之間可形成可變電容器(c⑽。 因此,通過調節可變電容器157,使第一天線15〇a和第二天線觸產生相 位差’即可㈣各個天線1他、15Gb憎_電流量。因此,通過調節可 變電容器157 ’即可結合用戶的用途,變換出多種等離子環境。 若觀察電流流動的路徑,就可看出高頻電流從獅供給部⑽流出, 通過匹配器182,到達第-分支部151。到達第一分支部i5i的電流,在第 —分支部151 —分為四’流向第—天線的各個天線。此時電流通過電氣性 ❿導通第一天線150a的第一分支部151和第二天線150b的第二分支部155 的電源線156,從第-分支部151流向第二分支部155。此時,可通 電源線156上形成的可變電容器157,調節流入第一天線應,和流入第 二天線隱中的電流量。t流通過在第一分支部151 —分為四的各個天線 流入介電質120的4個拐角,在各自的4個拐角處天線服、咖再次一 分為二’電Μ過各自的分支的鱗153a '娜流人中央雜 %。 電流在第二天線隱的第二分支部155,通過以與第一天線隱相同的方 式一分為四的天線流動’並再次流向中央的接地部159。 在前述實施方式中介紹了由第-天線ls〇a和第二天線腿 況,等離子天線隱、隱的形狀還可擴張變更出多種雜,例如可月在 弟一天線150b的内側形成另外的第三天線等。 201019800 _,用前述本發明的一種實施方式的等離子天線15〇a、i5〇b正如圖中所 電流可集中到包括介電質120的拐角在内的外周和中央部分,因 °解決因框架m等4娜角和巾央轉子效率贿的問題。 具有本發日_屬技魏域常賴人均 t必要特_範_可用其它具體實财式實施。 詳過是所有方面的例示’並非限定性的。本發明的範圍與前述 圍及装」ΐ ’主要由權利要求的範圍示出,從權利要求範_構思,範 _所有變更或魏的方綱應解釋為包含在本發明的 【圖式簡單說明】 圖1示出被框架分割的介電質。 圖2,採用本發明的一種實施方式的等離子天線的立體圖。 ^3疋_本發明的—種實施方式的等離子處理裝置的剖面圖。 【主要元件符號說明】 20 30 100 110 110a 110b 111 112 113 114 115 120 130 140The object of the present invention is not limited to the above-mentioned purposes, and the objects and other objects are intended to be clearly understood from the following description. In order to achieve the above object, a plasma antenna according to an embodiment of the present invention is used in a plasma antenna of a plasma generator, wherein the plasma antenna has a shape that receives a power supply from a power supply unit and a peripheral portion of the dielectric portion at a branch portion. In the branch, the antenna of the aforementioned branch is concentrated toward the center and grounded at the ground. A plasma antenna according to an embodiment of the present invention is used in a plasma antenna for a plasma generating apparatus, and the plasma antenna is composed of two parts: a first antenna having the following Shape: receiving power supplied from a power supply unit, branching to the outer periphery of the dielectric at the first branch portion, concentrating the branched antenna toward the center, and grounding at the ground portion; the second antenna having the foregoing One antenna has the same shape and is formed inside the first antenna; the first antenna and the second antenna are connected in parallel. 201019800 In order to achieve the foregoing object, a plasma processing apparatus using an embodiment of the present invention includes: a process chamber; a dielectric 'which is formed in the middle of the process chamber to divide the process chamber into an upper antenna chamber and a lower substrate processing chamber; a gas supply portion that supplies gas to the substrate processing chamber; a plasma antenna formed in the antenna chamber; the plasma antenna includes: a first antenna having a shape that is received by a power supply unit The power source, and in the phase branch of the first branch, the branch antenna is concentrated toward the towel and grounded at the ground; the second antenna has the shape of the first antenna and is in the foregoing An antenna is formed inside; the first antenna and the second antenna are connected in parallel. Advantageous Effects of Invention Φ The plasma antenna of the present invention and the plasma processing apparatus including the same have the advantage that the unevenness of plasma generation on the outer circumference and the central portion including the corner portion of the substrate can be solved. The problem of low efficiency in plasma processing at the location. Further, there is an advantage that a plurality of plasma environments can be generated by forming a variable capacitor between the first plasma antenna and the second plasma antenna connected in parallel and adjusting the variable capacitor. [Embodiment] The details of the embodiments are included in the detailed description and the drawings. The advantages, features, and methods of accomplishing the invention will be apparent to those skilled in the art. However, the present invention is not limited to the embodiment of the following disclosure, and can be embodied by various forms different from each other. The present invention is provided only for the purpose of improving the disclosure of the present invention, and those of ordinary skill in the art to which the present invention pertains are fully understood. The invention is defined by the scope of the claims. Throughout the specification, the same reference numerals refer to the same constituent elements. The invention will now be described by way of an embodiment of the invention with reference to the accompanying drawings which illustrate the plasma antenna and the plasma processing apparatus containing the antenna. Fig. 2 is a perspective view showing a plasma antenna according to an embodiment of the present invention, and Fig. 3 is a cross-sectional view showing a plasma processing apparatus according to an embodiment of the present invention. First, the shape of the plasma antennas 15a, 15b formed in the plasma processing apparatus 1A will be described by using a plasma processing apparatus 1 according to an embodiment of the present invention. 5 201019800 The plasma processing apparatus 100 according to an embodiment of the present invention may be composed of a process chamber 110, a dielectric 120, a gas supply unit 130, and plasma antennas i5a, 150b. The process chamber 110 is made of a conductive material such as aluminum or an aluminum alloy which has been subjected to polar oxidation treatment on the inner wall. The space for processing in a plasma state is provided by being assembled in a decomposable manner. A reaction gas pipe 111 is provided on the one side of the process chamber 110 from the gas supply portion 13 to the inside of the process chamber 11A. Further, the process chamber 110 is grounded through the ground line H2. Further, by a vacuum pump (not shown) connected to the lower portion or the side surface of the process chamber 11A, a vacuum state can be formed inside the process chamber U0, and an exhaust port 113 is formed, which remains in the process after the processing. The gas in the chamber 110 is discharged to the outside. The dielectric material 120 is formed in the middle of the process chamber 110, and divides the process chamber 11 into an upper antenna to 114 and a lower substrate processing chamber 115 for performing plasma processing. The figure shows that the process chamber no is divided into the upper process chamber u〇b and the lower process chamber u〇a by the dielectric material 120, but the process chamber 11〇 can also be integrally formed, and the dielectric material is used. The internal cutting of the process chamber 11A is configured as the antenna chamber 114 and the substrate processing chamber 115. As shown in the figure, in the case where the process chamber 110 is divided into the upper process chamber 11〇b and the lower process chamber 11〇a by the dielectric material 12, the process chamber 11 can be closed by performing a sealing process on the divided portion. The inside and outside and the antenna chamber 114 and the substrate processing chamber II5 are sealed. Since it is necessary to increase the size of the dielectric material 120 in order to deal with the large-area substrate (s), it is possible to support the dielectric material divided into four parts by the checkerboard-shaped frame as shown in Fig. 1 . The tantalum 120 may be formed of an insulating material such as ceramic or quartz to transfer the induced electromagnetic field generated by the upper plasma antennas 150a, 150b to the inside of the substrate processing chamber U5 of the process chamber. The reason for selecting the dielectric material 12 绝缘 of the insulating material is that the energy generated by the plasma antennas 15 〇 a, 15 〇 b can be made inductively light by reducing the capacitive coupling between the plasma antennas 15 〇 a, 15 〇 b and the plasma. Combined with the plasma. The plasma antennas 150a, 150b at the upper portion generate an electromagnetic field that changes at any time in a vertically downward direction. In the interior of the processing chamber 110, an electromagnetic field in a horizontal direction can be induced by an electromagnetic field that changes at any time, and the electromagnetic field is induced by the electromagnetic field. Accelerated electrons generate ions and radicals by colliding with neutral gas 201019800. At this time, the substrate (S) fixed inside the process chamber 110 can be subjected to a process treatment using the generated ions and radicals. The gas supply unit 130 supplies the inside of the process chamber 11 , more specifically, the substrate processing chamber 115 with a reaction gas. The gas supply unit 13A supplies a reaction gas to the inside of the process chamber 110 through a pipe U1 penetrating inside the process chamber no. A substrate support table 14 for fixing the substrate (s) may be formed under the process chamber 110. The substrate support table 140 may be formed of a conductive material such as a surface which has been subjected to polar oxidation treatment. The substrate support table 140 can also be driven up and down by a driving device not shown. The substrate support table 14 can be connected to the matching device 142 and the high-frequency power source and can adjust the ion direction in the plasma generated in the process chamber 11 by high-frequency power in the high-frequency power supply plus the plasma processing process. The energy incident on the substrate (S). The plasma antennas 150a and 150b are located in the antenna chamber 114 divided by the dielectric material 120. Next, a plasma antenna 15 according to an embodiment of the present invention is applied and 15% will be described with reference to Fig. 3 . The plasma antennas 150a and 150b are formed in the antenna chamber 114 partitioned by the dielectric material 120, and receive a high-frequency power source from the power supply unit 18A via the power supply line 181. At this time, the power supply unit 180 is formed on the top wall of the antenna room 114 to supply and supply power to the plasma antenna 15. The frequency of the power supply unit 180 can be determined in accordance with the purpose of conforming to the process of using the plasma processing apparatus 1A, and therefore can be changed by those having ordinary knowledge in the technical field. A matcher 182 as a matching portion can be formed between the plasma antenna, the ® (10), and the power supply unit 180, and the amount of time reduction is maximized and transmitted to the plasmas 150a and 150b. As shown in FIG. 2, the overall shape of the rotor antenna (10) according to the embodiment of the present invention is such that the power supplied from the Wei supply portion 18G is received and branches to the outer periphery of the dielectric material 120 at the branch portion i5i, after branching The antenna is again connected to the lower central part and the central part. More specifically, the power supply is received from the center of the dielectric material 12Q, and the branch portion m' is divided into four portions of the dielectric material 12 被 by the frame 170, and the corner of the electric power is turned off. The farthest corner of the center 152) branches. Moreover, the branched antenna is again connected to the central grounding portion 159 and is again divided into the service, i53b at each corner 152, and the antennas 153a, 153b after the first/knife are as shown in the figure, in the dielectric The upper portion of the i2 形成 forms a square of four 7 201019800 and is again connected to the central ground portion 159. As shown in the figure, the shape of each antenna divided into four parts can be completely symmetrical. At this time, as shown in Fig. 2, the plasma antennas 150a and 150b are preferably constituted by a first antenna 150a and a second antenna 15b formed inside the first antenna 150a. As described above, the S-antenna 150a' has a shape in which the high-frequency power source ' receives the high-frequency power source' from the power supply unit (10) and branches to the respective corners 152 of the dielectric material 12, and the branched antenna is again turned to The center is concentrated and connected to the grounding portion 159. Also, the second antenna 150b has the same shape as the first antenna 15A, but its size is small-scaled and can be formed inside the first antenna. At this time, the first branch fulcrum 151 of the first antenna and the second branch point 155 of the second antenna are electrically conductive through the power line 156 as shown in the figure. Therefore, the 'first antenna 15'a and the second antenna are connected in parallel. A variable capacitor (c(10)) may be formed between the first branch point 151 and the second branch point 155. Therefore, by adjusting the variable capacitor 157, the first antenna 15a and the second antenna are caused to have a phase difference, that is, (4) Each antenna 1 and 15Gb 憎 current amount. Therefore, by adjusting the variable capacitor 157 ', it can be combined with the user's use to transform a variety of plasma environments. If you observe the path of current flow, you can see that the high-frequency current is from The lion supply unit (10) flows out and passes through the matching unit 182 to reach the first branch portion 151. The current reaching the first branch portion i5i is divided into four antennas that flow to the first antenna at the first branch portion 151. At this time, the current passes. The power supply line 156 electrically guiding the first branch portion 151 of the first antenna 150a and the second branch portion 155 of the second antenna 150b flows from the first branch portion 151 to the second branch portion 155. The variable capacitor 157 formed on the power line 156 regulates the amount of current flowing into the first antenna and into the hidden portion of the second antenna. The t current flows through the respective antennas divided into four at the first branch portion 151 to flow into the dielectric. 4 corners of the quality 120, in their respective 4 At the corner of the antenna suit, the coffee is again divided into two 'electrical ticks 153a' of the respective branches. The current is in the second branch 155 hidden by the second antenna, passing through with the first antenna In the same way, the antenna flow is divided into four and flows to the central ground portion 159 again. In the foregoing embodiment, the shape of the plasma antenna is hidden and hidden by the first antenna ls〇a and the second antenna leg. It is also possible to expand and change a variety of impurities. For example, another third antenna or the like may be formed on the inner side of the antenna 150b. 201019800 _, the plasma antennas 15〇a, i5〇b according to an embodiment of the present invention described above are as shown in the figure. The current can be concentrated to the outer circumference and the central part including the corner of the dielectric material 120, because the problem of bridging the efficiency of the 4 nano angle and the rotor of the central rotor due to the frame m is solved by the present invention. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Claim norm _All changes or Wei's squares should be construed as being included in the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a dielectric divided by a frame. Fig. 2 is a perspective view of a plasma antenna according to an embodiment of the present invention. ^3疋_ A cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention. [Description of Main Element Symbols] 20 30 100 110 110a 110b 111 112 113 114 115 120 130 140

棋盤形框架 介電質 等離子處理裝置 製程室 下部製程室 上部製程室 反應氣體配管 接地線 排氣口 天線室 基板處理室 介電質 氣體供給部 基板支持台 9 201019800 142 150a、150bCheckerboard frame Dielectric plasma processing apparatus Process chamber Lower process chamber Upper process chamber Reaction gas piping Grounding wire Exhaust port Antenna chamber Substrate processing chamber Dielectric gas supply unit Substrate support table 9 201019800 142 150a, 150b

151 152 153a、153b 155 156 157 159 170 180 181 182 匹配器 等離子天線 第一分支點 拐角 天線 第二分支點 電源線 可變電容器 接地部 框架 電源供給部 電源線 匹配器151 152 153a, 153b 155 156 157 159 170 180 181 182 Matcher Plasma antenna First branch point Corner Antenna Second branch point Power line Variable capacitor Grounding part Frame Power supply part Power line Matcher

1010

Claims (1)

201019800 七、申請專利範圍: 卜一種等離子天線,其特徵在於:其驗轉子發生裝置鱗 線中’該轉子天線具有下述雜:其接受電源供給部提供的 分支部向介電質的外周分支,該分支的天線向中央集中,並在接地部接地。 2、 根射請柄棚第丨項之轉子场,麵徵在於:前述等 天線具有向該介電質的4個拐角分支的對稱形狀。 ❹201019800 VII. Patent application scope: A plasma antenna characterized in that: in the scale of the rotor generating device, the rotor antenna has the following miscellaneous: it receives the peripheral branch of the dielectric provided by the power supply unit to the dielectric, The antenna of this branch is concentrated toward the center and grounded at the ground. 2. The rotor field of the 丨 丨 丨 , , , , , , , , , , , , , 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子 转子❹ 3、 根據申請專利範圍第2項之等離子天線,其特徵祕:且有在 電質的4個㈣上分職次分支後在向巾央集巾,並在前述接地部接地的 4、-種等離子天線’其特徵在於:其_等離子發絲置的等 線中,該等離子天線由下述兩部分構成: 第-天線,其具有下述形狀:其接受電源供給部提供的電源,並在 -分支部向介電質的外周分支,該分支後的天線向中央針,並 接地; ,第二天線’其具有與該第-天線相同的形狀,並在該第一天線的内側 形成; 該第一天線和該第二天線並聯連接。 5、 根據申請糊職第4項之轉子天線,純徵在於:該第—天線 具有下述形狀;其向該介電質的4個拐角分支。 6、 根射請專利範圍第5項之等離子天線,其·在於:該等離子天 線具有下述形狀:其從該介電質的4個㈣分別再次分支後向中央集中, 並在該接地部接地。 、〃 7、 根據申請專利範圍第5項之等離子天線,其特徵在於:該第一分支 部和該第二天線上分支出㈣二分支部雖電氣性導通,且該第—天線和該 第二天線並聯連接’但在該第〜分支部和該第二分支部之間形成可變 器。 8、一種等離子處理裝置,其特徵在於,包括: 11 201019800 製裎室; 介電質,其形成於該製程室的中間,以便把該製程室分割為上部的天 線室和下部的基板處理室; 氣體供給部,其向該基板處理室提供氣體; 等離子天線,其在該天線室内形成; 該等離子天線包括: 第一天線’其具有下述形狀:接受電源供給部提供的電源,並在第一3. The plasma antenna according to item 2 of the patent application scope has the following characteristics: and there are 4, 4 species in the towel feeding center and the grounding part in the grounding part after the sub-branch of the electric (4). A plasma antenna is characterized in that it is composed of two parts: a first antenna having a shape that receives power supplied from a power supply unit and is in- The branch portion branches to the outer periphery of the dielectric, the branched antenna is directed toward the center pin, and is grounded; the second antenna 'has the same shape as the first antenna, and is formed inside the first antenna; The first antenna and the second antenna are connected in parallel. 5. According to the rotor antenna of the fourth application, the pure antenna is that the antenna has the following shape; it branches to the four corners of the dielectric. 6. The plasma antenna of claim 5, wherein the plasma antenna has a shape that is branched from the four (four) of the dielectric and then concentrated toward the center, and grounded at the ground. . The plasmon antenna according to claim 5, wherein the first branch portion and the second antenna branch are electrically connected, and the first antenna and the second antenna are electrically connected. The wires are connected in parallel, but a variable is formed between the first branch portion and the second branch portion. A plasma processing apparatus comprising: 11 201019800 a chamber; a dielectric formed in the middle of the process chamber to divide the process chamber into an upper antenna chamber and a lower substrate processing chamber; a gas supply unit that supplies gas to the substrate processing chamber; a plasma antenna formed in the antenna chamber; the plasma antenna includes: a first antenna having a shape that receives power supplied from a power supply unit, and One 分支部向介電質的外周分支,該分支後的天線向中央集中,並在接地部接 地; 第. 成 -天線,其具有與該第一天線相同的形狀,並在該第一天線内侧形 該第一天線和該第二天線並聯連接。 9、 根據中請專利範圍第8項之等離子處理裝置,其特徵在於:該第— 天線具有向該介電質的4個拐角分支的形狀。 10、 根據巾請專利範圍第9項之等離子處理裝置,其特徵在於: 離子天線從齡電質的4個拐肢職次分支後向中央,並在接 接地。The branch portion branches to the outer periphery of the dielectric, the branched antenna is concentrated toward the center, and is grounded at the ground portion; the antenna is configured to have the same shape as the first antenna, and the first antenna is The inner antenna is connected in parallel with the second antenna. 9. The plasma processing apparatus according to the eighth aspect of the invention, wherein the first antenna has a shape branched from four corners of the dielectric. 10. The plasma processing apparatus according to claim 9, wherein the ion antenna is branched from the four limbs of the aged electrical power to the center and is grounded. 11、 根據中請專利職第8項之等離子處_置,其特 =二分支出的第二分支部雖電氣性導通,且該第-= 電=:天線並聯連接’但在該第—分支部和該第二分支部之間形成可變 12、 根據巾請專利範圍第8 分割為4部分,支援在棋盤形狀的十字=。其特徵在於.該介電質 1211. According to the plasma position of the middle of the patent application, the second branch of the second branch is electrically conductive, and the first -= electric =: the antenna is connected in parallel 'but in the first branch A variable 12 is formed between the second branch portion and the fourth portion of the patent application range is divided into four parts, and the cross on the checkerboard shape is supported. Characterized in that the dielectric 12
TW097144918A 2008-11-14 2008-11-20 Inductively coupled plasma antenna and plasma process apparatus including the same TWI428062B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080113597A KR101069384B1 (en) 2008-11-14 2008-11-14 Inductively coupled plasma antenna and plasma process apparatus including the same

Publications (2)

Publication Number Publication Date
TW201019800A true TW201019800A (en) 2010-05-16
TWI428062B TWI428062B (en) 2014-02-21

Family

ID=42279320

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097144918A TWI428062B (en) 2008-11-14 2008-11-20 Inductively coupled plasma antenna and plasma process apparatus including the same

Country Status (4)

Country Link
JP (1) JP5072109B2 (en)
KR (1) KR101069384B1 (en)
CN (1) CN101740876B (en)
TW (1) TWI428062B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491433A (en) * 2019-04-17 2020-08-04 吉佳蓝科技股份有限公司 Plasma antenna and plasma processing device comprising same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101634603B1 (en) * 2010-12-14 2016-06-29 주식회사 원익아이피에스 Inductively coupled plasma processing apparatus
KR101254261B1 (en) * 2010-12-16 2013-04-17 엘아이지에이디피 주식회사 Apparatus for inductively coupled plasma processing
KR101254264B1 (en) * 2010-12-17 2013-04-17 엘아이지에이디피 주식회사 Apparatus for inductively coupled plasma processing
KR101282941B1 (en) * 2010-12-20 2013-07-08 엘아이지에이디피 주식회사 Apparatus for plasma processing
KR101640092B1 (en) * 2014-07-25 2016-07-18 인베니아 주식회사 A plasma generating module and plasma process apparatus comprising the same
CN109148073B (en) * 2017-06-16 2022-10-21 北京北方华创微电子装备有限公司 Coil assembly, plasma generating device and plasma equipment
KR102161954B1 (en) * 2019-06-12 2020-10-06 인베니아 주식회사 Antenna assembly for inductively coupled plasma apparatus and inductively coupled plasma having the same
KR20220003862A (en) 2020-07-02 2022-01-11 삼성전자주식회사 Inductively Coupled Plasma Processing Apparatus

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177058A (en) * 1992-12-10 1994-06-24 Kokusai Electric Co Ltd Plasma generator
ATE181637T1 (en) * 1994-10-31 1999-07-15 Applied Materials Inc PLASMA REACTORS FOR SEMICONDUCTOR DISC TREATMENT
JP3646793B2 (en) * 1996-04-23 2005-05-11 東京エレクトロン株式会社 Plasma processing equipment
US6331754B1 (en) * 1999-05-13 2001-12-18 Tokyo Electron Limited Inductively-coupled-plasma-processing apparatus
JP4593741B2 (en) * 2000-08-02 2010-12-08 東京エレクトロン株式会社 Radial antenna and plasma processing apparatus using the same
JP4598253B2 (en) * 2000-09-26 2010-12-15 東京エレクトロン株式会社 Plasma device
KR100411133B1 (en) * 2001-06-27 2003-12-12 주성엔지니어링(주) Parallel resonance whirl antenna
JP2003024773A (en) * 2001-07-19 2003-01-28 Matsushita Electric Ind Co Ltd Plasma processing method and device
JP2003077902A (en) * 2001-08-31 2003-03-14 Mikuni Denshi Kk Plasma generator
JP3787079B2 (en) * 2001-09-11 2006-06-21 株式会社日立製作所 Plasma processing equipment
KR100626192B1 (en) * 2001-09-27 2006-09-21 동경 엘렉트론 주식회사 Electromagnetic field supply device and plasma processing device
JP4447829B2 (en) * 2001-09-28 2010-04-07 東京エレクトロン株式会社 Plasma processing system
JP3880864B2 (en) * 2002-02-05 2007-02-14 東京エレクトロン株式会社 Inductively coupled plasma processing equipment
WO2004064460A1 (en) * 2003-01-16 2004-07-29 Japan Science And Technology Agency High frequency power supply device and plasma generator
US8349128B2 (en) * 2004-06-30 2013-01-08 Applied Materials, Inc. Method and apparatus for stable plasma processing
KR100719804B1 (en) * 2005-08-08 2007-05-18 주식회사 아이피에스 Multi Magnetized Inductively Coupled Plasmas Structure
KR20070033222A (en) * 2005-09-21 2007-03-26 주성엔지니어링(주) Antenna for plasma generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111491433A (en) * 2019-04-17 2020-08-04 吉佳蓝科技股份有限公司 Plasma antenna and plasma processing device comprising same

Also Published As

Publication number Publication date
CN101740876A (en) 2010-06-16
TWI428062B (en) 2014-02-21
KR20100054613A (en) 2010-05-25
JP2010118324A (en) 2010-05-27
CN101740876B (en) 2013-09-11
JP5072109B2 (en) 2012-11-14
KR101069384B1 (en) 2011-09-30

Similar Documents

Publication Publication Date Title
TW201019800A (en) Inductively coupled plasma antenna and plasma process apparatus including the same
KR100289239B1 (en) Method and apparatus for plasma processing
CN110462798A (en) Nearly substrate is generated with low bias in inductively coupled plasma process chamber and supplements plasma density
TWI241868B (en) Plasma processing method and apparatus
TW200952560A (en) Method for controlling ion energy in radio frequency plasmas
TWI227510B (en) Plasma processing apparatus
US20110115380A1 (en) Plasma generation device and plasma processing device
EP1079671A2 (en) Antenna device for generating inductively coupled plasma
TW201247034A (en) Inductively coupled plasma source for plasma processing
TW200537992A (en) Plasma generating equipment
TW200926907A (en) Plasma source having ferrite structures and plasma generating apparatus employing the same
EP3073518B1 (en) Method for etching layer to be etched.
TWI835993B (en) System and methods for vhf plasma processing
JP4283360B2 (en) Plasma processing equipment
CN108573846A (en) Plasma chamber and plasma processing device
TW201135836A (en) Substrate processing apparatus
KR101202180B1 (en) Antenna for plasma generating, manufacturing method thereof, and plasma processing apparatus
KR101585891B1 (en) Compound plasma reactor
JP3736016B2 (en) Plasma processing method and apparatus
KR20120070355A (en) Apparatus for plasma processing and antenna plate thereof
TW201236516A (en) Plasma processing apparatus
KR100753869B1 (en) Compound plasma reactor
TW201203356A (en) Etching apparatus
KR101335303B1 (en) Substrate processing apparatus
TWI222097B (en) Plasma processing apparatus