TW201018984A - Alignment inspection method and apparatus - Google Patents

Alignment inspection method and apparatus Download PDF

Info

Publication number
TW201018984A
TW201018984A TW97143561A TW97143561A TW201018984A TW 201018984 A TW201018984 A TW 201018984A TW 97143561 A TW97143561 A TW 97143561A TW 97143561 A TW97143561 A TW 97143561A TW 201018984 A TW201018984 A TW 201018984A
Authority
TW
Taiwan
Prior art keywords
wafer
substrate
alignment
alignment mark
detecting
Prior art date
Application number
TW97143561A
Other languages
Chinese (zh)
Other versions
TWI381200B (en
Inventor
Ying-Chun Lee
ai-yun Zhang
Original Assignee
Au Optronics Suzhou Corp
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Suzhou Corp, Au Optronics Corp filed Critical Au Optronics Suzhou Corp
Priority to TW97143561A priority Critical patent/TWI381200B/en
Publication of TW201018984A publication Critical patent/TW201018984A/en
Application granted granted Critical
Publication of TWI381200B publication Critical patent/TWI381200B/en

Links

Abstract

An alignment inspection method and an apparatus for the same are disclosed. The method comprises: aligning a chip alignment mark of a chip on a substrate alignment mark of a transparent substrate; using a first inspection unit to penetrate the chip and obtain the position of the chip alignment mark; using a second inspection unit to penetrate the transparent substrate and obtain the position of the substrate alignment mark; and comparing the positions of the chip alignment mark and the substrate alignrnent mark.

Description

201018984 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種對位檢測方法和對位檢測裝置,且特 別是有關於晶片與透光基板的對位檢測方法和對位檢測裝置。 【先前技術】 在例如平面顯示面板的製造程序中,常需將各種不同的電 子元件接合於基板上。以液晶顯示模組為例,液晶顯示模組的 0 組裝包括對液晶顯示面板、驅動電路晶片、軟性電路板與印刷 電路板等元件進行接合,並形成電性連接。而當驅動電路晶片 設置於液晶顯示面板的玻璃基板上時,通常需進行一對位檢 測,以確認驅動電路晶片是否準確地對位於玻璃基板上。 然而,目前的對位方式係將驅動電路晶片的晶片對準標記 對準於玻璃基板上的基板對準標記,再利用異方性導電膜 (Anisotropic Conductive Film ; ACF)來進行壓合固定。因此, 在驅動電路晶片和玻璃基板壓合後,僅能透過玻璃基板來取得 φ 基板對準標記的位置,而無法取得晶片對準標記的位置,進而 無法比對基板對準標記與晶片對準標記的位置來確認驅動電 路晶片是否準確地對位於玻璃基板上。 【發明内容】 因此本發明之一方面係在於提供一種對位檢測方法和對 位檢測裝置,藉以檢測晶片(例如驅動電路晶片)是否準確地對 位於透光基板上,或估算晶片與透光基板之間的對位偏移量。 本發明之另一方面係在於提供一種對位檢測方法和對位 201018984 檢測裝置’藉以自動地根據對位檢測結果來調整晶片與透光基 板之間的相對位置。 本發明之又一方面係在於提供一種對位檢測方法和對位 檢測裝置,藉以在任意過程中進行對位檢測或監測,且不受晶 片與透光基板之間的接合層的影響。 根據本發明之實施例,本發明之對位檢測方法包含提供至 )- aB片,其中晶片具有晶片對準標記,·提供透光基板,其中 透光基板設有基板對準標記;對位晶片的晶片對準標記於透光 ❹基板的基板對準標記上,利用第一檢測單元來穿透過晶片,而 操取晶片對準標記的位置;利用第二檢測單元來穿透過透絲 板,而擷取基板對準標記的位置;以及比對晶片對準標記的位 置與基板對準標記的位置。 又’根據本發明之實施例,本發明之對位檢測裝置用以檢 測晶片在透光基板上的對位情形,其中晶片具有晶片對準標 記’透光基板設有基板對準標記,對位檢測裝置包含第一檢測 單元、第二檢測單元及處理單元。第一檢測單元係用以穿透過 ©晶片來擷取晶片對準標記的位置,第二檢測單元係用以穿透過 透光基板來擷取基板對準標記的位置,處理單元係用以比對晶 片對準標記的位置與基板對準標記的位置。 又,根據本發明之實施例,本發明之對位檢測方法係用以 檢測晶片在透光基板上的對位情形,其中晶片具有晶片對準標 記,透光基板設有基板對準標記,對位檢測方法包含:利用第 -檢測單元來穿透過該晶片,而娜該晶片對準標記的位置; 利用第二檢測單元來穿透過透光基板,而榻取基板對準標記的 位置,以及比對晶片對準標記的位置與基板對準標記的位置。 201018984 又,根據本發明之實施例,本發明之對位檢測方法係用以 檢測驅動晶片在顯不面板上的對位情形’其中驅動晶片具有晶 片對準標記,顯示面板設有基板對準標記,對位檢測方法包 含:利用第一檢測單元來穿透過驅動晶片,而擷取晶片對準標 記的位置;利用第二檢測單元來穿透過顯示面板,而擷取基板 對準標記的位置;以及比對晶片對準標記的位置與基板對準標 記的位置。 因此,本發明的對位檢測方法和對位檢測裝置可確實地檢 Φ 測晶片是否準確地對位於透光基板上,或估算其對位偏移量, 並可自動地來調整晶片與透光基板之間的相對位置。且本發明 的對位檢測方法和對位檢測裝置可不受晶片與透光基板之間 的接合層的影響。 【實施方式】 為讓本發明之上述和其他目的、特徵、優點與實施例能更 明顯易懂,本說明書將特舉出一系列實施例來加以說明。但值 Φ 得注意的是,此些實施例只是用以說明本發明之實施方式,而 非用以限定本發明。 請參照圖1和圖2,圖1係繪示依照本發明之第一實施例 之對位檢測裝置的侧面示意圖,圖2係繪示依照本發明之第一 實施例之晶片與部分透光基板的示意圖。本實施例的對位檢測 方法和對位檢測裝置100可應用於晶片210與透光基板220之 間的對位檢測,例如可應用於利用玻璃覆晶接合技術(Chip on Glass ; COG)中,以檢測晶片是否準確地接合於玻璃基板上。 晶片210例如包含矽材料或成份,例如以單晶矽(Single Crystal 201018984[Technical Field] The present invention relates to a registration detecting method and a registration detecting device, and particularly to a registration detecting method and a registration detecting device for a wafer and a light-transmitting substrate. [Prior Art] In a manufacturing process such as a flat display panel, it is often necessary to bond various electronic components to a substrate. Taking the liquid crystal display module as an example, the 0 assembly of the liquid crystal display module includes bonding the components such as the liquid crystal display panel, the driving circuit chip, the flexible circuit board, and the printed circuit board, and forming an electrical connection. When the driver circuit chip is disposed on the glass substrate of the liquid crystal display panel, a one-bit detection is usually required to confirm whether the driver circuit wafer is accurately positioned on the glass substrate. However, the current alignment method is to align the wafer alignment mark of the driver circuit wafer with the substrate alignment mark on the glass substrate, and then press-fix and fix it with an anisotropic conductive film (ACF). Therefore, after the driving circuit wafer and the glass substrate are pressed together, the position of the φ substrate alignment mark can be obtained only through the glass substrate, and the position of the wafer alignment mark cannot be obtained, and the substrate alignment mark cannot be aligned with the wafer. The position of the mark confirms whether the drive circuit wafer is accurately positioned on the glass substrate. SUMMARY OF THE INVENTION It is therefore an aspect of the present invention to provide a registration detecting method and a registration detecting device for detecting whether a wafer (for example, a driving circuit wafer) is accurately positioned on a light-transmitting substrate, or estimating a wafer and a light-transmitting substrate. The offset between the alignments. Another aspect of the present invention is to provide a registration detecting method and a registration device 201018984 to automatically adjust the relative position between the wafer and the light-transmitting substrate based on the alignment detection result. Still another aspect of the present invention is to provide a registration detecting method and a registration detecting device for performing alignment detection or monitoring in an arbitrary process without being affected by a bonding layer between the wafer and the light-transmitting substrate. According to an embodiment of the present invention, the alignment detecting method of the present invention comprises providing a - aB chip, wherein the wafer has a wafer alignment mark, providing a transparent substrate, wherein the transparent substrate is provided with a substrate alignment mark; The wafer is aligned on the substrate alignment mark of the light-transmissive substrate, and the first detecting unit is used to penetrate the wafer to take the position of the wafer alignment mark; and the second detecting unit is used to penetrate the transparent plate. Grasping the position of the substrate alignment mark; and aligning the position of the wafer alignment mark with the position of the substrate alignment mark. In addition, according to an embodiment of the present invention, the alignment detecting device of the present invention is used for detecting the alignment of a wafer on a transparent substrate, wherein the wafer has a wafer alignment mark, and the transparent substrate is provided with a substrate alignment mark, which is aligned. The detecting device includes a first detecting unit, a second detecting unit, and a processing unit. The first detecting unit is configured to penetrate the © wafer to capture the position of the wafer alignment mark, and the second detecting unit is configured to penetrate the transparent substrate to capture the position of the substrate alignment mark, and the processing unit is configured to compare The position of the wafer alignment mark is aligned with the position of the substrate alignment mark. Moreover, according to an embodiment of the present invention, the alignment detecting method of the present invention is for detecting a alignment of a wafer on a light-transmitting substrate, wherein the wafer has a wafer alignment mark, and the transparent substrate is provided with a substrate alignment mark, The bit detection method comprises: using a first detecting unit to penetrate the wafer, and the wafer is aligned with the position of the mark; using the second detecting unit to penetrate the transparent substrate, and the position of the substrate is aligned with the mark, and the ratio The position of the wafer alignment mark and the position of the substrate alignment mark. 201018984 In addition, according to an embodiment of the present invention, the alignment detecting method of the present invention is for detecting the alignment of a driving wafer on a display panel, wherein the driving wafer has a wafer alignment mark, and the display panel is provided with a substrate alignment mark. The aligning detection method includes: using a first detecting unit to penetrate the driving wafer to capture the position of the wafer alignment mark; and using the second detecting unit to penetrate the display panel to capture the position of the substrate alignment mark; The position of the wafer alignment mark is aligned with the position of the substrate alignment mark. Therefore, the alignment detecting method and the alignment detecting device of the present invention can surely detect whether the wafer is accurately positioned on the light-transmitting substrate, or estimate the offset of the alignment, and can automatically adjust the wafer and the light transmission. The relative position between the substrates. Further, the alignment detecting method and the registration detecting device of the present invention are not affected by the bonding layer between the wafer and the light-transmitting substrate. The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; However, it is to be noted that the embodiments are merely illustrative of the embodiments of the invention and are not intended to limit the invention. 1 and FIG. 2, FIG. 1 is a side view showing a alignment detecting device according to a first embodiment of the present invention, and FIG. 2 is a view showing a wafer and a partially transparent substrate according to a first embodiment of the present invention. Schematic diagram. The alignment detecting method and the alignment detecting device 100 of the present embodiment are applicable to the alignment detection between the wafer 210 and the transparent substrate 220, and can be applied, for example, to the use of a chip-on-glass bonding technique (Chip on Glass; COG). To detect whether the wafer is accurately bonded to the glass substrate. The wafer 210 comprises, for example, a germanium material or composition, for example, a single crystal germanium (Single Crystal 201018984)

Silicon)、多晶碎(Poly-silicon)或非晶發(Amorphous Silicon)為 基材的晶片。透光基板220為可允許光線穿透的基板,例如玻 璃基板、塑膠基板或可撓性基板。以透光基板220為顯示面 板為例,透光基板220例如為液晶顯示裝置的薄膜電晶體 (Thin-Film Transistor; TFT)陣列基板,晶片210例如為驅動晶 片,其可利用玻璃覆晶接合技術來接合於透光基板220的週邊 區域,且需對位於透光基板220上的信號線(未繪示)。 如圖1和圖2所示,本實施例的對位檢測裝置1〇〇用以檢 參 測晶片210在透光基板220上的對位情形,其中晶片210具有 至少一晶片對準標記211 (如圖2中的虛線表示),其形成於晶 片210的結合面212(如背面)上,此時,在可見光範圍内’俯視 晶片210並無法得知(看到)對準標記211的位置(影像)。透光基 板220設有至少一基板對準標記221,基板對準標記221係形 成於透光基板220的結合面222上,以對應於晶片對準標記 211。如圖2所示,在本實施例中,基板對準標記221例如係形 成於透光基板220的週邊區域。 參 如圖1所示,本實施例的對位檢測裝置100包含第一檢測 單元110、第二檢測單元120、處理單元130及對位調整裝置 140。當晶片210與透光基板220進行接合前’首先’需對曰曰 片210與透光基板220進行對位,對位檢測裝置100的對位調 整裝置140可吸取(或夾持)並定位晶片210於透光基板220上 方,此時,晶片對準標記211係面對於基板對準梯記221且 對位檢測裝置100可對晶片210與透光基板220之間的對位狀' 況進行檢測。第一檢測單元110係對應於晶月210來&amp;置 可穿透過晶片210來擷取晶月對準標記211的位置。 201018984 在本實施例中,第一檢測單元110為紅外線影像擷取單 元例如紅外線電荷耦合元件(Infrared Charge-coupled Device,IR CCD)、紅外線攝影機或紅外線照相機其可穿透過 日曰片210來操取曰日片對準標記2工i的相關影像資料以取得晶 片對準標記211的位置。此時,第一檢測單元11〇可設有顯微 鏡ill和紅外線光源112,紅外線光源112係用以提供紅外線 光至晶片對準標記211,以產生供顯微鏡lu擷取的影像顯 微鏡111係用以傳送和調整紅外線光的行進路徑。Silicon), Poly-silicon or Amorphous Silicon is a substrate wafer. The light-transmitting substrate 220 is a substrate that allows light to pass through, such as a glass substrate, a plastic substrate, or a flexible substrate. Taking the transparent substrate 220 as a display panel as an example, the transparent substrate 220 is, for example, a thin film transistor (TFT) array substrate of a liquid crystal display device, and the wafer 210 is, for example, a driving wafer, which can utilize a glass flip chip bonding technology. The bonding is performed on the peripheral region of the transparent substrate 220, and a signal line (not shown) on the transparent substrate 220 is required. As shown in FIG. 1 and FIG. 2, the alignment detecting device 1 of the present embodiment is configured to detect the alignment of the wafer 210 on the transparent substrate 220, wherein the wafer 210 has at least one wafer alignment mark 211 ( As shown by the dashed line in FIG. 2, it is formed on the bonding surface 212 (such as the back surface) of the wafer 210. At this time, the position of the alignment mark 211 is not known (see) in the visible light range. image). The light-transmitting substrate 220 is provided with at least one substrate alignment mark 221, and the substrate alignment mark 221 is formed on the bonding surface 222 of the transparent substrate 220 to correspond to the wafer alignment mark 211. As shown in Fig. 2, in the present embodiment, the substrate alignment mark 221 is formed, for example, in a peripheral region of the light-transmitting substrate 220. As shown in FIG. 1, the alignment detecting apparatus 100 of the present embodiment includes a first detecting unit 110, a second detecting unit 120, a processing unit 130, and a registration adjusting device 140. Before the wafer 210 is bonded to the transparent substrate 220, the wafer 210 and the transparent substrate 220 need to be aligned first, and the alignment adjusting device 140 of the alignment detecting device 100 can suck (or clamp) and position the wafer. 210 is above the transparent substrate 220. At this time, the wafer alignment mark 211 is aligned with the substrate alignment step 221 and the alignment detecting device 100 can detect the alignment between the wafer 210 and the transparent substrate 220. . The first detecting unit 110 corresponds to the crystal moon 210 and can pass through the wafer 210 to capture the position of the crystal moon alignment mark 211. In this embodiment, the first detecting unit 110 is an infrared image capturing unit such as an infrared charge-coupled device (IR CCD), an infrared camera or an infrared camera, which can pass through the sundial 210 to operate. The stencil is aligned with the associated image data of the mark i to obtain the position of the wafer alignment mark 211. At this time, the first detecting unit 11A may be provided with a microscope ill and an infrared light source 112 for supplying infrared light to the wafer alignment mark 211 to generate an image microscope 111 for the microscope to transmit And adjust the travel path of infrared light.

^如圖1所示,第二檢測單元120係對應於透光基板220來 成置’且可穿透過透光基板22〇來擷取基板對準標記如的位 置。在本實施例中’第二檢測單元12Q為影像獅單元,例如 電荷搞合元件(Charge__pled Devke ; CCD)、攝影機或照相 機’其可穿透過透光基板22〇來擷取基板對準標記221的相關 影像資料’以取得基板對準標記221的位置。此時第二檢測 單元12〇可設有顯微鏡121力光源122 ’光源、122係用以提供 可見光至基板對準標記221,以產生供顯微鏡121掏取的影像, 顯微鏡121係用以傳送和調整可見光的行進路徑。 如圖1所示,處理單元130係電性連接於第一檢測單元 二於描丨苗二 1 ^ ^ ιιυ i 松 .....π '|从 1 :檢測單元120,用以處理第-檢測單元110和第二檢測 7G 120的檢測結果(資料)’並可比對晶片對準標記叫的位 置與基板對準標記221的位置,以檢測晶片對準標記扣是否 ^準於基板對準標記22卜或者可估算晶片對準標記扣與基 板對準標記221之間的對·位德銘县甘a a 位偏移I。其中,處理單元130例如As shown in FIG. 1, the second detecting unit 120 is disposed to correspond to the transparent substrate 220 and can penetrate through the transparent substrate 22 to capture the position of the substrate alignment mark. In the present embodiment, the second detecting unit 12Q is a video lion unit, such as a charge-engaging element (Charge__pled Devke; CCD), a camera or a camera, which can penetrate the transparent substrate 22 to capture the substrate alignment mark 221 The related image data 'obtains the position of the substrate alignment mark 221. At this time, the second detecting unit 12A can be provided with a microscope 121 force light source 122' light source, 122 for providing visible light to the substrate alignment mark 221 to generate an image for the microscope 121, and the microscope 121 is used for transmission and adjustment. The path of travel of visible light. As shown in FIG. 1 , the processing unit 130 is electrically connected to the first detecting unit 2 to describe the seedlings 2 1 ^ ^ ιιυ i loose ..... π '| from 1: detecting unit 120 for processing the first - The detection result (data) of the detecting unit 110 and the second detecting 7G 120 can be compared with the position of the wafer alignment mark and the position of the substrate alignment mark 221 to detect whether the wafer alignment mark is aligned with the substrate alignment mark. 22 or may estimate the offset between the wafer alignment mark and the substrate alignment mark 221. Wherein, the processing unit 130 is, for example

Htm(PLC)、單晶諸處理機(MCU)、中央處理器 (CH;)、嵌人式系統、可程式邏輯陣列、電腦或上述任意組合。 201018984 如圖1所示,對位調整裝置140係電性連接於處理單元 130’用以根據處理單元130所得到之晶片對準標記211與基板 對準標記221的位置比對結果(對位偏移量),來調整晶片21〇 舆透光基板220之間的相對位置。在一實施例中,對位調整裝 置140例如為機械手臂或夾持機構,用以調整晶片21〇與透光 基板220的位置。 明參照圖3,其繪示依照本發明之第一實施例之對位檢測 方法的方法流程圖。當進行本實施例的對位檢測方法時,首 參先,提供晶片210(步驟301),其中晶片210具有晶片對準標記 211。接著,提供透光基板220(步驟3〇2),其中透光基板22〇 設有基板對準標記221。 接著,如圖1和圖3所示,利用第一檢測單元11()來穿透 過晶片210,而擷取晶片對準標記211的位置(步驟3〇3)。在本 實施例中,第一檢測單元11〇例如紅外線影像類取單元,晶片 210例如具有矽材料或成份,由於紅外線對於矽材料具有穿透 J·生因而第一檢測單元i i 〇可穿透過晶片2⑺來擷取晶片對準 φ標記211的位置。且利用第二檢測單元來穿透過透光基板 220 ’而擷取基板對準標記221的位置(步驟扣句。在本實施例 中’第二檢測單力12〇例如為影像棟取單元,透光基板㈣例 如為玻璃基板,因而第二檢測單元12〇可穿透過透光基板 來擷取基板對準標記221的位置。 如圖1所不’在本實施例中,當晶片21〇對位於透光基板 細上時’第一檢測單元110可設置於晶片210的一側,第二 :單元_120可設置於透光基板220的一側,且第一檢測單元 和第二檢測單元120可同時或依任意順序來分別取得晶片 201018984 對準標記211的4立置和基板對準標記功的位置。 如圖1和圖3所示,接著,比對晶片對準標記211的位置 與基板對準標記221的位置(步驟3〇5)。對位檢測裝置ι〇〇的處 理單7G 130可根據晶片對準標記211的位置和基板對準標記 221的位置來進行比對’以檢測晶片對準標記2ιι是否對準於 基板對準標記221,因而可檢測晶片細是否準確地對位於透 光基板220上;或者,此步驟3〇6可用以估算晶片對準標記2ιι 與基板對準標記221之間的對位偏移量。 ❹ 如圖1和圖3所示,接著,根據晶片對準標記211與基板 對準標記221的位置比對結果來調整晶片21〇與透光基板22〇 之間的相對位置(步驟306) ’以對位晶片21〇於透光基板22〇 上。對位檢測裝置100的對位調整裝置14〇可根據處理單元13〇 的比對結果來調整晶片210與透光基板220之間的相對位置, 藉以使晶片210準確地對位於透光基板220上。 因此’本實施例的對位檢測方法和對位檢測裝置1 〇〇可準 確地對位晶片210於透光基板220上。 Φ 請參照圖4和圖5,圖4繪示依照本發明之第二實施例之 對位檢測裝置在預壓時的侧面示意圖,圖5緣示依照本發明之 第二實施例之對位檢測裝置以及晶片固定於透光基板上的侧 面示意圖。在第二實施例中,對位檢測裝置10〇更包含一預壓 頭150,用以預壓(假壓)晶片210於透光基板220上,以初步固 定晶片210於透光基板220上。在第二實施例中,對位檢測裝 置100可包含一本壓頭(未搶示)以穩固地固定晶片21〇於透光 基板220上。在預壓步驟後,可再進行本壓步驟。或者,亦可 藉由本壓步驟來取代預壓步驟,以穩固地固定晶片210於透光 11 201018984 基板220上。在預壓或本壓步驟中,晶片21〇與透光基板22〇 之間具有接合層230,用以接合晶片210與透光基板220 ,此 接合層230例如為異方性導電膜(ACF)或其他黏著材料。 如圖4和圖5所示,在預壓或本壓步驟中,設備不穩定等 原因可能導致晶片210與透光基板220之間產生相對位移情 形。因此,在預壓或本壓步驟後,對位檢測裝置1〇〇可對晶片 210與透光基板220之間的對位狀況進行再次檢測藉以對設 備穩定性進行管控,並可及時維修故障產品。此時,可利用第 • 一檢測單元110來穿透過晶片210,而擷取晶月對準標記211 的位置(步驟303)。且利用第二檢測單元12〇來穿透過透光基板 220,而擷取基板對準標記221的位置(步驟3〇4)。接著,比對 晶片對準標記211的位置與基板對準標記221的位置(步驟 305) »因而可確實地檢測晶片21〇是否地對位於透光基板22〇 上,或估算晶片210與透光基板22〇之間的對位偏移量。即使 晶片210與透光基板220之間具有接合層23〇,亦可進行檢測。 由上述説明可以知道,如圖丨所示,在第一實施例中,本 ® 發明的對位檢測方法和對位檢測裝置100可用以在預壓步驟之 前檢測晶片210是否準確地對位於透光基板22〇上,並可在預 壓步驟前調整晶片210與透光基板22〇之間的相對位置此 時,步驟303、304及305可在預壓步驟前進行。在第二實施 例中’本發明的對位檢測方法和對位檢測裝置1〇〇亦可用以在 預壓或本壓步驟後檢測晶片21〇是否準確地對位於透光基板 220上’而這些檢測數據(檢測結果)經過處理後可以用來對設備 穩定性進行管控’同時能及時發現並維修故障產品。此時,步 驟303、304及305可在預壓或本壓步驟後進行。 12 201018984 、、圖6纟緣不依照本發明之第三實施例之對位檢測 2置的侧面示意圖。在第三實施例中,本發明的對位檢測方法 和對位檢測裝置100可用以即時監測晶片21〇與透光基板22〇 的對位情形。此時,對位檢測裝置1〇〇更可設有顯示器16〇, 其電性連接於處理單元13〇。第一檢測單元ιι〇和第二檢測翠 疋丨2〇可在晶片210與透光基板22〇的對位過程中分別擷取晶 片對準標記211和基板對準標記221的位置資料(例如影像資 料)’接著’由處理單元13〇來即時比對和處理(例如重疊)晶片 Φ對準標記211和基板對準標記如的位置資料並顯示於顯示 〇上因此,使用者或相關人員可由對位檢測裝置1〇〇的 顯示器160來即時監測晶片21〇與透光基板22〇的對位情形。 此時,步驟303 ' 304、及305可在對位過程中進行。 由上述本發明的各個實施例可知,本發明的對位檢測方法 和對位檢測裝置可確實地檢測晶片是否準確地對位於透光基 板上,或估算晶片與透光基板之間的對位偏移量,並可自動地 根據對位檢測結果來調整晶片與透光基板之間的相對位置,以 ® 準確地對位晶片於透光基板上。再者,本發明的對位檢測方法 和對位檢測裝置可在預壓步驟前後、壓合步驟前後、對位過程 中或其他任意過程中進行對位檢測或監測,而不受晶片與透光 基板之間的接合層的影響。 雖然本發明已以各個實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍 内,當可作各種之更動與潤飾,因此本發明之保護範圍當視後 附之申請專利範圍所界定者為準。 13 201018984 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例能更 明顯易懂,所附圖式之詳細說明如下: 圖1係繪示依照本發明之第一實施例之對位檢測裝置的侧 面示意圖。 圖2係繪示依照本發明之第一實施例之晶片與部分透光基 板的示意圖。 圖3係繪示依照本發明之第一實施例之對位檢測方法的方 ❿ 法流程圖。 圖4係繪示依照本發明之第二實施例之對位檢測裝置在預 壓時的侧面示意圖。 圖5係繪示依照本發明之第二實施例之對位檢測裝置以及 晶片固定於透光基板上的侧面示意圖。 圖6係繪示依照本發明之第三實施例之對位檢測裝置的側 面示意圖 φ 【主要元件符號說明】 100 : 對位檢測裝置 110 :第一檢測單元 111 : 顯微鏡 112 :紅外線光源 120 : 第二檢測單元 121 :顯微鏡 122 : 光·源 130 :處理單元 140 : 對位調整裝置 150 :預壓頭 160 : 顯示器 210 : 晶片 211 :晶片對準標記 220 : 透光基板 221 :基板對準標記 14 201018984 212、222 :結合面 230 :接合層 301 :提供晶片 302 :提供透光基板 303 :利用第一檢測單元來穿透過晶片,而擷取晶片對準 標記的位置 304:利用第二檢測單元來穿透過透光基板,而擷取基板 對準標記的位置 305 :比對晶片對準標記的位置與基板對準標記的位置 ❿ 306 :調整晶片與透光基板之間的相對位置Htm (PLC), single crystal processor (MCU), central processing unit (CH;), embedded system, programmable logic array, computer or any combination of the above. As shown in FIG. 1 , the alignment adjusting device 140 is electrically connected to the processing unit 130 ′ for comparing the position of the wafer alignment mark 211 and the substrate alignment mark 221 obtained by the processing unit 130 (alignment bias) The amount of displacement is adjusted to adjust the relative position between the wafer 21 and the transparent substrate 220. In one embodiment, the alignment adjustment device 140 is, for example, a robot arm or a clamping mechanism for adjusting the position of the wafer 21A and the light transmissive substrate 220. Referring to Figure 3, there is shown a flow chart of a method of alignment detection in accordance with a first embodiment of the present invention. When the alignment detecting method of the present embodiment is performed, first, the wafer 210 is provided (step 301), in which the wafer 210 has the wafer alignment mark 211. Next, a light-transmitting substrate 220 is provided (step 3〇2), wherein the light-transmitting substrate 22 is provided with a substrate alignment mark 221. Next, as shown in Figs. 1 and 3, the first detecting unit 11() is used to penetrate the wafer 210, and the position of the wafer alignment mark 211 is taken (step 3〇3). In this embodiment, the first detecting unit 11 is, for example, an infrared image capturing unit, and the wafer 210 has, for example, a germanium material or a component. Since the infrared light has a penetration of the germanium material, the first detecting unit ii can penetrate the wafer. 2 (7) to pick up the position of the wafer alignment φ mark 211. And using the second detecting unit to penetrate the transparent substrate 220 ′ to capture the position of the substrate alignment mark 221 (step snippet. In the embodiment, the second detecting single force 12 〇 is, for example, an image building unit, The light substrate (4) is, for example, a glass substrate, and thus the second detecting unit 12 can penetrate the transparent substrate to capture the position of the substrate alignment mark 221. As shown in Fig. 1, in the present embodiment, when the wafer 21 is located The first detecting unit 110 may be disposed on one side of the wafer 210, and the second: unit _120 may be disposed on one side of the transparent substrate 220, and the first detecting unit and the second detecting unit 120 may be Simultaneously or in any order, the position of the wafer 201018984 alignment mark 211 and the substrate alignment mark work are respectively obtained. As shown in FIGS. 1 and 3, then the position of the wafer alignment mark 211 and the substrate pair are aligned. The position of the alignment mark 221 (step 3〇5). The processing unit 7G 130 of the registration detecting device ι can perform alignment by detecting the wafer pair according to the position of the wafer alignment mark 211 and the position of the substrate alignment mark 221 Is the standard mark 2 ιι aligned with the base? Aligning the mark 221, thereby detecting whether the wafer fineness is accurately positioned on the light-transmitting substrate 220; or, this step 3〇6 can be used to estimate the registration offset between the wafer alignment mark 2 ιι and the substrate alignment mark 221 As shown in FIG. 1 and FIG. 3, next, the relative position between the wafer 21A and the transparent substrate 22A is adjusted according to the positional alignment result of the wafer alignment mark 211 and the substrate alignment mark 221 (step 306). The alignment wafer 21 is mounted on the transparent substrate 22A. The alignment adjustment device 14 of the alignment detecting device 100 can adjust the relative relationship between the wafer 210 and the transparent substrate 220 according to the comparison result of the processing unit 13A. The position is such that the wafer 210 is accurately positioned on the transparent substrate 220. Therefore, the alignment detecting method and the alignment detecting device 1 of the present embodiment can accurately align the wafer 210 on the transparent substrate 220. Φ 4 and FIG. 5, FIG. 4 is a side view showing the alignment detecting device according to the second embodiment of the present invention, and FIG. 5 is a view showing the alignment detecting device according to the second embodiment of the present invention. The wafer is fixed on the light transmissive substrate In the second embodiment, the alignment detecting device 10 further includes a pre-pressing head 150 for pre-pressing (false pressing) the wafer 210 on the transparent substrate 220 to initially fix the wafer 210 on the transparent substrate. In the second embodiment, the alignment detecting device 100 may include a pressing head (not grabbed) to firmly fix the wafer 21 on the transparent substrate 220. After the pre-pressing step, the present embodiment may be further performed. Pressing step. Alternatively, the pre-pressing step may be replaced by the pressing step to firmly fix the wafer 210 on the light-transmissive 11 201018984 substrate 220. In the pre-pressing or pressing step, the wafer 21〇 and the transparent substrate 22〇 There is a bonding layer 230 between the wafer 210 and the transparent substrate 220. The bonding layer 230 is, for example, an anisotropic conductive film (ACF) or other adhesive material. As shown in Figs. 4 and 5, in the pre-pressing or pressing step, the device may be unstable or the like may cause a relative displacement between the wafer 210 and the transparent substrate 220. Therefore, after the pre-pressing or the pressing step, the alignment detecting device 1 can re-detect the alignment condition between the wafer 210 and the transparent substrate 220 to control the stability of the device, and repair the faulty product in time. . At this time, the first detecting unit 110 can be used to penetrate the wafer 210 to capture the position of the crystal moon alignment mark 211 (step 303). And the second detecting unit 12 is used to penetrate the transparent substrate 220 to capture the position of the substrate alignment mark 221 (step 3〇4). Next, the position of the wafer alignment mark 211 is aligned with the position of the substrate alignment mark 221 (step 305) » thus, it is possible to surely detect whether the wafer 21 is located on the transparent substrate 22, or to estimate the wafer 210 and the light transmission. The amount of alignment offset between the substrates 22〇. Even if the bonding layer 23 is provided between the wafer 210 and the light-transmitting substrate 220, it can be detected. As can be seen from the above description, as shown in FIG. 3, in the first embodiment, the alignment detecting method and the registration detecting device 100 of the present invention can be used to detect whether the wafer 210 is accurately positioned to be transparent before the pre-pressing step. The substrate 22 is folded and the relative position between the wafer 210 and the transparent substrate 22A can be adjusted before the pre-pressing step. At this time, steps 303, 304 and 305 can be performed before the pre-pressing step. In the second embodiment, the alignment detecting method and the alignment detecting device 1 of the present invention can also be used to detect whether the wafer 21 is accurately positioned on the transparent substrate 220 after the pre-pressing or pressing step. The test data (test results) can be used to control the stability of the equipment after processing, and the faulty products can be discovered and repaired in time. At this time, steps 303, 304, and 305 can be performed after the pre-pressing or this pressing step. 12 201018984, FIG. 6 is a schematic side view of the alignment detection 2 according to the third embodiment of the present invention. In the third embodiment, the alignment detecting method and the registration detecting device 100 of the present invention can be used to instantly monitor the alignment of the wafer 21A and the transparent substrate 22A. At this time, the alignment detecting device 1 can be further provided with a display 16A electrically connected to the processing unit 13A. The first detecting unit ιι〇 and the second detecting 疋丨2疋丨 can respectively capture the position information (such as image) of the wafer alignment mark 211 and the substrate alignment mark 221 during the alignment of the wafer 210 and the transparent substrate 22〇. The data is then 'by' processed by the processing unit 13 to instantly compare and process (eg, overlap) the position information of the wafer Φ alignment mark 211 and the substrate alignment mark, and display it on the display frame. Therefore, the user or related person can be The display 160 of the bit detecting device 1 is used to instantly monitor the alignment of the wafer 21A and the transparent substrate 22A. At this point, steps 303 '304, and 305 can be performed during the alignment process. According to the various embodiments of the present invention, the alignment detecting method and the alignment detecting device of the present invention can surely detect whether the wafer is accurately positioned on the transparent substrate or estimate the alignment between the wafer and the transparent substrate. The amount of shifting can be automatically adjusted according to the result of the alignment detection to adjust the relative position between the wafer and the transparent substrate to accurately align the wafer on the transparent substrate. Furthermore, the alignment detecting method and the alignment detecting device of the present invention can perform alignment detection or monitoring before and after the pre-pressing step, before and after the pressing step, during the alignment process, or in any other process, without being affected by the wafer and the light transmission. The effect of the bonding layer between the substrates. The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any one skilled in the art can make various modifications and retouchings without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A side view of the alignment detecting device of the embodiment. Fig. 2 is a schematic view showing a wafer and a partially transparent substrate in accordance with a first embodiment of the present invention. Fig. 3 is a flow chart showing the method of the registration detecting method according to the first embodiment of the present invention. Fig. 4 is a side elevational view showing the alignment detecting device according to the second embodiment of the present invention at the time of preloading. Fig. 5 is a side elevational view showing the alignment detecting device and the wafer fixed to the light-transmitting substrate according to the second embodiment of the present invention. 6 is a side view showing a aligning detecting device according to a third embodiment of the present invention. [Main component symbol description] 100: Alignment detecting device 110: First detecting unit 111: Microscope 112: Infrared light source 120: Second detecting unit 121: microscope 122: light source 130: processing unit 140: registration adjusting device 150: pre-pressing head 160: display 210: wafer 211: wafer alignment mark 220: transparent substrate 221: substrate alignment mark 14 201018984 212, 222: bonding surface 230: bonding layer 301: providing wafer 302: providing transparent substrate 303: using the first detecting unit to penetrate the wafer, and capturing the position of the wafer alignment mark 304: using the second detecting unit Passing through the transparent substrate, and picking up the position 305 of the substrate alignment mark: the position of the alignment mark and the position of the substrate alignment mark ❿ 306 : adjusting the relative position between the wafer and the transparent substrate

1515

Claims (1)

201018984 十、申請專利範圍: 1. 一種對位檢測方法,包含: 提供至少一晶片,其中該晶片具有至少一晶片對準標記; 提供一透光基板,其中該透光基板設有至少一基板對準標 記; 對位該晶片的該晶片對準標記於該透光基板的該基板對 準標記上; 利用一第一檢測單元來穿透過該晶片,而擷取該晶片對準 β 標記的位置; 利用一第二檢測單元來穿透過該透光基板,而擷取該基板 對準標記的位置;以及 比對該晶片對準標記的位置與該基板對準標記的位置。 2.如申請專利朗第丨項所述之對位檢測方法,其中該比 對步驟包括.判斷該晶片對準標記是否對準於該基板對準標 記。 3.如申請專利㈣第丨項所述之對位檢測方法,其中該比 對步驟包括.估算出該晶#對準標記與該基板對準標記之間的 對位偏移量。 4·如申請專利_第〗項所述之對位檢測方法,更包含 預&gt;1該晶片於該透光基板上。 5.如申請專利範圍第4項所述之對位檢測方法,其中該擁 201018984 取該aB片對準標記之位置的步驟、該擷取該基板對準標記之位 置的步驟及該比對步驟係在該預虔步驟之前進行。 6曰如申請專利範圍第4項所述之對位檢測方法,其中該擷 取該Β3片對準標記之位置的步驟、該擷取該基板對準標記之位 置的步驟及該比對步驟係在該預愿步驟後進行。 7·如申請專利範圍第3項所述之對位檢測方法更包含·· 根據該對位偏移量,調整該晶片與該透光基板的相對位 .如申請專利範圍第1項所述之對位檢測方法,更包含: 壓合該晶片於該透光基板上。 9.種對位檢測裝置,用以檢測一晶片在一透光基板上的 =位情形,其中該晶片具有至少—晶片對準標記,該透光基板 叹有至少—基板對準標記,該對位檢測裝置包含: 第一檢測單元,用以穿透過該晶片來擷取該 記的位置; -第二檢測單元m透職透光基板㈣取該基板對 準標記的位置;以及 處理單兀,用以比對該晶片對準標記的位置與該基板對 準標記的位置。 ι〇·如申請專利範圍第9項所述之對位檢測裝置,其中該 17 201018984 該第 11.如 處理單^ 項所述之對位檢測裝置,其中該 針社m 對準標記與該基板料標記的位置比 對、4來觸該晶片對準標記是㈣準於該基板對準標記。 12.如 處理睛專利範圍第9項所述之對位檢測裝置,其中該 t+ ^ ^ ^ 平標屺與該基板對準標記的位置比 位偏移量 私果來估算該晶片對準標記與該基板對準標記之間的一對 13.如 含: 申明專利範圍第12項所述之對位檢測裝置, 更包 基板:::::調r據該對位偏移量來對該晶片與該 14. 如申凊專利範園第9項所述之對位檢測裝置更包含: -預壓頭’用以預壓該晶片於該透光基板上。 標記與該基板對準標記的位置比對結果 15. 如申請專利範圍第9項所述之對位檢測裝置更包含: 顯丁器電性連接於該處理單元,用以顯示該晶片對準 18201018984 X. Patent Application Range: 1. A method for detecting a position, comprising: providing at least one wafer, wherein the wafer has at least one wafer alignment mark; providing a transparent substrate, wherein the transparent substrate is provided with at least one substrate pair Aligning the wafer with the wafer aligned with the substrate alignment mark of the transparent substrate; using a first detecting unit to penetrate the wafer to capture the position of the wafer aligned with the β mark; A second detecting unit is used to penetrate the transparent substrate to capture the position of the substrate alignment mark; and a position of the alignment mark with the substrate and a position of the substrate alignment mark. 2. The alignment detecting method of claim 1, wherein the comparing step comprises: determining whether the wafer alignment mark is aligned with the substrate alignment mark. 3. The method of detecting a registration as described in claim 4, wherein the comparing step comprises estimating a registration offset between the crystal alignment mark and the substrate alignment mark. 4. The method of detecting the alignment described in the patent application _, further comprising pre-gating the wafer on the light-transmissive substrate. 5. The method of detecting a registration according to claim 4, wherein the step of taking the aB sheet alignment mark, the step of capturing the position of the substrate alignment mark, and the comparing step This is done before the pre-stepping step. 6. The method of detecting a registration according to claim 4, wherein the step of extracting the position of the alignment mark of the third sheet, the step of capturing the position of the alignment mark of the substrate, and the step of comparing the steps This is done after the expected step. 7. The method for detecting a registration according to item 3 of the patent application scope further includes: adjusting a relative position of the wafer and the transparent substrate according to the alignment offset. As described in claim 1 The alignment detecting method further includes: pressing the wafer on the transparent substrate. 9. A aligning detecting device for detecting a position of a wafer on a light-transmissive substrate, wherein the wafer has at least a wafer alignment mark, the light-transmitting substrate sings at least a substrate alignment mark, the pair The position detecting device comprises: a first detecting unit for penetrating the wafer to capture the position of the mark; a second detecting unit m for transmissing the transparent substrate (4) for taking the position of the substrate alignment mark; and processing the unit, The position of the alignment mark is aligned with the position of the alignment mark of the wafer. 〇 〇 如 对 对 对 对 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对 对The position of the material mark is aligned, and the wafer alignment mark is (4) aligned with the substrate alignment mark. 12. The alignment detecting device according to claim 9, wherein the t+^^^ flat mark and the position of the substrate alignment mark are compared with the bit offset amount to estimate the wafer alignment mark and a pair of substrates between the alignment marks of the substrate. The apparatus includes: the alignment detecting device according to claim 12 of the patent scope, and the substrate::::: adjusts the wafer according to the alignment offset And the alignment detecting device according to the claim 9, wherein the pre-indenter is configured to pre-press the wafer on the transparent substrate. Alignment of the position of the mark with the substrate alignment mark. 15. The alignment detecting device of claim 9 further comprising: a display device electrically connected to the processing unit for displaying the wafer alignment 18
TW97143561A 2008-11-11 2008-11-11 Alignment inspection method and apparatus TWI381200B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97143561A TWI381200B (en) 2008-11-11 2008-11-11 Alignment inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97143561A TWI381200B (en) 2008-11-11 2008-11-11 Alignment inspection method and apparatus

Publications (2)

Publication Number Publication Date
TW201018984A true TW201018984A (en) 2010-05-16
TWI381200B TWI381200B (en) 2013-01-01

Family

ID=44831533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97143561A TWI381200B (en) 2008-11-11 2008-11-11 Alignment inspection method and apparatus

Country Status (1)

Country Link
TW (1) TWI381200B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425891B (en) * 2012-02-24 2014-02-01 Au Optronics Xiamen Corp Flexible printed circuit board bonding apparatus
TWI573504B (en) * 2013-10-16 2017-03-01 Adv Flexible Circuits Co Ltd The optical positioning structure of the circuit substrate
CN108428643A (en) * 2017-02-13 2018-08-21 捷进科技有限公司 The manufacturing method of semiconductor manufacturing apparatus and semiconductor devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642362B2 (en) * 2003-06-06 2011-03-02 株式会社荏原製作所 Substrate alignment method, substrate surface inspection method, substrate positioning method, semiconductor device manufacturing method, substrate alignment apparatus, and substrate surface inspection apparatus
TWM269454U (en) * 2004-12-30 2005-07-01 Nat Pingtung University Of Sci IC lead scanner
CN100565829C (en) * 2005-05-31 2009-12-02 东丽工程株式会社 Coupling device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425891B (en) * 2012-02-24 2014-02-01 Au Optronics Xiamen Corp Flexible printed circuit board bonding apparatus
TWI573504B (en) * 2013-10-16 2017-03-01 Adv Flexible Circuits Co Ltd The optical positioning structure of the circuit substrate
CN104582243B (en) * 2013-10-16 2018-07-27 易鼎股份有限公司 Optical positioning structure of circuit substrate
CN108428643A (en) * 2017-02-13 2018-08-21 捷进科技有限公司 The manufacturing method of semiconductor manufacturing apparatus and semiconductor devices
TWI677047B (en) * 2017-02-13 2019-11-11 日商捷進科技有限公司 Semiconductor manufacturing device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TWI381200B (en) 2013-01-01

Similar Documents

Publication Publication Date Title
CN101403829A (en) Contraposition detection method and apparatus
KR101874429B1 (en) Display apparatus and method of manufacturing the same
US9112176B2 (en) Organic light emitting display device and reworking method thereof
TWI307406B (en) Misalignment detection devices
TW201018984A (en) Alignment inspection method and apparatus
JP4659908B2 (en) Inspection apparatus and inspection method
JP2010117546A (en) Sticking device of optical film, and sticking method of optical film
CN102116947A (en) Liquid crystal display manufacturing device and method of manufacturing liquid crystal display by using the same
JP2007273578A (en) Electronic component connection structure
US7626240B2 (en) Electro-optical apparatus and a circuit bonding detection device and detection method thereof
JP2011007695A (en) Apparatus for detecting pasted state
JP2009272457A (en) Substrate mounting structure, liquid crystal display apparatus, and method of manufacturing the substrate mounting structure
JP2007207855A (en) Position recognition device of electronic component
JP4523732B2 (en) Chip bonding equipment
KR101874409B1 (en) The align-inspection device and the method using the same
CN100547418C (en) Electronic component contraposition bias detecting method and pick-up unit thereof
JP5477105B2 (en) Display device substrate, display device, and display device manufacturing method
JP2006210592A (en) Tape sticking method
JP2012104543A (en) End portion detecting device of member mounted on fpd module, end portion detection method, and acf sticking device
KR20160093747A (en) Method of cog prebonding
JP2003249530A (en) Mounter for semiconductor element, and method of positioning board, using the mounter
KR20190017355A (en) Method for implantation simultaneously sign of COF and flexible display panel
KR20100110501A (en) Apparatus and method for pre-bonding of the drive integrated circuit
TW201005837A (en) Method of setting chip on display panel
TWI379110B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees