TW201003957A - Thin film photovoltaic cell module and method for manufacturing the same - Google Patents

Thin film photovoltaic cell module and method for manufacturing the same Download PDF

Info

Publication number
TW201003957A
TW201003957A TW097126050A TW97126050A TW201003957A TW 201003957 A TW201003957 A TW 201003957A TW 097126050 A TW097126050 A TW 097126050A TW 97126050 A TW97126050 A TW 97126050A TW 201003957 A TW201003957 A TW 201003957A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
thin film
cell module
solar cell
Prior art date
Application number
TW097126050A
Other languages
Chinese (zh)
Inventor
Jia-Lie Koa
Original Assignee
Sinonar Solar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinonar Solar Corp filed Critical Sinonar Solar Corp
Priority to TW097126050A priority Critical patent/TW201003957A/en
Publication of TW201003957A publication Critical patent/TW201003957A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Disclosed is a method for manufacturing a thin film photovoltaic cell module, forming front electrodes, photovoltaic elements, and a metal layer in order on a transparent substrate. Subsequently, an anti-etching layer is formed on a metal layer before the metal layer scribed by a laser to define back electrodes. Therefore, following etching step for removing the particles from the laser scribing will not damage the back electrodes and the photovoltaic elements.

Description

201003957 九、發明說明: 【發明所屬之技術領域】 本發明係關於一薄膜太陽能電池模組,更特別關於以 餘刻步驟移除雷射切割步驟時造成的碎屑,以及以抗姓刻 層避免餘刻步驟損傷金屬層的方法。 【先前技術】 在美國專利第7,259,321號中,已揭示一種太陽能電 ( 池模組的形成方法。首先如第1A圖所示,形成導電透明 氧化層132於透明基板114上。接著如第iB圖所示,以 雷射移除部份導電透明氧化層132,形成溝槽124以定義 複數個上電極(front electrode) 118。接著如第ic圖所示, 形成半導體材料層134於上述結構上。接著如第id圖所 示,以雷射移除部份半導體材料層,形成溝槽126以定義 複數個光伏單元(photovoltaic element) 120。接著如第1E 圖所示,形成金屬層136於上述結構上,再以雷射138移 除部份金屬層136、光伏單元120、以及上電極118,形 I 成溝槽129以定義複數個光伏電池(photovoltaic cell) 112。上述之金屬層136被溝槽分隔成複數個下電極(back electrode) 122。以雷射138形成溝槽129時將產生碎屑 131如第1F圖所示。為避免光伏電池112產生短路等現 象,需以超音波振盪的方式清除碎屑131以完成第1G圖 之結構。不過,超音波振盪會使光伏電池的多層結構產生 剝離(peeling)或分層(delamination)等現象,目前仍需新的 方法移除雷射製程殘留之碎屑131。 9043-A51284-TW 5 201003957 【發明内容】 本發明提供一種薄膜太陽能電池模組的形成方法,包 括提供基板;形成第一導電層於該透明基板上;雷射切割 第一導電層以形成第一溝槽,第一溝槽露出部份基板並將 第一導電層分隔成上電極,形成半導體材料層於上電極上 並填滿第一溝槽;雷射切割半導體材料層以形成第二溝 槽,且第二溝槽露出部份上電極並將半導體材料層分隔成 光伏單元;形成第二導電層於光伏單元上並填滿第二溝 槽;形成抗蝕刻層於導電層上;雷射切割抗蝕刻層、第二 導電層、以及光伏單元以形成第三溝槽,第三溝槽露出部 份上電極並將第二導電層分隔成下電極;以及進行蝕刻步 驟去除雷射切割步驟時產生之碎屑;其中上電極與基板均 為透光材質及/或下電極為透光材質。 本發明亦提供一種薄膜太陽能電池模組,包括基板; 上電極形成於透明基板上,且上電極被第一溝槽隔開;光 伏單元形成於第一溝槽中及上電極上,且光伏單元被第二 溝槽隔開;下電極形成於第二溝槽中及光伏單元上,下電 (:極被第三溝槽隔開,且第三溝槽穿過該些光伏單元以露出 部份上電極;以及抗蝕刻層形成於下電極上;其中上電極 與基板均為透光材質及/或下電極為透光材質。 【實施方式】 本發明提供一種薄膜太陽能電池模組的形成方法如 下述。首先如第2A圖所示,提供基板214。基板214之 材質可為透光材料如玻璃、塑膠、或合成樹脂,亦可為不 透明材料如不透明材料如金屬基板、矽晶圓基板、或寶石 9043-A51284-TW 6 201003957 基板。接著形成導電層232於基板214上,導電層232之 厚度約為10至700nm之間,當厚度小於此範圍則會有薄 膜厚度不均與導電特性不佳等問題,當厚度大於此範圍時 則會導致入射光大量被此導電層吸收,使得入射光穿透至 光伏電池(photovoltaic cell)之比率下降。導電層232之材 質可為透光材料如導電高分子或金屬氧化物,亦可為不透 光材料如金屬。適用於導電層232之導電高分子包括聚 (3,4_ 乙烯一乳售吩(卩〇1丫(3,4-61;]13^116(^〇义}^111〇卩116116,簡稱 f PED0T)、聚苯胺、或聚噻吩,其形成方法可為一般之旋 轉塗佈法。適用於導電層232之金屬氧化物包括銦錫氧化 物、氧化鋅、氟化錫氧化物、或上述之組合,其形成方法 可為沉積法。適用於導電層之金屬包括銘、銀、顧、銘、 銅、金、鐵、銳、鈦、鉻、麵、錄、上述之合金、或上述 之混合物,其形成方法可為濺鍍法。 接著如第2B圖所示,以雷射切割導電層232以形成 第一溝槽224。第一溝槽224露出部份基板214,並將導 電層232分隔成複數個上電極218。此步驟之雷射波長介 U於400至1200nm之間,脈寬介於50至350μιη之間,脈 衝頻率介於ΙΟΚΗζ至60ΚΗζ之間,剝除速率介於 100mm/min至1000mm/min之間。雷射種類可為準分子雷 射如氟化氬雷射(ArF,193nm)、氟化氪雷射(KrF,248mn)、 氯化氙雷射(Xea,308nm)、或氟化氙雷射(XeF,351nm)。 雷射種類亦可為固態雷射如摻鈥釔鋁石榴石雷射 (N士YAG)、摻鈦氟鋰釔雷射(Nd:YLF)、或摻鈥釩酸釔雷 射(Nd:YV04)。雷射可由上方直接剝除部份導電層232, 亦可經由基板214再剝除部份導電層232。第一溝槽224 9043-A51284-TW 7 201003957 之寬度約介於50至間。上電極218之寬度約介 於5至15mm之間。在這必需注意的是,雖然第2B圖中 每-上電極218具有相同t度,但仍可依需要採用不同間 距之第:溝槽224,使不同上電極218具有不同寬度。 接著如第2C圖所不’形成半導體材料層234於上述 結構上。在本發明一實施例中,半導體材料層為單 結構,依序為Ρ型掺雜、未掺雜(即所謂的 I層)、以及η 型掺雜之半導體材料。在本發明一實施例中,半導體材料 為氫化非晶矽。至於其他半導體結構,如硫化鎘/碲化鎘 (CdS/CdTe)或硫化鎘/銅銦硒化物(Cds/CuInSe2)亦可作為 本發明之半導體材料層234。以PIN結構之氳化非晶石夕為 例,P型掺雜層之厚度約介於1〇至2〇nm之間,當厚度小 於此範關會有薄膜厚度不均與導電特性不料問題,春 厚度大於此範圍則會發生有帶電荷之載子被捕捉= 象,其皆會造成光電轉換效率不良。未掺雜層之厚产 於250至650nm之間,當厚度小於此範圍則會 ' ;| 率不佳的現象’當厚度大於此範圍時則會產生_ °光欢 (light-soaking effect)後穩定性大幅衰退之狀況。义件照光 層之厚度約介於250至50〇nm之間,厚度小於掺雜 會有薄膜厚度不均與導電特性不佳等問題,當厚此範圍則 範圍則會發生有帶電荷之载子被捕捉的現象1 :^大於此 光電轉換效率不良。上述PIN結構之氫化非晶^自會壤戍 法係於矽烷或氫氣與矽烷之混合物中輝光放電的形戍方 接著如第2D圖所示,雷射切割半導體材 形成第二溝槽226,且第二溝槽226露出部份:層234从 並將半導體材料層234分隔成複數個光伏單元電轾218, 2^0〇 ,,201003957 IX. INSTRUCTIONS: [Technical Field] The present invention relates to a thin film solar cell module, and more particularly to removing debris caused by removing the laser cutting step in the remaining steps, and avoiding the anti-surname layer The method of damaging the metal layer in the remaining steps. [Prior Art] A solar cell (method of forming a cell module) has been disclosed in U.S. Patent No. 7,259,321. First, as shown in Fig. 1A, a conductive transparent oxide layer 132 is formed on a transparent substrate 114. Next, as shown in Fig. As shown, a portion of the conductive transparent oxide layer 132 is removed by laser to form trenches 124 to define a plurality of front electrodes 118. Next, as shown in Figure ic, a layer of semiconductor material 134 is formed over the structure. Next, as shown in the id diagram, a portion of the semiconductor material layer is removed by laser to form trenches 126 to define a plurality of photovoltaic elements 120. Next, as shown in FIG. 1E, a metal layer 136 is formed in the above structure. Then, a portion of the metal layer 136, the photovoltaic unit 120, and the upper electrode 118 are removed by the laser 138 to form a trench 129 to define a plurality of photovoltaic cells 112. The metal layer 136 is trenched. Separated into a plurality of back electrodes 122. When the trench 129 is formed by the laser 138, debris 131 is generated as shown in Fig. 1F. To avoid short circuit of the photovoltaic cell 112, ultrasonic vibration is required. The way to remove the debris 131 to complete the structure of Figure 1G. However, the ultrasonic oscillation will cause peeling or delamination of the multilayer structure of the photovoltaic cell, and a new method is needed to remove the laser. The residual debris of the process 131. 9043-A51284-TW 5 201003957 SUMMARY OF THE INVENTION The present invention provides a method for forming a thin film solar cell module, comprising providing a substrate; forming a first conductive layer on the transparent substrate; laser cutting a conductive layer to form a first trench, the first trench exposes a portion of the substrate and separates the first conductive layer into an upper electrode, forming a semiconductor material layer on the upper electrode and filling the first trench; and laser cutting the semiconductor material a layer to form a second trench, and the second trench exposes a portion of the upper electrode and separates the layer of semiconductor material into a photovoltaic cell; forms a second conductive layer on the photovoltaic cell and fills the second trench; forming an anti-etching layer a conductive layer; a laser-cut etch-resistant layer, a second conductive layer, and a photovoltaic cell to form a third trench, the third trench exposing a portion of the upper electrode and separating the second conductive layer into a lower And performing an etching step to remove debris generated during the laser cutting step; wherein the upper electrode and the substrate are both light transmissive materials and/or the lower electrode is a light transmissive material. The invention also provides a thin film solar cell module including a substrate The upper electrode is formed on the transparent substrate, and the upper electrode is separated by the first trench; the photovoltaic unit is formed in the first trench and the upper electrode, and the photovoltaic unit is separated by the second trench; the lower electrode is formed in the first In the two trenches and on the photovoltaic unit, the power is off (the poles are separated by the third trenches, and the third trenches pass through the photovoltaic cells to expose a portion of the upper electrodes; and the anti-etching layer is formed on the lower electrodes; The upper electrode and the substrate are both light transmissive materials and/or the lower electrode is a light transmissive material. [Embodiment] The present invention provides a method of forming a thin film solar cell module as follows. First, as shown in FIG. 2A, a substrate 214 is provided. The material of the substrate 214 may be a light transmissive material such as glass, plastic, or synthetic resin, or may be an opaque material such as an opaque material such as a metal substrate, a germanium wafer substrate, or a gemstone 9043-A51284-TW 6 201003957 substrate. Then, a conductive layer 232 is formed on the substrate 214. The thickness of the conductive layer 232 is between about 10 and 700 nm. When the thickness is less than the range, the film thickness is uneven and the conductive property is not good. When the thickness is larger than the range, This causes a large amount of incident light to be absorbed by the conductive layer, so that the ratio of incident light penetrating to a photovoltaic cell decreases. The material of the conductive layer 232 may be a light transmissive material such as a conductive polymer or a metal oxide, or may be a radiopaque material such as a metal. The conductive polymer suitable for the conductive layer 232 includes poly(3,4_ethylene-milk-selling benzene (卩〇1丫(3,4-61;]13^116(^〇义}^111〇卩116116, abbreviated as f PED0T) , polyaniline, or polythiophene, which may be formed by a general spin coating method. The metal oxide suitable for the conductive layer 232 includes indium tin oxide, zinc oxide, tin oxide oxide, or a combination thereof. The forming method may be a deposition method. The metal suitable for the conductive layer includes Ming, Silver, Gu, Ming, Copper, Gold, Iron, Sharp, Titanium, Chromium, Surface, Recorded, the above alloy, or a mixture thereof, and the like The method may be a sputtering method. Next, as shown in Fig. 2B, the conductive layer 232 is laser-cut to form a first trench 224. The first trench 224 exposes a portion of the substrate 214 and separates the conductive layer 232 into a plurality of Upper electrode 218. The laser wavelength of this step is between 400 and 1200 nm, the pulse width is between 50 and 350 μm, the pulse frequency is between ΙΟΚΗζ and 60 ,, and the stripping rate is between 100 mm/min and 1000 mm/ Between min. The laser type can be excimer laser such as argon fluoride laser (ArF, 193nm), fluorinated strontium laser (KrF, 248mn), barium chloride laser (Xea, 308nm), or barium fluoride laser (XeF, 351nm). Laser type can also be solid-state laser such as yttrium-doped aluminum garnet laser (N YAG), titanium-doped fluorolithium neon (Nd:YLF), or ytterbium-doped yttrium vanadate (Nd:YV04). The laser can be directly stripped of the conductive layer 232 from above, or stripped through the substrate 214. Except for a portion of the conductive layer 232. The width of the first trench 224 9043-A51284-TW 7 201003957 is about 50 to Between. The width of the upper electrode 218 is between about 5 and 15 mm. It must be noted that although In FIG. 2B, each of the upper electrodes 218 has the same t-degree, but the different pitches of the trenches 224 may be used as needed to make the different upper electrodes 218 have different widths. Then, as shown in FIG. 2C, the semiconductor material layer is not formed. 234 is the above structure. In an embodiment of the invention, the semiconductor material layer is a single structure, which is sequentially doped, undoped (so-called I-layer), and n-type doped semiconductor material. In one embodiment of the invention, the semiconductor material is hydrogenated amorphous germanium. As for other semiconductor structures, such as cadmium sulfide/cadmium telluride (CdS/CdT) e) or cadmium sulfide/copper indium selenide (Cds/CuInSe2) may also be used as the semiconductor material layer 234 of the present invention. Taking the PIN structure of the amorphous austenite as an example, the thickness of the P-type doped layer is about 1 〇 between 2〇nm, when the thickness is less than this range, there will be problems of uneven film thickness and conductive properties. When the thickness of spring is larger than this range, the charged carrier will be captured = image, which will cause photoelectric Poor conversion efficiency. The thickness of the undoped layer is between 250 and 650 nm. When the thickness is less than this range, the phenomenon of '=| is not good. When the thickness is larger than this range, the light-soaking effect is generated. The situation of a sharp decline in stability. The thickness of the photo-illumination layer is between 250 and 50 〇nm. The thickness is smaller than the doping, and there is a problem that the film thickness is uneven and the conductivity is not good. When the thickness is in the range, the charged carrier occurs. The captured phenomenon 1 : ^ is larger than this photoelectric conversion efficiency. The hydrogenated amorphous PIN structure of the above PIN structure is in the form of a glow discharge in a mixture of decane or hydrogen and decane. Next, as shown in FIG. 2D, the laser-cut semiconductor material forms a second trench 226, and The second trench 226 exposes a portion: the layer 234 separates and divides the semiconductor material layer 234 into a plurality of photovoltaic unit cells 218, 2^0〇,

9043-A51284-TW 201003957 驟之雷射種類可與上述雷射種類相同,但需調整脈寬、脈 衝頻率、及/或剝除速率,使其在移除部份半導體材料層 234的同時不損傷任何上電極218。舉例來說,此步驟之 雷射波長介於400至1200nm之間,脈寬介於50至350μπι 之間,脈衝頻率介於ΙΟΚΗζ至60ΚΗζ之間,剝除速率介 於100mm/min至1000mm/min之間。在本發明一實施例 中,雷射可由上方直接剝除部份半導體材料層234,亦可 經由基板214與上電極218後再剝除部份半導體材料層 234。第二溝槽之寬度約介於50至350μηι之間,每一光 伏單元220之寬度約介於5至15mm之間。 接著如第2E圖所示,依序形成導電層236及抗蝕刻 層241於上述結構上。導電層236之材料選擇及形成方法 與導電層232相同,厚度約介於20至700nm之間。當導 電層236之厚度小於此範圍則會有薄膜厚度不均與導電 特性不佳等問題,當厚度大於此範圍時則會導致入射光大 量被此導電層吸收,使得入射光穿透至光伏電池 (photovoltaic cell)之比率下降。抗钮刻層241可為有機材 ϋ 料如樹脂或高分子,亦可為無機材料。樹脂包括環氧樹 脂、聚碳酸酯樹脂(Polycarbonate, PC)或聚烴矽氧樹脂。 高分子包括聚亞醯胺(polyimide)、聚苯胺(polyaniline )、 或聚對苯二甲酸乙二醇酯(PET)。無機材料包括金屬氧化 物、金屬化合物、或碎化物。當採用有機材料時’其形成 方法為常見之旋轉塗佈法及綱印方式(screen printer)。當 採用無機材料時,其形成方法為常見之濺鍍法。 值得注意的是,值得注意的是,基板214、導電層 232、與導電層236的組合有其限制。若導電層236採用 9043-A51284-TW 9 201003957 透光材料時,基板214及/或導電層232 、 不透光材料。但若導電層236採用不 J為透光材料或 214與導電層232兩者均必需採用透光粗材,=基板 伏單元220兩側中至少一側必需透央 r。簡言之,先 22〇產生作用》另-方面」伏伏單元 定其吸收波長屬於可見光(400nm至=此1回低,決 (70〇nm至120〇nm)。基板214、導電層 肋!)或紅外線 是否透光,舰光伏單元22G所_ =電層^ 是否能穿過上述元件而定。 久我靶之光線 ^^^_所示’以#射238切#_刻層241、 層236、以及光伏單元220以形成第三溝槽229。第 三溝槽229露出部份該上電極別,並將導電層⑽分隔 成複數個下電極222。在上述雷射移除部份抗钱刻層 241、部份導電層236、以及部份光伏單元22〇的同時, 將產生碎屑231於第三溝槽229中。此步驟之雷射種類可 與上述之雷射種類相同,但需調整脈寬、脈衝頻率、及/ 或剝除速率,使其在移除部份抗蝕刻層241、部份導電層 / 236、以及部份光伏單元220的同時不損傷上電極218。 舉例來說’此步驟之雷射波長介於400至i2〇〇nm之間, 脈寬介於5〇至350叫1之間’脈衝頻率介於1〇至6〇KHz 之間,剝除速率介於10〇mm/min至l〇〇〇mm/min之間。 在本發明一實施例中’雷射可由上方直接剝除部份抗蝕刻 層241、部份導電層236、以及部份光伏單元220,亦可 經由基板214與上電極218後再剥除部份抗蝕刻層241、 部份導電層236、以及部份光伏單元220。第三溝槽之寬 度約介於5〇裏350叩1之間,每一下電極222之寬度約介 9043-A51284-TW 10 201003957 於5至15mm之間。 接著如第2G圖所示,以姓刻步驟清除碎屑231。钱 刻步驟可减㈣如反騎離子㈣(rie) 硝酸溶液、鹽酸溶液等_溶液4於抗關;、 係’可避免細步驟損傷下電極222絲伏單元⑽^ 習知技藝相較’以侧步驟清除碎屑231的方法 超 音波振盪造成的分層現象m若無本 刻層241,独刻步驟將會損傷下電極222與光伏單元22〇, 降低元件效能。9043-A51284-TW 201003957 The laser type can be the same as the above laser type, but the pulse width, pulse frequency, and/or stripping rate should be adjusted so as to remove some semiconductor material layer 234 without damage. Any upper electrode 218. For example, the laser wavelength for this step is between 400 and 1200 nm, the pulse width is between 50 and 350 μm, the pulse frequency is between ΙΟΚΗζ and 60 ,, and the stripping rate is between 100 mm/min and 1000 mm/min. between. In one embodiment of the invention, the laser may directly strip a portion of the semiconductor material layer 234 from above, or may be stripped of the portion of the semiconductor material 234 via the substrate 214 and the upper electrode 218. The width of the second trench is between about 50 and 350 μm, and the width of each of the photovoltaic cells 220 is between about 5 and 15 mm. Next, as shown in Fig. 2E, the conductive layer 236 and the anti-etching layer 241 are sequentially formed on the above structure. The material selection and formation method of the conductive layer 236 is the same as that of the conductive layer 232, and the thickness is between about 20 and 700 nm. When the thickness of the conductive layer 236 is less than the range, there may be problems such as uneven thickness of the film and poor conductivity. When the thickness is larger than this range, the incident light is largely absorbed by the conductive layer, so that the incident light penetrates to the photovoltaic cell. The ratio of (photovoltaic cell) has decreased. The button-resistant layer 241 may be an organic material such as a resin or a polymer, or may be an inorganic material. The resin includes an epoxy resin, a polycarbonate resin (Polycarbonate, PC) or a polyoxycarbon resin. The polymer includes polyimide, polyaniline, or polyethylene terephthalate (PET). The inorganic material includes a metal oxide, a metal compound, or a fragment. When an organic material is used, the formation method is a common spin coating method and a screen printer. When an inorganic material is used, it is formed by a common sputtering method. It should be noted that it is worth noting that the combination of the substrate 214, the conductive layer 232, and the conductive layer 236 has its limitations. If the conductive layer 236 is made of 9043-A51284-TW 9 201003957 light-transmitting material, the substrate 214 and/or the conductive layer 232 are opaque materials. However, if the conductive layer 236 is made of a light-transmitting material or both of the 214 and the conductive layer 232, it is necessary to use a light-transmitting thick material, and at least one of the two sides of the substrate volt unit 220 must be transparent. In short, the first 22 〇 produces a "other-side" volt-volt cell whose absorption wavelength belongs to visible light (400 nm to = 1 low, 70 (nm to 120 〇 nm). Substrate 214, conductive layer rib! ) or whether the infrared light is transparent, whether the ship's photovoltaic unit 22G _ = electrical layer ^ can pass through the above components. The light of the long-term target ^^^_ is shown as #射238切#_ 刻层241, layer 236, and photovoltaic unit 220 to form a third trench 229. The third trench 229 exposes a portion of the upper electrode and divides the conductive layer (10) into a plurality of lower electrodes 222. While the laser removes the portion of the resist layer 241, the portion of the conductive layer 236, and the portion of the photovoltaic unit 22, the debris 231 is generated in the third trench 229. The laser type in this step can be the same as the above-mentioned laser type, but the pulse width, the pulse frequency, and/or the stripping rate need to be adjusted to remove part of the anti-etching layer 241 and part of the conductive layer/236. And part of the photovoltaic unit 220 does not damage the upper electrode 218 at the same time. For example, 'the laser wavelength of this step is between 400 and i2〇〇nm, the pulse width is between 5〇 and 350, and the pulse frequency is between 1〇 and 6〇KHz. The stripping rate is Between 10〇mm/min and l〇〇〇mm/min. In one embodiment of the present invention, the laser may directly strip a portion of the anti-etching layer 241, a portion of the conductive layer 236, and a portion of the photovoltaic unit 220 from the top, and may also strip the portion through the substrate 214 and the upper electrode 218. An anti-etching layer 241, a portion of the conductive layer 236, and a portion of the photovoltaic unit 220. The width of the third trench is between about 5 叩 350 叩 1 and the width of each lower electrode 222 is about 9043-A51284-TW 10 201003957 between 5 and 15 mm. Next, as shown in Fig. 2G, the debris 231 is removed by a surname step. The engraving step can be reduced (4), such as anti-riding ion (four) (rie) nitric acid solution, hydrochloric acid solution, etc. _ solution 4 in the anti-off;; 'can avoid fine steps to damage the lower electrode 222 wire volt unit (10) ^ conventional skills compared to 'to Side Step Removal of Debris 231 The stratification phenomenon caused by ultrasonic oscillations m Without the etch layer 241, the unique step will damage the lower electrode 222 and the photovoltaic unit 22, reducing component performance.

上述下電極222、光伏單元220、以及上電極218組 成光伏電池212,該些平行並列之光伏電池212即組成本 發明之薄膜太陽旎電池模組。上述之抗蝕刻層241可保留 下來作為保護層,延長薄膜太陽能電池模組之使用壽命。 在本發明另一實施例中,可視情況而非必要地進一步移除 抗蝕刻層241如第2H圖所示。當抗蝕刻層241為有機材 料時’移除抗蝕刻層2 4 i的方法可為高溫灰化或以有機溶 劑溶解移除。當抗钱刻層241為無機材料時,移除方法可 為化學#刻、電漿餘刻、或滅擊姓刻(SpUtterEtching)。 為使本技藝人士更清楚本發明之特徵,特舉例於下述 之實施例。 【實施例】 以滅鑛法或化學氣相沉積法形成300〜1 〇〇〇nm厚之氟 化錫氧化物層(以下簡稱FTO)於玻璃基板上。上述玻璃基 板係購自美國PILKINGTONG公司所售之TEC-15。以波 長為1064nm之固態Nd:YAG雷射(脈寬介於50〜150μιη之 間,脈衝頻率約為14kHz,雷射切割速率為800mm/min) 9043-A51284-TW 11 201003957 在FTO層刻劃出平行溝槽,形成上電極圖案。該些溝槽 寬度約為50〜150 μπι,該些上電極之寬度約為〇.7 。 接著以輝光放電形成I>IN結構之氫化非晶矽於上電 極上作為半導體層。P層之厚度為層之厚度 為300〜600 nm,且N層之厚度為15〜3〇nm。接著以以波 長為532nm之固態Nd:YAG雷射(脈寬介於8〇〜1〇〇μπι之 間,脈衝頻率約為14kHz,雷射切割速率為8〇〇mm/min) 將半導體層刻劃成複數個光伏單元。該些光伏單元之寬度 約為0.7 cm。 接著以濺鍍法或蒸鍍法形成鋁層於光伏單元上,並以 網印法形成20 μΐη厚之PE臈於鋁層上。接著以波長為 532nm之固恝Nd:YAG雷射(脈寬介於1〇〇〜12〇μιη之間, 脈衝頻率約為14kHz,雷射切割速率為8〇〇111111/111丨11)在ρΕ 膜、銘層、及半導體層上刻劃出平行溝槽。該些溝槽寬度The lower electrode 222, the photovoltaic unit 220, and the upper electrode 218 form a photovoltaic cell 212, and the parallel juxtaposed photovoltaic cells 212 constitute the thin film solar cell module of the present invention. The anti-etching layer 241 described above can be retained as a protective layer to extend the life of the thin film solar cell module. In another embodiment of the present invention, the anti-etching layer 241 may be further removed as shown in Fig. 2H, as appropriate and not necessarily. When the anti-etching layer 241 is an organic material, the method of removing the anti-etching layer 2 4 i may be high-temperature ashing or removal by dissolution with an organic solvent. When the anti-corrosion layer 241 is an inorganic material, the removal method may be chemical #刻, plasma residual, or SpUtterEtching. To make the skilled person more aware of the features of the present invention, the following examples are exemplified. [Examples] A 300 to 1 Å thick tin fluoride oxide layer (hereinafter referred to as FTO) was formed on a glass substrate by a mineralization method or a chemical vapor deposition method. The above glass substrate was purchased from TEC-15 sold by PILKINGTONG, USA. Solid-state Nd:YAG laser with a wavelength of 1064 nm (pulse width between 50 and 150 μm, pulse frequency of about 14 kHz, laser cutting rate of 800 mm/min) 9043-A51284-TW 11 201003957 Characterized in the FTO layer Parallel trenches form an upper electrode pattern. The trenches have a width of about 50 to 150 μm, and the upper electrodes have a width of about 7.7. Next, a hydrogenated amorphous germanium of the I>IN structure is formed by glow discharge as a semiconductor layer on the upper electrode. The thickness of the P layer is such that the thickness of the layer is 300 to 600 nm, and the thickness of the N layer is 15 to 3 Å. The semiconductor layer is then engraved with a solid-state Nd:YAG laser with a wavelength of 532 nm (with a pulse width between 8 〇 and 1 〇〇μπι, a pulse frequency of about 14 kHz, and a laser cutting rate of 8 〇〇mm/min). Divided into a plurality of photovoltaic units. The photovoltaic units have a width of about 0.7 cm. Next, an aluminum layer is formed on the photovoltaic cell by sputtering or evaporation, and a 20 μΐ thick PE layer is formed on the aluminum layer by screen printing. Next, a solid-state Nd:YAG laser with a wavelength of 532 nm (pulse width between 1 〇〇 and 12 〇μηη, pulse frequency of about 14 kHz, laser cutting rate of 8 〇〇 111111/111 丨 11) Parallel trenches are scribed on the film, the inscription layer, and the semiconductor layer. The width of the grooves

為100〜120岬之間且露出FT〇g。之後以保留之四膜 作為抗㈣層,以顧溶液將平行溝射料屑移除。待 酸钮刻步躲束後,以氫氧水溶液及清水水洗方式去除 PE膜及清洗乾淨,並以風刀吹乾,即得圖案化之銘層作 ::!極Z些下電極之寬度為0,7 cm。至此即完成本發 池,其具有下電極、光伏單及上電極。 ^=2明已以數個實施例揭露如上,然其並非用以 二太二月二:何所屬技術領域中具有通常知識者,在不 範圍内’當可作任意之更動與潤飾, 者為準。χ呆濩範圍當視後附之申請專利範圍所界定It is between 100 and 120 且 and exposes FT〇g. Then, the four films retained are used as the anti-(four) layer, and the parallel groove shots are removed by the solution. After the acid button is removed, the PE film is removed by washing with hydrogen and water and water, and dried with an air knife. The patterned layer is made::! The width of the lower electrode is 0,7 cm. This is the completion of the cell, which has a lower electrode, a photovoltaic cell and an upper electrode. ^=2 明 has been exposed as above in several embodiments, but it is not used in the second part of February 2: Whoever has the usual knowledge in the technical field, in the scope of 'can be used for any change and retouching, quasi. The scope of the stagnation is defined by the scope of the patent application attached to it.

9043-A51284-TW 12 201003957 【圖式簡單說明】 第1A-1G圖係習知技藝中,形成薄膜太陽能電池模組 之製程剖示圖;以及 第2A-2H圖係本發明一實施例中,形成薄膜太陽能電 池模組之製程剖示圖。 【主要元件符號說明】 112、212〜光伏電池; 114〜透明基板; 118、218〜上電極, 122、222〜下電極; 131、231〜碎屑; 134、234〜半導體材料層; 138〜雷射; 120、220〜光伏單元; 124、126、129〜溝槽; 132〜導電透明氧化層; 136〜金屬層; 214〜基板; 224〜第一溝槽; 229〜第三溝槽; 226〜第二溝槽; 232、236〜導電層; 238〜雷射; 241〜抗钱刻層。 9043-A51284-TW 139043-A51284-TW 12 201003957 [Simplified Schematic] FIG. 1A-1G is a schematic cross-sectional view showing a process for forming a thin film solar cell module; and FIG. 2A-2H is an embodiment of the present invention, A process cross-sectional view of forming a thin film solar cell module. [Main component symbol description] 112, 212 ~ photovoltaic cell; 114 ~ transparent substrate; 118, 218 ~ upper electrode, 122, 222 ~ lower electrode; 131, 231 ~ debris; 134, 234 ~ semiconductor material layer; 120; 220 ~ photovoltaic unit; 124, 126, 129 ~ trench; 132 ~ conductive transparent oxide layer; 136 ~ metal layer; 214 ~ substrate; 224 ~ first trench; 229 ~ third trench; Second groove; 232, 236~ conductive layer; 238~laser; 241~ anti-money layer. 9043-A51284-TW 13

Claims (1)

201003957 十、申請專利範固: 組的形成方法 包括: J‘一種薄膜太陽能電池模 提供一基板; 、屯/曰仍皤逍明基板上; 雷射切割該第一導電声 第一溝槽露出部份絲板曰並將該第魏第^溝槽,'該些 個上電極; 層分隔成複數 一^成—半導體材料層於該些上電極上並填滿該些第 該4射體材料層以形成複數個第二溝槽,且 分隔料μ㈣料半導體材料層 溝槽形成-第二導電層於該光伏單元上並填滿該些第二 形成一抗蝕刻層於該導電層上; 單元=:=抗钱刻層、該第二導電層、以及該些光伏 極並將‘第〜i個第二溝槽’該些第三溝槽露出部份上電 、’將^弟一導電層分隔成複數個下電極;以及 進行二蝕刻步驟去除雷射切割時產生之碎屑; 雷;1¾ iί f上電極與該基板均為透光材質及/或該些下 電極為透光材質。 沾Λ如巾料利範圍第1項収之_太祕電池模組 、化方法’更包括在該㈣製程之後移除該抗钱刻層。 3:如中請專利範圍第w所述之薄膜太陽能電池模組 土升y成方法其中戎基板係透光材料或不透光材料,該透 、,材料包括玻璃、塑膠、或合成樹脂,且該不透光材料包 9043-A51284-TW 14 201003957 括金屬基板、石夕晶圓基板、或寶石基板。 4. 如申請專利範圍第1項所述之薄膜太陽能電池模組 的形成方法,其中該第一導電層及該第二導電層包括透光 材料或不透光材料,該透光材料包括導電高分子或金屬氧 化物,且該不透光材料包括金屬。 5. 如申請專利範圍第1項所述之薄膜太陽能電池模組 的形成方法,其中該半導體材料層包括PIN結構之氫化非 晶石夕、硫化編/蹄化編、或硫化錢/銅銦砸化物。 6. 如申請專利範圍第1項所述之薄膜太陽能電池模組 r 1 的形成方法,其中該抗蝕刻層包括有機材料或無機材料, 該有機材料包括樹脂與高分子,且該無機材料包括金屬氧 化物、金屬化合物、或砍化物。 7. 如申請專利範圍第1項所述之薄膜太陽能電池模組 的形成方法,其中該蝕刻步驟包括濕蝕刻或乾蝕刻。 8. —種薄膜太陽能電池模組,包括: 一基板; 複數個上電極形成於該透明基板上,且該些上電極被 ( 複數個第一溝槽隔開; 複數個光伏單元形成於該些第一溝槽中及該些上電 極上,且該些光伏單元被複數個第二溝槽隔開; 一下電極形成於該些第二溝槽中及該些光伏單元 上,該些下電極被複數個第三溝槽隔開,且該些第三溝槽 穿過該些光伏單元以露出部份上電極;以及 一抗蝕刻層形成於該些下電極上; 其中該些上電極與該基板均為透光材質及/或該些下 電極為透光材質。 9043-A51284-TW 15 201003957 9. 如申請專利範圍第8項所述之薄膜太陽能電池模 組,其中該基板係透光材料或不透光材料,該透光材料包 括玻璃、塑膠、或合成樹脂,且該不透光材料包括金屬基 板、石夕晶圓基板、或寶石基板。 10. 如申請專利範圍第10項所述之薄膜太陽能電池模 組,其中該些上電極及該些下電極包括包括透光材料或不 透光材料,該透光材料包括導電高分子或金屬氧化物,且 該不透光材料包括金屬。 11. 如申請專利範圍第10項所述之薄膜太陽能電池模 s 組,其中該光伏單元包括PIN結構之氳化非晶矽、硫化鎘 /碌化録、或硫化錦/銅銦砸化物。 12. 如申請專利範圍第10項所述之薄膜太陽能電池模 組,其中該抗蝕刻層包括有機材料或無機材料,該有機材 料包括樹脂與高分子,且該無機材料包括金屬氧化物、金 屬化合物、或砍化物。 9043-A51284-TW 16201003957 X. Patent application: The formation method of the group includes: J' a thin film solar cell module providing a substrate; and 屯/曰 still on the substrate; laser cutting the first conductive sound first trench exposed portion And the first electrode; the layer is divided into a plurality of layers of semiconductor material on the upper electrodes and fills the fourth body material a layer to form a plurality of second trenches, and a spacer material (four) semiconductor material layer trench is formed - a second conductive layer on the photovoltaic cell and filling the second portions to form an anti-etching layer on the conductive layer; =:= anti-corrugated layer, the second conductive layer, and the photovoltaic poles and the 'first to second second trenches' of the third trench exposed portions are powered, 'will be a conductive layer Separating into a plurality of lower electrodes; and performing two etching steps to remove debris generated during laser cutting; Ray; 13⁄4 iί f upper electrode and the substrate are both light transmissive materials and/or the lower electrodes are light transmissive materials. Λ Λ 巾 巾 巾 利 第 第 第 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3: The method for increasing the thickness of a thin film solar cell module according to the above-mentioned patent scope, wherein the substrate is a light-transmitting material or an opaque material, and the material comprises glass, plastic, or synthetic resin, and The opaque material package 9043-A51284-TW 14 201003957 includes a metal substrate, a stone substrate, or a gem substrate. 4. The method of forming a thin film solar cell module according to claim 1, wherein the first conductive layer and the second conductive layer comprise a light transmissive material or an opaque material, and the light transmissive material comprises a high conductive material. A molecule or metal oxide, and the opaque material comprises a metal. 5. The method of forming a thin film solar cell module according to claim 1, wherein the semiconductor material layer comprises a hydrogenated amorphous PIN structure of a PIN structure, a vulcanization/hoof modification, or a vulcanization/copper indium bismuth Compound. 6. The method of forming a thin film solar cell module r1 according to claim 1, wherein the anti-etching layer comprises an organic material or an inorganic material, the organic material comprising a resin and a polymer, and the inorganic material comprises a metal An oxide, a metal compound, or a cleavage compound. 7. The method of forming a thin film solar cell module according to claim 1, wherein the etching step comprises wet etching or dry etching. 8. A thin film solar cell module comprising: a substrate; a plurality of upper electrodes formed on the transparent substrate, and the upper electrodes are separated by (a plurality of first trenches; a plurality of photovoltaic cells are formed in the plurality of photovoltaic cells) a first trench and the upper electrodes, and the photovoltaic cells are separated by a plurality of second trenches; a lower electrode is formed in the second trenches and the photovoltaic cells, the lower electrodes are a plurality of third trenches are spaced apart, and the third trenches pass through the photovoltaic cells to expose a portion of the upper electrodes; and an anti-etching layer is formed on the lower electrodes; wherein the upper electrodes and the substrate The light-transmissive material and/or the lower electrode are made of a light-transmissive material. 9043-A51284-TW 15 201003957 9. The thin film solar cell module according to claim 8, wherein the substrate is a light-transmitting material or The opaque material comprises glass, plastic, or synthetic resin, and the opaque material comprises a metal substrate, a stone substrate, or a gem substrate. 10. According to claim 10 Thin film solar cell The group, wherein the upper electrodes and the lower electrodes comprise a light transmissive material or an opaque material, the light transmissive material comprises a conductive polymer or a metal oxide, and the opaque material comprises a metal. The thin film solar cell module set according to the item 10, wherein the photovoltaic unit comprises a PIN structure of deuterated amorphous germanium, cadmium sulfide/lithium, or sulfurized gold/copper indium telluride. The thin film solar cell module of claim 10, wherein the anti-etching layer comprises an organic material or an inorganic material, the organic material comprising a resin and a polymer, and the inorganic material comprises a metal oxide, a metal compound, or a decomposed product. -A51284-TW 16
TW097126050A 2008-07-10 2008-07-10 Thin film photovoltaic cell module and method for manufacturing the same TW201003957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097126050A TW201003957A (en) 2008-07-10 2008-07-10 Thin film photovoltaic cell module and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097126050A TW201003957A (en) 2008-07-10 2008-07-10 Thin film photovoltaic cell module and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW201003957A true TW201003957A (en) 2010-01-16

Family

ID=44825732

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097126050A TW201003957A (en) 2008-07-10 2008-07-10 Thin film photovoltaic cell module and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW201003957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498213B (en) * 2010-03-25 2015-09-01 Solutia Inc Photovoltaic module with stabilized polymer
US10665740B2 (en) 2015-06-11 2020-05-26 Jusung Engineering Co., Ltd. Thin film type solar cell and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498213B (en) * 2010-03-25 2015-09-01 Solutia Inc Photovoltaic module with stabilized polymer
US10665740B2 (en) 2015-06-11 2020-05-26 Jusung Engineering Co., Ltd. Thin film type solar cell and manufacturing method therefor
TWI703737B (en) * 2015-06-11 2020-09-01 南韓商周星工程股份有限公司 Thin film type solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2010278441A (en) Integrated thin-film solar cell and method of manufacturing the same
JP2010157687A (en) Thin film type solar cell and method of manufacturing the same
JPH0472392B2 (en)
US20100288329A1 (en) Thin Film Type Solar Cell and Method for Manufacturing the Same
JP2006332453A (en) Thin film solar battery and method for manufacturing the same
JP6817764B2 (en) Solar cell and manufacturing method of solar cell
WO2012132655A1 (en) Back-junction photoelectric conversion element and method for manufacturing back-junction photoelectric conversion element
JP2011023690A (en) Method of aligning electrode pattern in selective emitter structure
CN115188837B (en) Back contact solar cell, preparation method and cell assembly
WO2010117697A2 (en) Monolithic integration of photovoltaic cells
JPWO2010064549A1 (en) Method for manufacturing thin film photoelectric conversion device
US8173483B2 (en) Method of manufacturing solar cell
JP2014112600A (en) Method for manufacturing back-electrode-type solar cell and back-electrode-type solar cell
JPH0851229A (en) Integrated solar battery and its manufacture
TW201003957A (en) Thin film photovoltaic cell module and method for manufacturing the same
TWI495136B (en) Solar cell and method for manufacturing the same
JP2012069566A (en) Thin film solar cell manufacturing method
WO2019227804A1 (en) Solar cell and preparation method therefor
TW201937748A (en) Method for producing solar cell
CN110634999A (en) Solar cell and manufacturing method thereof
JP2013168605A (en) Manufacturing method of solar cell
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
JP2014086587A (en) Method for manufacturing solar cell and solar cell
TW201003955A (en) Method for patterning a conductive layer, thin film photovoltaic cell module and method for manufacturing the same
JP5957102B2 (en) Manufacturing method of solar cell