TW200952106A - Test system - Google Patents

Test system Download PDF

Info

Publication number
TW200952106A
TW200952106A TW098118028A TW98118028A TW200952106A TW 200952106 A TW200952106 A TW 200952106A TW 098118028 A TW098118028 A TW 098118028A TW 98118028 A TW98118028 A TW 98118028A TW 200952106 A TW200952106 A TW 200952106A
Authority
TW
Taiwan
Prior art keywords
wafer
semiconductor wafer
test
semiconductor
alignment mark
Prior art date
Application number
TW098118028A
Other languages
Chinese (zh)
Other versions
TWI379369B (en
Inventor
Yoshio Komoto
Yoshiharu Umemura
Yasuo Tokunaga
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Publication of TW200952106A publication Critical patent/TW200952106A/en
Application granted granted Critical
Publication of TWI379369B publication Critical patent/TWI379369B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A test system is provided, which tests several semiconductor chips formed on a semiconductor wafer. The test system includes a chamber, in which the semiconductor wafer is moved; a testing wafer, fixed in the chamber and provided with several bumps conductively connected with the pads of several semiconductor chips; a wafer stage which moves the semiconductor wafer to a position opposite to the testing wafer by carrying and moving the semiconductor wafer in the chamber; a decison portion, installed at a specified position relative to the wafer stage, and detects the position of an alignment mark installed on the semiconductor wafer by scanning at least a portion of the surface of the semiconductor wafer when the semiconductor wafer is carried on the wafer stage and moved relatively to the wafer stage; and a position control portion which regulates the position of the semiconductor wafer carried on the wafer stage according to the position of the alignment mark detected by the decision portion.

Description

200952106 J J J 丄 .doc 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一 統。特別是關於—種^導體晶片進行娜試的挪 晶片進峨的測體晶圓上所形成的多個半導: 【先前技術】 作為對在半導體s 測試的裝置,已知右^s斤形成的多個半導體晶片、隹 J衣1已知有利用探針卡的,晉,兮h私日日片進行 圓上的多個焊墊(pad)電極統—n雜針卡可野晶 在該裝置中,是在使探 4照專利文獻 狀續入至檢查裝置 體吸附的 〔專利文獻”日本^^的檢查。 173503號公報 早J公開之特開 2006- 但是,在上述的裝置中,3 圓及探針卡從檢查裝置搬①在仏查結束後將被測試晶 試晶圓吸附在_針卡3:使接ΐΐ'進行檢查的被測 針卡也必須從檢查裝置搬出。因:不二破測試晶圓,探 對被測試晶圓及探針卡間的對準和檢查裝;:試:,= 調整,此’測試轉會針 而達成。而且,從屬項規定本發明的::有利 .i.doc 200952106 ^為了解決上述課題,本發明的第1形態提供一種測試 系統,為種對半導體晶圓上所形成的多個半導體晶片進 行測試之測試系統,包括:室體,其搬運半導體晶圓;測 試用晶圓,其固定在室體内,設置有與多個半導體晶片的 焊墊統一進行電氣連接的多個凸塊;晶圓載台,其藉由在 室體内載置半導體晶圓並進行移動,而使半導體晶圓移動 到與測試用晶圓對向的位置上;測定部,其對晶圓載台設 置在規定的位置上,當為了將半導體晶圓載置在晶圓載臺 上而使半導體晶圓對晶圓載台進行移動時,藉由掃描半導 體晶圓的表面的至少-部分,而债測半導體晶圓上所設置 的對準標諸的位置;以及位置控制部,其根據測定部所測 定的對準標諸的位置,對晶圓載臺上所載置的半導體晶圓 的位置進行調整。 本發明的第2开> 悲提供一種測試系統,為一種對半導 體晶圓上所形成的多個半導體晶片進行測試之測試系統, 包括:室體,其搬運半導體晶圓;測試用晶圓,其固定在 ° 室體内,設置有與多個半導體晶片的焊墊統一進行電氣連 接的多個凸塊;晶圓載台,其藉由在室體内載置半導體晶 圓並進行移動,而使半導體晶圓移動到與測試用晶圓 的位置上;測定部,其設置在晶圓載台的移動路徑上,藉 由掃描該晶圓載臺上所載置的半導體晶圓的表面的至少二 部分,而偵測半導體晶圓上所設置的對準標誌的位置丨以 及位置控制部,其根據測定部所測定的對準標誌的位置, 對半導體晶圓的位置進行調整。 •doc 200952106 另外,上述發明的概要並未列舉發明的必要特徵的全 β ’匕們的4寸彳政群的子集(sub_combinati〇n)也可又形成發 明。 【實施方式】 以下通過發明的貫施形態來對本發明進彳于說明,但 以下的實施形態並不對關於申請專利範圍的發明進行限 定。而且’實施形態中所說明之特徵的組合的全部也未必 是發明的解決方法所必須者。 圖1所示為關於一實施形態的測試系統400的概要。 測試系統400對半導體晶圓300上所形成的多個半導體晶 片進行測試。而且,測試系統4〇〇可並列地對多個半導體 晶圓300進行測試。測試系統4〇〇具有控制裝置1〇、多個 室體20、搬運部4〇及晶圓盒(cassetie)6〇。 控制裝置10控制該測試系統4〇〇。例如,控制裝置1 〇 可控制室體20、搬運部40及晶圓盒60。室體20依次接收 應測試的半導體晶圓3〇〇 ’並在室體20的内部對半導體晶 圓300進行測試。各個室體2〇可獨立地測試半導體晶圓 300。亦即,各個室體2〇可不與其它的室體2〇同步地,對 半導體晶圓300進行測試。 晶圓盒60存儲多個半導體晶圓3〇〇。搬運部4〇將應 測试的多個半導體晶圓300依次搬運到各個室體例 如,搬運部40將晶圓盒60所存儲的各個半導體晶圓3〇〇, 搬運到空閒的某個室體2〇内。而且,搬運部4〇可將測試 結束的半導體晶圓300,從室體2〇搬出並存儲在晶圓盒6〇 —•aoc 200952106 中 圖2為測试系統4〇〇的測試概要明 利用測試用晶圓削來對半導體晶圓的 體晶片310進行測續。:卜十 谷個+導 仃,貝以暮式用晶圓100預先設置在圖 不的各個室體20内。 口 1所 同的⑽可由與測試對象的半導體晶圓3〇〇相 ° 、紐才料形成。例如,半導體晶圓300可為圓如 的半導體晶圓。更具體地說,半導體晶圓可為 合物半導體等其它的半導體晶圓。 而且,測試用晶目100可與測試對象的半導體晶圓3〇〇 具有大致相同的直徑。半導體晶圓300在室體20内 用晶圓100所對向的規定的位置掛準。然後,藉由使 體晶圓進行移動以與測試用晶圓刚重合,從而使測試用 晶圓100的多個晶圓側連接焊墊112和多個半導體晶片 310的檢查用的焊整統一地進行電氣連接。 、一 例如’半導體晶圓獅在室體2Q内被載置在晶圓載臺 ° 上’並利用晶圓載台而移動到與測試用曰曰曰1 100對向的位 置上。測试用晶圓100及晶圓載台的相對位置預先進行調 整。因此,測試系統400可藉由將半導體晶目3〇〇載置在 晶圓載台表面的規定的位置上’而對測試用晶圓1〇〇來將 半導體晶圓300與規定的位置進行對準。 、 在測試用晶圓100的與半導體晶圓300對向的面上, 可形成與半‘貼·日日片310的各個焊墊相對應的多個焊塾。 另外,測試用晶圓100及半導體晶圓3⑻可藉由直接接觸 200952106200952106 J J J 丄 .doc VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a system. In particular, a plurality of semi-conductors formed on a wafer of a test wafer in which a conductor wafer is subjected to a test: [Prior Art] As a device for testing semiconductors, it is known that the right A plurality of semiconductor wafers, 隹J clothes 1 are known to have a plurality of pad electrodes on the circle by using a probe card, and the n-pin card can be used in the circle. In the device, the inspection of the patent document "Japanese Patent Publication" is carried out in the case of the inspection of the patent document. The Japanese Patent Publication No. 173503 (JP-A-2006-1995), however, in the above-mentioned apparatus, The circle and the probe card are moved from the inspection device. After the inspection, the test wafer is adsorbed on the _ needle card 3: the needle card to be inspected must be removed from the inspection device. 2. Break the test wafer and probe the alignment and inspection between the tested wafer and the probe card; test:, = adjust, this 'test transfer needle is reached. Moreover, the subordinate item stipulates the invention: Advantageously, i.doc 200952106^ In order to solve the above problems, a first aspect of the present invention provides a test system. A test system for testing a plurality of semiconductor wafers formed on a semiconductor wafer, comprising: a chamber body carrying a semiconductor wafer; a test wafer fixed in the chamber and provided with a plurality of semiconductor wafers a plurality of bumps electrically connected in a unified manner; the wafer stage moves the semiconductor wafer to a position facing the test wafer by placing and moving the semiconductor wafer in the chamber; The measuring unit is provided at a predetermined position on the wafer stage, and when the semiconductor wafer is moved to the wafer stage in order to mount the semiconductor wafer on the wafer stage, at least the surface of the semiconductor wafer is scanned a portion, wherein the alignment is set at a position on the semiconductor wafer; and a position control unit that mounts the semiconductor crystal on the wafer stage according to the position of the alignment target measured by the measuring portion Adjustment of the position of the circle. The second opening of the present invention provides a test system for testing a plurality of semiconductor wafers formed on a semiconductor wafer, a chamber for transporting a semiconductor wafer; a test wafer fixed in the chamber; a plurality of bumps integrally connected to the pads of the plurality of semiconductor wafers; and a wafer stage The semiconductor wafer is placed in the chamber and moved to move the semiconductor wafer to the position of the test wafer. The measuring unit is disposed on the movement path of the wafer stage, and the wafer stage is scanned by Locating at least two portions of the surface of the semiconductor wafer on which the semiconductor wafer is mounted, and detecting the position of the alignment mark provided on the semiconductor wafer and the position control portion, according to the position of the alignment mark measured by the measuring portion, The position of the semiconductor wafer is adjusted. •doc 200952106 In addition, the summary of the above invention does not enumerate the essential features of the invention. The entire β's 4 inch group of sub-community groups (sub_combinati〇n) may also be invented. [Embodiment] The present invention will be described below with reference to the embodiments of the invention. However, the following embodiments do not limit the invention of the claims. Further, all of the combinations of the features described in the embodiments are not necessarily required for the solution of the invention. FIG. 1 shows an overview of a test system 400 in accordance with an embodiment. Test system 400 tests a plurality of semiconductor wafers formed on semiconductor wafer 300. Moreover, the test system 4 can test a plurality of semiconductor wafers 300 side by side. The test system 4 has a control device 1A, a plurality of chamber bodies 20, a transport portion 4A, and a cassette (cassetie). The control device 10 controls the test system 4〇〇. For example, the control device 1 can control the chamber body 20, the transport portion 40, and the wafer cassette 60. The chamber body 20 sequentially receives the semiconductor wafer 3' to be tested and tests the semiconductor wafer 300 inside the chamber body 20. Each of the chambers 2 can independently test the semiconductor wafer 300. That is, each of the chamber bodies 2 can be tested on the semiconductor wafer 300 without being synchronized with the other chambers. The wafer cassette 60 stores a plurality of semiconductor wafers 3A. The transport unit 4 sequentially transports the plurality of semiconductor wafers 300 to be tested to the respective chambers. For example, the transport unit 40 transports the respective semiconductor wafers 3 stored in the wafer cassette 60 to a certain chamber 2 that is free. Inside. Further, the transport unit 4 can carry out the test-completed semiconductor wafer 300 from the chamber body 2 and store it in the wafer cassette 6〇-•aoc 200952106. FIG. 2 is a test summary of the test system 4〇〇. The wafer wafer 310 of the semiconductor wafer is tested by wafer cutting. : 卜 十 谷 + 导 仃 贝 贝 贝 贝 贝 贝 贝 贝 贝 贝 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The same (10) of the port 1 can be formed by the semiconductor wafer of the test object. For example, semiconductor wafer 300 can be a round semiconductor wafer. More specifically, the semiconductor wafer can be a semiconductor wafer or the like. Moreover, the test crystal 100 can have substantially the same diameter as the semiconductor wafer 3 of the test object. The semiconductor wafer 300 is mounted in the chamber body 20 at a predetermined position facing the wafer 100. Then, by moving the bulk wafer to coincide with the test wafer, the plurality of wafer side connection pads 112 of the test wafer 100 and the plurality of semiconductor wafers 310 are uniformly welded for inspection. Make electrical connections. For example, the 'semiconductor wafer lion is placed on the wafer stage ° in the chamber 2Q' and moved to the position facing the test cassette 1 100 by the wafer stage. The relative positions of the test wafer 100 and the wafer stage are adjusted in advance. Therefore, the test system 400 can align the semiconductor wafer 300 with a predetermined position by testing the wafer 1 by placing the semiconductor crystal lens 3 at a predetermined position on the surface of the wafer stage. . On the surface of the test wafer 100 that faces the semiconductor wafer 300, a plurality of solder pads corresponding to the respective pads of the half-paste-day wafer 310 can be formed. In addition, the test wafer 100 and the semiconductor wafer 3 (8) can be directly contacted by 200952106.

' X / V/L/H..d〇C 而進行電氣連接,而且,也可利用靜電結合、感應接合等 觸的結合而進行電氣連接。而且,測試用晶圓100及 +導體晶圓300也可經由光傳送路而收發信號。 、—測,用晶圓100可藉由與測試對象的半導體晶圓300 進二電氣連接,而在控制裝置]G和半導體晶圓之間傳 达信號。例如,半導體晶圓3⑻可將控制 測試信號,供給到半導體晶圓300的各個半導體晶片训'。 ^送===麵彻W所輸出的信 相二多: = 體晶請 個半導體晶片310 -對—對^地而It用晶圓⑽可與多 各個電路部no可生成供給至情岸而=、=電路部110。 唬,而且,也可處理對應的半導體晶片3 。 各個電路部110可獨立地承彳輸出 這種情況下,麵置 力及控制信號等。了對路部H0供給電源電 圖3所示為將半導體晶圓3〇〇與晶_台41() 的位置進打對準之方法的一個例子。 _ 4H)及半導體晶圓的上面H心斤示為晶圓載台 右、目丨…划兮、日卜 圖。本例的測試系統400呈 有測疋部406’ _疋部4〇6予員先 二 相對位置。而且,在半導體曰圓如n 囫載口 4]〇的 形成了對準標誌、226。曰曰〇 〇〇的預先確定的位置上 測定部偏在為了將半導體晶圓300載置在晶圓載台 200952106 4/0上’亚使半導體晶圓300對晶圓載台4]0進行移動時, 藉由掃“半^r體晶圓300的表面的至少一部分,從而彳貞測 ,半導體晶圓3〇〇上所設置的對準標諸的位置。例如,測 ,部406能以拍攝半導體晶圓3〇〇所通過的區域的預先確 疋的固疋掃描位置之形態而設置,並藉由使半導體晶圓 3〇〇通過該掃描位置,從而掃描該半導體晶圓 300的表面 的至少一部分。 例如在半導體晶圓300中,如在與晶圓載台410對 向的面上形成對準標誌、226,則測定條 葡厶410 j人且I日日圓 :二ft導體晶圓3〇0中,如在與晶圓載台410對向的 、月 形成對準標誌226 ’則測定部406玎言5·罟:&曰'X / V / L / H..d〇C is electrically connected, and it can also be electrically connected by a combination of electrostatic bonding, induction bonding, or the like. Further, the test wafer 100 and the +conductor wafer 300 can transmit and receive signals via the optical transmission path. The wafer 100 can be electrically connected to the semiconductor wafer 300 of the test object to transmit a signal between the control device G and the semiconductor wafer. For example, the semiconductor wafer 3 (8) can supply control test signals to the respective semiconductor wafers of the semiconductor wafer 300. ^Send===The surface of the signal output is more than two: = The crystal wafer 310 is selected for the body crystal, and the wafer (10) can be generated and supplied to the bank. =, = circuit portion 110. Oh, and the corresponding semiconductor wafer 3 can also be processed. Each of the circuit units 110 can independently support the output of the surface, the control signal, and the like. The power supply to the path portion H0 is shown in Fig. 3 as an example of a method of aligning the positions of the semiconductor wafer 3A with the crystal plate 41(). _ 4H) and the top of the semiconductor wafer H is shown as the wafer stage. Right, the target... The test system 400 of this example has a test portion 406'_疋4〇6 for the first two relative positions. Further, an alignment mark, 226 is formed in the semiconductor dome such as the n 囫 carrier port 4]. In the predetermined position of the 曰曰〇〇〇, the measurement unit is biased in order to mount the semiconductor wafer 300 on the wafer stage 200952106 4/0, and the semiconductor wafer 300 is moved to the wafer stage 4]0. By scanning at least a portion of the surface of the semiconductor wafer 300, the position of the alignment on the semiconductor wafer 3 is measured. For example, the portion 406 can capture the semiconductor wafer. And arranging at least a portion of the surface of the semiconductor wafer 300 by passing the semiconductor wafer 3 through the scanning position. For example, In the semiconductor wafer 300, if an alignment mark or 226 is formed on a surface facing the wafer stage 410, the strip is measured and the I-day yen: two ft-conductor wafers 3〇0, such as The alignment mark 226' is formed on the moon opposite to the wafer stage 410. The measurement unit 406 玎5·罟:&曰

口 、…、亚對通過上方的半導體晶圓300進行攝像。 =部406設置在與對準標諸挪 崖/去。姑、':日il 士七4 …Ports, ..., sub-pairs are imaged by the upper semiconductor wafer 300. The = portion 406 is set at the alignment with the coordinates of the cliff / go. Gu, ': 日il 士士七4...

226的位置相對應的位 试予半導體晶圓300的 半導體晶圓300和晶圓 晶圓300被搬運到室體 丄.doc 200952106 20内之前大致地進行調整。 因此,如圖3所示,測定部4〇6可使對半導體晶圓3〇〇 的行進方向(以下稱作γ方向)成垂直之方向(以下稱作 X方向)上的攝像範園,設定得較半導體晶圓3〇〇的直徑 還小。例如,測定部406的X方向上的拍攝範圍為對準標 諸226的2〜3倍左右。測定部4〇6為了可偵測χ方向上 的對準標誌22〇的位置,而具有沿著χ方向按照規定的間 距(pitch)排列的多個攝像元件。 而且,測疋部406的X方向上的位置可變更地設置。 測試系 '统4〇〇可根據予員先所職予的對準標言志226的位置數 據,而變更測定部406的X方向上的位置。 而且’測定部4G6在X方向的軸上於不同的位置設置 有多個。在這種情況下,可偵測多個對準標該22 6的位置, 所以能夠精度更好地偵測半導體晶圓的位置。 圖4所示為測定部傷進行婦描之圖像的一部分。如 上所述叙σ[Μ06沿著X方向具有多個攝像元件4〇7, 所以可以與攝像元件術關距相稱崎析度,偵測χ方 向上的對準標誌、226的位置。攝像元件的間距較對準 標^ 226的Χ方向上的寬度小時較佳。而且,攝像元件4〇7 ,較,差的容許範圍小較佳,其中,對準誤差的 容§午範圍是依據半導辦S圓1⑽ 、 —Λ二十—牛日日0 300及測試用晶圓]〇〇的終端 測試系統400從各個測定部406所拍攝的圖 仏,横測各個對準標鍵、226的X方向的位置。 而且,測試系統4〇〇的位置控制部可根據各個測定部 “•doc 200952106 40ό偵測各個對準標誌226時的時 一 誌226的Y方向上的位置。例如,位置^算各個對準標 定部406偵測對準標誌226後, :制部是在各個測 3〇〇沿著Y方向只移動若干距離】半導體晶圓 上,來偵測將半導體晶圓300載置右曰 曰日圓載台410 對準標諸226的Y方向位置。在曰曰圓载台上後的 而且,測試系、統400的位置控制部可 法所偵測的各個對準標誌22ό的X方a 豕利用上述方 位置,來計算半導體晶圓300的旋轉:、位置及Y方向的 圓300的旋轉量,是表示在與晶圓二的=晶 例如,測試系統彻的位置控見進行旋轉的量。 Γ 所賦予的對準標誌226的正The position corresponding to the position of 226 is roughly adjusted before the semiconductor wafer 300 and the wafer wafer 300 of the semiconductor wafer 300 are transported into the chamber body 丄.doc 200952106. Therefore, as shown in FIG. 3, the measuring unit 4〇6 can set the imaging range in the direction in which the traveling direction of the semiconductor wafer 3 (hereinafter referred to as the γ direction) is perpendicular (hereinafter referred to as the X direction). It is smaller than the diameter of the semiconductor wafer. For example, the imaging range of the measuring unit 406 in the X direction is about 2 to 3 times that of the alignment target 226. The measuring unit 4〇6 has a plurality of imaging elements arranged at a predetermined pitch along the x-direction in order to detect the position of the alignment mark 22〇 in the x-direction. Further, the position of the measuring unit 406 in the X direction is changeably provided. The test system can change the position of the measuring unit 406 in the X direction based on the position data of the alignment mark 226 which the user first assigned. Further, the measuring unit 4G6 is provided at a plurality of positions on the axis in the X direction at different positions. In this case, the position of the plurality of alignment targets can be detected, so that the position of the semiconductor wafer can be detected with higher precision. Fig. 4 shows a part of the image of the measurement of the lesion. As described above, σ06 has a plurality of image pickup elements 4〇7 along the X direction, so that the resolution of the image pickup element can be commensurate with the resolution of the image pickup element, and the position of the alignment mark 226 in the χ direction can be detected. It is preferable that the pitch of the image pickup element is smaller than the width in the Χ direction of the alignment mark 226. Moreover, the imaging element 4〇7 has a smaller tolerance range, and the tolerance range of the alignment error is based on the semi-guided S circle 1 (10), the Λ20-牛日日 0 300, and the test. The wafer terminal 测试 terminal test system 400 horizontally measures the position of each of the alignment keys 226 in the X direction from the map taken by each measurement unit 406. Further, the position control unit of the test system 4 can determine the position in the Y direction of the time 226 when each of the alignment marks 226 is detected by each measurement unit "•doc 200952106 40. For example, the position calibration is performed for each alignment calibration. After the portion 406 detects the alignment mark 226, the portion is moved on the semiconductor wafer only in the Y direction in each measurement, to detect that the semiconductor wafer 300 is placed on the right-hand Japanese yen stage. 410 is aligned with the Y-direction position of the index 226. After the round-shaped stage is mounted, the position control unit of the test system 400 can detect the X-squares of each of the alignment marks 22ό. The position is calculated by the rotation of the semiconductor wafer 300: the amount of rotation of the circle 300 in the position and the Y direction, which is the amount of rotation of the wafer 2, for example, the position of the test system, and the amount of rotation is controlled. Alignment mark 226

見位置之杈轉角。该旋轉角可求取χ方向及YSee the corner of the position. The rotation angle can be determined by the χ direction and Y

(J 對準標諸226 _測位置與對準標諸22㈣正触^差 =,及從半導體晶圓的中心到對準標諸挪為止的距 =。對測試祕_的位置控制部,可縣料半導體晶 圓300的中心和對準標誌226的距離。 測試系、统400的位置控制部可根據利用上述方 測的對準麟226的X方向上的位置、γ方向上的位置及 旋轉量’來控制晶圓載台41〇。晶_台具有在載置 半導體晶圓的狀態下’可對χ方向、γ方向及旋轉量 進㈣整之水平載台。而且’測試系統彻的位置控制部 可精由根據測定部406所债測的對準標該现的位置以控 200952106 _> i ^> / wjjii.doc 制水平載台,而調整晶圓載台4] 0所載置的半導體晶圓300 的X方向、Y方向上的位置及旋轉量。 圖5所示為室體2〇的内部構造的/個例子。依次搬運 測試對象的半導體晶圓300至室體20,並與室體20内所 固定的測試用晶圓1〇〇進行電氣連接。在室體20的内部設 置有測試用晶圓1〇〇、性能板404、母板402、晶圓托架 (tray)4〇8、晶圓载台41〇、引導 測定部406及位置控制部450。 測試用晶圓100在室體20内被固定。在本例中,測試 用晶圓100被固定在室體2〇内的性能板404上。性能板 404可為例如形成有配線的印刷基板。而且,性能板404 可固定在室體20内的母板402上。母板4G2經由性能板 404而在控制裝置1〇和測試用晶圓之間傳送信號。如 士所j在測=用晶圓100的與半導體晶圓300對向的面 用$夕^ 個凸塊(bUmP)的薄膜。測試用晶圓100利 用該多個凸塊,而盥车邋蝴 们 體晶圓300的焊塾匕==300上所形成的多個半導 先地進行電氣連接。 日日圓載口 4]〇在宮轉 其移動。在本例中丰^内’載置半導體晶圓並使 晶圓托架408上,且晶圓300利用吸附等而固定在 且,晶圓載台= = 410載置晶圓托架4〇8。而 接,並沿著引導部而^持部418而與引導部420連 例如,引導部4?〇使曰 收半導體晶圓300的接=载台410 ’在從搬運部4〇接 置A、和與測試用晶圓】⑻對 “doc 200952106 向的規定位置只+ 0a 樣可為沿的路_行移動。引導部 曰規的路徑而設置的執道。(J alignment target 226 _ measurement position and alignment mark 22 (four) positive touch difference =, and the distance from the center of the semiconductor wafer to the alignment mark =. The position control unit for the test secret _ The distance between the center of the semiconductor wafer 300 and the alignment mark 226. The position control unit of the test system 400 can be based on the position in the X direction, the position in the γ direction, and the rotation of the alignment 226 by the above-described square measurement. The amount 'to control the wafer stage 41 〇. The crystal stage has a horizontal stage in which the χ direction, the γ direction, and the rotation amount can be entered in the state in which the semiconductor wafer is placed. Moreover, the position control of the test system is complete. The unit can adjust the current position according to the offset measured by the measuring unit 406 to control the horizontal stage of the 200952106 _> i ^> / wjjii.doc, and adjust the semiconductor mounted on the wafer stage 4] 0 The position of the wafer 300 in the X direction and the Y direction and the amount of rotation. Fig. 5 shows an example of the internal structure of the chamber body 2. The semiconductor wafer 300 to be tested is sequentially transported to the chamber body 20, and the chamber The test wafer fixed in the body 20 is electrically connected to the inside of the chamber body 20. A test wafer 1 , a performance board 404 , a mother board 402 , a wafer tray 4 8 , a wafer stage 41 , a guide measurement unit 406 , and a position control unit 450 are provided. 100 is fixed in the chamber body 20. In this example, the test wafer 100 is fixed on the performance board 404 in the chamber body 2. The performance board 404 can be, for example, a printed board on which wiring is formed. The 404 can be fixed on the motherboard 402 in the chamber body 20. The motherboard 4G2 transmits signals between the control device 1A and the test wafer via the performance board 404. A thin film of bumps (bUmP) is used for the surface of the semiconductor wafer 300. The test wafer 100 utilizes the plurality of bumps, and the solder bumps of the wafer 300 are ==300 The plurality of semiconductors formed above are electrically connected first. The Japanese yen carrier 4] is moved in the palace. In this example, the semiconductor wafer is placed on the wafer carrier 408, and The wafer 300 is fixed by adsorption or the like, and the wafer stage == 410 is placed on the wafer carrier 4〇8, and is connected to the guiding portion 418 and the guiding portion 420. For example, the guiding unit 4 causes the connection of the semiconductor wafer 300 to be mounted on the stage 410' from the transport unit 4A and the test wafer (8) to "the specified position of the doc 200952106 direction only + 0a". The sample can be moved along the path of the path. The guide is set to follow the path of the rule.

日日貝口 410移動到與測試用晶圓1〇〇 A 置β後,使半導體曰圓qaLJ 100對向的規定位 試用晶圓100電氣=曰;::直方向進行移動並與測 及垂直載台41Γ aB®载台4〗G具有水平載台化 的表二::晶圓托架4〇8’並對半導體晶圓3。0 半導體晶圓300的位置進行調整。水 =載:412對该面内的χ方向及 的位置以及該面内的丰導麵曰圄如Λαα /干岭虹日日® 300 藉此,可對半導體==;==:量進:調整。 接:⑷·"墊與測_晶圓1⑻的各焊麵行電氣連 的垂ίί=/16载置水平載台412,並對水平載台412 η直;向的位置進行控制。例如,垂直载台416可夢由 在,、測試用晶圓1。〇對向的位置上,使载置著半導體曰曰:圓 3〇〇之狀態的水平載台412可與測試用晶目⑽接近曰,曰從 而將半導體晶圓3GG及測則晶圓⑽進行電氣 =垂直載〜台416可在使半導體晶圓3〇〇對測試用晶圓· 接k到規&的距離之後,將半導體晶圓和測試用晶圓 進行減壓’從而將半導體晶圓細和測試用 曰曰0 100電氣連接。而且,可在垂直載台41 台支持部418。 口疋者戰 位置控制部450如圖4所關聯說明的那樣,根據測定 200952106 j 丄」/ upu_.doc 部406所拍攝的圖像,對晶圓載台4i〇的位置進行#制。 位置控制部45G藉由控制水平載台412的位置, :晶的位置進行調整,以使半導體晶圓3〇〇的各焊 上配置在與測試用晶圓1()()的各凸塊錢的位置上。 而且,測試用晶圓位置债測部422固定在晶圓載台· 上’對測試用晶圓1〇〇的位置預先進行測$。例如,測 用晶圓位置制部422可預先仙對規定的位i B上所配 置的晶圓載台410的、測試用晶圓1〇〇的 士 :内的相對位置。水平载台412由於水平面=== '交動’所以測試用晶圓位置偵測部422設置在垂直載台^6 上較佳。 位置控制部450為了精度良好地使測試用晶圓丨⑻及 半導體晶圓300的終端進行連接,可還根據測試用晶圓位 置偵測部422所測定的測試用晶圓1〇〇的位置,來栌 平載台412。 1 利用這種構成,可調整半導體晶圓3⑻對測試用晶圓 100的位置,能夠將半導體晶圓3〇〇的多個終端和測試用 a曰圓1 〇〇的夕個終端進行電氣連接。而且,本例的測試用 晶圓100的位置是固定在室體20内,所以,測試用晶圓位 置偵測部422在更換半導體晶圓3〇〇時,可不對測試用晶 圓1〇〇的位置進行測定。測試用晶圓位置偵測部422在每 一規定期間,對測試用晶圓1GG的位置進行測定即可。因 此,可效率良好地對多個半導體晶圓3〇〇進行測試。 在以上的說明中,測定部406是在為了使半導體晶圓 200952106udoc 300載置於晶圓載台410上而進行移動期間,偵娜 晶圓300的對準標誌226的位置。在另外的例子中, 部406也可在將半導體晶圓300載置在晶圓载台41〇測疋 並使晶圓載台410從位置A移動到位置B期間,'^弹 晶圓300的對準標誌、226的位置進行制。在這^體 測定部406設置在晶圓載台41〇的移動路徑上,下, 的晶圓載台410上所載置之半導體晶圓3〇〇 ^夕動 一部分進行掃描。 衣面的至少 圖6所不為在晶圓載台4〗〇移動期間,偵蜊 226之例子的說明圖。作為—個例子,本例的挪 對母板402而被固定在規定的位置上,並對 ^ 〇6 導體晶圓300的-部分進行攝像。在本例中 3 = 台410的行進方向作Α γ古一 t 日日«載 向作為X方向乍為方向,以與該行進方向垂直的方 υ 即使在本例中,測定部4Q6亦與圖3至圖 的測定部叫貞測相同_象。^,_ = 據測定部406所偵測的圖像,來控制水平載台412 〇根 /巨ί 1位置控制部450可根據測定部406在偵測對準 標§志226日守的晶圓載台41 〇之γ方 、、 準標諸226的Υ方向上的向上的位置’來偵測對 , 的位置。從測定部40 6偵測對準轳 誌220時的晶圓載台41〇之丫 1貝』耵旱禚 的Y方向上的位置B之差分,H上的位置’和圖5所示 方向上的位置。 可债測對準標諸226的丫 位置控制部450根據像這樣偵測到的各個對準標諸 200952106 D 1 J> / upn-doc 226的X方向及Y方向上的位置,對水平載台4]^的乂方 向及Y方向的位置及旋轉量進行調整。這樣,即使在晶圓 載台410的移動中’也可偵測對準標誌226的X方向及γ 方向的位置,並對半導體晶圓3〇〇的位置進行調整: 圖7所示為在晶圓載台41〇進行移動期間,偵測對準 標誌226之另一例子的說明圖。本例的測試系統4㈧具有 -個測定部406。而且,即使在關於圖3所說明的、在晶 圓載台410搬運半導體晶圓300期間偵測對準標誌 情況下,也可同樣地利用一個測定部4〇6而偵測對準標社、 在這種情況下,可在半導體晶圓3〇〇上,如圖7所示, 於X方向的軸上的大致相同的位置,設置多個對準標誌 226。測定部406以可偵測這些對準標誌226的位置之形態 而配置著。利用這樣的構成,也可偵測半導體晶圓3〇〇的 X方向及Y方向上的位置偏離及旋轉量。 另外,圖3至圖7中,所示為作為一個例子的矩形對 準標誌226,但對準標誌226的形狀並不限定於該形狀。 對準標誌226可具有十字等規定的形狀。而且,對準標誌 226也可具有沿著規定的形狀而排列的多個焊墊。 圖8所示為測試用晶圓100的剖面圖的一個例子。本 例的測试用晶圓100如上所述,在控制裝置〗〇及半導體晶 圓300之間傳送信號。測試用晶圓1〇〇具有晶圓側連接焊 墊m、裝置側連接焊塾114、貫通孔n6、中間焊墊 及配線117。 iLdoc 200952106 在曰:如圖8所示,具有晶圓連接面102及 裝置連接面104可9/、半寺體晶圓300對向的面。而且, 多個晶圓侧置"電㈣ 圓連接面K)2h^ Γ成在測試用晶圓100的晶 接焊墊112可對各個半 例晶圓側連 個進行設置。亦即,在 =端的情況下,晶圓側連接 體曰曰片310的每個設置多個。 對各個半導 各個晶圓側連接焊墊U2 出入終端以相同的間隔而設置,各個輪 ,出入終端進行電氣連接。另外,匕+^體晶片 Ο ::接《„2及半導=二=態。之 連接。編晶陶接、行2 在 J:的ί:導體晶片310的輸出八終端進行-圖10所魂的 ,專版的與各焊墊相對應的位置上形成有連趣 而且,晶圓侧連接焊墊112及半 :。 ’也可像f容量結合(靜電結合=3iq -合)等那樣,以非接觸狀態進行應綠1 側連接焊塾m及半導體晶片31。的輪心,芯 〜間的傳 17 L.doc 200952106 达線路的-部分,也可為光學傳送線路。 晶圓 而且 112 —對 ]00的裝 裝 地 夕個裝置側連接焊塾114形成在測试用 直連接面104上且與性能板404 $行電氣速接 置側連接焊墊114是與多個晶圓側連接焊12 一對一奶 對應,置。在這裏,裝置側連接焊墊Hi與性能板4〇4的 終端,以相同的間隔而設置。因此,如圖8所示,裝置側 連接#墊114可以與晶圓側連接焊墊 不同的間隔而設 置。 曰鬥116、中間焊墊150及配線170形成在測試用 m進行曰曰圓側連接焊墊η〗及裝置側連接 連接面川4^連接。例如,中間焊墊150設置在裝置 孔m以—側連接焊塾112對向的位置上。貫通 焊二==,接,另-端與中間 配線117在裝置連接面丨〇 4上,^ 0 〇❼形成。而且, 連接焊墊行電氣連接。利用”:蟬墊15〇及裝置側 隔不同的裝置側連接焊墊114 =,成,可將排列間 電氣連接。 曰®側連接焊墊112進行 例如,晶圓側連接焊墊]12 各輸入終端進行電氣連接,而I各J/、半導體晶片3]0的 而配置。因此,晶圓侧連接焊墊=終端以相同的間隔 每—半導體晶片310上,於預弁石卜例如像圖2所示,在 而設置。 、、 疋的區域以微小的間隔 對此,各個裝置側連接焊墊 4可以較]個半導體晶 200952106 ^ ± ^ / v/^/a1.c1〇c 片fO所對應的多個晶圓侧連接焊塾關隔大之間隔 而5又置。例如,裝置侧連接焊墊U4在裝置連接面104的 面内’以等間隔進行配置以使裝置侧連接焊墊1 大致均等。 刀忡 =例的測試用晶圓1〇〇與半導體晶圓3〇〇是以相同的 f導體材料形成,所以即使在周圍溫度變動的情況下,也 ^良好地維持測試用晶圓1〇〇和半導體晶圓3〇〇之間的電 ^連接。因此,即使在加熱半導體晶圓300並進行測試的 十月況下,也可精度良好地對半導體晶圓300進行測試。 而且,由於測試用晶圓1⑽由半導體材料等形成,所 以可,測試用晶圓⑽上容易地形成多個晶圓侧連接焊塾 U2、等。例如,藉由利用曝光等的半導體製程,可容易地 形成晶圓側連接焊墊Π2、裝置侧連接焊墊114、貫通孔 Π6及配線in。因此,可在測試用晶圓1〇〇上,容易地形 成與多個半導體晶片310相對應的多個晶圓側連接焊墊 112等。而且,測試用晶圓1〇〇的終 圓100上電鑛、蒸鑛導電材料等而形成。在収用日日 圖9所示為電路部110的構成例。電路部n〇具有圖 f產生部122、波形成形部130、驅動器132、比較器134、 蚪序產生部136、邏輯比較部〗38、特性測定部140及雷源 供給部則外,電路部uo可在所連接:半=, 310的輸出入接腳(pin)的每一接腳,具有圖9所示的構成。 圖案產生部I22生成測試信號的邏輯圖案。本例的圖 案產生部122具有圖案記憶體124、期待值記憶體及 19After the day Bayo 410 moves to the test wafer 1〇〇A, β is placed, and the semiconductor wafer 100 is electrically aligned with the predetermined test wafer 100;:: moving in the straight direction and perpendicular to the measurement The stage 41 Γ aB® stage 4 〗 G has a horizontal staged table 2: wafer holder 4 〇 8 ′ and adjusts the position of the semiconductor wafer 3 . 0 semiconductor wafer 300 . Water = Load: 412 The direction of the χ in the plane and the surface of the surface, such as Λαα / 干岭虹日日® 300, by means of semiconductor ==;==: Adjustment. Then: (4)·"pad and test_ wafer 1 (8) are connected to each other. The horizontal stage 412 is placed on the horizontal surface of the horizontal stage 412, and the position of the horizontal stage 412 is controlled. For example, the vertical stage 416 can be used for the test wafer 1. At the opposite position, the horizontal stage 412 in which the semiconductor 曰曰: the state of the circle is placed is close to the test crystal (10), thereby electrically connecting the semiconductor wafer 3GG and the test wafer (10). = vertical load ~ stage 416 can decompress the semiconductor wafer and the test wafer after the semiconductor wafer 3 is connected to the test wafer, and then the semiconductor wafer and the test wafer are decompressed. It is electrically connected to the test with 曰曰0 100. Moreover, the support portion 418 can be mounted on the vertical stage 41. As described in connection with FIG. 4, the position control unit 450 performs the measurement of the image taken by the 200952106 j 丄"/upu_.doc portion 406 to the position of the wafer stage 4i. The position control unit 45G adjusts the position of the horizontal stage 412, and adjusts the position of the crystal so that each of the semiconductor wafers 3 is placed on each of the bumps of the test wafer 1()(). The location. Further, the test wafer position debt measuring unit 422 is fixed to the wafer stage. The position of the test wafer 1 is measured in advance. For example, the measurement wafer position forming unit 422 can preliminarily compare the relative position of the test wafer 1 〇〇 in the wafer stage 410 disposed on the predetermined bit i B . The horizontal stage 412 is preferably disposed on the vertical stage 6 because the horizontal plane === 'interaction'. The position control unit 450 can connect the test wafer cassette (8) and the terminal of the semiconductor wafer 300 with high precision, and can also determine the position of the test wafer 1〇〇 measured by the test wafer position detecting unit 422. Come to level the stage 412. With this configuration, the position of the semiconductor wafer 3 (8) to the test wafer 100 can be adjusted, and a plurality of terminals of the semiconductor wafer 3 can be electrically connected to the terminal of the test a circle. Moreover, since the position of the test wafer 100 of this example is fixed in the chamber body 20, the test wafer position detecting unit 422 may not replace the test wafer 1 when the semiconductor wafer 3 is replaced. The position is measured. The test wafer position detecting unit 422 may measure the position of the test wafer 1GG for each predetermined period. Therefore, a plurality of semiconductor wafers can be efficiently tested. In the above description, the measuring unit 406 is the position of the alignment mark 226 of the wafer 300 during the movement of the semiconductor wafer 200952106udoc 300 on the wafer stage 410. In another example, portion 406 may also be used to place semiconductor wafer 300 on wafer stage 41 and move wafer stage 410 from position A to position B. The position of the standard mark and 226 is carried out. The body measuring unit 406 is placed on the moving path of the wafer stage 41, and the semiconductor wafer 3 placed on the lower wafer stage 410 is partially scanned. At least FIG. 6 of the clothing surface is not an illustration of an example of the detection 226 during the movement of the wafer stage 4. As an example, the mother board 402 of this example is fixed at a predetermined position, and the portion of the ^ 〇 6 conductor wafer 300 is imaged. In this example, 3 = the traveling direction of the stage 410 is Α γ ancient one t day and day «the direction of the direction of the X direction is perpendicular to the direction of the traveling direction. Even in this example, the measuring unit 4Q6 is also shown. 3 to the measurement section of the figure is called the same _ image. ^, _ = according to the image detected by the measuring unit 406, the horizontal stage 412 is controlled. The position control unit 450 can detect the alignment of the wafer on the basis of the measurement unit 406. The position of the pair is detected by the γ square of the table 41 and the upward position ' in the Υ direction of the standard 226. The difference between the position B in the Y direction of the wafer stage 41 and the position B in the Y direction when the wafer stage 41 is aligned with the measurement unit 40 6 is detected from the measuring unit 40 6 , and the position on the H is in the direction shown in FIG. 5 . position. The 丫 position control unit 450 of the debt-measuring index 226 measures the position of the X-direction and the Y-direction of the 200952106 D 1 J> / upn-doc 226 according to the respective alignments thus detected, and the horizontal stage 4] The position of the 乂 and Y directions and the amount of rotation are adjusted. Thus, even in the movement of the wafer stage 410, the position of the alignment mark 226 in the X direction and the γ direction can be detected, and the position of the semiconductor wafer 3 进行 can be adjusted: FIG. 7 shows the wafer carrier. An illustration of another example of detecting the alignment mark 226 while the stage 41 is moving. The test system 4 (8) of this example has a measuring unit 406. Further, even in the case where the alignment mark is detected while the wafer stage 410 is transporting the semiconductor wafer 300 as described with reference to FIG. 3, the same can be detected by using one measuring unit 4〇6. In this case, a plurality of alignment marks 226 may be provided on the semiconductor wafer 3 as shown in FIG. 7 at substantially the same position on the axis in the X direction. The measuring unit 406 is disposed in such a manner as to detect the position of the alignment marks 226. With such a configuration, the positional deviation and the amount of rotation in the X direction and the Y direction of the semiconductor wafer 3 can be detected. Further, in Figs. 3 to 7, a rectangular alignment mark 226 is shown as an example, but the shape of the alignment mark 226 is not limited to this shape. The alignment mark 226 may have a prescribed shape such as a cross. Moreover, the alignment mark 226 may have a plurality of pads arranged in a predetermined shape. FIG. 8 shows an example of a cross-sectional view of the test wafer 100. The test wafer 100 of this example transmits a signal between the control device and the semiconductor wafer 300 as described above. The test wafer 1 has a wafer side connection pad m, a device side connection pad 114, a through hole n6, an intermediate pad, and a wiring 117. iLdoc 200952106 曰: As shown in FIG. 8, the wafer connection surface 102 and the device connection surface 104 are 9/, and the semiconductor wafer 300 faces the surface. Further, a plurality of wafer side-mounted "electrical (four) circular connection faces K) 2h^ are formed in the test wafer 100, and the wafer pads 112 can be connected to each of the half wafer sides. That is, in the case of the = terminal, a plurality of each of the wafer side connector tabs 310 are provided. For each semi-conductor, each wafer side connection pad U2 is placed at the same interval at the same interval, and each wheel and the terminal are electrically connected. In addition, the 匕+^ body wafer Ο:: "2 and semi-conducting = two = state. The connection. The crystal splicing, row 2 in J: ί: the output of the conductor wafer 310 eight terminals - Figure 10 The soul, the special edition has a connection with the position of each pad, and the wafer side is connected to the pad 112 and the half: ' can also be combined with the f capacity (electrostatic combination = 3iq - combined), etc. In the non-contact state, the center of the core 1 and the semiconductor wafer 31 are connected. The core of the core is transferred to the portion of the line L.doc 200952106, which can also be an optical transmission line. The device side connection pad 114 of the 00 is formed on the test straight connection surface 104 and is electrically connected to the performance board 404 $. The connection pad 114 is connected to the plurality of wafer sides 12 One-to-one milk correspondingly, set. Here, the terminal of the device side connection pad Hi and the performance board 4〇4 are disposed at the same interval. Therefore, as shown in FIG. 8, the device side connection #mat 114 can be combined with the crystal. The round side connection pads are provided at different intervals. The bucket 116, the intermediate pad 150 and the wiring 170 are formed in the test m. The round side connection pad η 〗 and the device side connection connection surface are connected. For example, the intermediate pad 150 is disposed at the position where the device hole m is connected to the side of the bonding pad 112. The through welding 2 ==, The other end and the intermediate wiring 117 are formed on the device connection surface 丨〇4, and the connection pads are electrically connected. The ": 蝉 pad 15 〇 and the device side are connected to different device side connection pads. 114 =, into, can electrically connect the array. For example, the wafer side connection pads 112 are electrically connected to each input terminal, and each J/, semiconductor wafer 3] is arranged. Therefore, the wafer side connection pads = terminals are disposed at the same interval on each of the semiconductor wafers 310, and are disposed on the pre-stones, for example, as shown in Fig. 2. The area of the germanium and the germanium are connected at a small interval, and the connection pads 4 of the respective devices can be connected to the plurality of wafer sides corresponding to the semiconductor wafers 200952106 ^ ± ^ / v / ^ / a1.c1 〇 c f0 The welding 塾 is separated by a large interval and 5 is placed again. For example, the device side connection pads U4 are disposed at equal intervals in the plane of the device connection surface 104 so that the device side connection pads 1 are substantially equal. Since the test wafer 1〇〇 and the semiconductor wafer 3〇〇 are formed of the same f-conductor material, the test wafer 1 is well maintained even when the ambient temperature fluctuates. Electrical connection to the semiconductor wafer 3〇〇. Therefore, even in the case of heating the semiconductor wafer 300 and performing the test, the semiconductor wafer 300 can be accurately tested. Further, since the test wafer 1 (10) is formed of a semiconductor material or the like, a plurality of wafer side bonding pads U2 and the like can be easily formed on the test wafer (10). For example, the wafer side connection pad 2, the device side connection pad 114, the through hole Π6, and the wiring in can be easily formed by a semiconductor process such as exposure. Therefore, a plurality of wafer side connection pads 112 and the like corresponding to the plurality of semiconductor wafers 310 can be easily formed on the test wafer 1A. Further, the test wafer 1 is formed by applying an electric ore, a vapor-conducting conductive material or the like to the final circle 100. On the collection date, Fig. 9 shows an example of the configuration of the circuit unit 110. The circuit unit n〇 includes a diagram f generation unit 122, a waveform shaping unit 130, a driver 132, a comparator 134, a sequence generation unit 136, a logic comparison unit 38, a characteristic measurement unit 140, and a lightning source supply unit, and a circuit unit uo Each of the pins of the output pin that can be connected: half =, 310 has the configuration shown in FIG. The pattern generation unit I22 generates a logical pattern of the test signal. The pattern generating unit 122 of this example has a pattern memory 124, an expected value memory, and 19

200952106^ j) 1 j / u}Jii-.d〇C 失效記憶體m。圖案產生部122可對圖案記怜體1? 出預先存儲的邏輯圖案。圖案記憶體124可在 = 存儲從控制裝置]〇所賦予的邏輯圖案。而且,圖安° = 122也可根據預先賦予的演算法(alg〇rithm)而生:邏二 圖案。 今 波形成形部130根據從圖案產生部122所賦予的 圖案,形成測試信號的波形。例如,波形成形部13〇 3 由在每-規定的位元期間輸出與邏輯圖案的各: 的電壓’而形成測試信號的波形。 冉 驅動器〗32輸出與從波形成形部13〇所賦予的波开 稱之測試信號。驅動器132可依據從時序產生部丨% ^目 予的時序信號,以輸出測試信號。例如,驅動器132可$ 出與犄序k號相同週期的測試信號。驅動器1%所輸出^ 測試信號經由切換部等而被供給到對應的半導^曰u 310。 、版日曰片 比較為134測定半導體晶片310所輸出的響應信號。 例如,比較器134可藉由依據從時序產生部136戶^予的 選通(strobe)信號,依次偵測響應信號的邏輯值,而測—鄉 應信號的邏輯圖案。 '、&音 邏輯比較部Π8作為判定部而發揮機能,以根據比护 器134所測定的響應信號的邏輯圖案,來判定對應的半二 體晶片310的好壞。例如,邏輯比較部138可根據從固= 產生部122戶斤賦予的期待值圖案和比較器134所^白^ 輯圖案是否一致,而判定半導體晶片31〇的好壞。圖案^ 20 丄doc 200952106 ^部】22可將期待值記憶體】% *,供給到邏輯比較部138。 頂先存儲的期待值圖 ,存儲從控制裝置]〇所予=體m可在測試 =產生部]22也可根據預 ^予的她圖案。而且,圖 待值圖案。 M予的演算法,以生成該期 ,致記憶體]28存館邏輯比 =’在對半導體晶片31G的^^ ]38的比較結果。例 下,失效記憶體128可在半導二=品域進行測試的情況 ,輯比較部m的好壞判定的每一地址,存 ,憶體128戶斤存儲的好 J工制名置10可讀出失 綷墊ι14可將失效記 =果。例如,裝置侧連接 ,用㈣⑽判定結果,輸 或電谅髮形。二%;:::;,動器132所輸出的電壓 ^根據從驅動器定部而發揮 电壓的波形是否滿Α 牛蛉體日日片310的電流或 的好壞。献規⑽樣式1判定轉體晶片310 310。例i 源電力,用於驅動半導體晶片 ,予的電力相試中從控制裝置]。 而且,電源供給部142也給‘到半導體晶片310。 給驅動電力。 ° 、電路部110的各構成要素供 控制部110具有這種構成,所以可實現能约減】 Μ10的規模之測試系統。例如,; 200952106 DID/wpu.doc 10,可利用通用的個人計算機等。 圖10所示為將測試用晶圓100及半導體晶圓300進行 電氣迷接的構成例。本例的测試糸統400錯由將測試周晶 圓100及半導體晶圓300配置在密閉空間内,並對該密閉 空間内進行減壓,而使測試用晶圓1〇〇及半導體晶圓300 接近並進行電氣連接。 更具體地說,在固定有測試用晶圓100的性能板404 及載置半導體晶圓300的晶圓托架408之間形成密閉空 間。而且,在性能板404、測試用晶圓100及半導體晶圓 300之間分別設置異向性導電片。然後,藉由對密閉空間 内進行減壓,而利用測試用晶圓100等來按壓異向性導電 片,使測試用晶圓100等進行電氣連接。因此,測試用晶 圓100以在垂直方向上可移動的形態,而固定在性能板404 上。 而且,測試用晶圓100在水平方向上可移動的範圍中 處於測試用晶圓100及半導體晶圓300之間的對準誤差的 容許範圍内較佳。例如,測試用晶圓1 〇〇在水平方向可移 動的範圍,與測試用晶圓1⑻及半導體晶圓3⑻的焊墊寬 度相比足夠小時較佳。 測試用晶圓100利用支持部204而固定在性能板404 上。支持部204將裝置側異向性導電片212、裝置侧密封 部214、測試用晶圓]00、晶圓侧異向性導電片218、薄膜 222及固定環220固定在性能板404上。 裝置側異向性導電片212由於設置在測試用晶圓100 丄doc 200952106 及性能板404之問;5丨丨4士防 電極和性能板_ 測試^日日圓⑽的 按壓裝置侧異向性導電片$電:連接/測試用晶圓_ ;=ί:娜能板4〇4的下面之垂直方向的位置; 在規=的乾圍進行位移的形態而得到支持。 _ ί ί侧密封部214沿著薄膜222的性能板4G4側的面200952106^ j) 1 j / u}Jii-.d〇C Failure memory m. The pattern generating unit 122 can write a pre-stored logical pattern to the pattern. The pattern memory 124 can store the logic pattern assigned from the control device = at =. Moreover, Tuan ° = 122 can also be generated according to a pre-assigned algorithm (alg〇rithm): a logic two pattern. The waveform forming unit 130 forms a waveform of the test signal based on the pattern given from the pattern generating unit 122. For example, the waveform shaping unit 13〇3 outputs a waveform of a test signal by outputting a voltage 'of each of the logic patterns every predetermined period of time. The drive driver 32 outputs a test signal that is nicknamed from the wave given from the waveform shaping unit 13A. The driver 132 can output a test signal according to a timing signal from the timing generating unit. For example, the driver 132 can output a test signal of the same period as the sequence k. The test signal output by the driver 1% is supplied to the corresponding semiconductor terminal 310 via the switching portion or the like. The stencil is compared to 134 to determine the response signal output by the semiconductor wafer 310. For example, the comparator 134 can detect the logical value of the response signal by sequentially detecting the logical value of the response signal according to the strobe signal from the timing generating unit 136. The ', & sound logic comparing unit 8 functions as a determining unit to determine the quality of the corresponding semiconductor die 310 based on the logical pattern of the response signal measured by the guard 134. For example, the logic comparing unit 138 can determine whether or not the semiconductor wafer 31 is good or bad based on whether or not the expected value pattern given from the solid=generating unit 122 and the comparator 134 match the pattern. The pattern ^ 20 丄 doc 200952106 ^ section 22 can supply the expected value memory %% to the logic comparison unit 138. The expected value map stored first, stored in the control device] 〇 = = body m can be tested = generating part 22 can also be based on her pre-pattern. Moreover, the graph is a value pattern. The algorithm of M is used to generate the period, and the memory ratio of the memory is compared with the result of the comparison of =38 on the semiconductor wafer 31G. For example, the failed memory 128 can be tested in the semi-conductor=product domain, and each address of the comparison m is judged, and the memory of the memory is 128. Reading out the missing mat ι14 can be invalidated = fruit. For example, the device side is connected, and the result is judged by (4) (10), and the shape is transmitted or forgiven. 2%;:::;, the voltage output by the actuator 132 is based on whether the waveform of the voltage exerted from the fixed portion of the driver is full or not. The regulation (10) pattern 1 determines the swivel wafer 310 310. Example i Source power, used to drive semiconductor wafers, to the power phase test from the control device]. Further, the power supply unit 142 also gives "to the semiconductor wafer 310. Give drive power. Since each component of the circuit unit 110 is provided with the configuration of the control unit 110, it is possible to realize a test system capable of reducing the scale of Μ10. For example, 200952106 DID/wpu.doc 10, which can utilize a general-purpose personal computer or the like. Fig. 10 shows an example of a configuration in which the test wafer 100 and the semiconductor wafer 300 are electrically connected. In the test system 400 of this example, the test wafer 100 and the semiconductor wafer 300 are disposed in a sealed space, and the pressure is reduced in the sealed space, so that the test wafer 1 and the semiconductor wafer 300 are close to each other. And make electrical connections. More specifically, a sealed space is formed between the performance board 404 on which the test wafer 100 is fixed and the wafer holder 408 on which the semiconductor wafer 300 is placed. Further, an anisotropic conductive sheet is provided between the performance board 404, the test wafer 100, and the semiconductor wafer 300, respectively. Then, by decompressing the inside of the sealed space, the test wafer 100 or the like is pressed to press the anisotropic conductive sheet, and the test wafer 100 or the like is electrically connected. Therefore, the test wafer 100 is fixed to the performance board 404 in a form movable in the vertical direction. Further, it is preferable that the test wafer 100 is within the allowable range of the alignment error between the test wafer 100 and the semiconductor wafer 300 in the horizontally movable range. For example, the range in which the test wafer 1 is movable in the horizontal direction is preferably sufficiently small as compared with the pad width of the test wafer 1 (8) and the semiconductor wafer 3 (8). The test wafer 100 is fixed to the performance board 404 by the support portion 204. The support unit 204 fixes the device-side anisotropic conductive sheet 212, the device-side sealing portion 214, the test wafer 00, the wafer-side anisotropic conductive sheet 218, the film 222, and the fixing ring 220 to the performance board 404. The device side anisotropic conductive sheet 212 is disposed on the test wafer 100 丄doc 200952106 and the performance board 404; 5丨丨4 anti-electrode and performance board _ test ^ day yen (10) pressing device side anisotropic conduction Piece $Electrical: Connection/Test Wafer _ ;= ί: The position in the vertical direction below the 4能4 of the Na Neng board; supported by the displacement of the dry circumference of the gauge. _ ί ί side seal portion 214 along the side of the performance plate 4G4 side of the film 222

C 並對薄膜222的性能板4〇4側的面的周 薄膜22/^ 4之間進行密封。裝置侧密封部214可以 :導:;^置侧異向性導電片212而與性能板 ^通的錢以具有彈性的彈性㈣來形成。 曰日^異,性導電片218設置在測試用晶圓勤及薄 承;;3 :圓側異向性電導電片218藉由按壓,而將 側連接終端和薄㈣的凸塊終端進二置之』 圓峨片218及半導體晶 和測試用晶®削的晶關連接終端進行電氣連 接。固定環220將薄膜222對裝置側密封部214進行固定。 例如,固定環22〇可沿著薄膜Μ2的半導體 · =^周邊部呈環狀而設置。固定環22〇的内:可較晶 _兴向性導電片218及半導體晶圓的直徑還大。 222與岐環22G具有大致相同錄的圓形狀, 而相定在固定環22〇上。裝置側異向性導電片212、 測減用晶ffl 1GG及晶圓側異向性導電片218,配置在域膜 200952106 J J J / upu.doc 222及性能板4G4之間,並利用薄膜222㈣性能板4〇4 保#在規疋的位置h如圖1Q所示,在裝置侧異向性導電 片zl2、讲j试用曰曰曰圓]00及晶圓側異向性導電片训和裝 置侧密封部214之間,可設置有間隙。利用這種構成,而 以半導體晶圓3GG來按壓薄膜瓜,從而可將半導體晶圓 300和測試用晶圓1〇0進行電氣連接。 支持部204彳藉由支持該固定環22〇而對薄膜222等 進行支持。支持部204可以薄膜迎對性能板4〇4的下面 此夠在規定的範圍内接近之形態,而對賴用晶圓⑽進 :丁支持。例如’支持部2〇4可以固定環22〇的下端從性能 反404的下面不離開敎距離以上的形態,而在從性能板 404的下面只離開規定距離的位置上,來對固定環22 下端進行支持。 晶圓託# 408在配置於規定位置的情況下,以盘性 =04形成密閉空間的形態而設置。本例的晶圓托架4| ί:性能板姻、裝置侧孔部214及晶圓側密封部224形 晶晶圓托架4⑽在該密閉空間側的面上 一晶圓側密封部224在晶圓托架4〇8的表面上, ,222的周邊部相對應的區域而設置,並對薄^ 曰曰圓托架側的面的周邊部及晶圓托架儀之間進行白’ 晶圓侧密封部224在晶圓托架的表面上可形成;ί Γ 而且,晶圓侧密封部224形成唇咖大, 圓托架4⑽表面的距離增大,環狀的直徑=== 24 200952106ldoc 密封部224在被按壓在、笼 /在〜肤222上的6況下,依據該按壓 力頂撓曲W足而使薄膜222和半導體晶圓3〇〇的距離 接近二而且,晶圓側密封部224在未被按壓在薄膜上 的狀怨下’自晶圓托架4G8的表面的高度成 圓300的高度還高。 千导虹日日 圖5所關聯說明的垂直載纟416使晶圓托架梢進行 移動’直至晶圓側密封部224的上端部與薄膜222緊密貼 合的位置。藉由這種構成,可利用性能板4〇4、晶圓托架 408、裝置侧密封部214及晶圓側密封部224,而形成存儲 測试用晶圓100及半導體晶圓3〇〇的密閉空間。另外,水 平載台412在垂直载台416使晶圓托架408沿著垂直方向 進行移動之别,對半導體晶圓300的水平面内的位置及傾 斜進行調整較佳。 減壓部234對性能板404及晶圓托架4〇8之間的密閉 空間進行減壓,該密閉空間由性能板404、晶圓托架4〇8、 裝置側密封部214及晶圓侧密封部224形成。減壓部234 在晶圓載台410使晶圓乾架408移動而形成上述的穷閉扣 間後,對該密閉空間進行減壓。 藉此,減壓部234使晶圓托架408對性能板4〇4接近 到規定的位置。晶圓托架408藉由配置在該規定的位置 上,而對裝置侧異向性導電片212及晶圓侧異向性導電片 218施加按壓力,使性能板404及測試用晶圓1 〇〇進行電 氣連接,且使測試用晶圓100及半導體晶圓3〇〇進行電氣 連接。 200952106C and sealing between the peripheral films 22/4 of the surface of the film 222 on the side of the performance plate 4〇4. The device-side sealing portion 214 can be formed by: providing a laterally anisotropic conductive sheet 212 and having a flexible elasticity (4). The next day, the conductive sheet 218 is placed on the test wafer and the thin support; 3: the round-side anisotropic conductive sheet 218 presses the side connection terminal and the thin (four) bump terminal into the second The cymbal 218 and the semiconductor crystal are electrically connected to the crystal-cut terminal of the test crystal. The fixing ring 220 fixes the film 222 to the device side sealing portion 214. For example, the fixing ring 22A may be provided in a ring shape along the periphery of the semiconductor of the film Μ2. The inside of the fixing ring 22〇 can be larger than the diameter of the crystal-oriented conductive sheet 218 and the semiconductor wafer. The 222 and the ankle ring 22G have substantially the same circular shape and are positioned on the fixed ring 22''. The device side anisotropic conductive sheet 212, the reduction and subtraction crystal ffl 1GG, and the wafer side anisotropic conductive sheet 218 are disposed between the domain film 200952106 JJJ / upu.doc 222 and the performance board 4G4, and utilize the film 222 (four) performance board. 4〇4保# In the position of the gauge h, as shown in Fig. 1Q, on the device side, the anisotropic conductive sheet zl2, the j test, the round circle]00 and the wafer side anisotropic conductive sheet training and device side sealing A gap may be provided between the portions 214. With such a configuration, the thin film melon is pressed by the semiconductor wafer 3GG, whereby the semiconductor wafer 300 and the test wafer 1O0 can be electrically connected. The support unit 204 supports the film 222 and the like by supporting the fixed ring 22〇. The support portion 204 can contact the underside of the performance board 4〇4, which is close to the specified range, and supports the wafer (10). For example, the support portion 2〇4 can fix the lower end of the ring 22〇 from the lower side of the performance inverse 404 without leaving the 敎 distance, and at the lower end of the fixed ring 22 at a position away from the lower side of the performance plate 404 by a predetermined distance. Support. When the wafer carrier # 408 is placed at a predetermined position, it is provided in a form in which a disk space = 04 forms a sealed space. In the wafer holder 4 of the present example, the wafer side sealing portion 224 is formed on the surface of the sealed space side, the performance side, the device side hole portion 214, and the wafer side sealing portion 224. On the surface of the wafer carrier 4〇8, the peripheral portion of the 222 is disposed corresponding to the area, and the white portion of the peripheral portion of the surface on the side of the thin bracket and the wafer carrier is white-crystallized. The round side sealing portion 224 can be formed on the surface of the wafer carrier; Γ Γ, the wafer side sealing portion 224 is formed to have a large lip, and the distance of the surface of the circular bracket 4 (10) is increased, and the diameter of the ring is === 24 200952106ldoc When the sealing portion 224 is pressed against the cage/on the skin 222, the distance between the film 222 and the semiconductor wafer 3 is close to two according to the pressing force of the pressing force, and the wafer side is sealed. The height of the portion 224 from the surface of the wafer carrier 4G8 that is not pressed against the film is still high. The vertical load 416 described in connection with Fig. 5 causes the wafer carrier tip to move 'until the upper end portion of the wafer side seal portion 224 is in close contact with the film 222. With such a configuration, the performance board 4〇4, the wafer carrier 408, the device side sealing portion 214, and the wafer side sealing portion 224 can be used to form the sealing film for storing the test wafer 100 and the semiconductor wafer 3 space. Further, the horizontal stage 412 preferably moves the wafer carrier 408 in the vertical direction on the vertical stage 416, and the position and inclination in the horizontal plane of the semiconductor wafer 300 are preferably adjusted. The decompression unit 234 decompresses the sealed space between the performance board 404 and the wafer holder 4〇8, which is composed of the performance board 404, the wafer holder 4〇8, the device side sealing unit 214, and the wafer side. The sealing portion 224 is formed. The decompression unit 234 decompresses the sealed space after the wafer stage 410 moves the wafer dry frame 408 to form the above-described cold-closed buckle. Thereby, the pressure reducing portion 234 brings the wafer carrier 408 close to the predetermined position of the performance board 4〇4. The wafer carrier 408 is placed at the predetermined position to apply a pressing force to the device-side anisotropic conductive sheet 212 and the wafer-side anisotropic conductive sheet 218, so that the performance board 404 and the test wafer 1 are folded. The electrical connection is made, and the test wafer 100 and the semiconductor wafer 3 are electrically connected. 200952106

o ij> / wpu.doC 而且 ,晶圓側密封部)巧/ 薄膜222相接觸。在這種=可«ff20㈣側’與 分割為性能板404側的窆二下’饴:才工間由賴222而 „ <間和晶圓托架408側的空間。因 此 較佳 在屢膜222上°又置將這些空間進行連接的貫 通孔242 而且,在測試用晶圓1〇〇 $圓側:向性導電片/8上,也設置貫通孔2二片= 13及貝通孔219車父佳。薄膜似、測試用晶 ,,性導電片2U及晶圓側異向性導電片218上‘ 、的貝通孔’在各個面内大致均料分散配置較佳 ,種構成,在對密閉空間進行減壓的過程中所 “ 利用多個貫通孔而分散流動。另外,貫通孔如; ^孔24〇、貫通孔213及貫通孔219可設置在對應的位置 ,而且,也可設置在彼此不同的位置上。 因此,在對密閉空間進行減壓的過程中,在裝 :性導電片212及晶圓側異向性導電片218上所施加的按 2,可在各個面从致轉地分散著,大幅減小減壓過 =的應力歪斜。因此,可防止測試用晶圓1〇〇的割裂、 :向性導電片的歪斜等。藉由這種構成,可彻—個減壓 郃234,而對性能板404及薄膜222之間的空間和薄膜222 及半導體晶圓300之間的空間進行減壓。 力。而且,減壓部234可使半導體晶圓300吸附在晶圓托 木408上。本例的減壓部234具有密閉空間用的減壓器236 和半導體晶圓用的減壓器238。而且,在晶圓托架4〇8上, 26 200952106 」i」/ uyi丄.doc 形成有密閉空間用的吸氣路徑232和半導體晶圓用的吸氣 路徑230。 利用這種構成,可將性能板404上所固定的測試用晶 圓100和半導體晶圓300進行電氣連接。如上所述,由於 . 測試用晶圓100固定在性能板404上,所以可容易地進行 測試用晶圓1⑻及半導體晶圓300間的對準。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離 1 : 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為准。 【圖式簡單說明】 圖1所示為關於一實施形態的測試系統400的概要。 圖2為測試系統400的測試的概要說明圖。 圖3為將半導體晶圓300與晶圓載台410的規定位置 進行對準之方法的一個例子。 圖4所示為測定部406進行了掃描之圖像的一部分。 Ο 圖5所示為室體20的内部構造的一個例子。 圖6為在晶圓載台410進行移動期間偵測對準標誌 226的例子的說明圖。 圖7為在晶圓載台410進行移動期間偵測對準標誌 226的另一個例子的說明圖。 圖8為測試用晶圓100的剖面圖的一個例子。 圖9所不為電路110的構成例。 圖10所示為將測試用晶圓100及半導體晶圓300進 27 200952106 / wjpj.x.doc 行電氣連接的構成例。 【主要元件符號說明】 1 A 丄U aV,T tH:祖 往帀丨」衣: 20 室體 40 搬運部 60 晶圓盒 100 .測试用晶圓 102 :晶圓連接面 104 :裝置連接面 110 :電路部 112 :晶圓側連接焊墊 114 :裝置侧連接焊墊 116 :貫通孔 117 :配線 122 :圖案產生部 124 :圖案記憶體 126 :期待值記憶體 128 :失效記憶體 130 :波形成形部 132 :驅動器 134 :比較器 136 :時序產生部 138 :邏輯比較部 140 :特性測定部 28 .i.doc 200952106 142 :電源供給部 150 :中間焊墊 204 :支持部 212 :裝置侧異向性導電片 213 :貫通孔 214 :裝置侧密封部 218 :晶圓侧異向性導電片 219 :貫通孔o ij> / wpu.doC Moreover, the wafer side seal is in contact with the film 222. On the side of this = can be "ff20 (four) side" and divided into the side of the performance board 404 饴 饴 才 才 才 才 才 才 才 才 222 222 222 222 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Further, 222 is placed in the through hole 242 for connecting these spaces. Further, on the test wafer 1 圆 $ circular side: the directional conductive sheet / 8, the through hole 2 is also provided with two sheets = 13 and a passhole 219. The car is like a film, the test crystal, the conductive conductive sheet 2U and the wafer-side anisotropic conductive sheet 218', the beacon hole' is uniformly dispersed in each plane, and the composition is In the process of depressurizing the closed space, "a plurality of through holes are used to disperse the flow. Further, the through holes such as the holes 24, the through holes 213, and the through holes 219 may be disposed at corresponding positions, and may be disposed at positions different from each other. Therefore, in the process of depressurizing the sealed space, the pressing 2 applied to the conductive conductive sheet 212 and the wafer-side anisotropic conductive sheet 218 can be dispersed in the respective surfaces, and is greatly reduced. Small decompression = stress skew. Therefore, it is possible to prevent the crack of the test wafer 1 、, the skew of the directional conductive sheet, and the like. With this configuration, the space between the performance plate 404 and the film 222 and the space between the film 222 and the semiconductor wafer 300 can be decompressed by the pressure reduction 234. force. Further, the decompression portion 234 allows the semiconductor wafer 300 to be adsorbed on the wafer stub 408. The pressure reducing portion 234 of this example has a pressure reducer 236 for a sealed space and a pressure reducer 238 for a semiconductor wafer. Further, on the wafer carrier 4'8, 26 200952106 "i"/uyi丄.doc forms an intake path 232 for the sealed space and an intake path 230 for the semiconductor wafer. With this configuration, the test wafer 100 fixed on the performance board 404 and the semiconductor wafer 300 can be electrically connected. As described above, since the test wafer 100 is fixed to the performance board 404, alignment between the test wafer 1 (8) and the semiconductor wafer 300 can be easily performed. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows an outline of a test system 400 according to an embodiment. 2 is a schematic illustration of a test of test system 400. FIG. 3 is an example of a method of aligning the semiconductor wafer 300 with a predetermined position of the wafer stage 410. FIG. 4 shows a part of an image scanned by the measuring unit 406. Ο FIG. 5 shows an example of the internal structure of the chamber body 20. FIG. 6 is an explanatory diagram showing an example of detecting the alignment mark 226 while the wafer stage 410 is moving. FIG. 7 is an explanatory diagram of another example of detecting the alignment mark 226 during the movement of the wafer stage 410. FIG. 8 is an example of a cross-sectional view of the test wafer 100. FIG. 9 is not an example of the configuration of the circuit 110. Fig. 10 shows an example of a configuration in which the test wafer 100 and the semiconductor wafer 300 are electrically connected to each other. [Explanation of main component symbols] 1 A 丄U aV, T tH: ancestral 帀丨" clothing: 20 chamber body 40 transport unit 60 wafer cassette 100. Test wafer 102: wafer connection surface 104: device connection surface 110 : circuit portion 112 : wafer side connection pad 114 : device side connection pad 116 : through hole 117 : wiring 122 : pattern generation portion 124 : pattern memory 126 : expected value memory 128 : failure memory 130 : wave shape Unit 132: Driver 134: Comparator 136: Timing generation unit 138: Logic comparison unit 140: Characteristic measurement unit 28. i.doc 200952106 142: Power supply unit 150: Intermediate pad 204: Support portion 212: Device side anisotropy Conductive sheet 213: through hole 214: device side sealing portion 218: wafer side anisotropic conductive sheet 219: through hole

220 :固定環 222 :薄膜 224 :晶圓侧密封部 226 :對準標誌 230 :吸氣路徑 232 :吸氣路徑 234 :減壓部 236 :減壓器 238 :減壓器 240 :貫通孔 242 :貫通孔 300 :半導體晶圓 310 :半導體晶片 400 :測試系統 402 :母板 404 :性能板 29 200952106220: fixing ring 222: film 224: wafer side sealing portion 226: alignment mark 230: suction path 232: suction path 234: pressure reducing portion 236: pressure reducer 238: pressure reducer 240: through hole 242: Through hole 300: semiconductor wafer 310: semiconductor wafer 400: test system 402: mother board 404: performance board 29 200952106

^ X I V/^/AX.Ci〇C 406 :測定部 407 :攝像元件 /1 A Q · 曰 Γ^Ι 上/ 力口 H-UO ·曲 IEJ <TG 糸 410 :晶圓載台 412 :水平載台 416 :垂直載台 418 :載台支持部 420 :引導部 422 :測試用晶圓位置偵測部 450 :位置控制部 30^ XIV/^/AX.Ci〇C 406 : Measurement unit 407 : Imaging element / 1 AQ · 曰Γ ^ Ι Upper / Force H-UO · IEJ < TG 糸 410 : Wafer stage 412 : Horizontal stage 416 : vertical stage 418 : stage support portion 420 : guide portion 422 : test wafer position detecting portion 450 : position control portion 30

Claims (1)

200952106 七、申請專利範圍: 1. 一種測試系統,為一種對半導體晶圓上所形成的多 個半導體晶片進行測試之測試糸統’包括· 室體,搬運前述半導體晶圓; 測試用晶圓,固定在前述室體内,設置有與多個前述 半導體晶片的焊墊統一進行電氣連接的多個凸塊; 晶圓載台,藉由在前述室體内載置前述半導體晶圓並 進行移動,而使前述半導體晶圓移動到與前述測試用晶圓 對向的位置上; 測定部,對前述晶圓載台設置在規定的位置上,當為 了將前述半導體晶圓載置在前述晶圓載臺上而使前述半導 體晶圓對前述晶圓載台進行移動時,藉由掃描前述半導體 晶圓的表面的至少一部分,而偵測前述半導體晶圓上所設 置的對準標誌的位置;以及 位置控制部,根據前述測定部所測定的前述對準標誌 的位置,對前述晶圓載臺上所載置的前述半導體晶圓的位 置進行調整。 2. 如申請專利範圍1所述的測試系統,其中, 前述測定部具有沿著與前述晶圓載台的行進方向大 致垂直的垂直方向而排列之多個攝像元件,並根據拍攝了 前述對準標誌、的攝像元件的位置,而偵測前述垂直方向上 的前述對準標誌的位置; 前述位置控制部根據前述測定部所測定的前述對準 標誌的位置,對前述半導體晶圓的前述垂直方向上的位置 31 200952106 J 丄一,/ V/pil .doc 進行調整。 3. 如申請專利範圍第2項所述的測試系統,其中, 前述位置控制部根據前述測定部偵測前述對準標誌 時的時序’對前述晶圓載堂上所載置的前述半導體晶圓的 前述行進方向上的位置進行調整。 4. 如申請專利範圍第3項所述的測試系統,其中, 前述測定部是分別設置在前述垂直方向的軸上的不 同位置上。 5. 如申請專利範圍第1項所述的測試系統,其中, 前述位置控制部根據各個前述測定部偵測前述對準 標誌時的時序差,對前述晶圓載臺上所載置之前述半導體 晶圓的旋轉罝進行调整。 6. 如申請專利範圍第5項所述的測試系統,其中,前 述位置控制部預先被賦予前述半導體晶圓的中心和前述對 準標誌的距離,再根據前述距離而調整前述半導體晶圓的 旋轉量。 7. —種測試系統,為一種對半導體晶圓上所形成的多 個半導體晶片進行測試之測試系統,包括: 室體,搬運前述半導體晶圓; 測試用晶圓,固定在前述室體内,設置有與多個前述 半導體晶片的焊墊統一進行電氣連接的多個凸塊; 晶圓載台,藉由在前述室體内載置前述半導體晶圓並 進行移動,而使前述半導體晶圓移動到與前述測試用晶圓 對向的位置上; i.doc 200952106 測定部,設置在前述晶圓載台的移動路徑上,藉由掃 描前述晶圓載臺上所載置的前述半導體晶圓的表面的至少 一部分,而偵測前述半導體晶圓上所設置的對準標誌的位 置;以及 位置控制部,根據前述測定部所測定的前述對準標誌 的位置,對前述半導體晶圓的位置進行調整。 8. 如申請專利範圍第7項所述的測試系統,其中, 前述位置控制部根據前述測定部偵測前述對準標誌 時的前述晶圓載台在行進方向上的位置,對前述半導體晶 圓的前述行進方向上的位置進行調整。 9. 如申請專利範圍第8項所述的測試系統,其中, 前述位置控制部根據各個前述測定部偵測前述對準 標誌時的前述晶圓載台在前述行進方向上之各個位置,對 前述半導體晶圓的旋轉量進行調整。200952106 VII. Patent application scope: 1. A test system for testing a plurality of semiconductor wafers formed on a semiconductor wafer, including a chamber body, carrying the semiconductor wafer; testing wafer, Fixed in the chamber body, and provided with a plurality of bumps electrically connected to the plurality of pads of the semiconductor wafer; the wafer stage is mounted on the semiconductor wafer and moved Moving the semiconductor wafer to a position facing the test wafer; and the measuring unit is disposed at a predetermined position on the wafer stage, and is configured to mount the semiconductor wafer on the wafer stage The semiconductor wafer detects the position of the alignment mark provided on the semiconductor wafer by scanning at least a portion of the surface of the semiconductor wafer when moving the wafer stage; and the position control unit according to the foregoing The position of the alignment mark measured by the measuring unit, and the position of the semiconductor wafer placed on the wafer stage To adjust. 2. The test system according to claim 1, wherein the measuring unit has a plurality of image pickup elements arranged in a vertical direction substantially perpendicular to a traveling direction of the wafer stage, and the image is captured according to the alignment mark. And detecting a position of the alignment mark in the vertical direction, wherein the position control unit is in the vertical direction of the semiconductor wafer according to a position of the alignment mark measured by the measurement unit Location 31 200952106 J 丄一, / V/pil .doc Make adjustments. 3. The test system according to claim 2, wherein the position control unit detects the timing of the alignment mark based on the timing of the detection unit on the semiconductor wafer mounted on the wafer carrier The position in the direction of travel is adjusted. 4. The test system according to claim 3, wherein the measuring units are respectively disposed at different positions on the axis in the vertical direction. 5. The test system according to claim 1, wherein the position control unit is configured to mount the semiconductor crystal on the wafer stage according to a timing difference when the measurement unit detects the alignment mark. Adjust the circle rotation 罝. 6. The test system according to claim 5, wherein the position control unit is previously provided with a distance between a center of the semiconductor wafer and the alignment mark, and then adjusts a rotation of the semiconductor wafer according to the distance. the amount. 7. A test system for testing a plurality of semiconductor wafers formed on a semiconductor wafer, comprising: a chamber body carrying the semiconductor wafer; and a test wafer fixed in the chamber Providing a plurality of bumps electrically connected to the plurality of pads of the semiconductor wafer; the wafer stage moves the semiconductor wafer by placing and moving the semiconductor wafer in the chamber a position facing the test wafer; i.doc 200952106, the measuring unit is disposed on the moving path of the wafer stage, and scanning at least the surface of the semiconductor wafer mounted on the wafer stage And detecting a position of the alignment mark provided on the semiconductor wafer; and the position control unit adjusts a position of the semiconductor wafer based on a position of the alignment mark measured by the measurement unit. 8. The test system according to claim 7, wherein the position control unit detects the position of the wafer stage in the traveling direction when the measuring unit detects the alignment mark, and the semiconductor wafer is The position in the aforementioned traveling direction is adjusted. 9. The test system according to claim 8, wherein the position control unit senses the semiconductor wafer at each position in the traveling direction when the alignment unit detects the alignment mark The amount of rotation of the wafer is adjusted.
TW098118028A 2008-06-02 2009-06-01 Test system TW200952106A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/060171 WO2009147719A1 (en) 2008-06-02 2008-06-02 Test system

Publications (2)

Publication Number Publication Date
TW200952106A true TW200952106A (en) 2009-12-16
TWI379369B TWI379369B (en) 2012-12-11

Family

ID=41397810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118028A TW200952106A (en) 2008-06-02 2009-06-01 Test system

Country Status (3)

Country Link
JP (1) JP5368440B2 (en)
TW (1) TW200952106A (en)
WO (1) WO2009147719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656350B (en) * 2017-08-07 2019-04-11 日商泰克霍隆公司 Probe station

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471401B1 (en) * 2017-10-31 2019-02-20 合同会社Pleson Semiconductor wafer test unit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105432B2 (en) * 1986-10-09 1995-11-13 タツモ株式会社 Substrate automatic alignment device
JPH11274252A (en) * 1998-03-19 1999-10-08 Mitsubishi Electric Corp Device and method for checking semiconductor device
JP2000164655A (en) * 1998-11-24 2000-06-16 Matsushita Electric Ind Co Ltd Method and device for alignment
JP4423991B2 (en) * 2003-02-18 2010-03-03 Jsr株式会社 Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP4867219B2 (en) * 2005-07-14 2012-02-01 株式会社デンソー Inspection device and positioning method of inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656350B (en) * 2017-08-07 2019-04-11 日商泰克霍隆公司 Probe station

Also Published As

Publication number Publication date
JP5368440B2 (en) 2013-12-18
JPWO2009147719A1 (en) 2011-10-20
TWI379369B (en) 2012-12-11
WO2009147719A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
TWI442509B (en) Check the device
TWI442495B (en) Check the device
JP2004085259A (en) Probe device
CN111742399B (en) Contact precision assurance method, contact precision assurance mechanism, and inspection apparatus
JPH0792479B2 (en) Parallelism adjustment method for probe device
TW200947576A (en) Inspection method and program recording medium recording the inspection method
JP6615680B2 (en) Probe card
KR102243840B1 (en) Circuit device, tester, inspection device, and method of adjusting bending of circuit board
JP5358138B2 (en) Inspection device
JP2019161185A (en) Prober
JP2007035856A (en) Manufacturing method of, measuring device for, and wafer for integrated circuit
JPH0943276A (en) Probe card device used for probe unit
TW200952106A (en) Test system
US11408926B2 (en) Electrical connecting device, inspection apparatus, and method for electrical connection between contact target and contact member
JP2011205019A (en) Wafer chuck inclination correcting method and probe apparatus
JP2995134B2 (en) Probe device
KR102170610B1 (en) Position correction method, inspection apparatus, and probe card
JPH07221144A (en) Probing device
JP2963828B2 (en) Probe device
WO2023189676A1 (en) Inspection method and inspection device
JP2006514271A (en) Electrostatic imager
JP2003240820A (en) Probing device and inspection device
US20200011925A1 (en) Inspection system
JP2019091773A (en) Semiconductor device evaluation apparatus and semiconductor device evaluation method
JP2928955B2 (en) Semiconductor device batch inspection method and apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees