TW200948846A - Epoxy-silicon mixed resin composition for sealing of light semiconductor element and transfer molding plate formed thereof - Google Patents

Epoxy-silicon mixed resin composition for sealing of light semiconductor element and transfer molding plate formed thereof Download PDF

Info

Publication number
TW200948846A
TW200948846A TW098110129A TW98110129A TW200948846A TW 200948846 A TW200948846 A TW 200948846A TW 098110129 A TW098110129 A TW 098110129A TW 98110129 A TW98110129 A TW 98110129A TW 200948846 A TW200948846 A TW 200948846A
Authority
TW
Taiwan
Prior art keywords
epoxy
composition
semiconductor element
group
transfer molding
Prior art date
Application number
TW098110129A
Other languages
Chinese (zh)
Other versions
TWI441847B (en
Inventor
Tsutomu Kashiwagi
Original Assignee
Shinetsu Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinetsu Chemical Co filed Critical Shinetsu Chemical Co
Publication of TW200948846A publication Critical patent/TW200948846A/en
Application granted granted Critical
Publication of TWI441847B publication Critical patent/TWI441847B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The subject of the present invention is to provide a curable epoxy-silicon mixed resin composition enduing with suitable hardness, excellent resistance to cracking and light for sealing a light semiconductor element and a transfer molding plate formed thereof. Means of solution of the present invention is provided an epoxy-silicon mixed resin composition for sealing of a light semiconductor element, comprising: (a) an organic polysiloxane having at least two epoxy groups and including a formula (R2SiO)n (in the formula, R independently represents a hydrogen atom, an unsubstituted or a substituted monovalent alkyl group, and n is an integer greater than 0, wherein the mean value is 3 to 10) and having a continuous repeating structure; (b) epoxy resin having at least two epoxy groups and no siloxane bonding; c a harder; (c) curing agent, and (d) a hardening catalyst. The invention further includes a transfer molding plate formed by step B of the above composition.

Description

200948846 六、發明說明: 【發明所屬之技術領域】 本發明係關於適合用作爲密封光半導體元件之環氧· 聚砂氧混合樹脂組成物及其所形成之移轉成型用平板。 • 【先前技術】 以往,用以密封光半導體元件所使用之光半導體元件 0 密封樹脂,係廣泛地使用環氧樹脂組成物(參考專利文獻 η 。此類的光半導體元件密封用環氧樹脂組成物,一般 係含有脂環式環氧樹脂、硬化劑及硬化觸媒。藉由澆鑄成 形、移轉成形等成形法,使該組成物流入於配置有光半導 體元件的金屬模並予以硬化,藉此可密封光半導體元件。 然而,隨者發光二極體(LED: Light Emitting Diode )之亮度及功率的上升,會引起環氧樹脂之變色劣化的問 題。此外,使用於密封之透明環氧樹脂,因藍色光或紫外 Φ 線而會隨著時間經過形成黃色變色,所以具有元件壽命短 之問題。 因此,耐熱性·耐光性優良之聚矽氧,乃被使用於光 半導體元件的密封。 然而,此類聚矽氧的硬化物,其強度較低,而具有無 法使用於PKG構造之問題。 因此,係有人提出將高硬度聚矽氧樹脂使用於光半導 體元件的密封(參考專利文獻2及3)。 然而,這些高硬度聚矽氧樹脂仍然缺乏黏著性。此外 -5- 200948846 ,在將發光元件配置於陶瓷及/或塑膠框體內, 高硬度聚矽氧樹脂充塡於該框體內部之外罩型的 體裝置中,在-40〜120°C的熱衝擊試驗中,會產 樹脂從框體的陶瓷或塑膠剝離之問題點。 解決這些問題之手段,係揭示有一種由至少: 環氧環之倍半矽氧烷(Silsesquioxane )、環氧 酐系硬化劑及硬化觸媒所形成,且進行B階段化 半導體密封用樹脂組成物(參考專利文獻4), 示該硬化物的耐龜裂性。 此外,專利文獻5中,係揭示一種由環氧樹 氧樹脂之混合物所形成之光半導體元件密封用材 於該聚矽氧樹脂具有至少2個環氧基者,以及具 能性矽氧烷單位及Si02單位中的一種或兩種所 枝狀構造者,並無任何記載。 再者,專利文獻6中,係記載一種含有環氧 烷及環氧樹脂之含環氧烷基矽氧烷注模樹脂組成 脂成分,但該環氧烷基矽氧烷,關於具有由矽氧 形成之直鏈狀的連續構造者,以及具有由三官能 單位及Si02單位中的一種或兩種所形成之分枝 ,並無任何具體記載。 [先前技術文獻] [專利文獻] [專利文獻1]曰本特開2002- 1 79807號公報 [專利文獻2]日本特開2002-314139號公報 並將這些 發光半導 生聚矽氧 具有2個 樹脂、酸 而成之光 但卻未揭 脂與聚矽 料,但關 有由三官 形成之分 烷基矽氧 物作爲樹 烷單位所 性矽氧烷 狀構造者 200948846 [專利文獻3]日本特開2002-314143號公報 [專利文獻4]日本特開2005-263869號公報 [專利文獻5]日本特開2007-103935號公報 [專利文獻6]日本特許第3399652號公報 【發明內容】 (發明所欲解決之課題) ® 本發明係鑒於上述情形而創作出之發明,目的在於提 供一種可賦予具有適當的硬度及優良的耐龜裂性.耐光性 之硬化物的光半導體元件密封用環氧·聚矽氧混合樹脂組 成物及其所形成之移轉成型用平板。 (用以解決課題之手段) 本發明者係爲了達成上述目的進行精心的探討,結果 發現’可藉由含有特定的環氧改質聚矽氧、特定的環氧樹 © 脂、硬化劑、及硬化觸媒之光半導體元件密封用環氧.聚 矽氧混合樹脂組成物,而解決上述課題。 亦即,首先,本發明係提供一種光半導體元件密封用 環氧·聚砂氧混合樹脂組成物,係含有: (A) 具有至少2個環氧基,並且具有由式:(R2SiO )n(式中,R爲獨立地表示氫原子或非取代或取代的一價 烴基’ή爲0以上的整數,該平均値爲3〜10)所表示之連 續構造的有機聚矽氧烷; (B) 具有至少2個環氧基,並且不具有矽氧烷鍵結 200948846 之環氧樹脂; (C )硬化劑;以及 (D)硬化觸媒。 其次,本發明係提供一種由B階段化之上述組成物所 形成之移轉成型用平板。 發明之效果 本發明之光半導體元件密封用環氧·聚矽氧混合樹脂 組成物,由於具有由矽氧烷單位所形成之直鏈狀的連續構 造,所以該硬化物具有高硬度,並且耐龜裂性優良且耐光 性良好。因此,藉由該硬化物來密封光半導體元件,可藉 此製作出具有高硬度,優良的耐龜裂性能及良好的耐光性 之光半導體裝置,所以對產業上的貢獻極大。 【實施方式】 本發明組成物係含有上述(A) ~(D)成份。本發明 組成物中,未滿玻璃轉移點之溫度的線膨脹率《1與超過 玻璃轉移點之溫度的線膨脹率α2之比:^!/«2爲0.5以 上者,就所製得之封裝的應力(Stress )緩和性之観點來 看,乃較爲理想。比:ai/aa更理想爲0.5以上且未滿 1.0,尤其理想爲0.6~0.99。玻璃轉移點(Tg)可藉由示 差掃描熱析儀(DSC: Differential Scanning Calorimetry )來測定,線膨脹率及《2可藉由熱機械分析裝置( TMA: Thermomechanical Analyzer)來測定 〇 -8 - 200948846 [(A )成份] (A)成份爲具有至少2個環氧基,並且具有由式: (R2SiO ) n(式中,R爲獨立地表示氫原子或非取代或取 代的一價烴基,η表示3〜10的整數)所表示之連續構造的 ' 有機聚矽氧烷,較理想爲具有上述連續構造,並且具有由 三官能性矽氧烷單位(亦即有機倍半矽氧烷單位)及Si02 G 所示之四官能性矽氧烷單位中的一種或兩種所形成之分枝 狀構造之有機聚矽氧烷。(A)成份可單獨使用1種或組 合2種以上而使用。 (A )成份只要爲上述有機聚矽氧烷,則無特別限定 ’ (A )成份例如有:由式:R,SiX3 (式中,R’表示含環 氧S之基’ X表示加水分解性基)所表示之三官能性有機 矽化合物’與由式:γ_ (r2) Si0— ( (r2) Si〇) n— Si (R·2) — Y (式中’ R及n如前述所示,γ表示加水分解 ® 性基)所表示之有機聚矽氧烷,以及任意地藉由RSiX3( R'X與前述相同)所示之三官能性矽烷化合物及SiX4 ( X與目U述相同)所示之四官能性矽烷化合物中的一種或兩 種之加水分解、縮合所合成,具有式:R’si〇i5 (式中, R’如即述所示)所表示之單位及式:(R2SiO ) n (式中, R及n如前述所示)所表示之連續構造,並且可任意地含 有RSl〇15 (式中,R與前述相同)單位及Si02單位中的 一種或兩種之有機聚矽氧烷。 s 非取代或取代的一價烴基時,該例子有烷基、 200948846 環烷基、烯基、芳基、芳烷基、以及這些基的氫原子由鹵 素原子、氰基等所取代之基。 上述烷基例如有甲基、乙基、丙基、丁基等之碳原子 數1〜2 0,較理想爲1〜1〇,更理想爲1〜6的烷基。 上述環烷基例如有環戊基、環己基、降茨基等之碳原 子數5〜12,較理想爲6~8的環烷基。 上述烯基例如有乙烯基、烯丙基、丙烯基、丁烯基、 己烯基等之碳原子數2〜6,較理想爲2~4的烯基。 上述芳基例如有苯基、甲苯基等之碳原子數6〜12,較 理想爲6〜8的芳基。 上述芳烷基例如有2-苯基乙基、3-苯基丙基等之碳原 子數7〜2 0,較理想爲7〜12的芳烷基。 R’的具體例子,有環氧基、縮水甘油基、環氧丙氧基 、7 -環氧丙氧基丙基、3,4-環氧環己基、2- ( 3,4-環氧環 己基)乙基、3-(3,4>環氧環己基)丙基等。 X及Y的具體例子,有羥基;氯原子等之鹵素原子; 甲氧基、乙氧基等之碳原子數1~4,較理想爲1〜2的烷氧 基等。X及γ的組合,例如有羥基彼此的組合、鹵素原子 彼此的組合、烷氧基彼此的組合、羥基與烷氧基的組合等 [(B )成份] (B)成份爲具有至少2個環氧基,並且於分子中不 具有矽氧烷鍵結之環氧樹脂。(B)成份可單獨使用1種 -10- 200948846 或組合2種以上而使用。 (B)成份只要爲上述環氧樹脂,則卖 )成份例如有雙酚A型環氧樹脂、雙酚F 類酚醛型環氧樹脂、甲酚酚醛型環氧樹脂 、聯苯型環氧樹脂、二環戊二烯型環氧樹 • 氧樹脂、聯苯芳烷基型環氧樹脂、對前述 芳香環進行加氫所製得之加氫型環氧樹脂 〇 脂、異氰尿酸三縮水甘油酯等。當中,爲 成物及其硬化物因光所導致之劣化,較理 環氧樹脂、脂環式環氧樹脂、異氰尿酸三 (B)成份的調配量,相對於(A) 的合計,較理想爲5〜80質量%,更理想: 。當該調配量位於上述範圍時,所製得之 的強度充分,當以該硬化物密封光半導體 加因溫度循環等所導致之熱衝擊,亦不易 〇 不良。此外,由於所製得之組成物中的環 過多,所以當以該組成物的硬化物密封光 即使該元件會發出紫外線等,該硬化物亦 致劣化。 [(C)成份] (C)成份爲與本發明組成物中的環 交聯,而使該組成物硬化之硬化劑。此類 用環氧樹脂中所使用之一般的硬化劑。( S特別限定,(B 型環氧樹脂、酚 、萘型環氧樹脂 脂、芳烷基型環 各種環氧樹脂的 、脂環式環氧樹 了防止本發明組 想爲使用加氫型 宿水甘油酯。 :份及(B )成份 等10〜60質量% 組成物的硬化物 元件時,即使施 產生龜裂或黏著 氧樹脂含量不會 半導體元件時, 不易因紫外線導 氧基反應以形成 的硬化劑,可使 C )成份可單獨 -11 - 200948846 使用1種或組合2種以上而使用。 (C)成份例如有酸酐系硬化劑、胺系硬化劑、 硬化劑或是這些硬化劑的組合,較理想爲使用酸酐系 劑。 酸酐系硬化劑的具體例子,有鄰苯二甲酸酐、順 二酸酐、偏苯三甲酸酐、苯均四羧基二酸酐、六氫鄰 甲酸酐、3·甲基-六氫鄰苯二甲酸酐、4-甲基-六氫鄰 甲酸酐、3-甲基-六氫鄰苯二甲酸酐與4·甲基-六氫鄰 甲酸酐之混合物、四氫鄰苯二甲酸酐、內次甲基四氫 、甲基內次甲基四氫苯酐、原冰片烷-2,3-二羧酸酐、 原冰片烷-2,3-二羧酸酐等。 胺系硬化劑的具體例子,有酿肼(Hydrazide)化 、4,4-二胺基二苯基甲烷、4,4-二胺基二苯基醚、4,4. 基二苯基丙烷等。 酚系硬化劑的具體例子,有雙酚A型、雙酚F型 酚AF型等之雙酚型樹脂;酚類酚醛樹脂、甲酚酚醛 等之酚醛型酚類樹脂;三酚烷型樹脂、聯苯型樹脂、 芳烷型樹脂、脂環式酚類樹脂等之各種酚類樹脂等。 (C)成份的調配量,相對於(A)成份及(B) 的合計中所含之環氧基1莫耳,(C)成份中之酸酐 胺基、酚性羥基等之與環氧基進行反應之官能性基的 ,較理想爲〇.2~1.5莫耳,更理想爲〇.3〜1.0,尤其理 0.4〜0.8莫耳的量。 酚系 硬化 丁烯 苯二 苯二 苯二 苯酐 甲基 合物 二胺 、雙 樹脂 聯本 成份 基、 比例 想爲 200948846 [(D )成份] (D)成份爲硬化觸媒,可使用環氧樹脂中所使用之 一般的硬化觸媒。(D)成份可單獨使用1種或組合2種 以上而使用。 (D )成份的具體例子,有四丁基鳞鹽〇,〇-二乙基硫 * 代磷酸鹽、四苯基鐵鹽四苯基硼酸鹽等之第四級銹鹽;三 苯基膦、二苯基隣等之有機膦系硬化觸媒;1,8-二氮雜二 φ 環(5,4,0)十一烯-7、三乙醇胺、苯甲基二甲胺等之三級 胺系硬化觸媒;2-甲基咪唑、2-苯基-4-甲基咪唑等之咪唑 類等。 (D)成份的調配量,較理想爲 0.05〜3phr ( per hundred resin、爲顯示相對於全組成物100g之(D)成份 的調配量(g)之單位)。當該調配量位於此範圍時,容 易充分地獲得促進環氧樹脂與硬化劑的反應之效果。此外 ,當使所製得之組成物硬化時,對以該組成物的硬化物所 〇 密封之光半導體元件進行回焊時,容易防止硬化物的變色 [其他成份] 本發明組成物中,在不脫離本發明之目的的範圍內, 可因應必要而添加其他成份。如此的其他成份,例如有用 以改變以該組成物的硬化物所密封之光半導體元件所發光 的光的波長之螢光體或氧化鈦微粉末等之光散射劑等。此 外,如此的其他成份,例如有防氧化劑、防變色劑、防劣 -13- 200948846 化劑、二氧化矽等之無機充塡劑、矽烷系偶合劑、變性劑 、可塑劑、稀釋劑等。 [移轉成型用平板] 本發明之移轉成型用平板,係由B階段化(亦即半硬 化狀態)之本發明組成物所形成。本發明中,B階段化的 條件,可在80~120°C,較理想爲80〜100°C,於1~20小時 ,較理想爲5〜1 5小時將上述(A ) ~ ( D )成份及因應必 要所添加之其他成份熟化而藉此達成。所謂該B階段化, 是指半硬化狀態的組成物之1 50°C時的膠體化時間較理想 爲10〜70秒,更理想爲10〜40秒之狀態。 本發明之移轉成型用平板,例如可將熔融之本發明組 成物,於配合期望的平板形狀之鑄模中熟化並進行B階段 化而藉此製得。 熔融之本發明組成物,可藉由將上述(A) ~(D)成 份及因應必要所添加之其他成份予以熔融混合而藉此製得 。熔融混合可使用一般所知的方法來進行,例如可總括地 將上述成分放入於反應器中,並以分批式進行熔融混合, 亦可總括地將上述成分投入於捏合機或加熱三軋輥等之混 練機而進行連續性熔融混合。 此外,熔融之本發明組成物,較理想爲,首先在均一 地熔融混合(A)成分與(B)成份及因應必要所添加之其 他成份後,將(C)成份的硬化劑添加於所製得之熔融混 合物並均一地熔融混合,接著再將(D)成份的硬化觸媒 -14- 200948846 調配於此熔融混合物並均一地熔融混合而藉此製得。當進 行如此的熔融混合時,由於是將(D)成份的硬化觸媒混 合至(A)成分〜(C)成份已充分且均一地混合之熔融混 合物,所以可防止(A)成分〜(C)成份於充分混合前產 生局部的硬化反應。 * 本發明之移轉成型用平板,由於不需將原料粉碎或製 錠即可製得,所以氣泡捲入於內部之疑慮低,而能夠維持 φ 良好品質。 [用途] 可使用本發明之移轉成型用平板進行移轉成型。移轉 成型,一般的手法是將該移轉成型用平板於預熱室預熱軟 化後,藉由柱塞通過小孔而送至密封用模型的模穴,並於 該處進行硬化而藉此製得。成型機可使用輔助柱塞式成型 機、滑動式成型機、雙重柱塞式成型機、低壓密封用成型 〇 機中的任一種。 本發明之組成物及移轉成型用平板,乃適合使用於密 封光半導體元件》光半導體元件,可將該組成物或軟化後 的該平板塗佈於該光半導體元件,並使該組成物或該平板 硬化而藉此密封。光半導體元件,例如有發光二極體、光 電二極體、光電電晶體、雷射二極體等。 [實施例] 以下係顯示實施例及比較例來具體地說明本發明,但 -15- 200948846 本發明並不受下列實施例所限制。 • ( A )成份 (A)成份的有機聚矽氧烷係以下列所示之方法來製 造》 [合成例1] 將異丙醇900g、羥化四甲基銨的25%水溶液24g、水 216g放入於反應器後,添加2-(3,4-環氧環己基)乙基三 甲氧矽烷(信越化學工業公司製 KBM3 030 ) 490g(2.0莫 耳)作爲含環氧基三官能性矽氧烷單位源,以及由MeO ( Me) 2Si-0- ( Me2SiO) nSi ( Me) 2〇Me ( η 的平均値=5) 所表示之有機聚矽氧烷565.2g(l.〇莫耳)作爲由式:( R2SiO) η所表示之連續構造源,於室溫下攪拌20小時使 反應進行。 反應結束後’將甲苯120 〇g添加於反應系內,於減壓 下去除異丙醇等。使用分液漏斗,以熱水來洗淨殘渣。以 水進行洗淨至水層成爲中性爲止,之後以無水硫酸鈉使甲 苯層脫水。過濾無水硫酸鈉後,於減壓下去除甲苯而製得 目的的樹脂(樹脂1)。環氧當量爲432g/mol。 [合成例2] 合成例1中’除了使用由MeO(Me) 2Si-0-(Me2Si0 )nSi(Me) 2OMe(n的平均値=7)所表示之有機聚矽氧 200948846 烷 712g(l.〇 莫耳)來取代由 MeO(Me) 2Si-0-(Me2Si0 )nSi ( Me ) 2〇Me (n的平均値=5)所表示之有機聚矽氧 烷5 65.2g( 1.〇莫耳)之外,其他與合成例1相同而製得 目的的樹脂(樹脂2)。環氧當量爲5 40g/mol。 • [合成例3] 合成例1中,除了使用由MeO(Me) 2Si-0-(Me2Si0 φ ) nSi ( Me) 2〇Me ( η的平均値=15)所表示之有機聚矽氧 烷 1 3 04g ( 1·〇 莫耳)來取代由 MeO ( Me ) 2Si-0-( Me2SiO) nSi(Me) 2〇Me(n的平均値=5)所表示之有機 聚矽氧烷565.2g( 1·〇莫耳)之外,其他與合成例1相同 而製得目的的樹脂(樹脂3)。環氧當量爲740g/mol。 • ( B )成份 (B)成份的環氧樹脂,係使用脂環式環氧樹脂之 φ Dai cel化學工業公司製「Cell oxide 2021P」(商品名稱) • ( C)成份 (C)成份的硬化劑,係使用甲基六氫鄰苯二甲酸酐 之新日本理化公司製「MH」(商品名稱)。 • ( D )成份 (D)成份的硬化觸媒,係使用有基錢鹽之UCAT- -17- 200948846 5003 (商品名稱、San-Apro公司製)。 [實施例1] 以下列所示的質量份,依據下列步驟調配各成份,而 製作出光半導體元件密封用環氧·聚矽氧混合樹脂組成物 及其所形成之移轉成型用平板。 首先,於 80°C將樹脂 1的 87質量份、Celloxide 202 1 P的34質量份、ΜΗ的26質量份及UCAT5003的0.6 質量份予以熔融混合,而製得環氧·聚矽氧混合樹脂組成 物。使該熔融的組成物流入至鑄模,於該鑄模中,於90 °C 進行10小時的熟化而進行B階段化,藉此製作出此組成 物之移轉成型用平板。 [實施例2] 實施例1中,除了使用樹脂2來取代樹脂1之外,其 他與實施例1相同而製得環氧·聚矽氧混合樹脂組成物及 其所形成之移轉成型用平板。 [比較例1 ] 實施例1中,除了使用樹脂3來取代樹脂1之外’其 他與實施例1相同而製得環氧.聚矽氧混合樹脂組成物及 其所形成之移轉成型用平板。 [比較例2 ] -18- 200948846 實施例1中,除了不使用樹脂1之外,其他與實施例 1相同而製得環氧·聚矽氧混合樹脂組成物及其所形成之 移轉成型用平板。 - [評估] • 使用實施例1及2以及比較例1及2中所製得之移轉 成型用平板,進行移轉成型(150°C、5分鐘),然後再於 〇 15(TC進行4小時的後硬化,而製得具有5mmxl〇mm的剖 面且長度爲100mm之棒狀硬化物。使用此棒狀硬化物, 進行外觀及26 0 °C的IR回焊試驗後的變色之觀察,以及依 據JIS K 69 11來測定撓曲彈性率及撓曲強度。該結果如第 1表所示。 然後裝載光半導體元件,並使用插入有以接合線與該 光半導體元件連接之引線框架的壓縮模,將上述組成物壓 縮成型(壓力:6MPa、150°c、5分鐘),然後再於15 0 °C Ο 進行4小時的後硬化,藉此密封光半導體元件而製作出光 半導體裝置。對此光半導體裝置進行200循環之低溫側-40°C、高溫側120°C的熱衝擊試驗。對50個光半導體裝置 進行熱衝擊試驗,並測定產生龜裂之比例。該結果如第1 表所示。 再者,對各實施例1及2以及比較例1及2中所製得 之平板,藉由Seiko電子公司製的示差掃描熱析儀DSC-6220 (測定條件:於- i〇(TC〜200°C之升溫速度:l〇°C /min ),測定玻璃轉移點Tg,藉由Seiko電子公司製的熱機械 -19- 200948846 分析裝置TMA SS-6100 (測定條件:於-100°C ~200°C之升 溫速度:1 〇 °C /min ),測定未滿玻璃轉移點之溫度的線膨 脹率at與超過玻璃轉移點之溫度的線膨脹率α2。該結果 如第1表所示。 [第1表] 實施例1 實施例2 比較例1 比較例2 外觀 無色透明 無色透明 白色不透明 無色透明 撓曲彈性率(N/mm2) 1200 560 30 1200 撓曲強度(N/mm2) 45 23 無法測定*° 60 IR回焊試驗後的變色 >frrr Μ Ατττ. ~ππτ j\\\ Μ y» \ν 茶色色變 熱衝擊試驗(龜裂產生比例) 0/50 0/50 0/50 25/50 玻璃轉移溫度Tg(〇C) 60 30 -5 120 a\! a 2 160/200 170/210 200/230 70/160 ※1 :硬化物過軟之故。 -20-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy/polysilicate mixed resin composition suitable for use as a sealed optical semiconductor element and a flat plate for transfer molding formed therefor. • [Prior Art] Conventionally, an epoxy resin composition is widely used to seal an optical semiconductor element 0 used for an optical semiconductor element (refer to Patent Document η. This type of optical semiconductor element is sealed with an epoxy resin. The material generally contains an alicyclic epoxy resin, a curing agent, and a curing catalyst, and the composition is introduced into a mold in which the optical semiconductor element is disposed by a molding method such as casting molding or transfer molding, and is hardened. This seals the optical semiconductor element. However, the increase in the brightness and power of the LED (Light Emitting Diode) causes a problem of deterioration of the discoloration of the epoxy resin. In addition, the transparent epoxy resin used for sealing In the case of the blue light or the ultraviolet ray line, yellow discoloration occurs over time, so that the life of the element is short. Therefore, polyfluorene which is excellent in heat resistance and light resistance is used for sealing of an optical semiconductor element. Such a hardened polyoxygenated product has a low strength and has a problem that it cannot be used in a PKG structure. A high-hardness polyoxyl resin is used for sealing of an optical semiconductor element (refer to Patent Documents 2 and 3). However, these high-hardness polyoxyl resins still lack adhesiveness. Further, in addition to the arrangement of light-emitting elements in ceramics, / or plastic frame body, high hardness polyoxyl resin is filled in the inside of the frame body cover type body device, in the thermal shock test of -40~120 °C, will produce resin from the frame of ceramic or plastic The problem of peeling off. The means to solve these problems is to disclose a B-staged semiconductor formed by at least: an epoxy ring of silsesquioxane, an epoxy anhydride hardener and a hardening catalyst. The resin composition for sealing (refer to Patent Document 4) shows the crack resistance of the cured product. Further, Patent Document 5 discloses a material for sealing an optical semiconductor element formed of a mixture of epoxy resin. The polyoxyxene resin has at least two epoxy groups, and one or two of the conjugated siloxane units and the SiO 2 units are not described. Further, in Patent Document 6, A lipid component comprising an epoxyalkylene oxide-containing injection molding resin containing an alkylene oxide and an epoxy resin, wherein the epoxyalkyl oxane has a linear continuous structure formed by helium oxygen And a branch having one or two of a trifunctional unit and a SiO 2 unit, and there is no specific description. [Prior Art Document] [Patent Document] [Patent Document 1] 曰本特开2002- 1 79807 Japanese Laid-Open Patent Publication No. 2002-314139, and these light-emitting semi-conductive polyfluorene oxides have two resins and acid light, but they are not degreased and aggregated, but are closed by three.分 形成 矽 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 [Patent Document 5] Japanese Patent Publication No. 2007-103935 (Patent Document 6) Japanese Patent No. 3396652 (Invention) The present invention has been made in view of the above circumstances, and aims to provide One can be given When hardness and excellent crack resistance. Optical semiconductor element of the light resistance of cured sealing was mixed with an epoxy resin to poly-Si and oxygen is formed by the transfer molding plates. (Means for Solving the Problem) The inventors of the present invention conducted intensive studies to achieve the above object, and found that 'the specific epoxy-modified polyfluorene, specific epoxy resin, hardener, and The epoxy resin-polyoxygen mixed resin composition for sealing the optical semiconductor element of the curing catalyst solves the above problems. That is, the present invention provides a composition for sealing an epoxy-polysilicate mixed resin for optical semiconductor element, comprising: (A) having at least two epoxy groups, and having the formula: (R2SiO)n ( In the formula, R is a continuously-structured organopolyoxane represented by a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group 'ή is an integer of 0 or more, and the average 値 is 3 to 10); (B) An epoxy resin having at least 2 epoxy groups and having no siloxane coupling 200948846; (C) a hardener; and (D) a hardening catalyst. Next, the present invention provides a flat plate for transfer molding which is formed of the above-described composition of the B-stage. Advantageous Effects of Invention The epoxy-polyoxymethylene mixed resin composition for optical semiconductor element sealing of the present invention has a linear continuous structure formed of a unit of siloxane, so that the cured product has high hardness and is resistant to turtles. Excellent cracking and good light resistance. Therefore, by sealing the optical semiconductor element with the cured product, an optical semiconductor device having high hardness, excellent crack resistance, and good light resistance can be produced, which contributes greatly to the industry. [Embodiment] The composition of the present invention contains the above components (A) to (D). In the composition of the present invention, the ratio of the linear expansion ratio "1" to the temperature at which the temperature of the glass transition point is less than the linear expansion ratio ?2 exceeding the temperature of the glass transition point: ^!/«2 is 0.5 or more, and the package is obtained. The stress (Stress) mitigation is more desirable. More than: ai/aa is more preferably 0.5 or more and less than 1.0, and particularly preferably 0.6 to 0.99. The glass transition point (Tg) can be determined by Differential Scanning Calorimetry (DSC), the coefficient of linear expansion and "2 can be determined by a thermomechanical analyzer (TMA: Thermomechanical Analyzer) - 48-8 - 200948846 [(A) component] The component (A) has at least two epoxy groups and has the formula: (R2SiO) n (wherein R is a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group, η The 'organopolyoxyalkylene represented by the continuous structure represented by an integer of 3 to 10) preferably has the above-described continuous structure and has a trifunctional siloxane unit (that is, an organic sesquioxane unit) and A branched polyorganosiloxane formed by one or both of the tetrafunctional siloxane units represented by Si02 G. (A) The components may be used singly or in combination of two or more. The component (A) is not particularly limited as long as it is the above-mentioned organopolyoxane. The component (A) is, for example, a formula: R, SiX3 (wherein R' represents a group containing an epoxy group X), and water solubility is indicated. The trifunctional organic ruthenium compound represented by the group 'and the formula: γ_ (r2) Si0 - ((r2) Si〇) n - Si (R · 2) - Y (wherein R and n are as described above) , γ represents an organopolyoxane represented by a hydrolyzable acid group, and a trifunctional decane compound represented by RSiX3 (R'X is the same as the above) and SiX4 (X is the same as the above) One or two of the tetrafunctional decane compounds shown are synthesized by hydrolysis and condensation, and have the formula: R'si〇i5 (wherein R' is as shown): R2SiO) n (wherein R and n are as described above), and may optionally contain an organic one or both of RS1〇15 (wherein R is the same as the above) unit and SiO2 unit. Polyoxane. When the s is unsubstituted or substituted monovalent hydrocarbon group, the alkyl group, 200948846 cycloalkyl group, alkenyl group, aryl group, aralkyl group, and the hydrogen atom of these groups are substituted by a halogen atom, a cyano group or the like. The alkyl group has, for example, a methyl group, an ethyl group, a propyl group or a butyl group having 1 to 2 carbon atoms, more preferably 1 to 1 Å, still more preferably 1 to 6 alkyl groups. The cycloalkyl group has, for example, a cyclopentyl group, a cyclohexyl group, a decyl group or the like having 5 to 12 carbon atoms, more preferably 6 to 8 cycloalkyl groups. The alkenyl group has, for example, a vinyl group, an allyl group, a propenyl group, a butenyl group or a hexenyl group having 2 to 6 carbon atoms, more preferably 2 to 4 alkenyl groups. The aryl group has, for example, an aryl group having 6 to 12 carbon atoms such as a phenyl group or a tolyl group, and more preferably 6 to 8 carbon atoms. The aralkyl group has, for example, a 2-phenylethyl group, a 3-phenylpropyl group or the like having 7 to 2 carbon atoms, more preferably 7 to 12 aralkyl groups. Specific examples of R' include an epoxy group, a glycidyl group, a glycidoxy group, a 7-glycidoxypropyl group, a 3,4-epoxycyclohexyl group, and a 2-(3,4-epoxy ring). Hexyl)ethyl, 3-(3,4>epoxycyclohexyl)propyl, and the like. Specific examples of X and Y include a hydroxyl group; a halogen atom such as a chlorine atom; and an alkoxy group having a carbon number of 1 to 4, preferably 1 to 2, such as a methoxy group or an ethoxy group. The combination of X and γ includes, for example, a combination of a hydroxyl group, a combination of a halogen atom, a combination of an alkoxy groups, a combination of a hydroxyl group and an alkoxy group, etc. [(B) component] (B) component has at least 2 rings An oxy group and an epoxy resin having no siloxane coupling in the molecule. (B) The component can be used alone or in combination of two or more kinds of -10-200948846. (B) The component may be a bisphenol A type epoxy resin, a bisphenol F type phenolic epoxy resin, a cresol novolac type epoxy resin, a biphenyl type epoxy resin, as long as it is the above epoxy resin. Dicyclopentadiene type epoxy resin • Oxygen resin, biphenyl aralkyl type epoxy resin, hydrogenated epoxy resin resin obtained by hydrogenating the above aromatic ring, triglycidyl isocyanurate Wait. Among them, the amount of the epoxy resin, the alicyclic epoxy resin, and the isocyanuric acid (B) component is compared with the total of (A) for the deterioration of the product and its hardened material due to light. Ideally 5 to 80% by mass, more ideal: When the compounding amount is in the above range, the strength obtained is sufficient, and when the cured product is sealed by thermal shock caused by the temperature cycle of the photo-semiconductor or the like, it is not easy to cause defects. Further, since the ring in the composition obtained is excessive, when the light is sealed with the cured product of the composition, the cured product is deteriorated even if the element emits ultraviolet rays or the like. [(C) component] The component (C) is a hardener which crosslinks the ring in the composition of the present invention to harden the composition. This type of hardener used in epoxy resins. (S is particularly limited, (B type epoxy resin, phenol, naphthalene type epoxy resin grease, aralkyl type ring various epoxy resin, alicyclic epoxy tree) to prevent the group of the invention from using hydrogenation type Glycidyl ester: When the cured component of the composition is 10 to 60% by mass of the component (B), even if a crack is generated or the content of the adhesive resin is not a semiconductor element, it is not easily formed by the reaction of the ultraviolet oxy group. The curing agent can be used alone or in combination of two or more kinds of C-components. (C) The component is, for example, an acid anhydride-based hardener, an amine-based hardener, a hardener or these hardeners. Preferably, an acid anhydride type agent is used in combination. Specific examples of the acid anhydride type hardener include phthalic anhydride, cis dianhydride, trimellitic anhydride, benzene tetracarboxylic dianhydride, hexahydroortho anhydride, and 3. a mixture of hexahydrophthalic anhydride, 4-methyl-hexahydroorthoic anhydride, 3-methyl-hexahydrophthalic anhydride and 4·methyl-hexahydroorthoic anhydride, tetrahydrogen Phthalic anhydride, endomethyltetrahydro, methyl endomethylene tetrahydrophthalic anhydride In the form of norbornane-2,3-dicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, etc. Specific examples of the amine-based hardener include Hydrazide and 4,4-diaminodiphenyl. Methane, 4,4-diaminodiphenyl ether, 4,4. diphenylpropane, etc. Specific examples of the phenolic curing agent include bisphenol A type, bisphenol F type phenol type AF, and the like. Phenolic resin; phenolic phenol resin; phenolic phenolic resin such as cresol novolak; various phenolic resins such as a trisphenol type resin, a biphenyl type resin, an aralkyl type resin, and an alicyclic phenol type resin. (C) The compounding amount of the component is 1 mol of the epoxy group contained in the total of (A) component and (B), the acid anhydride amine group, the phenolic hydroxyl group, etc. in the (C) component, and the epoxy group. The functional group for the reaction is preferably from 2 to 1.5 mol, more preferably from 0.3 to 1.0, especially from 0.4 to 0.8 mol. Phenolic hardened butylene benzene diphenyl diphenyl phthalic anhydride Methyl compound diamine, double resin combined with the base, the ratio is considered to be 200948846 [(D) component] (D) component is a hardening catalyst, and the general hardening catalyst used in the epoxy resin can be used. (D) The components may be used singly or in combination of two or more. (D) Specific examples of the component include tetrabutyl sulfonium salt, bismuth-diethyl sulphide phosphate, and tetraphenyl iron salt. a fourth-stage rust salt such as tetraphenylborate; an organophosphine-based hardening catalyst such as triphenylphosphine or diphenyl phthalate; and 1,8-diazabiφ ring (5, 4, 0) a tertiary amine-based curing catalyst such as alkene-7, triethanolamine or benzyldimethylamine; an imidazole such as 2-methylimidazole or 2-phenyl-4-methylimidazole; The blending amount is preferably 0.05 to 3 phr (per hundred resin, which is a unit showing the amount (g) of the component (D) relative to 100 g of the total composition). When the compounding amount is in this range, it is easy to sufficiently obtain the effect of promoting the reaction of the epoxy resin with the hardener. Further, when the obtained composition is cured, when the optical semiconductor element sealed with the cured product of the composition is reflowed, discoloration of the cured product is easily prevented [other components], in the composition of the present invention, Other components may be added as necessary within the scope of the object of the present invention. Such other components are, for example, a light-scattering agent such as a phosphor or a titanium oxide fine powder which is used to change the wavelength of light emitted by the optical semiconductor element sealed by the cured product of the composition. Further, such other components include, for example, an antioxidant, an anti-tarnishing agent, an inorganic filler such as an anti-defective agent, a ceria, a decane-based coupling agent, a denaturing agent, a plasticizer, a diluent, and the like. [Plate for Transfer Molding] The flat plate for transfer molding of the present invention is formed of the composition of the present invention in a B-stage (i.e., semi-hardened state). In the present invention, the B-stage conditions may be 80 to 120 ° C, preferably 80 to 100 ° C, and 1 to 20 hours, preferably 5 to 15 hours, the above (A) ~ (D) This is achieved by the ingredients and the ripening of other ingredients that are necessary. The B-staged state means that the colloidalization time at 50 ° C of the composition in a semi-hardened state is preferably 10 to 70 seconds, more preferably 10 to 40 seconds. The flat plate for transfer molding of the present invention can be obtained, for example, by melting the composition of the present invention, aging it in a mold of a desired flat plate shape, and performing a B-stage. The molten composition of the present invention can be obtained by melt-mixing the above components (A) to (D) and other components added as necessary. The melt-mixing can be carried out by a generally known method. For example, the above components can be collectively placed in a reactor, and melt-mixed in a batchwise manner, or the above components can be collectively put into a kneader or a heated three-roller. The mixing machine is continuously melt-mixed. Further, in order to melt the composition of the present invention, it is preferred to firstly melt and mix the component (A) and the component (B) and the other components added as necessary, and then add the hardener of the component (C) to the prepared component. The molten mixture was uniformly melt-mixed, and then the hardening catalyst of the component (D)-14-200948846 was blended into the molten mixture and uniformly melt-mixed, thereby being obtained. When such a melt-mixing is carried out, since the hardening catalyst of the component (D) is mixed to the molten mixture in which the components (A) to (C) are sufficiently and uniformly mixed, the component (A) can be prevented from being (C). The ingredients produce a localized hardening reaction prior to thorough mixing. * The flat plate for transfer molding of the present invention can be obtained by pulverizing or slicing the raw material, so that the bubble is caught inside, and the quality of φ can be maintained. [Use] Transfer molding can be carried out using the flat plate for transfer molding of the present invention. Transfer molding, the general method is to preheat the softened flat plate in the preheating chamber, then pass through the small hole through the plunger to the cavity of the sealing model, and harden it at that place. Made by this. The molding machine can be any of an auxiliary plunger type molding machine, a slide type molding machine, a double plunger type molding machine, and a low pressure sealing molding machine. The composition of the present invention and the flat plate for transfer molding are suitably used for sealing an optical semiconductor device, and the composition or the softened plate can be applied to the optical semiconductor device, and the composition can be applied. Or the plate is hardened to thereby seal. The optical semiconductor element is, for example, a light-emitting diode, a photodiode, a photovoltaic transistor, a laser diode or the like. [Examples] Hereinafter, the present invention will be specifically described by showing examples and comparative examples, but the present invention is not limited by the following examples. (A) The organopolysiloxane of the component (A) is produced by the method shown below. [Synthesis Example 1] 900 g of isopropyl alcohol, 24 g of a 25% aqueous solution of tetramethylammonium hydroxide, and 216 g of water After being placed in the reactor, 2-(3,4-epoxycyclohexyl)ethyltrimethoxydecane (KBM3 030, manufactured by Shin-Etsu Chemical Co., Ltd.) 490 g (2.0 mol) was added as an epoxy-containing trifunctional oxime Alkane unit source, and 565.2 g (l. 〇mole) of organopolysiloxane represented by MeO(Me) 2Si-0-(Me2SiO) nSi(Me) 2〇Me (average 値=5 of η) A continuous structure source represented by the formula: (R2SiO) η was stirred at room temperature for 20 hours to carry out the reaction. After the completion of the reaction, 120 g of toluene was added to the reaction system, and isopropyl alcohol or the like was removed under reduced pressure. The residue was washed with hot water using a separatory funnel. After washing with water until the aqueous layer became neutral, the toluene layer was dehydrated with anhydrous sodium sulfate. After filtering anhydrous sodium sulfate, toluene was removed under reduced pressure to obtain the intended resin (resin 1). The epoxy equivalent was 432 g/mol. [Synthesis Example 2] In Synthesis Example 1, 'except for the use of MeO(Me) 2Si-0-(Me2Si0 )nSi(Me) 2OMe (average 値=7 of n), the organic polyoxo 200948846 alkane 712 g (l. 〇莫耳) to replace the organopolysiloxane 5 65.2g ( 1.〇莫耳) represented by MeO(Me) 2Si-0-(Me2Si0 )nSi ( Me ) 2〇Me (the average 値=5 of n) Other than the synthesis example 1, the resin (resin 2) was obtained. The epoxy equivalent is 5 40 g/mol. • [Synthesis Example 3] In Synthesis Example 1, except that the organopolysiloxane 1 represented by MeO(Me) 2Si-0-(Me2Si0 φ ) nSi ( Me) 2〇Me (the average 値 = 15 of η) was used. 3 04g (1·〇莫耳) to replace the organic polyoxane 565.2g represented by MeO ( Me ) 2Si-0-( Me2SiO) nSi(Me) 2〇Me (the average 値=5 of n) ( 1 Other than the synthesis example 1, the resin (resin 3) was obtained in the same manner as in Synthesis Example 1. The epoxy equivalent was 740 g/mol. • (B) Epoxy resin of component (B) is made of epoxide epoxy resin φ Daicel Chemical Co., Ltd. "Cell oxide 2021P" (trade name) • (C) Hardening of component (C) The agent is "MH" (trade name) manufactured by Shin Nippon Chemical Co., Ltd., which uses methylhexahydrophthalic anhydride. • (D) The hardening catalyst of the component (D) is UCAT- -17- 200948846 5003 (trade name, manufactured by San-Apro). [Example 1] The components of the epoxy-polyoxymethylene mixed resin for sealing an optical semiconductor element and the sheet for transfer molding formed therefrom were prepared by disposing the components in the following steps in the following manner. First, 87 parts by mass of the resin 1 , 34 parts by mass of Celloxide 202 1 P, 26 parts by mass of hydrazine, and 0.6 parts by mass of UCAT5003 were melt-mixed at 80 ° C to obtain an epoxy/polyfluorene mixed resin composition. Things. This molten composition was poured into a mold, and the mold was subjected to aging at 90 ° C for 10 hours to carry out B-stage formation, whereby a flat plate for transfer molding of the composition was produced. [Example 2] In the same manner as in Example 1, except that the resin 2 was used instead of the resin 1, the epoxy-polyoxymethylene mixed resin composition and the formed transfer molding were obtained. flat. [Comparative Example 1] In Example 1, except that Resin 3 was used instead of Resin 1, the epoxy-polyoxyl mixed resin composition and the formed transfer molding were produced in the same manner as in Example 1. flat. [Comparative Example 2] -18-200948846 In Example 1, except that the resin 1 was not used, the epoxy-polyoxymethylene mixed resin composition and the formed transfer molding were obtained in the same manner as in Example 1. Use a tablet. - [Evaluation] • Using the transfer molding sheets prepared in Examples 1 and 2 and Comparative Examples 1 and 2, transfer molding (150 ° C, 5 minutes), and then 〇 15 (TC) After 4 hours of post-hardening, a rod-shaped cured product having a cross section of 5 mm x 1 mm and having a length of 100 mm was obtained. Using this rod-shaped cured product, the appearance and the discoloration after the IR reflow test at 260 ° C were observed. And the flexural modulus and the flexural strength are measured in accordance with JIS K 69 11. The result is shown in Table 1. Then, the optical semiconductor element is loaded and a lead frame inserted with a bonding wire and the optical semiconductor element is inserted. In the compression mold, the above composition was compression-molded (pressure: 6 MPa, 150 ° C, 5 minutes), and then post-cured at 150 ° C for 4 hours to seal the optical semiconductor element to produce an optical semiconductor device. This optical semiconductor device was subjected to a thermal shock test at a low temperature side of -40 ° C for 200 cycles and a high temperature side of 120 ° C. A thermal shock test was performed on 50 optical semiconductor devices, and the ratio of occurrence of cracks was measured. The result is shown in Table 1. Again, for each of embodiments 1 and 2 And the flat plates prepared in Comparative Examples 1 and 2, by a differential scanning calorimeter DSC-6220 manufactured by Seiko Electronics Co., Ltd. (measurement conditions: at -i〇 (temperature rise rate of TC~200 °C: l〇 °C) /min), the glass transition point Tg was measured by Thermo Mechanical -19-200948846 analytical apparatus TMA SS-6100 manufactured by Seiko Electronics Co., Ltd. (Measurement conditions: Temperature rise rate at -100 ° C to 200 ° C: 1 〇 ° C /min), the coefficient of linear expansion at which the temperature of the glass transition point is not exceeded and the coefficient of linear expansion α2 exceeding the temperature of the glass transition point. The results are shown in Table 1. [Table 1] Example 1 Example 2 Comparative Example 1 Comparative Example 2 Appearance Colorless Transparent Colorless Transparent White Opaque Colorless Transparent Flexural Elasticity (N/mm2) 1200 560 30 1200 Flexural Strength (N/mm2) 45 23 Unmeasured *° 60 Discoloration after IR Reflow Test >frrr Μ Ατττ. ~ππτ j\\\ Μ y» \ν Brown color thermal shock test (crack generation ratio) 0/50 0/50 0/50 25/50 Glass transition temperature Tg(〇C) 60 30 -5 120 a\! a 2 160/200 170/210 200/230 70/160 *1 : The hardened material is too soft. -20-

Claims (1)

200948846 七、申請專利範圍: 1. 一種光半導體元件密封用環氧.聚矽氧混合樹脂組 成物,其特徵爲: 係含有:(A)具有至少2個環氧基,並且具有由式 . :(R2SiO) n(式中,R爲獨立地表示氫原子或非取代或 • 取代的一價烴基,η爲0以上的整數,該平均値爲3〜10) 所表示之連續構造的有機聚矽氧烷; φ (Β)具有至少2個環氧基,並且不具有矽氧烷鍵結 之環氧樹脂; (C )硬化劑;以及 (D)硬化觸媒。 2. 如申請專利範圍第1項之組成物,其中(Α)成份 係具有由式:(R2SiO) η (式中,R及η如前述所示)所 表示之連續構造,並且具有由三官能性矽氧烷單位及Si〇2 單位中的一種或兩種所形成之分枝狀構造。 Q 3.如申請專利範圍第1項之組成物,其中未滿玻璃轉 移點之溫度的線膨脹率a i與超過玻璃轉移點之溫度的線 膨張率之比· αι/αζ’爲以上。 4. 一種移轉成型用平板,其特徵爲: 係由Β階段化之申請專利範圍第1至3項中任一項之 組成物所形成。 -21 - 200948846 四、指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 ❹200948846 VII. Patent application scope: 1. An epoxy-polyoxyl mixed resin composition for sealing an optical semiconductor element, characterized in that: (A) has at least 2 epoxy groups and has the formula: (R2SiO) n (wherein R is an independently-formed organic polyfluorene represented by a hydrogen atom or an unsubstituted or substituted monovalent hydrocarbon group, η is an integer of 0 or more, and the average enthalpy is 3 to 10) An oxane; φ (Β) an epoxy resin having at least 2 epoxy groups and having no siloxane coupling; (C) a hardener; and (D) a hardening catalyst. 2. The composition of claim 1, wherein the (Α) component has a continuous structure represented by the formula: (R2SiO) η (wherein R and η are as defined above), and has a trifunctional A branched structure formed by one or both of a siloxane unit and a Si 〇 2 unit. Q 3. The composition of claim 1, wherein the ratio of the linear expansion ratio a i of the temperature less than the glass transition point to the linear expansion ratio of the temperature exceeding the glass transition point is αι/αζ'. A flat plate for transfer molding, which is characterized in that it is formed by a composition of any one of the first to third aspects of the patent application. -21 - 200948846 IV. Designation of Representative Representatives: (1) The representative representative of the case is: None (2) Simple description of the symbol of the representative figure: None 200948846 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無 -4-200948846 V If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none -4-
TW098110129A 2008-03-28 2009-03-27 Epoxy-Polyimide Oxygen Mixed Resin Composition for Photonic Semiconductor Component Sealing and Tablets for Transparent Forming TWI441847B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008085835 2008-03-28
JP2009033148A JP5077894B2 (en) 2008-03-28 2009-02-16 Epoxy / silicone hybrid resin composition for optical semiconductor element sealing and transfer molding tablet comprising the same

Publications (2)

Publication Number Publication Date
TW200948846A true TW200948846A (en) 2009-12-01
TWI441847B TWI441847B (en) 2014-06-21

Family

ID=41281922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098110129A TWI441847B (en) 2008-03-28 2009-03-27 Epoxy-Polyimide Oxygen Mixed Resin Composition for Photonic Semiconductor Component Sealing and Tablets for Transparent Forming

Country Status (4)

Country Link
JP (1) JP5077894B2 (en)
KR (1) KR101500757B1 (en)
CN (1) CN101565549B (en)
TW (1) TWI441847B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555769B (en) * 2011-07-13 2016-11-01 大賽璐股份有限公司 Curable epoxy resin composition
TWI570160B (en) * 2012-09-04 2017-02-11 新日鐵住金化學股份有限公司 Epoxy silicone resin and a hardened resin composition using the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251919B2 (en) * 2009-05-08 2013-07-31 信越化学工業株式会社 Resin composition for optical semiconductor element sealing
JP5606752B2 (en) * 2010-02-25 2014-10-15 株式会社ダイセル Resin composition for optical semiconductor sealing and optical semiconductor device using the same
JP5938041B2 (en) * 2011-07-20 2016-06-22 株式会社ダイセル Curable epoxy resin composition
JP6047294B2 (en) * 2012-03-30 2016-12-21 株式会社ダイセル Curable epoxy resin composition
JP5899025B2 (en) * 2012-03-30 2016-04-06 株式会社ダイセル Curable epoxy resin composition
JP6118313B2 (en) * 2012-04-03 2017-04-19 株式会社ダイセル Curable epoxy resin composition
KR101869178B1 (en) 2013-12-26 2018-06-19 주식회사 다이셀 Curable composition for lens, and lens and optical device
JP6691475B2 (en) * 2016-12-28 2020-04-28 信越化学工業株式会社 Silicone resin composition and optical semiconductor device
CN111757911B (en) * 2018-12-29 2023-02-28 广东生益科技股份有限公司 Resin composition, prepreg, laminate, metal-clad laminate, and printed wiring board
DE102019209346A1 (en) * 2019-06-27 2020-12-31 Siemens Aktiengesellschaft Impregnation formulation, insulation material, method for producing an insulation material and electrical machine with an insulation material
CN111100463A (en) * 2019-12-26 2020-05-05 广东盈骅新材料科技有限公司 Epoxy modified silicone resin composition and application thereof
CN113980514B (en) * 2021-10-25 2023-05-12 杭州福斯特电子材料有限公司 Photocurable packaging composition, organic packaging film and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528613B2 (en) * 2004-12-27 2010-08-18 東レ・ダウコーニング株式会社 Adhesive composite of silicone resin and epoxy resin and method for producing the same
JP2006282988A (en) * 2005-03-08 2006-10-19 Sanyo Chem Ind Ltd Epoxy resin composition for sealing optical semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI555769B (en) * 2011-07-13 2016-11-01 大賽璐股份有限公司 Curable epoxy resin composition
TWI570160B (en) * 2012-09-04 2017-02-11 新日鐵住金化學股份有限公司 Epoxy silicone resin and a hardened resin composition using the same

Also Published As

Publication number Publication date
CN101565549B (en) 2013-01-02
CN101565549A (en) 2009-10-28
JP2009256604A (en) 2009-11-05
KR101500757B1 (en) 2015-03-09
TWI441847B (en) 2014-06-21
KR20090103812A (en) 2009-10-01
JP5077894B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
TWI441847B (en) Epoxy-Polyimide Oxygen Mixed Resin Composition for Photonic Semiconductor Component Sealing and Tablets for Transparent Forming
US8044128B2 (en) White heat-curable silicone/epoxy hybrid resin composition for optoelectronic use, making method, premolded package, and LED device
US8133957B2 (en) Resin composition for encapsulating optical semiconductor element
KR101948327B1 (en) Heat curable resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
JP4964928B2 (en) Underfill material composition and optical semiconductor device
JP2010254825A (en) Silicone resin composition for optical semiconductor device and optical semiconductor device
JP5877163B2 (en) Curable epoxy resin composition
WO2007046399A1 (en) Thermosetting resin composition and photosemiconductor encapsulation material
JP5380325B2 (en) Thermosetting resin composition for optical semiconductor element sealing, cured product thereof, and optical semiconductor device obtained using the same
JP2008019422A (en) Epoxy-silicone mixed resin composition and light emitting semiconductor device
JP6066140B2 (en) Curable composition
JP2009185226A (en) Heat curable silicone composition and molded product using the same for optical member
KR101751541B1 (en) Composition for encapsulating optical semiconductor element
KR101683891B1 (en) Resin composition for encapsulating optical semiconductor element
JP5246880B2 (en) Underfill material composition and optical semiconductor device
JP6992967B2 (en) Compositions for encapsulation molding materials and electronic component equipment
JP2007145939A (en) Resin composition and resin-sealed semiconductor device
JP2009191217A (en) Epoxy-silicone composite resin composition and light-emitting semiconductor device
JP2019116532A (en) Composition for sealing molding material and electronic component device