JP5251919B2 - Resin composition for optical semiconductor element sealing - Google Patents

Resin composition for optical semiconductor element sealing Download PDF

Info

Publication number
JP5251919B2
JP5251919B2 JP2010102362A JP2010102362A JP5251919B2 JP 5251919 B2 JP5251919 B2 JP 5251919B2 JP 2010102362 A JP2010102362 A JP 2010102362A JP 2010102362 A JP2010102362 A JP 2010102362A JP 5251919 B2 JP5251919 B2 JP 5251919B2
Authority
JP
Japan
Prior art keywords
group
component
epoxy
mol
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010102362A
Other languages
Japanese (ja)
Other versions
JP2010280885A (en
Inventor
佳英 浜本
努 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010102362A priority Critical patent/JP5251919B2/en
Publication of JP2010280885A publication Critical patent/JP2010280885A/en
Application granted granted Critical
Publication of JP5251919B2 publication Critical patent/JP5251919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光半導体素子を封止するための組成物であり、詳細には、主剤が実質的にシリコーン樹脂からなる耐熱変色性及び硬化性に優れた光半導体素子封止用組成物に関する。 The present invention relates to a composition for encapsulating an optical semiconductor element, and in particular, relates to an optical semiconductor element encapsulating composition excellent in heat discoloration and curability, in which a main component is substantially composed of a silicone resin.

従来、光半導体素子を封止するために、エポキシ樹脂組成物が広く用いられている。該エポキシ樹脂組成物は、通常、主剤である脂環式エポキシ樹脂、硬化剤及び硬化触媒を含有する。該組成物を、キャスティング、トランスファー成形などにより、光半導体素子が配置された金型に流しこみ硬化させることにより、光半導体素子を封止する。しかし、LEDの輝度及びパワーアップに伴い、エポキシ樹脂の変色及び劣化が問題となっている。特に、脂環式エポキシ樹脂は、青色光や紫外線により黄変するため、LED素子の寿命を短くするという問題があった。   Conventionally, epoxy resin compositions have been widely used to seal optical semiconductor elements. The epoxy resin composition usually contains an alicyclic epoxy resin, a curing agent, and a curing catalyst as main components. The optical semiconductor element is sealed by pouring and curing the composition into a mold in which the optical semiconductor element is disposed by casting, transfer molding, or the like. However, with the brightness and power-up of the LED, discoloration and deterioration of the epoxy resin have become a problem. In particular, since the alicyclic epoxy resin is yellowed by blue light or ultraviolet light, there is a problem of shortening the lifetime of the LED element.

そこで、耐熱性及び耐光性に優れたシリコーン樹脂が使用されるようになっているが、エポキシ樹脂に比べ硬化した樹脂の強度が弱いという問題がある。これを解決するために、高硬度ゴム状シリコーン樹脂を封止用途に使用したものが提案されている(特許文献1)。しかし、高硬度シリコーン樹脂は接着性が乏しく、ケース型の発光半導体装置、即ち、セラミック及び/又はプラスチック筐体内に発光素子を配置し、その筐体内部をシリコーン樹脂で充填した装置では、−40〜120℃での熱衝撃試験で、シリコーン樹脂が筐体のセラミックやプラスチックから剥離してしまう問題がある。   Then, although the silicone resin excellent in heat resistance and light resistance is used, there exists a problem that the intensity | strength of the hardened resin is weak compared with an epoxy resin. In order to solve this problem, a material using a high-hardness rubber-like silicone resin for sealing has been proposed (Patent Document 1). However, the high-hardness silicone resin has poor adhesion, and in a case-type light-emitting semiconductor device, that is, a device in which a light-emitting element is arranged in a ceramic and / or plastic housing and the inside of the housing is filled with silicone resin, −40 In a thermal shock test at ˜120 ° C., there is a problem that the silicone resin is peeled off from the ceramic or plastic of the housing.

接着性及び耐熱衝撃性を増すために、エポキシ基を有するシリコーン樹脂が提案されている(特許文献2)。該シリコーン樹脂は、エポキシ基を有するシランと、シラノールとを縮合させて合成されるが、その硬化物の弾性率が低く且つ脆い。そのため、該樹脂で封止したLEDは、温度サイクル試験において樹脂にクラックが入り易いという問題があった。   In order to increase adhesiveness and thermal shock resistance, a silicone resin having an epoxy group has been proposed (Patent Document 2). The silicone resin is synthesized by condensing a silane having an epoxy group and silanol, but the cured product has a low elastic modulus and is brittle. Therefore, the LED sealed with the resin has a problem that the resin is easily cracked in the temperature cycle test.

これを解決する物として、エポキシ樹脂と、エポキシ環を少なくとも2つ有するシルセスキオキサンを含む組成物(特許文献3)、及び、低応力化剤としてエポキシ樹脂とイソシアヌル酸誘導体基を有するシリコーン樹脂を含む組成物(特許文献4)が知られている。しかし、これらのいずれも、硬化物の温度サイクル試験でクラックの発生が見られ、耐熱衝撃性が満足の行くものとはいえない。   As a solution to this problem, an epoxy resin, a composition containing silsesquioxane having at least two epoxy rings (Patent Document 3), and a silicone resin having an epoxy resin and an isocyanuric acid derivative group as a stress reducing agent The composition (patent document 4) containing this is known. However, none of these shows the occurrence of cracks in the temperature cycle test of the cured product, and the thermal shock resistance is not satisfactory.

特開2002−314143号公報JP 2002-314143 A 特開平7−97433号公報Japanese Patent Laid-Open No. 7-97433 特開2005−263869号公報JP 2005-263869 A 特開2004−99751号公報JP 2004-99751 A

本発明の目的は、上記問題を解決し、硬度が高く、耐光性、及び耐熱衝撃性に優れるとともに、特に耐熱変色性に優れる封止体を形成でき、硬化速度等を改良した光半導体素子封止用樹脂組成物を提供することにある。 An object of the present invention is to provide an optical semiconductor device encapsulating which solves the above-mentioned problems, has a high hardness, is excellent in light resistance and thermal shock resistance, can form a sealing body particularly excellent in heat discoloration, and has improved curing speed and the like. It is providing the resin composition for a stop.

本発明者らは、種々検討した結果、該直鎖ポリシロキサン構造を有するエポキシ変性シリコーン樹脂と、2種類のオルガノシランを縮合して得られ且つ該エポキシ変性シリコーン樹脂よりもエポキシ当量が小さい、第二のエポキシ変性シリコーン樹脂を併用することによって、上記目的を達成することを見出し、本発明を為した。   As a result of various studies, the present inventors have obtained an epoxy-modified silicone resin having a linear polysiloxane structure and two types of organosilanes, which are obtained by condensation and have an epoxy equivalent smaller than that of the epoxy-modified silicone resin. The inventors have found that the above object can be achieved by using two epoxy-modified silicone resins in combination, and have made the present invention.

即ち、本発明は、下記(A)、(B)、(C)及び(D)成分を含む光半導体素子封止用組成物である。
(A)下記平均組成式(1)で表される、エポキシ基含有非芳香族基を有する第一のシリコーン樹脂 50〜90質量部
That is, this invention is a composition for optical semiconductor element sealing containing the following (A), (B), (C) and (D) component.
(A) 50-90 mass parts of 1st silicone resins which have an epoxy-group-containing non-aromatic group represented by the following average compositional formula (1)

Figure 0005251919
Figure 0005251919

(式(1)において、Rはエポキシ基含有非芳香族基、Rは互いに独立に水酸基、C1−20一価炭化水素基、及びC1−6アルコキシ基から選ばれる基、RはC1−20一価炭化水素基であり、
x及びyは互いに独立に0、1又は2の整数であり、
aは0.25〜0.75の数、
bは0.25〜0.75の数、
cは0〜0.3の数、但しa+b+c=1、であり、
nは2〜20の整数である)
(B)下記平均組成式(2)で表される、エポキシ基含有非芳香族基を有する第二のシリコーン樹脂 10〜50質量部
(In Formula (1), R 1 is an epoxy group-containing non-aromatic group, R 2 is a group independently selected from a hydroxyl group, a C 1-20 monovalent hydrocarbon group, and a C 1-6 alkoxy group, R 3 Is a C 1-20 monovalent hydrocarbon group,
x and y are each independently an integer of 0, 1 or 2;
a is a number from 0.25 to 0.75,
b is a number from 0.25 to 0.75,
c is a number from 0 to 0.3, where a + b + c = 1,
n is an integer of 2 to 20)
(B) 10-50 mass parts of 2nd silicone resins which have an epoxy-group-containing non-aromatic group represented by the following average compositional formula (2)

Figure 0005251919
Figure 0005251919

(式(2)において、R、R及びRは上記のとおりであり、zは互いに独立に0、1又は2の整数であり、
dは0.5〜0.8の数、
eは0.2〜0.5の数、
但しd+e=1、である)
(C)エポキシ基との反応性の官能基を有する硬化剤 (A)成分中と(B)成分中のエポキシ基の合計1モルに対し、該エポキシ基と反応性の官能基が0.4〜1.5モルとなる量
(D)硬化触媒 (A)成分と(B)成分の合計100質量部に対し0.01〜3重量部。
(In the formula (2), R 1 , R 2 and R 3 are as described above, z is an integer of 0, 1 or 2 independently of each other;
d is a number from 0.5 to 0.8,
e is a number from 0.2 to 0.5,
(D + e = 1)
(C) Curing agent having functional group reactive with epoxy group (A) The functional group reactive with the epoxy group is 0.4 mol in total for 1 mol of the epoxy group in the component (A) and the component (B). The amount which becomes -1.5 mol (D) Curing catalyst 0.01-3 weight part with respect to a total of 100 mass parts of (A) component and (B) component.

上記本発明の樹脂組成物は、第二のシリコーン樹脂を含むので硬度の高い硬化物を与える。また、該第二のシリコーン樹脂が反応性に富むため、短時間で、耐熱変色性が良好な光半導体パッケージを与えることができる。   Since the resin composition of the present invention contains the second silicone resin, it gives a cured product having high hardness. Moreover, since this 2nd silicone resin is rich in reactivity, the optical semiconductor package with favorable heat-resistant color-change property can be given in a short time.

合成例1において得られた第一のシリコーン樹脂について得られた29Si−NMRの測定チャートを示す。The measurement chart of 29 Si-NMR obtained about the 1st silicone resin obtained in the synthesis example 1 is shown.

<(A)成分>
本発明の組成物において、(A)エポキシ基含有非芳香族基を有する第一のシリコーン樹脂は、下記平均組成式(1)で表される。
<(A) component>
In the composition of the present invention, (A) the first silicone resin having an epoxy group-containing non-aromatic group is represented by the following average composition formula (1).

Figure 0005251919
Figure 0005251919

式(1)において、nは2〜20、好ましくは3〜20、より好ましくは3〜10の整数である。x及びyは互いに独立に0、1又は2の整数である。該第一のシリコーン樹脂を構成する添え字aが付された一番目の構造単位及び添え字cが付された三番目の構造単位のおのおのにおいては、x又はyが0である単位(T単位)、x又はyが1である単位(D単位)及びx又はyが2である単位(M単位)が通常一分子中に共に存在している。一番目の構造単位及び三番目の構造単位のおのおのにおいてT単位、D単位及びM単位の存在割合は後述する製造方法において用いる単量体におけるRの種類及び加水分解・縮合の進行程度に依存する。T単位:D単位:M単位のモル比は、好ましくは10:30:60〜98:1:1であり、より好ましくは40:30:30〜98:1:1であり、さらに好ましくは60:20:20〜96:2:2、さらに一層好ましくは80:10:10〜95:3:2である。 In the formula (1), n is an integer of 2 to 20, preferably 3 to 20, and more preferably 3 to 10. x and y are each independently an integer of 0, 1 or 2. In each of the first structural unit with the subscript a and the third structural unit with the subscript c constituting the first silicone resin, a unit in which x or y is 0 (T unit) ), A unit in which x or y is 1 (D unit) and a unit in which x or y is 2 (M unit) are usually present together in one molecule. In each of the first structural unit and the third structural unit, the abundance ratio of the T unit, the D unit, and the M unit depends on the type of R 2 in the monomer used in the production method described later and the progress of hydrolysis / condensation. To do. The molar ratio of T unit: D unit: M unit is preferably 10:30:60 to 98: 1: 1, more preferably 40:30:30 to 98: 1: 1, and even more preferably 60. : 20: 20 to 96: 2: 2, and still more preferably 80:10:10 to 95: 3: 2.

式(1)中の(R SiO)単位において、例えば、nが3の単位は、下記構造である。 In the (R 3 2 SiO) n unit in the formula (1), for example, the unit in which n is 3 has the following structure.

Figure 0005251919
Figure 0005251919

該(R SiO)単位は、該シリコーン樹脂が直鎖状である場合にはその主鎖にあってもよいし、分岐状であればいずれの分岐に結合されていてもよい。該(R SiO)単位を含むことで、耐熱衝撃性に優れた硬化物を得ることができる。 The (R 3 2 SiO) n unit may be in the main chain when the silicone resin is linear, or may be bonded to any branch as long as it is branched. By containing the (R 3 2 SiO) n unit, a cured product having excellent thermal shock resistance can be obtained.

式(1)において、Rはエポキシ基含有非芳香族基であり、その例としては、γ−グリシドキシプロピル基等のγ−グリシドキシアルキル基などのエポキシ基含有直鎖もしくは分岐脂肪族基、β−(3,4−エポキシシクロへキシル)エチル基等のエポキシ基含有脂環式基、モノグリシジルイソシアヌリル基及びジグリシジルイソシアヌリル基等のエポキシ基含有ヘテロ環含有基が挙げられる。これらのうち、エポキシ基含有脂環式基、特にβ−(3,4−エポキシシクロへキシル)エチル基が好ましい。なお、エポキシ基に代えて、オキセタニル基を有する非芳香族基を用いることが考えられるが、硬化性の点から、エポキシ基が優れている。Rは一分子中に少なくとも1個、さらには2〜100個存在することが好ましい。また、分子の末端に存在することが好ましく、例えば分子構造が直鎖状である場合にはその両端に夫々1個ずつあることがより好ましい。 In the formula (1), R 1 is an epoxy group-containing non-aromatic group, for example, an epoxy group-containing linear or branched fat such as a γ-glycidoxyalkyl group such as a γ-glycidoxypropyl group. Epoxy group-containing heterocycle-containing groups such as an epoxy group-containing alicyclic group such as an aromatic group, β- (3,4-epoxycyclohexyl) ethyl group, a monoglycidyl isocyanuryl group and a diglycidyl isocyanuryl group. Can be mentioned. Among these, an epoxy group-containing alicyclic group, particularly a β- (3,4-epoxycyclohexyl) ethyl group is preferable. In addition, although it is possible to use the non-aromatic group which has oxetanyl group instead of an epoxy group, the epoxy group is excellent from a sclerosing | hardenable point. R 1 is preferably present in at least one, more preferably 2 to 100, in one molecule. Moreover, it is preferable that it exists in the terminal of a molecule | numerator, for example, when a molecular structure is linear, it is more preferable that there is one each at the both ends.

は、水酸基、C1−20一価炭化水素基、及びC1−6アルコキシ基から選ばれる基である。該炭化水素基としては、メチル基、エチル基、プロピル基及びブチル基等のアルキル基、シクロペンチル基及びシクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、トリル基等のアルカリール基、ノルボネニル基等の架橋環式基が例示される。C1−6アルコキシ基としては、メトキシ基、エトキシ基が挙げられる。好ましくは、Rはメチル基またはフェニル基である。 R 2 is a group selected from a hydroxyl group, a C 1-20 monovalent hydrocarbon group, and a C 1-6 alkoxy group. Examples of the hydrocarbon group include alkyl groups such as methyl group, ethyl group, propyl group and butyl group, cycloalkyl groups such as cyclopentyl group and cyclohexyl group, aryl groups such as phenyl group, alkaryl groups such as tolyl group, norbonenyl. Examples thereof include a crosslinked cyclic group such as a group. Examples of the C 1-6 alkoxy group include a methoxy group and an ethoxy group. Preferably, R 2 is a methyl group or a phenyl group.

は、互いに独立に、C1−20一価炭化水素基であり、Rに関して、上述した基が例示される。 R 3 is, independently of each other, a C 1-20 monovalent hydrocarbon group, and the groups described above with respect to R 2 are exemplified.

aは0.25〜0.75の数、好ましくは0.4〜0.7の数である。aが前記下限値未満では、エポキシ基量が少ないため、組成物の硬化度が低く、前記上限値超ではエポキシ基量が多いため、合成した樹脂がゲル化してしまい、好ましくない。bは0.25〜0.75の数、好ましくは0.3〜0.6の数である。cは0〜0.3の数、好ましくは0〜0.2の数である。cが前記上限値を超えると、硬化物の耐光性が悪くなる傾向がある。式(1)は各構造単位の平均的存在割合を示す組成式であり、a+b+c=1である。 a is a number of 0.25 to 0.75, preferably a number of 0.4 to 0.7. If a is less than the lower limit value, the amount of epoxy groups is small, so the degree of cure of the composition is low, and if it exceeds the upper limit value, the amount of epoxy groups is large, and the synthesized resin gels, which is not preferable. b is a number of 0.25 to 0.75, preferably a number of 0.3 to 0.6. c is a number from 0 to 0.3, preferably a number from 0 to 0.2. When c exceeds the upper limit, the light resistance of the cured product tends to deteriorate. Formula (1) is a composition formula showing the average abundance of each structural unit, and a + b + c = 1.

(A)成分は、下記式(3)で示される直鎖オルガノポリシロキサンと、 The component (A) is a linear organopolysiloxane represented by the following formula (3):

Figure 0005251919
Figure 0005251919

(上式において、Rは上述のとおりであり、Xは加水分解性基、例えばアルコキシ基、及びハロゲン原子であり、mは0〜18の整数である。)
下記式(4):
(In the above formula, R 3 is as described above, X is a hydrolyzable group such as an alkoxy group and a halogen atom, and m is an integer of 0 to 18).
Following formula (4):

Figure 0005251919
Figure 0005251919

(上式において、R1及びRは上述のとおりであるが、Rの少なくとも1個は水酸基又はC1−6アルコキシ基である。)
で表されるエポキシ基含有シランを、必要に応じて、式(5):
(In the above formula, R 1 and R 2 are as described above, but at least one of R 2 is a hydroxyl group or a C 1-6 alkoxy group.)
If necessary, an epoxy group-containing silane represented by formula (5):

Figure 0005251919
Figure 0005251919

(上式において、R及びRは上述のとおりであるが、Rの少なくとも1個は水酸基又はC1−6アルコキシ基である。)
で表されるシランとともに、定法に従い加水分解及び縮合反応させることによって得ることができる。
(In the above formula, R 2 and R 3 are as described above, but at least one of R 2 is a hydroxyl group or a C 1-6 alkoxy group.)
It can obtain by carrying out a hydrolysis and a condensation reaction according to a usual method with the silane represented by these.

(A)成分は、ポリスチレン換算の重量平均分子量が3000〜10,000、好ましくは3000〜6,000である。また、エポキシ当量が200〜800g/モル、好ましくは300〜600g/モルである。 The component (A) has a polystyrene equivalent weight average molecular weight of 3000 to 10,000, preferably 3000 to 6,000. The epoxy equivalent is 200 to 800 g / mol, preferably 300 to 600 g / mol.

<(B)成分>
(B)エポキシ基含有非芳香族基を有する第二のシリコーン樹脂は、下記平均組成式(2)で表される。
<(B) component>
(B) The second silicone resin having an epoxy group-containing non-aromatic group is represented by the following average composition formula (2).

Figure 0005251919
Figure 0005251919

式(2)において、R、R及びRは上記のとおりである。zは互いに独立に0、1又は2の整数である。該第二のシリコーン樹脂を構成する添え字dが付された一番目の構造単位においては、zが0である単位(T単位)、zが1である単位(D単位)及びzが2である単位(M単位)が一分子中に共に存在している。該構造単位においてT単位、D単位及びM単位の存在割合は後述する製造方法において用いる単量体におけるRの種類及び加水分解・縮合の進行程度に依存する。T単位:D単位:M単位のモル比は、好ましくは10:30:60〜98:1:1であり、より好ましくは40:30:30〜98:1:1であり、さらに好ましくは60:20:20〜96:2:2、さらに一層好ましくは80:10:10〜95:3:2である。dは0.5〜0.8、好ましくは0.5〜0.7の数である。dが前記下限値未満では、組成物が硬化不良となり、前記上限値超の樹脂は合成が困難であり、また、組成物がゲル化する傾向があり好ましくない。eは0.2〜0.5の数、好ましくは0.3〜0.5の数であり、但しd+e=1である。 In the formula (2), R 1 , R 2 and R 3 are as described above. z is an integer of 0, 1 or 2 independently of each other. In the first structural unit to which the subscript d constituting the second silicone resin is attached, a unit in which z is 0 (T unit), a unit in which z is 1 (D unit), and z is 2. A certain unit (M unit) exists together in one molecule. In the structural unit, the abundance ratio of the T unit, the D unit, and the M unit depends on the type of R 2 in the monomer used in the production method described later and the degree of progress of hydrolysis / condensation. The molar ratio of T unit: D unit: M unit is preferably 10:30:60 to 98: 1: 1, more preferably 40:30:30 to 98: 1: 1, and even more preferably 60. : 20: 20 to 96: 2: 2, and still more preferably 80:10:10 to 95: 3: 2. d is a number of 0.5 to 0.8, preferably 0.5 to 0.7. When d is less than the lower limit, the composition is poorly cured, and a resin with the upper limit exceeding is difficult to synthesize, and the composition tends to gel, which is not preferable. e is a number from 0.2 to 0.5, preferably from 0.3 to 0.5, where d + e = 1.

(B)成分の製造方法の(A)成分の製造方法からの相違点は、上記一般式(3)で表される直鎖オルガノポリシロキサンに代えて、R Siで表されるオルガノシランを用いる点であり、該オルガノシランを前記一般式(4)で表されるエポキシ基含有シランと加水分解・縮合反応に付することにより調製される。従って、(B)成分は、(A)成分が有する(R SiO)単位を実質的に含まず、硬化物中で架橋点の様な作用を奏して硬化物の強度を増すものと考えられる。これにより、本発明の組成物は、エポキシ樹脂、特に光半導体素子封止用に多用される脂環式エポキシ樹脂、を併用せずとも、硬度、耐熱衝撃性等に優れた硬化物を形成することができる。該硬化物はこのようなエポキシ樹脂を含まないので、熱による変色も無い。 The difference between the production method of the component (B) from the production method of the component (A) is represented by R 3 2 X 2 Si instead of the linear organopolysiloxane represented by the general formula (3). The organosilane is prepared by subjecting the organosilane to hydrolysis / condensation reaction with the epoxy group-containing silane represented by the general formula (4). Therefore, the component (B) does not substantially contain the (R 3 2 SiO) n unit contained in the component (A), and acts as a crosslinking point in the cured product to increase the strength of the cured product. Conceivable. Thereby, the composition of the present invention forms a cured product excellent in hardness, thermal shock resistance, etc. without using an epoxy resin, particularly an alicyclic epoxy resin frequently used for sealing an optical semiconductor element. be able to. Since the cured product does not contain such an epoxy resin, there is no discoloration due to heat.

(B)成分は、スチレン換算の重量平均分子量が3000〜10,000、好ましくは3000〜7000である。(B)成分のエポキシ当量は、100〜600g/モル、好ましくは250〜400g/モルである。より好ましくは、(B)成分のエポキシ当量は(A)成分のエポキシ当量より30〜300g/モル程度小さい。 The component (B) has a styrene-equivalent weight average molecular weight of 3000 to 10,000, preferably 3000 to 7000. The epoxy equivalent of (B) component is 100-600 g / mol, Preferably it is 250-400 g / mol. More preferably, the epoxy equivalent of (B) component is about 30-300 g / mol smaller than the epoxy equivalent of (A) component.

(B)成分の配合量は、(A)成分および(B)成分の合計100質量部に対して、10〜50質量部、好ましくは、10〜30質量部である。(B)成分の量が前記上限値を超えると、発光素子が紫外線を発光する場合、樹脂組成物の硬化物が紫外光により劣化し易い。また、長期間の熱によるクラックなどが発生しやすい。 (B) The compounding quantity of a component is 10-50 mass parts with respect to a total of 100 mass parts of (A) component and (B) component, Preferably, it is 10-30 mass parts. When the amount of the component (B) exceeds the upper limit, the cured product of the resin composition is likely to be deteriorated by ultraviolet light when the light emitting element emits ultraviolet light. In addition, cracks and the like due to long-term heat tend to occur.

<(C)成分>
(C)硬化剤としては、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤が挙げられ、そのうち酸無水物系硬化剤が好ましい。
<(C) component>
(C) As a hardening | curing agent, an amine type hardening | curing agent, a phenol type hardening | curing agent, and an acid anhydride type hardening | curing agent are mentioned, Of these, an acid anhydride type hardening | curing agent is preferable.

酸無水物系硬化剤としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、あるいは3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、ノルボルナン−2,3−ジカルボン酸無水物、メチルノルボルナン−2,3−ジカルボン酸無水物などを挙げることができる。硬化剤の配合量は、(A)成分中と(B)成分中のエポキシ基の合計1モルに対し、該エポキシ基と反応性の基(酸無水物系硬化剤の場合には−CO−O−CO−で表される酸無水物基)が0.4〜1.5モルとなる量、であり、好ましくは0.5〜1.2モルとなる量である。   Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Or a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, norbornane-2,3-dicarboxylic anhydride, methyl norbornane 2,3-dicarboxylic anhydride and the like can be mentioned. The compounding amount of the curing agent is based on a total of 1 mol of the epoxy groups in the component (A) and the component (B) (-CO- in the case of an acid anhydride curing agent). The amount of the acid anhydride group represented by O—CO— is 0.4 to 1.5 mol, and preferably 0.5 to 1.2 mol.

<(D)成分>
(D)硬化触媒としては、テトラブチルホスホニウム・O,O−ジエチルホスホロジチオエート、テトラフェニルホスホニウム・テトラフェニルボレートなどの第四級ホスホニウム塩系硬化触媒、トリフェニルフォスフィン、ジフェニルフォスフィン等の有機フォスフィン系硬化触媒、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン、ベンジルジメチルアミン等の三級アミン系硬化触媒、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のフェノール塩、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のオクチル酸塩、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のトルエンスルホン酸塩等の第四級アンモニウム塩系硬化触媒、2−メチルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール系硬化触媒などを挙げられ、好ましくは第四級ホスホニウム塩、第四級アンモニウム塩である。
<(D) component>
(D) Curing catalysts include quaternary phosphonium salt-based curing catalysts such as tetrabutylphosphonium / O, O-diethyl phosphorodithioate, tetraphenylphosphonium / tetraphenylborate, triphenylphosphine, diphenylphosphine and the like. Organic phosphine curing catalyst, tertiary amine curing catalyst such as 1,8-diazabicyclo (5,4,0) undecene-7, triethanolamine, benzyldimethylamine, 1,8-diazabicyclo (5,4,0) Undecene-7 phenol salt, 1,8-diazabicyclo (5,4,0) undecene-7 octylate, 1,8-diazabicyclo (5,4,0) undecene-7 toluenesulfonate, etc. Quaternary ammonium salt curing catalyst, 2-methylimidazole, 2-phenyl-4-methyl Imidazole mentioned and imidazole curing catalyst such as, preferably quaternary phosphonium salts, quaternary ammonium salts.

(D)硬化触媒の配合量は(A)成分と(B)成分の合計100質量部に対し0.01〜3質量部、好ましくは0.05〜0.5質量部である。硬化触媒の配合量が前記下限値より少ないと、エポキシ樹脂と硬化剤のとの反応を促進させる効果を十分に得ることができないおそれがある。逆に、硬化触媒の配合量が前記上限値より多いと、硬化時やリフロー試験時の変色の原因となるおそれがある。   (D) The compounding quantity of a curing catalyst is 0.01-3 mass parts with respect to a total of 100 mass parts of (A) component and (B) component, Preferably it is 0.05-0.5 mass part. If the amount of the curing catalyst is less than the lower limit, it may not be possible to sufficiently obtain the effect of promoting the reaction between the epoxy resin and the curing agent. On the contrary, if the amount of the curing catalyst is larger than the upper limit value, it may cause discoloration during curing or reflow test.

上記各成分に加えて、本発明の目的を逸脱しない範囲で、酸化防止剤、紫外線吸収剤、劣化防止剤、波長変更するための蛍光体、シリカ、酸化チタン微粉末などの無機充填剤、シラン系カップリング剤、熱可塑剤、希釈剤などを必要に応じて併用しても差し支えない。酸化防止剤としては、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤が好ましい。紫外線吸収剤としては、ヒンダードアミン系紫外線吸収剤が好ましい。シラン系カップリング剤としては、メルカプト系シランカップリングが好ましい。   In addition to the above components, an antioxidant, an ultraviolet absorber, a deterioration inhibitor, a phosphor for changing wavelength, silica, inorganic fillers such as titanium oxide fine powder, silane, and the like within the scope of the present invention A system coupling agent, a thermoplastic agent, a diluent and the like may be used together as necessary. As the antioxidant, hindered phenol antioxidants and phosphorus antioxidants are preferable. As the ultraviolet absorber, a hindered amine ultraviolet absorber is preferable. As the silane coupling agent, mercapto silane coupling is preferable.

本発明の組成物は(A)〜(D)成分および所望により上記添加剤の1種又は2種以上を配合して、60℃程度の硬化が進まない温度にて溶融混合することで容易に製造することができる。溶融混合は、公知の方法でよく、例えば、上記の成分をリアクターに仕込み、バッチ式にて溶融混合してもよく、また上記の各成分をニーダーや熱三本ロールなどの混練機に投入して、連続的にて溶融混合することができる。   The composition of the present invention can be easily blended with components (A) to (D) and optionally one or more of the above-mentioned additives and melt-mixed at a temperature at which curing does not proceed at about 60 ° C. Can be manufactured. Melt mixing may be a known method. For example, the above components may be charged into a reactor and melt-mixed in a batch manner, or each of the above components may be charged into a kneader such as a kneader or a heat triple roll. And can be continuously melt-mixed.

得られる光半導体素子封止用樹脂組成物は、上記工程で得られた溶融混合物の状態で発光素子が載置された鋳型またはケースに注入し、所定の温度下において、Bステージ化した後、固形化して使用することができる。   The obtained resin composition for sealing an optical semiconductor element is poured into a mold or case on which a light emitting element is placed in the molten mixture obtained in the above step, and after making a B stage under a predetermined temperature, It can be used after solidifying.

また、基板上にLEDを搭載したものに、組成物をポッティング、印刷法、トランスファー成型、インジェクション成型、圧縮成形などで施与してもよい。LEDなどの発光半導体装置をポッティングやインジェクションなどで被覆保護する場合、本発明の組成物は液状であることが好ましい。樹脂組成物の粘度としては、25℃の回転粘度計による測定値として10〜1,000,000mPa・s、特には100〜1,000,000mPa・s程度が好ましい。一方、トランスファー成型等で発光半導体装置を製造する場合には、上記の液状樹脂を使用することもできるが、液状樹脂を増粘させて固形化(Bステージ化)し、ペレット化した後、成型することによっても製造することができる。 Alternatively, the composition may be applied to a substrate on which an LED is mounted by potting, printing, transfer molding, injection molding, compression molding, or the like. When covering and protecting a light emitting semiconductor device such as an LED by potting or injection, the composition of the present invention is preferably liquid. The viscosity of the resin composition is preferably about 10 to 1,000,000 mPa · s, particularly about 100 to 1,000,000 mPa · s as measured by a rotational viscometer at 25 ° C. On the other hand, when manufacturing a light-emitting semiconductor device by transfer molding or the like, the above-mentioned liquid resin can be used, but the liquid resin is thickened by solidification (B-stage), pelletized, and then molded. Can also be manufactured.

以下、実施例および比較例を示し、本発明を説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated, this invention is not restrict | limited to the following Example.

[(A)成分の合成]
以下の合成例において、生成物を示す平均組成式におけるnの平均値は、GPC測定による分子量分布のチャートにおいて、各nと各nにおけるピーク面積との積の総和を、全ピーク面積の総和で除して求めた値である。例えば、ある生成物のnが2〜20の整数の場合、[2×(n=2のピーク面積)+3×(n=3のピーク面積)+ … +20×(n=20のピーク面積)]/[(n=2のピーク面積)+(n=3のピーク面積)+ … +(n=20のピーク面積)]の計算から求めた値である。
<合成例1>
MeO(Me)SiO(MeSiO)Si(Me)OMe(mは0〜8の整数で、平均は1.5)1695.6g(5.966モル)OMe、イソプロピルアルコール3000ml、3−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(KBM303、信越化学工業(株)製)1470g(5.966モル)を仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液72g、水648gを添加し室温で3時間攪拌した。反応終了後、系内にトルエン3000mlを入れた。リン酸二水素ナトリウム水溶液で中和し、分液漏斗を用いて分離した有機層を熱水にて洗浄した。減圧下トルエンを除去したところ、下記の平均組成式で示される構造を有する、目的の樹脂(樹脂1)を得た。
[Synthesis of component (A)]
In the following synthesis examples, the average value of n in the average composition formula showing the product is the sum of the products of each n and the peak area at each n in the molecular weight distribution chart by GPC measurement. The value obtained by dividing. For example, when n of a product is an integer of 2 to 20, [2 × (peak area of n = 2) + 3 × (peak area of n = 3) +... + 20 × (peak area of n = 20)] / [(Peak area of n = 2) + (peak area of n = 3) +... + (Peak area of n = 20)]].
<Synthesis Example 1>
MeO (Me) 2 SiO (Me 2 SiO) m Si (Me) 2 OMe (m is an integer from 0 to 8, average is 1.5) 1695.6 g (5.966 mol) OMe, isopropyl alcohol 3000 ml, 3 -(3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM303, manufactured by Shin-Etsu Chemical Co., Ltd.) 1470 g (5.966 mol) was charged, and then a 25% tetramethylammonium hydroxide aqueous solution 72 g and water 648 g were added. The mixture was added and stirred at room temperature for 3 hours. After completion of the reaction, 3000 ml of toluene was put into the system. The organic layer was neutralized with an aqueous sodium dihydrogen phosphate solution and separated using a separatory funnel, and washed with hot water. When toluene was removed under reduced pressure, the target resin (resin 1) having a structure represented by the following average composition formula was obtained.

・GPCで測定されたポリスチレン換算の重量平均分子量は4300であった。エポキシ当量は403g/molであった。 -The weight average molecular weight of polystyrene conversion measured by GPC was 4300. The epoxy equivalent was 403 g / mol.

29Si−NMRによる測定結果を図1に示す。−68ppm付近のピークはT単位を形成するSiを反映し、−57〜−58ppm付近のピークはD単位及びM単位を形成するSiを反映する。この結果から、該平均組成式を構成する第一の構造体単位(左側の単位)は、T単位を約90モル%、D単位とM単位とを合計で約10モル%含むことが分かった。 -The measurement result by 29 Si-NMR is shown in FIG. The peak near -68 ppm reflects Si forming T units, and the peak near -57 to -58 ppm reflects Si forming D units and M units. From this result, it was found that the first structural unit (left unit) constituting the average composition formula contained about 90 mol% of T units and about 10 mol% of D units and M units in total. .

Figure 0005251919
Figure 0005251919

(ただし、nは2〜10の整数であり、nの平均は3.5であり、一番目の単位においてはxが0、1又は2であるものが共に存在している。) (However, n is an integer of 2 to 10, the average of n is 3.5, and in the first unit, there are those in which x is 0, 1 or 2.)

<合成例2>
HO(Me)SiO[(Me)SiO]Si(Me)OH(mは3〜18の整数で、平均は8)1500g(1.975モル)、3−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(KBM303、信越化学工業(株)製)973.2g(3.950モル)、イソプロピルアルコール2300mlを仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液49.90g、水449.10gを添加し、室温で3時間攪拌した。反応終了後、系内にトルエン2300mlを入れ、リン酸二水素ナトリウム水溶液で中和した。分液漏斗を用いて分離した有機層を熱水にて洗浄した。減圧下トルエンを除去したところ、下記の平均組成式で示される構造を有する、目的の樹脂(「樹脂2」とする)を得た。GPCで測定されたポリスチレン換算の重量平均分子量は5600であった。エポキシ当量は570g/molであった。
<Synthesis Example 2>
HO (Me) 2 SiO [(Me) 2 SiO] m Si (Me) 2 OH (m is an integer of 3 to 18, average is 8) 1500 g (1.975 mol), 3- (3,4-epoxy Cyclohexyl) ethyltrimethoxysilane (KBM303, manufactured by Shin-Etsu Chemical Co., Ltd.) 973.2 g (3.950 mol) and 2300 ml of isopropyl alcohol were added, and then 49.90 g of 25% aqueous solution of tetramethylammonium hydroxide and water 449 were added. .10 g was added and stirred at room temperature for 3 hours. After completion of the reaction, 2300 ml of toluene was put into the system and neutralized with an aqueous sodium dihydrogen phosphate solution. The separated organic layer was washed with hot water using a separatory funnel. When toluene was removed under reduced pressure, a target resin (referred to as “resin 2”) having a structure represented by the following average composition formula was obtained. The weight average molecular weight in terms of polystyrene measured by GPC was 5,600. The epoxy equivalent was 570 g / mol.

Figure 0005251919
Figure 0005251919

(ただし、nは5〜20の整数であり、nの平均は10であり、一番目の単位においてはxが0、1又は2であるものが共に存在している。) (However, n is an integer of 5 to 20, the average of n is 10, and in the first unit, there are those in which x is 0, 1 or 2.)

<合成例3>
3−グリシドキシプロピルトリメトキシシラン(KBM403、信越化学工業(株)製80)933.30g(3.950モル)、HO(Me)2SiO[(Me)SiO]Si(Me)OH(mは3〜18の整数で、平均は8)1500g(1.975モル)、イソプロピルアルコール2300mlを仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液92.15g、水444.96gを添加し、室温で3時間攪拌した。反応終了後、系内にトルエン2300mlを入れ、リン酸二水素ナトリウム水溶液で中和した。分液漏斗を用いて分離した有機層を熱水にて洗浄した。減圧下トルエンを除去したところ、下記の平均組成式で示される構造を有する、目的の樹脂(「樹脂3」とする)を得た。GPCで測定されたポリスチレン換算の重量平均分子量は4300であった。エポキシ当量は570g/molであった。
<Synthesis Example 3>
3-glycidoxypropyltrimethoxysilane (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd. 80) 933.30 g (3.950 mol), HO (Me) 2 SiO [(Me) 2 SiO] m Si (Me) 2 OH (m is an integer of 3 to 18, average is 8) 1500 g (1.975 mol) and 2300 ml of isopropyl alcohol are charged, and then 92.15 g of a 25% aqueous solution of tetramethylammonium hydroxide and 444.96 g of water are added. And stirred at room temperature for 3 hours. After completion of the reaction, 2300 ml of toluene was put into the system and neutralized with an aqueous sodium dihydrogen phosphate solution. The separated organic layer was washed with hot water using a separatory funnel. When toluene was removed under reduced pressure, a target resin (referred to as “resin 3”) having a structure represented by the following average composition formula was obtained. The weight average molecular weight in terms of polystyrene measured by GPC was 4,300. The epoxy equivalent was 570 g / mol.

Figure 0005251919
Figure 0005251919

(ただし、nは5〜20の整数であり、nの平均は10であり、一番目の単位においてはxが0、1又は2であるものが共に存在している。) (However, n is an integer of 5 to 20, the average of n is 10, and in the first unit, there are those in which x is 0, 1 or 2.)

[(B)成分の合成]
<合成例4>
ジメチルジメトキシシラン(KBM−22、信越化学工業(株)製)187.00g(1.566モル)、3−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(KBM303、信越化学工業(株)製)766.67g(3.111モル)、イソプロピルアルコール900mlを仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液21.69g、水195.21gを添加し、室温で3時間攪拌した。反応終了後、系内にトルエン1000mlを入れ、リン酸二水素ナトリウム水溶液で中和した。分液漏斗を用いて分離した有機層を熱水にて洗浄した。減圧下トルエンを除去したところ、下記の平均組成式で示される構造を有する、目的の樹脂(「樹脂4」とする)を得た。GPCで測定されたポリスチレン換算の重量平均分子量は4200であった。エポキシ当量は267g/molであった。
[Synthesis of component (B)]
<Synthesis Example 4>
Dimethyldimethoxysilane (KBM-22, manufactured by Shin-Etsu Chemical Co., Ltd.) 187.00 g (1.566 mol), 3- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM303, manufactured by Shin-Etsu Chemical Co., Ltd.) ) After adding 766.67 g (3.111 mol) and 900 ml of isopropyl alcohol, 21.69 g of a 25% aqueous solution of tetramethylammonium hydroxide and 195.21 g of water were added and stirred at room temperature for 3 hours. After completion of the reaction, 1000 ml of toluene was put into the system and neutralized with an aqueous sodium dihydrogen phosphate solution. The separated organic layer was washed with hot water using a separatory funnel. When toluene was removed under reduced pressure, a target resin (referred to as “resin 4”) having a structure represented by the following average composition formula was obtained. The weight average molecular weight in terms of polystyrene measured by GPC was 4,200. The epoxy equivalent was 267 g / mol.

Figure 0005251919
Figure 0005251919

(ただし、一番目の単位においてはxが0、1又は2であるものが共に存在している。) (However, in the first unit, there are those in which x is 0, 1 or 2.)

<合成例5>
ジメチルジメトキシシラン(KBM−22、信越化学工業(株)製)187.00g(1.566モル)、3−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン(KBM303、信越化学工業(株)製)383.33g(1.566モル)、イソプロピルアルコール540mlを仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液12.97g、水203.93gを添加し、室温で3時間攪拌した。反応終了後、系内にトルエン1000mlを入れ、リン酸二水素ナトリウム水溶液で中和した。分液漏斗を用いて分離した有機層を熱水にて洗浄した。減圧下トルエンをしたところ、下記の平均組成式で示される構造を有する、目的の樹脂(「樹脂5」とする)を得た。GPCで測定されたポリスチレン換算の重量平均分子量は3100であった。エポキシ当量は359g/molであった。
<Synthesis Example 5>
Dimethyldimethoxysilane (KBM-22, manufactured by Shin-Etsu Chemical Co., Ltd.) 187.00 g (1.566 mol), 3- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM303, manufactured by Shin-Etsu Chemical Co., Ltd.) ) After charging 383.33 g (1.566 mol) and 540 ml of isopropyl alcohol, 12.97 g of a 25% aqueous solution of tetramethylammonium hydroxide and 203.93 g of water were added and stirred at room temperature for 3 hours. After completion of the reaction, 1000 ml of toluene was put into the system and neutralized with an aqueous sodium dihydrogen phosphate solution. The separated organic layer was washed with hot water using a separatory funnel. When toluene was added under reduced pressure, the desired resin (referred to as “resin 5”) having a structure represented by the following average composition formula was obtained. The weight average molecular weight in terms of polystyrene measured by GPC was 3,100. The epoxy equivalent was 359 g / mol.

Figure 0005251919
Figure 0005251919

(ただし、一番目の単位においてはxが0、1又は2であるものが共に存在している。) (However, in the first unit, there are those in which x is 0, 1 or 2.)

<合成例6>
ジメチルジメトキシシラン(KBM−22、信越化学工業(株)製)187.00g(1.566モル)、3−グリシドキシプロピルトリメトキシシラン(KBM403、信越化学工業(株)製)735.24g(3.111モル)、イソプロピルアルコール900mlを仕込んだ後、水酸化テトラメチルアンモニウムの25%水溶液20.98g、水188.82gを添加し、室温で3時間攪拌した。反応終了後、系内にトルエン1000mlを入れ、リン酸二水素ナトリウム水溶液で中和した。分液漏斗を用いて分離した有機層を熱水にて洗浄した。減圧下トルエンを除去したところ、下記の平均組成式で示される構造を有する、目的の樹脂(「樹脂6」とする)を得た。GPCで測定されたポリスチレン換算の重量平均分子量は3500であった。エポキシ当量は295g/molであった。
<Synthesis Example 6>
Dimethyldimethoxysilane (KBM-22, manufactured by Shin-Etsu Chemical Co., Ltd.) 187.00 g (1.566 mol), 3-glycidoxypropyltrimethoxysilane (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) 735.24 g ( 3.111 mol) and 900 ml of isopropyl alcohol were added, and 20.98 g of a 25% aqueous solution of tetramethylammonium hydroxide and 188.82 g of water were added and stirred at room temperature for 3 hours. After completion of the reaction, 1000 ml of toluene was put into the system and neutralized with an aqueous sodium dihydrogen phosphate solution. The separated organic layer was washed with hot water using a separatory funnel. When toluene was removed under reduced pressure, a target resin (referred to as “resin 6”) having a structure represented by the following average composition formula was obtained. The weight average molecular weight in terms of polystyrene measured by GPC was 3,500. The epoxy equivalent was 295 g / mol.

Figure 0005251919
Figure 0005251919

(ただし、一番目の単位においてはxが0、1又は2であるものが共に存在している。) (However, in the first unit, there are those in which x is 0, 1 or 2.)

<実施例1〜6、比較例1、参考例1、2>
得られた各樹脂を用いて、表1に示す各組成物を調製した。同表において、硬化剤以外の数値の単位は質量部であり、各成分は以下のとおりである。
・(C)硬化剤:4−メチルヘキサヒドロ無水フタル酸(リカシッドMH、新日本理化(株)製)
・(D)硬化触媒:第4級ホスホニウム塩(UCAT5003、サンアプロ(株)製)
シランカップリング剤:3−メルカプトプロピルメチルジメトキシシラン(信越化学工業(株)製、KBM−802)
・エポキシ樹脂:3,4−エポキシシクロヘキシルメチル3’,4’−エポキシシクロヘキサンカルボキシレート(セロキサイド2021P、ダイセル化学工業(株)製)
<Examples 1 to 6, Comparative Example 1, Reference Examples 1 and 2>
Each composition shown in Table 1 was prepared using each obtained resin. In the same table, the unit of numerical values other than the curing agent is parts by mass, and each component is as follows.
-(C) Curing agent: 4-methylhexahydrophthalic anhydride (Ricacid MH, manufactured by Shin Nippon Rika Co., Ltd.)
(D) Curing catalyst: quaternary phosphonium salt (UCAT5003, manufactured by San Apro Co., Ltd.)
Silane coupling agent: 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-802)
Epoxy resin: 3,4-epoxycyclohexylmethyl 3 ′, 4′-epoxycyclohexanecarboxylate (Celoxide 2021P, manufactured by Daicel Chemical Industries, Ltd.)

<実施例1>
樹脂1を80質量部、樹脂4を20質量部、該樹脂1及び該樹脂4のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂1、該樹脂4及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を溶融混合し、組成物を得た。溶融混合は、先ず硬化剤、硬化触媒を60℃のオーブンで溶融し、攪拌器(「あわとり錬太郎」(商品名)、シンキー社)を用いて、2000rpmで1分間、他の成分と混合し、次いで、2200rpmで1分間、脱泡して行った。
<Example 1>
80 parts by mass of resin 1, 20 parts by mass of resin 4, a curing agent in an amount of 1 mol of acid anhydride group with respect to a total of 1 mol of epoxy groups of resin 1 and resin 4, and further, resin 1 Then, with respect to 100 parts by mass of the mixture of the resin 4 and the curing agent, 0.39 parts by mass of the curing catalyst and 0.25 parts by mass of the silane coupling agent were melt-mixed to obtain a composition. In the melt mixing, the curing agent and the curing catalyst are first melted in an oven at 60 ° C., and mixed with other ingredients at 2000 rpm for 1 minute using a stirrer (“Awatori Rentaro” (trade name), Shinky). Then, deaeration was performed at 2200 rpm for 1 minute.

<実施例2>
樹脂1を80質量部、樹脂5を20質量部、該樹脂1及び該樹脂5のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂1、該樹脂5及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Example 2>
80 parts by mass of resin 1, 20 parts by mass of resin 5, a curing agent in an amount such that the acid anhydride group is 1 mol with respect to 1 mol in total of the epoxy groups of the resin 1 and resin 5, and the resin 1 Then, with respect to 100 parts by mass of the resin 5 and the curing agent mixture, 0.39 parts by mass of the curing catalyst and 0.25 parts by mass of the silane coupling agent were melt-mixed in the same manner as in Example 1 to obtain a composition. .

<実施例3>
樹脂2を80質量部、樹脂4を20質量部、該樹脂2及び該樹脂4のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂2、該樹脂4及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Example 3>
80 parts by mass of resin 2, 20 parts by mass of resin 4, a curing agent in an amount of 1 mol of acid anhydride group with respect to 1 mol of the total of epoxy groups of resin 2 and resin 4, and further, resin 2 Then, with respect to 100 parts by mass of the resin 4 and the curing agent mixture, 0.39 parts by mass of the curing catalyst and 0.25 parts by mass of the silane coupling agent were melt-mixed in the same manner as in Example 1 to obtain a composition. .

<実施例4>
樹脂2を80質量部、樹脂5を20質量部、該樹脂2及び該樹脂5のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂2、該樹脂5及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Example 4>
80 parts by mass of resin 2, 20 parts by mass of resin 5, a curing agent in an amount of 1 mol of acid anhydride group with respect to 1 mol of the total of epoxy groups of resin 2 and resin 5, and further, resin 2 Then, with respect to 100 parts by mass of the resin 5 and the curing agent mixture, 0.39 parts by mass of the curing catalyst and 0.25 parts by mass of the silane coupling agent were melt-mixed in the same manner as in Example 1 to obtain a composition. .

<実施例5>
樹脂3を80質量部、樹脂6を20質量部、該樹脂3及び該樹脂6のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂3、該樹脂6及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Example 5>
80 parts by mass of resin 3, 20 parts by mass of resin 6, a curing agent in an amount of 1 mol of acid anhydride group with respect to a total of 1 mol of epoxy groups of resin 3 and resin 6, and further, resin 3 Then, with respect to 100 parts by mass of the mixture of the resin 6 and the curing agent, 0.39 parts by mass of the curing catalyst and 0.25 parts by mass of the silane coupling agent were melt-mixed in the same manner as in Example 1 to obtain a composition. .

<実施例6>
樹脂1を80質量部、樹脂4を20質量部、該樹脂1及び該樹脂4のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂1、該樹脂4及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Example 6>
80 parts by mass of resin 1, 20 parts by mass of resin 4, a curing agent in an amount of 1 mol of acid anhydride group with respect to a total of 1 mol of epoxy groups of resin 1 and resin 4, and further, resin 1 Then, 0.39 parts by mass of the curing catalyst was melt-mixed in the same manner as in Example 1 with respect to 100 parts by mass of the mixture of the resin 4 and the curing agent to obtain a composition.

<比較例1>
樹脂1を100質量部、該樹脂1のエポキシ基1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂1及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Comparative Example 1>
100 parts by mass of resin 1, a curing agent in an amount of 1 mole of acid anhydride group with respect to 1 mol of epoxy group of resin 1, and further curing with respect to 100 parts by mass of mixture of resin 1 and the curing agent 0.39 parts by mass of the catalyst and 0.25 parts by mass of the silane coupling agent were melted and mixed in the same manner as in Example 1 to obtain a composition.

<参考例1>
樹脂1を78質量部、エポキシ樹脂を22質量部、該樹脂1及び該エポキシ樹脂のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂1、該エポキシ樹脂及び該硬化剤の混合物100質量部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Reference Example 1>
78 parts by mass of resin 1, 22 parts by mass of epoxy resin, a curing agent in an amount of 1 mol of acid anhydride group with respect to a total of 1 mol of epoxy group of resin 1 and epoxy resin, and resin 1 Then, with respect to 100 parts by mass of the mixture of the epoxy resin and the curing agent, 0.39 parts by mass of the curing catalyst and 0.25 parts by mass of the silane coupling agent were melt-mixed in the same manner as in Example 1 to obtain a composition. .

<参考例2>
樹脂2を90質量部、エポキシ樹脂を10質量部、該樹脂2及び該エポキシ樹脂のエポキシ基の合計1モルに対し、酸無水物基が1モルとなる量の硬化剤、更に、該樹脂2、該エポキシ樹脂及び該硬化剤の混合物100部に対し、硬化触媒0.39質量部及びシランカップリング剤0.25質量部を、実施例1と同様に溶融混合し、組成物を得た。
<Reference Example 2>
90 parts by mass of resin 2, 10 parts by mass of epoxy resin, a curing agent in an amount of 1 mol of acid anhydride group with respect to 1 mol of the total of epoxy groups of resin 2 and epoxy resin, and resin 2 Then, with respect to 100 parts of the mixture of the epoxy resin and the curing agent, 0.39 parts by mass of the curing catalyst and 0.25 parts by mass of the silane coupling agent were melt-mixed in the same manner as in Example 1 to obtain a composition.

Figure 0005251919
Figure 0005251919

(表1の注)(C)硬化剤以外の成分の単位は質量部である。 (Note to Table 1) (C) The unit of components other than the curing agent is parts by mass.

<評価試験1>
各組成物について以下の試験を行い、結果を表2に示す。
(1)物理的特性:組成物を、100℃で2時間加熱して硬化させ、さらにポストキュアを150℃で4時間行い、厚み5mmの棒状硬化物を得た。この棒状硬化物を用いて、外観、硬度(ショアD)、曲げ弾性率及び曲げ強度(JIS K−6911)を測定した。
(2)耐熱変色性:(1)と同様にして作製した棒状硬化物を高温エージング(150℃、1000時間)に付した後の外観を調べた。
(3)耐UV試験:組成物を100℃で30分プレス成形により厚さ2mmの硬化片(6cm×6cm)に成形し、ついで150℃4時間のポストキュアを行い、試験片を作成した。該試験片に2時間UV照射(高圧水銀灯 30mW/cm、365nm)後の光透過率を測定した。透過率は800〜300nmまで走査して透過率を測定し、初期の400nmにおける透過率を100%としたときの透過率を求めた。
(4)スライドガラス上に、該スライドガラスの外周に沿ってポリテトラフロロエチレン製のテープ(厚さ180μm)を貼り付け、形成された凹部に組成物を流し入れて、100℃で2時間、さらにポストキュアを150℃で4時間行って薄膜硬化物を作った。超微小硬度計(島津製作所(株)、DUH−W201S)を用いて該薄膜硬化物の微小硬度を測定した。
<Evaluation test 1>
The following tests were conducted for each composition, and the results are shown in Table 2.
(1) Physical properties: The composition was cured by heating at 100 ° C. for 2 hours, and post-curing was performed at 150 ° C. for 4 hours to obtain a rod-shaped cured product having a thickness of 5 mm. Using this rod-like cured product, the appearance, hardness (Shore D), flexural modulus and flexural strength (JIS K-6911) were measured.
(2) Heat discoloration: The appearance after subjecting the bar-like cured product produced in the same manner as (1) to high temperature aging (150 ° C., 1000 hours) was examined.
(3) UV resistance test: The composition was molded into a cured piece (6 cm × 6 cm) having a thickness of 2 mm by press molding at 100 ° C. for 30 minutes, and then post-cured at 150 ° C. for 4 hours to prepare a test piece. The light transmittance after UV irradiation (high pressure mercury lamp 30 mW / cm 2 , 365 nm) was measured on the test piece for 2 hours. The transmittance was measured by scanning from 800 to 300 nm, and the transmittance when the initial transmittance at 400 nm was taken as 100% was determined.
(4) A tape made of polytetrafluoroethylene (thickness 180 μm) is pasted on the slide glass along the outer periphery of the slide glass, and the composition is poured into the formed recess, and further at 100 ° C. for 2 hours. Post-curing was performed at 150 ° C. for 4 hours to form a thin film cured product. The microhardness of the thin film cured product was measured using an ultra micro hardness meter (Shimadzu Corporation, DUH-W201S).

Figure 0005251919
Figure 0005251919

(表2の注)
*1:硬化物が脆弱であり、曲げ強度を測定することができなかった。
*2:硬化物がゴム様で、曲げ強度を測定することができなかった。
(Note to Table 2)
* 1: The cured product was brittle and the bending strength could not be measured.
* 2: The cured product was rubber-like and the bending strength could not be measured.

<評価試験2>
各組成物について以下の試験を行い、結果を表3に示す。
<Evaluation Test 2>
The following tests were conducted for each composition, and the results are shown in Table 3.

・LED装置の作製と評価
実施例1、3及び比較例1の組成物を用いて、以下の方法でLED装置を各3個ずつ作成した。厚さ1mm、一辺が3mmで開口部が直径2.6mm、底辺部が銀メッキされたLED用プレモールドパッケージにInGaN系青色発光素子を銀ペーストにより固定した。次に外部電極と発光素子を金ワイヤーにて接続した。各組成物をパッケージ開口部に注入した。100℃で1時間、さらに150℃で2時間組成物を硬化させることでLED装置を作成した。作成したLED装置を用い、下記条件での温度サイクル試験と、65℃/95%RH下で500時間LED点灯試験(LEDの波長:450nm)を行い、パッケージ界面の接着不良、クラックの有無、並びに変色の有無を目視観察した。結果を表3に示す。
-Production and evaluation of LED device Using the compositions of Examples 1 and 3 and Comparative Example 1, three LED devices were produced by the following method. An InGaN-based blue light-emitting element was fixed with a silver paste on a pre-molded package for LED having a thickness of 1 mm, a side of 3 mm, an opening of 2.6 mm in diameter, and a bottom of which was silver-plated. Next, the external electrode and the light emitting element were connected by a gold wire. Each composition was injected into the package opening. The composition was cured at 100 ° C. for 1 hour and further at 150 ° C. for 2 hours to produce an LED device. Using the created LED device, a temperature cycle test under the following conditions and an LED lighting test (LED wavelength: 450 nm) at 65 ° C./95% RH were conducted for 500 hours, and adhesion failure at the package interface, presence or absence of cracks, and The presence or absence of discoloration was visually observed. The results are shown in Table 3.

・・温度サイクル試験条件:
一サイクル:−40℃で20分間置き、次に125℃で20分間置く。
..Temperature cycle test conditions:
One cycle: 20 minutes at -40 ° C, then 20 minutes at 125 ° C.

繰り返しサイクル数:1000     Repeat cycle number: 1000

・接着強度:
実施例1、3及び比較例1の組成物を用いて、以下の方法で接着試験片を作成した。銀メッキ銅板の上に各組成物を薄く塗付した上に、2mm四方のシリコンチップを置き、100℃で1時間、さらに150℃で2時間硬化させることで接着試験片を作成した。作成した接着試験片に対し、ダイボンドテスター(装置名:Dage Series 4000 Bondtester、テストスピード:200μm/s、テスト高さ:10.0μm、測定温度:25℃)を用いて切断時による接着力を測定した。
・ Adhesive strength:
Using the compositions of Examples 1 and 3 and Comparative Example 1, adhesion test pieces were prepared by the following method. Each composition was thinly applied on a silver-plated copper plate, and a 2 mm square silicon chip was placed and cured at 100 ° C. for 1 hour and further at 150 ° C. for 2 hours to prepare an adhesion test piece. For the created adhesion test piece, the adhesion force at the time of cutting is measured using a die bond tester (device name: Dage Series 4000 Bondtester, test speed: 200 μm / s, test height: 10.0 μm, measurement temperature: 25 ° C.). did.

Figure 0005251919
Figure 0005251919

表2、3に示す結果から分かるように、(B)成分を欠く比較例1の組成物から得られた硬化物は、曲げ強度、耐熱変色性が悪く、LEDの光により変色した。また、(B)成分に代えて、エポキシ樹脂を含む参考例の組成物から得られた硬化物は、熱により黄変した。これに対して、実施例の組成物から得られた硬化物は、硬度が高く、且つ、変色がほとんどなかった。また、表2の微小硬度値から分かるように、実施例の組成物は、同じ条件で硬化させた比較例、参考例の組成物に比べて硬度の高い硬化物を与え、硬化速度が速いことが確認された。 As can be seen from the results shown in Tables 2 and 3, the cured product obtained from the composition of Comparative Example 1 lacking the component (B) was poor in bending strength and heat discoloration, and was discolored by the light of the LED. Moreover, it replaced with (B) component and the hardened | cured material obtained from the composition of the reference example containing an epoxy resin yellowed with the heat | fever. On the other hand, the cured products obtained from the compositions of the examples had high hardness and almost no discoloration. Moreover, as can be seen from the microhardness values in Table 2, the compositions of the examples give a cured product having a higher hardness than the compositions of the comparative example and the reference example cured under the same conditions, and the curing rate is high. Was confirmed.

本発明の組成物は硬化が速く、その硬化物は耐熱変色性、耐UV性等に優れ、光学素子封止樹脂用に有用である。 The composition of the present invention is rapidly cured, and the cured product is excellent in heat discoloration resistance, UV resistance and the like, and is useful for optical element sealing resins.

Claims (9)

下記(A)、(B)、(C)及び(D)成分を含み、(A)成分のエポキシ当量が200〜800g/モルであり、(B)成分のエポキシ当量が(A)成分のエポキシ当量よりも、少なくとも30g/モル小さい光半導体素子封止用組成物
(A)下記平均組成式(1)で表される、エポキシ基含有非芳香族基を有する第一のシリコーン樹脂 50〜90質量部
Figure 0005251919

(式(1)において、R1はエポキシ基含有非芳香族基、R2は互いに独立に水酸基、C1-20一価炭化水素基、及びC1-6アルコキシ基から選ばれる基、R3は、互いに独立に、C1-20一価炭化水素基であり、
x及びyは互いに独立に0、1又は2の整数であり、
aは0.25〜0.75の数、
bは0.25〜0.75の数、
cは0〜0.3の数、但しa+b+c=1、であり、
nは2〜20の整数である)
(B)下記平均組成式(2)で表される、エポキシ基含有非芳香族基を有する第二のシリコーン樹脂 10〜50質量部
Figure 0005251919

(式(2)において、R1、R2及びR3は上記のとおりであり、zは互いに独立に0、1又は2の整数であり、
dは0.5〜0.8の数、
eは0.2〜0.5の数、
但しd+e=1、である)
(C)エポキシ基との反応性の官能基を有する硬化剤 (A)成分中と(B)成分中のエポキシ基の合計1モルに対し、該エポキシ基と反応性の官能基が0.4〜1.5モルとなる量
(D)硬化触媒 (A)成分と(B)成分の合計100質量部に対し0.01〜3重量部。
Following (A), (B), see containing the (C) and component (D), (A) an epoxy equivalent weight of component 200 to 800 g / mol, (B) an epoxy equivalent of component (A) component of Composition for optical semiconductor element encapsulation at least 30 g / mol smaller than epoxy equivalent (A) First silicone resin having an epoxy group-containing non-aromatic group represented by the following average composition formula (1) Parts by mass
Figure 0005251919

(In the formula (1), R 1 is an epoxy group-containing non-aromatic group, R 2 is independently a group selected from a hydroxyl group, a C 1-20 monovalent hydrocarbon group, and a C 1-6 alkoxy group, R 3 Are independently of each other a C 1-20 monovalent hydrocarbon group,
x and y are each independently an integer of 0, 1 or 2;
a is a number from 0.25 to 0.75,
b is a number from 0.25 to 0.75,
c is a number from 0 to 0.3, where a + b + c = 1,
n is an integer of 2 to 20)
(B) 10-50 mass parts of 2nd silicone resins which have an epoxy-group-containing non-aromatic group represented by the following average compositional formula (2)
Figure 0005251919

(In the formula (2), R 1 , R 2 and R 3 are as described above, z is an integer of 0, 1 or 2 independently of each other;
d is a number from 0.5 to 0.8,
e is a number from 0.2 to 0.5,
(D + e = 1)
(C) Curing agent having functional group reactive with epoxy group (A) The functional group reactive with the epoxy group is 0.4 mol in total for 1 mol of the epoxy group in the component (A) and the component (B). The amount which becomes -1.5 mol (D) Curing catalyst 0.01-3 weight part with respect to a total of 100 mass parts of (A) component and (B) component.
nが3〜20の整数である、請求項1に係る組成物。   The composition according to claim 1, wherein n is an integer of 3 to 20. (A)成分のポリスチレン換算の重量平均分子量が3,000〜10,000である、請求項1に係る組成物。   The composition according to claim 1, wherein the component (A) has a polystyrene-equivalent weight average molecular weight of 3,000 to 10,000. 1がβ−(3,4−エポキシシクロへキシル)エチル基またはγ−グリシドキシアルキル基である、請求項1に係る組成物。 The composition according to claim 1, wherein R 1 is a β- (3,4-epoxycyclohexyl) ethyl group or a γ-glycidoxyalkyl group. 3がメチル基である、請求項1に係る組成物。 The composition according to claim 1, wherein R 3 is a methyl group. (A)成分のエポキシ当量が300〜600g/モルであり、(B)成分のエポキシ当量が250〜400g/モルである、請求項1に係る組成物。   The composition according to claim 1, wherein the epoxy equivalent of component (A) is 300 to 600 g / mol, and the epoxy equivalent of component (B) is 250 to 400 g / mol. (C)成分が酸無水物である請求項1に係る組成物。   The composition according to claim 1, wherein the component (C) is an acid anhydride. メルカプト系シランカップリング剤をさらに含む請求項1に係る組成物。   The composition according to claim 1, further comprising a mercapto-based silane coupling agent. 光半導体素子と、請求項1〜のいずれか1項記載の組成物を硬化させてなり、該光半導体素子を封止する硬化物とを有する半導体装置。

The semiconductor device which has an optical semiconductor element and the hardened | cured material which hardens the composition of any one of Claims 1-8 , and seals this optical semiconductor element.

JP2010102362A 2009-05-08 2010-04-27 Resin composition for optical semiconductor element sealing Active JP5251919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102362A JP5251919B2 (en) 2009-05-08 2010-04-27 Resin composition for optical semiconductor element sealing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009113382 2009-05-08
JP2009113382 2009-05-08
JP2010102362A JP5251919B2 (en) 2009-05-08 2010-04-27 Resin composition for optical semiconductor element sealing

Publications (2)

Publication Number Publication Date
JP2010280885A JP2010280885A (en) 2010-12-16
JP5251919B2 true JP5251919B2 (en) 2013-07-31

Family

ID=43052612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102362A Active JP5251919B2 (en) 2009-05-08 2010-04-27 Resin composition for optical semiconductor element sealing

Country Status (4)

Country Link
JP (1) JP5251919B2 (en)
KR (1) KR101683891B1 (en)
CN (1) CN101880461B (en)
TW (1) TWI480338B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532900B (en) * 2010-12-20 2014-04-30 常州化学研究所 Organosilicon lens material for power type light-emitting diode (LED) packaging
JP6302816B2 (en) * 2014-10-15 2018-03-28 信越化学工業株式会社 Silicone resin composition and optical semiconductor device
KR102567687B1 (en) * 2015-06-17 2023-08-18 주식회사 다이셀 curable composition
CN105367799B (en) * 2015-12-18 2018-08-24 北京天山新材料技术有限公司 A kind of modified polyorganosiloxane room temperature vulcanized silicone rubber
JP2018188563A (en) * 2017-05-09 2018-11-29 株式会社ダイセル Composition for forming insulating film, insulating film, and semiconductor device including insulating film
TWI784356B (en) * 2020-11-30 2022-11-21 財團法人工業技術研究院 Epoxy-containing and siloxane-modified resin, package material, and package structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221718B2 (en) * 1992-04-14 2001-10-22 ジーイー東芝シリコーン株式会社 Epoxy-modified silicone resin composition
DE4328466C1 (en) 1993-08-24 1995-04-13 Siemens Ag Cast resin system containing siloxane
JP2002314143A (en) 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
JP4074796B2 (en) 2002-09-10 2008-04-09 東レ・ダウコーニング株式会社 Epoxy resin composition and semiconductor device
JP2005263869A (en) 2004-03-16 2005-09-29 Nagase Chemtex Corp Resin composition for sealing optical semiconductor
EP1736500A4 (en) * 2004-04-16 2010-03-24 Jsr Corp Composition for sealing optical semiconductor, optical semiconductor sealing material, and method for producing composition for sealing optical semiconductor
JP2006225515A (en) * 2005-02-17 2006-08-31 Jsr Corp Optical semiconductor element, sealing material therefor and sealing composition
JP4931366B2 (en) * 2005-04-27 2012-05-16 東レ・ダウコーニング株式会社 Curable silicone composition and electronic component
JP4935972B2 (en) * 2005-12-21 2012-05-23 Jsr株式会社 Composition for optical semiconductor encapsulation, method for producing the same, and optical semiconductor encapsulant
JP2007169406A (en) * 2005-12-21 2007-07-05 Jsr Corp Optical semiconductor-encapsulating composition, its manufacturing process and optical semiconductor-encapsulating agent
JP2008075025A (en) * 2006-09-22 2008-04-03 Jsr Corp Thermosetting resin composition and adhesive for optical semiconductor
JP2008120843A (en) 2006-11-08 2008-05-29 Momentive Performance Materials Japan Kk Light-transmitting silicone resin, light-transmitting silicone resin composition and optical semiconductor device
JP2008202036A (en) * 2007-01-22 2008-09-04 Sekisui Chem Co Ltd Thermosetting composition for optical semiconductor, sealant for optical semiconductor device, die bond material for optical semiconductor device, underfill material for optical semiconductor device, and optical semiconductor device
JP5077894B2 (en) * 2008-03-28 2012-11-21 信越化学工業株式会社 Epoxy / silicone hybrid resin composition for optical semiconductor element sealing and transfer molding tablet comprising the same
JP2010248385A (en) * 2009-04-16 2010-11-04 Jsr Corp Composition, cured product and optical semiconductor sealing material

Also Published As

Publication number Publication date
JP2010280885A (en) 2010-12-16
TWI480338B (en) 2015-04-11
CN101880461B (en) 2013-09-18
CN101880461A (en) 2010-11-10
KR20100121435A (en) 2010-11-17
KR101683891B1 (en) 2016-12-07
TW201041975A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR101560839B1 (en) Resin composition for encapsulating optical semiconductor element
TWI383025B (en) Hardened silicone compositions and electronic parts
KR101836962B1 (en) New organosilicon compound, thermosetting resin composition containing the organosilicon compound, hardening resin and encapsulation material for optical semiconductor
KR101948327B1 (en) Heat curable resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
KR101590638B1 (en) - heat-curable silicone resin-epoxy resin composition and premolded package molded from same
KR101500757B1 (en) Optical semiconductor device encapsulating epoxy-silicone hybrid resin composition and tablet for transfer molding containing the same
JP5251919B2 (en) Resin composition for optical semiconductor element sealing
JPWO2007046399A1 (en) Thermosetting resin composition and optical semiconductor sealing material
TWI516540B (en) Curable epoxy resin composition
JP2008019422A (en) Epoxy-silicone mixed resin composition and light emitting semiconductor device
JPWO2010090280A1 (en) Transparent encapsulant composition and optical semiconductor element
JP5293525B2 (en) Composition for sealing an optical semiconductor element
KR20110095216A (en) Thermosetting resin composition for optical-semiconductor element encapsulation and cured material thereof, and optical-semiconductor device obtained using the same
TWI466972B (en) A wafer bonding agent composition for an optical semiconductor element, and an optical semiconductor device using the same
KR20120139614A (en) Curable composition
JP6696420B2 (en) Silicone resin composition and optical semiconductor device
WO2015083576A1 (en) Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device
KR101652120B1 (en) Die bond agent composition for optical semiconductor element and optical semiconductor device using the composition
JP5299366B2 (en) Die-bonding agent composition for optical semiconductor element and optical semiconductor device using the composition
JP2014169415A (en) Curable silicone composition, its cured product, and optical semiconductor device

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20111227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3