JP2019116532A - Composition for sealing molding material and electronic component device - Google Patents

Composition for sealing molding material and electronic component device Download PDF

Info

Publication number
JP2019116532A
JP2019116532A JP2017250132A JP2017250132A JP2019116532A JP 2019116532 A JP2019116532 A JP 2019116532A JP 2017250132 A JP2017250132 A JP 2017250132A JP 2017250132 A JP2017250132 A JP 2017250132A JP 2019116532 A JP2019116532 A JP 2019116532A
Authority
JP
Japan
Prior art keywords
component
composition
filler
sealing molding
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017250132A
Other languages
Japanese (ja)
Inventor
勇人 藏
Yuto Kura
勇人 藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017250132A priority Critical patent/JP2019116532A/en
Priority to CN201880030381.4A priority patent/CN110603294B/en
Priority to PCT/JP2018/023651 priority patent/WO2019044133A1/en
Priority to TW107121348A priority patent/TWI696655B/en
Publication of JP2019116532A publication Critical patent/JP2019116532A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a composition for a sealing molding material capable of giving a cured product having a high glass transition temperature (Tg), high thermal decomposition resistance, excellent moldability, high withstand voltage, good adhesion to a semiconductor insert component, and high reliability, and to provide an electronic component device using the composition for a sealing molding material.SOLUTION: The composition for a sealing molding material contains (A) a maleimide resin having a specific structure, (B) a nadimide resin having a specific skeleton, (C) a phenolic curing agent, (D) an epoxy resin, (E) a curing accelerator, and (F) a filler containing (F-1) a hollow-structured filler. The component (C) and the component (D) each contain a triphenylmethane skeleton and/or a naphthalene skeleton. The component (E) contains (E-1) a phosphorus-based curing accelerator, (E-2) an imidazole-based curing accelerator, and (E-3) an acid-based curing accelerator.SELECTED DRAWING: None

Description

本発明は、封止成形材料用組成物及び電子部品装置に関する。   The present invention relates to a composition for a sealing molding material and an electronic component device.

従来から、トランジスタ、IC等の電子部品封止の分野では、エポキシ樹脂成形材料が広く用いられている。これは、エポキシ樹脂が、電気特性、耐湿性、機械特性、インサート部品との接着性等のバランスに優れるからである。   Conventionally, epoxy resin molding materials are widely used in the field of electronic component sealing such as transistors and ICs. This is because the epoxy resin is excellent in the balance of the electrical properties, moisture resistance, mechanical properties, adhesion to the insert part, and the like.

近年、資源エネルギーの将来的な枯渇に対する不安や、いわゆる地球温暖化問題等を背景に世界的に省エネルギーの機運が高まっており、電力の制御や変換を行い、「省エネ技術のキーデバイス」と言われるパワーデバイス(パワー半導体)が注目されている。
パワー半導体にとって電力変換効率はその性能を決定する非常に重要な項目であるが、ここにきて、従来のSi素子より変換効率の高い炭化ケイ素(SiC)や窒化ガリウム(GaN)等の化合物半導体の研究開発や市場での流通が活況を呈するようになってきた。
In recent years, momentum of energy saving has been increasing worldwide on the background of concern about future depletion of resource energy and so-called global warming problem etc., control and conversion of electric power, and it is said to be "key device of energy saving technology" Power devices (power semiconductors) to be used are attracting attention.
Power conversion efficiency is a very important item to determine its performance for power semiconductors, but now, compound semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) that have higher conversion efficiency than conventional Si devices Research and development and distribution in the market are booming.

パワー半導体の大きな特徴として、特にSiC素子はSi素子に比べ、高い耐電圧特性を有するため、これを適用すればより高い耐電圧を有するパワー半導体モジュールの実現が可能である。それに伴い、パワー半導体素子以外の周辺部材にも高い耐電圧特性、例えば耐トラッキング性や高い絶縁破壊電圧が要求される。   As a major feature of the power semiconductor, in particular, the SiC device has higher withstand voltage characteristics than the Si device, so that application of this enables realization of a power semiconductor module having a higher withstand voltage. Accordingly, high withstand voltage characteristics such as tracking resistance and high breakdown voltage are also required for peripheral members other than the power semiconductor element.

一方、もう一つの大きな特徴として、従来のSi素子と比較して高温動作が可能である点を挙げることができる。前述した高い耐電圧特性を有することは、素子自身の発熱もこれまで以上になることを意味し、高温動作が可能となることと相まって、周辺部材にはこれまで以上の耐熱性が求められることになる。
SiC素子については、300℃以上での動作報告もあり、封止用成形材料には高いガラス転移温度とともに高い耐熱分解性が求められることになる。
On the other hand, another major feature is that high temperature operation is possible compared to the conventional Si device. Having high withstand voltage characteristics as described above means that the heat generation of the element itself is also greater than before, and along with enabling high temperature operation, the peripheral members are required to have more heat resistance than before. become.
There is also an operation report at 300 ° C. or higher for the SiC element, and the molding material for sealing is required to have high heat decomposition resistance as well as high glass transition temperature.

封止用成形材料に高いガラス転移温度を与え、高温時信頼性を与えようとする技術としては、エポキシ樹脂、フェノール樹脂、マレイミド基を有する化合物、及びアルケニル基を有するフェノール化合物を必須成分とする封止用エポキシ樹脂組成物(例えば、特許文献1)、マレイミド化合物とナジイミド化合物とアミン化合物と触媒を特定の比率で配合した封止用樹脂組成物(例えば、特許文献2)等の報告がある。   An epoxy resin, a phenol resin, a compound having a maleimide group, and a phenol compound having an alkenyl group are essential components as a technique for imparting a high glass transition temperature to a sealing molding material and providing reliability at high temperature There is a report of epoxy resin composition for sealing (for example, patent document 1), resin composition for sealing (for example, patent document 2) etc. which compounded a maleimide compound, a nadiimide compound, an amine compound, and a catalyst in a specific ratio. .

特開2006−299246号公報JP, 2006-299246, A 特開2015−147850号公報JP, 2015-147850, A

高温時信頼性を確保する為には、高いガラス転移温度(Tg)とともに、半導体インサート部品に対する高い密着力が必要であるが、一般に、これらの両立は困難であることが多く、半導体インサート部品との剥離が発生する等の問題を抱えることも少なくない。半導体インサート部品に対する十分な密着性を確保した上で、半導体部品の生産性に関わる成形材料の成形性との両立を図ることも困難な課題であり、従来の技術ではこれらの課題が十分に解決されているとは言いがたい。特許文献2では密着性を確保する為、ナジイミド化合物を添加しているが、硬化剤にアミン化合物を使用している為、高電圧のかかるSiC素子等を封止するには電気特性に不十分であることが懸念される。   In order to ensure high temperature reliability, high adhesion to the semiconductor insert part is required together with high glass transition temperature (Tg), but in general, it is often difficult to achieve both of these, and There are also many problems such as peeling of It is also difficult to achieve compatibility with the moldability of the molding material related to the productivity of semiconductor parts after securing sufficient adhesion to the semiconductor insert parts, and these problems are sufficiently solved by the prior art. It is hard to say that it is being done. In Patent Document 2, a nadiimide compound is added to ensure adhesion, but since an amine compound is used as a curing agent, it is insufficient in electrical characteristics to seal a SiC device or the like to which a high voltage is applied. It is concerned that it is.

本発明は、このような実情に鑑みてなされたものであり、高いガラス転移温度(Tg)を有し、耐熱分解性が高く、成形性に優れるとともに、耐電圧性が高く、半導体インサート部品との密着性が良好で信頼性が高い硬化物を得ることができる封止成形材料用組成物、及び該封止成形材料用組成物を用いた電子部品装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and has high glass transition temperature (Tg), high thermal decomposition resistance, excellent moldability, high voltage resistance, and semiconductor insert parts It is an object of the present invention to provide a composition for a sealing molding material capable of obtaining a cured product having excellent adhesion and high reliability, and an electronic component device using the composition for a sealing molding material.

本発明者らは、上記の課題を解決するべく鋭意検討した結果、特定の構造を有するマレイミド樹脂と、特定の骨格を有するナジイミド樹脂と、特定の骨格を有するフェノール系硬化剤と、特定の骨格を有するエポキシ樹脂と、特定の硬化促進剤と、中空構造充填材を含む充填材とを含有する封止成形材料用組成物が、上記課題を解決することを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to solve the above problems, the present inventors have found that a maleimide resin having a specific structure, a nadiimide resin having a specific skeleton, a phenolic curing agent having a specific skeleton, and a specific skeleton It has been found that a composition for a sealing molding material containing an epoxy resin having the following, a specific curing accelerator, and a filler containing a hollow structural filler solves the above-mentioned problems.
The present invention has been completed based on such findings.

すなわち、本発明は、以下の[1]〜[9]を提供する。
[1](A)下記一般式(I)で表されるマレイミド樹脂、(B)下記一般式(II)で表されるアリル基含有ナジイミド樹脂、(C)フェノール系硬化剤、(D)エポキシ樹脂、(E)硬化促進剤、(F)(F−1)中空構造充填材を含む充填材を含有し、前記(C)成分および(D)成分が、それぞれにトリフェニルメタン骨格及び/又はナフタレン骨格を含み、前記(E)成分が(E−1)リン系硬化促進剤、(E−2)イミダゾール系硬化促進剤、及び(E−3)酸系硬化促進剤を含む封止成形材料用組成物。
That is, the present invention provides the following [1] to [9].
[1] (A) Maleimide resin represented by the following general formula (I), (B) allyl group-containing nadiimide resin represented by the following general formula (II), (C) phenolic curing agent, (D) epoxy A filler containing a resin, (E) a curing accelerator, and (F) (F-1) hollow structural filler, wherein the (C) component and the (D) component respectively have a triphenylmethane skeleton and / or A sealing molding material comprising a naphthalene skeleton, wherein the component (E) comprises (E-1) a phosphorus-based curing accelerator, (E-2) an imidazole-based curing accelerator, and (E-3) an acid-based curing accelerator. Composition.


(式中、Rはそれぞれ独立に炭素数1〜10の炭化水素基であって、炭化水素基はハロゲン原子で置換されていてもよい。Rが複数存在する場合、該複数のRは、互いに同一でも異なっていてもよい。pはそれぞれ独立に0〜4の整数、qは0〜3の整数、zは0〜10の整数である。)

(Wherein R 1 is each independently a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group may be substituted with a halogen atom. When a plurality of R 1 are present, the plurality of R 1 may be substituted. P may be the same as or different from each other, p is independently an integer of 0 to 4, q is an integer of 0 to 3, and z is an integer of 0 to 10.)


(式中、Rは炭素数1〜10のアルキレン基、炭素数4〜8のシクロアルキレン基、炭素数6〜18の二価の芳香族基、一般式「−A−C−(A−(ただし、mは0または1の整数を示し、各Aは、それぞれ独立に、炭素数1〜10のアルキレン基、炭素数4〜8のシクロアルキレン基である。)」で表される基、または一般式「−C−A−C−(ここでAは「−CH−」、「−C(CH−」、「−CO−」、「−O−」、「−S−」または「−SO−」で表される基である。)」で表される基である。)

(Wherein, R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 8 carbon atoms, a divalent aromatic group having 6 to 18 carbon atoms, a general formula “-A 1 -C 6 H 4 - (a 1) m - (provided that, m is an integer of 0 or 1, each a 1 is independently an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 8 carbon atoms. Or a group represented by the general formula “—C 6 H 4 —A 2 —C 6 H 4 — (wherein A 2 is“ —CH 2 — ”,“ —C (CH 3 ) 2 — ”, A group represented by “—CO—”, “—O—”, “—S—” or “—SO 2 —”))

[2]前記(F−1)中空構造充填材の平均粒径が3〜100μmである上記[1]に記載の封止成形材料用組成物。
[3]前記(F−1)中空構造充填材が、シリカ、アルミナ、シリカ−アルミナ化合物からなる群より選ばれる少なくとも1種であり、該(F−1)中空構造充填材の含有量が前記(F)充填材全量に対し1〜50質量%である上記[1]又は[2]に記載の封止成形材料用組成物。
[4]前記(F−1)中空構造充填材が、有機化合物からなり、該(F−1)中空構造充填材の含有量が前記(F)充填材全量に対し0.5〜10質量%である上記[1]又は[2]に記載の封止成形材料用組成物。
[5]前記(F−1)中空構造充填材が、シルセスキオキサン化合物からなり、該(F−1)中空構造充填材の含有量が前記(F)充填材全量に対し0.5〜10質量%である上記[1]又は[2]に記載の封止成形材料用組成物。
[6]前記(B)成分の含有量が、前記(A)成分100質量部に対し30〜250質量部である上記[1]〜[5]のいずれかに記載の封止成形材料用組成物。
[7]前記(E−3)成分が、p−トルエンスルホン酸、そのアミン塩及び三フッ化ホウ素アミン錯体からなる群より選ばれる少なくとも1種である、上記[1]〜[6]のいずれかに記載の封止成形材料用組成物。
[8]前記(E−3)成分の含有量が、前記(B)成分100質量部に対し0.1〜10質量部である上記[1]〜[7]のいずれかに記載の封止成形材料用組成物。
[9]上記[1]〜[8]のいずれかに記載の封止成形材料用組成物により封止された素子を備える電子部品装置。
[2] The composition for a sealing molding material as described in the above [1], wherein the average particle diameter of the (F-1) hollow structure filler is 3 to 100 μm.
[3] The (F-1) hollow structural filler is at least one selected from the group consisting of silica, alumina, and a silica-alumina compound, and the content of the (F-1) hollow structural filler is the above (F) The composition for a sealing molding material as described in said [1] or [2] which is 1-50 mass% with respect to the filler whole quantity.
[4] The (F-1) hollow structural filler is made of an organic compound, and the content of the (F-1) hollow structural filler is 0.5 to 10% by mass based on the total amount of the (F) filler. The composition for a sealing molding material as described in said [1] or [2] which is it.
[5] The (F-1) hollow structural filler is a silsesquioxane compound, and the content of the (F-1) hollow structural filler is 0.5 to the total amount of the (F) filler. The composition for a sealing molding material as described in said [1] or [2] which is 10 mass%.
[6] The composition for a sealing molding material according to any one of the above [1] to [5], wherein the content of the component (B) is 30 to 250 parts by mass with respect to 100 parts by mass of the component (A) object.
[7] Any of the above-mentioned [1] to [6], wherein the component (E-3) is at least one selected from the group consisting of p-toluenesulfonic acid, its amine salt and boron trifluoride amine complex A composition for a sealing molding material according to any one of the above.
[8] The seal according to any one of the above [1] to [7], wherein the content of the component (E-3) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (B) Composition for molding material.
[9] An electronic component device comprising an element sealed by the composition for a sealing molding material according to any one of the above [1] to [8].

本発明によれば、高いガラス転移温度(Tg)を有し、耐熱分解性が高く、成形性に優れるとともに、耐電圧性が高く、半導体インサート部品との密着性が良好で信頼性が高い硬化物を得ることができる封止成形材料用組成物、及び該封止成形材料用組成物を用いた電子部品装置を提供することができる。   According to the present invention, it has a high glass transition temperature (Tg), high thermal decomposition resistance and excellent formability, and also has high voltage resistance, good adhesion with semiconductor insert parts, and highly reliable curing. It is possible to provide a composition for a sealing molding material from which a product can be obtained, and an electronic component device using the composition for a sealing molding material.

以下、本発明を詳細に説明する。
(封止成形材料用組成物)
まず、本発明の封止成形材料用組成物の各成分について述べる。
〔(A)マレイミド樹脂〕
本発明で用いる(A)成分のマレイミド樹脂は、下記一般式(I)で表され、1分子内にマレイミド基を2つ以上含む化合物であり、加熱によりマレイミド基が反応することで3次元的網目構造を形成し、硬化する樹脂である。また、上記マレイミド樹脂は、架橋反応により、硬化物に高いガラス転移温度(Tg)を与え、耐熱性及び耐熱分解性を向上させる。
Hereinafter, the present invention will be described in detail.
(Composition for sealing molding material)
First, each component of the composition for a sealing molding material of the present invention will be described.
[(A) maleimide resin]
The maleimide resin of the component (A) used in the present invention is a compound having two or more maleimide groups in one molecule, which is represented by the following general formula (I), and is reacted three-dimensionally by reacting the maleimide groups by heating. It is a resin that forms a network structure and hardens. In addition, the maleimide resin gives a cured product a high glass transition temperature (Tg) by a crosslinking reaction to improve the heat resistance and the heat decomposition resistance.

上記一般式(I)中、Rはそれぞれ独立に炭素数1〜10の炭化水素基であって、該炭化水素基はハロゲン原子で置換されていてもよい。pはそれぞれ独立に0〜4の整数、qは0〜3の整数である。
上記炭素数1〜10の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基などのアルキル基;クロロメチル基、3−クロロプロピル基などの置換アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基などのアルケニル基;フェニル基、トリル基、キシリル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基などの1価の炭化水素基が挙げられる。
また、Rが複数存在する場合、該複数のR1は、互いに同一でも異なっていてもよい。
zは0〜10の整数であり、好ましくは0〜4の整数である。
In the above general formula (I), R 1 is each independently a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group may be substituted by a halogen atom. p is each independently an integer of 0 to 4, and q is an integer of 0 to 3.
As said C1-C10 hydrocarbon group, alkyl groups, such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, for example; Chloromethyl group, 3-chloropropyl group etc. Substituted alkyl groups; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group; aryl groups such as phenyl group, tolyl group and xylyl group; monovalent groups such as aralkyl group such as benzyl group and phenethyl group The hydrocarbon group of
In addition, when there are a plurality of R 1 's , the plurality of R 1 ' s may be the same as or different from each other.
z is an integer of 0 to 10, preferably an integer of 0 to 4;

上記一般式(I)で表されるマレイミド樹脂は、後述する(C)成分のフェノール系硬化剤と、(E−1)成分のリン系硬化促進剤の存在下で付加反応が起こり、封止成形材料用組成物の硬化物に高い耐熱性を与える。   In the maleimide resin represented by the above general formula (I), an addition reaction occurs in the presence of a phenol-based curing agent of the component (C) described later and a phosphorus-based curing accelerator of the component (E-1) to seal It gives high heat resistance to the cured product of the composition for molding material.

上記一般式(I)で表されるマレイミド樹脂の具体例としては、例えば、N,N’−(4,4’−ジフェニルメタン)ビスマレイミド、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ポリフェニルメタンマレイミド等が挙げられる。
また、上記マレイミド樹脂は、例えば、ポリフェニルメタンマレイミドでz=0〜2を主成分とするBMI−2300(大和化成工業(株)製)等が市販品として入手することができる。
Specific examples of the maleimide resin represented by the above general formula (I) include, for example, N, N ′-(4,4′-diphenylmethane) bismaleimide, bis (3-ethyl-5-methyl-4-maleimidophenyl) And methane), polyphenylmethane maleimide and the like.
Moreover, BMI-2300 (made by Daiwa Kasei Kogyo Co., Ltd.) etc. which have z = 0-2 as a main component and the said maleimide resin can be obtained as a commercial item, for example.

上記(A)成分のマレイミド樹脂は、その一部又は全量を後述する(C)成分のフェノール系硬化剤の一部又は全量と、予め予備混合を行なってから用いてもよい。予備混合の方法は特に限定されず、公知の混合方法を用いることができる。例えば、撹拌可能な装置を用い、(C)成分を50〜180℃で溶融した後、撹拌しつつ(A)成分のマレイミド樹脂を徐々に加えて混合し、その全てが溶融してから更に10〜60分程度撹拌し、予備混合樹脂とする方法等が挙げられる。
なお、予備混合において、(C)成分のフェノール系硬化剤を2種以上用いてもよい。
The maleimide resin of the component (A) may be used after being preliminarily mixed with a part or the whole of the phenolic curing agent of the component (C) to be described later. The method of premixing is not particularly limited, and known mixing methods can be used. For example, after melting the component (C) at 50 to 180 ° C. using an apparatus capable of stirring, the maleimide resin of the component (A) is gradually added and mixed while stirring, and all of the components are melted and then 10 The method etc. of stirring about 60 minutes and setting it as premixed resin are mentioned.
In the pre-mixing, two or more kinds of the phenolic curing agent of the component (C) may be used.

上記(A)成分のマレイミド樹脂、すなわち、上記一般式(I)で表されるマレイミド樹脂とは別に、本発明の効果を妨げない範囲で、上記一般式(I)で表されるマレイミド樹脂以外のマレイミド樹脂を併用してもよい。併用可能なマレイミド樹脂としては、例えば、m−フェニレンビスマレイミド、2,2−ビス[4−(4−マレイミドフェノキシン)フェニル]プロパン、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン等を挙げることができるが、これら以外の従来公知のマレイミド樹脂を併用してもよい。なお、上記一般式(I)で表されるマレイミド樹脂以外のマレイミド樹脂を配合する場合、その配合量は、(A)成分のマレイミド樹脂100質量部に対し、30質量部以下とすることが好ましく、20質量部以下とすることがより好ましく、10質量部以下とすることが更に好ましい。   Apart from the maleimide resin of the component (A), that is, the maleimide resin represented by the above general formula (I), other than the maleimide resin represented by the above general formula (I) within the range not to impair the effects of the present invention The maleimide resin of As a maleimide resin which can be used in combination, for example, m-phenylenebismaleimide, 2,2-bis [4- (4-maleimidophenoxin) phenyl] propane, 1,6-bismaleimide- (2,2,4-trimethyl) Although hexane etc. can be mentioned, you may use together conventionally well-known maleimide resin other than these. In addition, when mix | blending maleimide resin other than maleimide resin represented with the said general formula (I), it is preferable that the compounding quantity sets it as 30 mass parts or less with respect to 100 mass parts of maleimide resins of (A) component. The amount is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less.

〔(B)アリル基含有ナジイミド樹脂〕
本発明で用いる(B)成分のアリル基含有ナジイミド樹脂(以下、単にナジイミド樹脂ともいう)は、下記一般式(II)で表され、1分子内にアリル基を2つ含む化合物であり、加熱によりアリル基同士あるいはアリル基とマレイミド基が反応することで3次元的網目構造を形成し、硬化する樹脂である。(B)成分のナジイミド樹脂はその樹脂骨格に由来する密着性の向上効果が期待できる。また、(B)成分のナジイミド樹脂は、(A)成分のマレイミド樹脂と同様、架橋反応により、硬化物に高いガラス転移温度(Tg)を与え、耐熱性及び耐熱分解性を向上させる。
[(B) Allyl group-containing nadiimide resin]
The allyl group-containing nadiimide resin (hereinafter simply referred to as nadiimide resin) of the component (B) used in the present invention is a compound represented by the following general formula (II), which contains two allyl groups in one molecule, and is heated A three-dimensional network structure is formed by the reaction of allyl groups with each other or by the reaction of allyl groups with a maleimide group, and the resin is cured. The nadiimide resin of component (B) can be expected to have the effect of improving the adhesion derived from its resin skeleton. Further, the nadiimide resin of the component (B), like the maleimide resin of the component (A), imparts a high glass transition temperature (Tg) to the cured product by the crosslinking reaction, and improves the heat resistance and the heat decomposition resistance.

上記一般式(II)中、Rは、炭素数1〜10のアルキレン基、炭素数4〜8のシクロアルキレン基、炭素数6〜18の二価の芳香族基、一般式「−A−C−(A−(ただし、mは0または1の整数を示し、各Aは、それぞれ独立に、炭素数1〜10のアルキレン基、炭素数4〜8のシクロアルキレン基である。)」で表される基、または一般式「−C−A−C−(ここでAは「−CH−」、「−C(CH−」、「−CO−」、「−O−」、「−S−」または「−SO−」で表される基である。)」で表される基である。 In the above general formula (II), R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 8 carbon atoms, a divalent aromatic group having 6 to 18 carbon atoms, a general formula “−A 1 -C 6 H 4 - (a 1 ) m - ( provided that, m is an integer of 0 or 1, each a 1 is independently an alkylene group having 1 to 10 carbon atoms, cycloalkyl of 4-8 carbon atoms . an alkylene group) group represented by "or the formula" -C 6 H 4 -A 2 -C 6 H 4 - ( wherein a 2 is "-CH 2 -", "- C (CH 3 ) 2 - "," - CO -, "" - O - "," - S- "or" -SO 2 -. a group represented by ")" is a group represented by.

上記一般式(II)で表されるアリル基含有ナジイミド樹脂の具体例としては、例えば、下記式(II−1)及び(II−2)に示す樹脂が挙げられる。中でも、耐トラッキング性、密着性の観点から、式(II−1)に示す樹脂が好ましい。これは、式(II−1)に示す樹脂では、該樹脂が有するアリル基同士の距離が十分であるため、立体障害が少なく反応が十分に進み3次元的網目構造が密に形成され、ナジイミド樹脂骨格の凝集力が増加するからである。
これらの樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
As a specific example of the allyl group containing nadiimide resin represented by said general formula (II), resin shown to following formula (II-1) and (II-2) is mentioned, for example. Among them, the resin represented by formula (II-1) is preferable from the viewpoint of the tracking resistance and the adhesion. This is because, in the resin represented by the formula (II-1), since the distance between the allyl groups of the resin is sufficient, the steric hindrance is small, the reaction proceeds sufficiently, and a three-dimensional network structure is densely formed; It is because the cohesive force of the resin skeleton is increased.
One of these resins may be used alone, or two or more of these resins may be used in combination.

上記(B)成分の含有量は、硬化収縮率、密着性のバランスの観点から(A)成分100質量部に対し30〜250質量部とすることが好ましく、50〜200質量部とすることがより好ましい。   The content of the component (B) is preferably 30 to 250 parts by mass, preferably 50 to 200 parts by mass, with respect to 100 parts by mass of the component (A), from the viewpoint of the balance of curing shrinkage and adhesion. More preferable.

上記一般式(II)で表されるアリル基含有ナジイミド樹脂は、BANI−M(丸善石油化学(株)製)、BANI−X(丸善石油化学(株)製)等が市販品として入手することができる。   The allyl group-containing nadiimide resin represented by the above general formula (II) is commercially available as BANI-M (manufactured by Maruzen Petrochemicals Co., Ltd.), BANI-X (manufactured by Maruzen Petrochemicals Co., Ltd.), etc. as a commercial product. Can.

〔(C)フェノール系硬化剤〕
本発明の封止成形材料用組成物は、(C)成分として、下記一般式(III)で表されるトリフェニルメタン骨格を含むフェノール系硬化剤及び下記一般式(IV)で表されるナフタレン骨格を含むフェノール系硬化剤から選択される少なくとも1種を含む。また、(C)成分のフェノール系硬化剤は一分子中に少なくとも2個の水酸基を有する。
上記(C)成分は、後述する(E−1)成分であるリン系硬化促進剤の存在下、(A)成分であるマレイミド樹脂と付加反応を行い、該(A)成分の自己重合反応を間接的に抑制し、剥離応力を緩和する効果を有する。また、封止成形材料用組成物に耐熱性とともに密着性及び成形性を付与する働きを有する。更に、後述する(D)成分であるエポキシ樹脂と、(E−1)成分であるリン系硬化促進剤あるいは(E−2)成分であるイミダゾール系硬化促進剤の存在下、付加反応を行う。
[(C) Phenolic curing agent]
The composition for a sealing molding material of the present invention is a phenolic curing agent containing a triphenylmethane skeleton represented by the following general formula (III) as the component (C) and a naphthalene represented by the following general formula (IV) It contains at least one selected from phenolic curing agents containing a skeleton. The phenolic curing agent of component (C) has at least two hydroxyl groups in one molecule.
The component (C) undergoes an addition reaction with the maleimide resin which is the component (A) in the presence of a phosphorus-based curing accelerator which is the component (E-1) described later, and the self-polymerization reaction of the component (A) It indirectly suppresses and has the effect of relieving peeling stress. Moreover, it has an effect | action which provides adhesiveness and a moldability with heat resistance to the composition for sealing molding materials. Further, the addition reaction is carried out in the presence of an epoxy resin which is the component (D) described later and a phosphorus-based curing accelerator which is the component (E-1) or an imidazole-based curing accelerator which is the component (E-2).


(式中、xは0〜10である。)

(Wherein x is 0 to 10)


(式中、y1は0〜10である。)

(In the formula, y1 is 0 to 10.)

上記一般式(III)中、xは0〜10であり、好ましくは1〜4である。また、上記一般式(IV)中、y1は0〜10であり、好ましくは0〜3である。   In the above general formula (III), x is 0 to 10, preferably 1 to 4. Moreover, in said general formula (IV), y1 is 0-10, Preferably it is 0-3.

上記一般式(III)で表されるフェノール樹脂は、MEH−7500(明和化成(株)製)として、上記一般式(IV)で表されるフェノール樹脂は、SN−485(新日鉄住金化学(株)製)として、それぞれ市販品として入手することができる。   The phenolic resin represented by the above general formula (III) is MEH-7500 (manufactured by Meiwa Kasei Co., Ltd.), and the phenol resin represented by the above general formula (IV) is SN-485 (Nippon Steel Sumikin Chemical Co., Ltd. ) Can be obtained as commercial products.

上記(C)成分は、一般式(III)、(IV)で表される化合物を単独で用いてもよいし、これらの2種以上を併用して用いてもよい。   As the component (C), the compounds represented by the general formulas (III) and (IV) may be used alone, or two or more of these may be used in combination.

本発明では、耐熱性、密着性、及び成形性のバランスの観点から、(A)成分100質量部に対し、(C)成分の含有量を20〜250質量部とすることが好ましく、30〜200質量部とすることがより好ましく、40〜150質量部とすることが更に好ましい。2種以上の(C)成分を併用する場合、その合計量を前記範囲内とすることが好ましい。   In the present invention, the content of the component (C) is preferably 20 to 250 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of the balance of heat resistance, adhesion and moldability. The amount is more preferably 200 parts by mass, and further preferably 40 to 150 parts by mass. When using 2 or more types of (C) components together, it is preferable to make the total amount into the said range.

本発明では、本発明の効果を妨げない範囲で、従来公知の(C)成分以外のフェノール系硬化剤を併用することができる。また、本発明の効果を妨げない範囲で酸無水物やアミン系硬化剤を併用してもよい。   In the present invention, phenolic curing agents other than the conventionally known component (C) can be used in combination as long as the effects of the present invention are not impaired. Moreover, you may use together an acid anhydride and an amine type hardening | curing agent in the range which does not prevent the effect of this invention.

〔(D)エポキシ樹脂〕
本発明の封止成形材料用組成物は、(D)成分として、下記一般式(V)で表されるトリフェニルメタン骨格を含むエポキシ樹脂、下記一般式(VI)で表されるナフタレン骨格を含むエポキシ樹脂、及び下記一般式(VII)で表されるナフタレン骨格を含むエポキシ樹脂から選択される少なくとも1種含む。(D)成分のエポキシ樹脂は、一分子中に2個以上のエポキシ基を有し、比較的に低い温度から反応開始することで成形性が向上し、付加反応時に水酸基が生成され、密着性を付与する働きを有する。また、(D)成分のエポキシ樹脂は、(C)成分のフェノール系硬化剤と架橋反応を行い成形性及び密着性を向上させる働きを有するとともに、(A)成分のマレイミド樹脂の自己重合反応を促進し、封止成形材料用組成物の硬化性を高め、良好な成形性を与える働きも有する。
(D)成分のエポキシ樹脂は、1種を用いてもよく、2種以上を組み合わせて用いてもよい。
[(D) epoxy resin]
The composition for a sealing molding material of the present invention comprises, as the component (D), an epoxy resin containing a triphenylmethane skeleton represented by the following general formula (V), and a naphthalene skeleton represented by the following general formula (VI) It contains at least 1 sort (s) selected from the epoxy resin containing, and the epoxy resin containing the naphthalene structure represented by the following general formula (VII). The epoxy resin of the component (D) has two or more epoxy groups in one molecule, and by starting the reaction from a relatively low temperature, the formability is improved, and a hydroxyl group is generated during the addition reaction, and the adhesion is achieved. Have the function of In addition, the epoxy resin of the component (D) has a function of performing crosslinking reaction with the phenol-based curing agent of the component (C) to improve moldability and adhesion, as well as the self-polymerization reaction of the maleimide resin of the component (A). It also has the functions of promoting, enhancing the curability of the composition for sealing and molding materials, and giving good formability.
The epoxy resin of (D) component may use 1 type and may use it in combination of 2 or more type.


(式中、n1は0〜10である。)

(In the formula, n1 is 0 to 10.)


(式中、n2は0〜10である。)

(In the formula, n2 is 0 to 10)

上記一般式(V)中、n1は0〜10であり、好ましくは0〜3である。また、上記一般式(VI)中、n2は0〜10であり、好ましくは0〜3である。   In the above general formula (V), n1 is 0 to 10, preferably 0 to 3. Moreover, in the said General formula (VI), n2 is 0-10, Preferably it is 0-3.

上記一般式(V)で表されるエポキシ樹脂は、EPPN−502H(日本化薬(株)製)として、上記一般式(VI)で表されるエポキシ樹脂は、ESN−375(新日鉄住金化学(株)製)として、上記一般式(VII)で表されるエポキシ樹脂は、HP−4710(DIC(株)製)として、それぞれ市販品として入手することができる。   The epoxy resin represented by the above general formula (V) is an epoxy resin represented by the above general formula (VI) as EPPN-502H (manufactured by Nippon Kayaku Co., Ltd.), and the epoxy resin represented by the above general formula (VI) is The epoxy resin represented by the said General formula (VII) can be obtained as HP-4710 (made by DIC Corporation) as a commercial item as a stock company make).

一般式(V)〜(VII)で表されるエポキシ樹脂の軟化点は、生産性や封止成形材料用組成物の流動性を良好にする観点から、好ましくは55〜100℃、より好ましくは60〜90℃、更に好ましくは65〜85℃である。   The softening point of the epoxy resin represented by the general formulas (V) to (VII) is preferably 55 to 100 ° C., more preferably from the viewpoint of improving the productivity and the flowability of the composition for a sealing molding material. 60 to 90 ° C., more preferably 65 to 85 ° C.

本発明の封止成形材料用組成物において、(D)成分の含有量は、ガラス転移点、密着性及び成形性等をバランスよくさせる為に、(C)成分のフェノール系硬化剤の水酸基に対する(D)成分のエポキシ樹脂が有するエポキシ基の比(当量比)が0.2〜1.5であることが好ましく、0.3〜1.2であることがより好ましい。当量比が0.2以上であれば成形性が良好となり、1.5以下であれば耐熱性や耐熱分解性、難燃性等がそれぞれ良好となる。なお、(D)成分を2種以上用いる場合には、その合計量を前記範囲内とすることが好ましい。   In the composition for a sealing molding material of the present invention, the content of the component (D) is to the hydroxyl group of the phenolic curing agent of the component (C) in order to balance the glass transition point, adhesion and moldability. It is preferable that ratio (equivalent ratio) of the epoxy group which the epoxy resin of (D) component has is 0.2-1.5, and it is more preferable that it is 0.3-1.2. If the equivalent ratio is 0.2 or more, the moldability is good, and if it is 1.5 or less, the heat resistance, the heat decomposition resistance, the flame retardance and the like become good. In addition, when using 2 or more types of (D) component, it is preferable to make the total amount into the said range.

また、(D)成分のエポキシ樹脂の配合量は、(A)成分のマレイミド樹脂100質量部に対し、好ましくは30〜200質量部、より好ましくは40〜150質量部、更に好ましくは50〜100質量部である。30質量部以上とすることで密着性が良好となり、200質量部以下とすることで耐熱性が良好となる。   Further, the blending amount of the epoxy resin of the component (D) is preferably 30 to 200 parts by mass, more preferably 40 to 150 parts by mass, still more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the maleimide resin of the component (A). It is a mass part. Adhesiveness becomes favorable by setting it as 30 mass parts or more, and heat resistance becomes favorable by setting it as 200 mass parts or less.

(D)成分のエポキシ樹脂は、一般式(V)〜(VII)で表される樹脂の他に、本発明の効果を損なわない範囲で半導体素子封止材料として用いられるエポキシ樹脂を併用することができる。併用可能なエポキシ樹脂としては、例えば、o−クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等を挙げることができるが、これら以外のエポキシ樹脂を併用してもよい。
なお、上記(D)成分以外のエポキシ樹脂を併用する場合、その配合量は(D)成分のエポキシ樹脂100質量部に対し、30質量部以下とすることが好ましく、20質量部以下とすることがより好ましく、10質量部以下とすることが更に好ましい。
In addition to the resins represented by the general formulas (V) to (VII), the epoxy resin of the component (D) may be used in combination with an epoxy resin used as a semiconductor element sealing material as long as the effects of the present invention are not impaired. Can. As an epoxy resin which can be used together, although an o-cresol novolak type epoxy resin, a biphenyl type epoxy resin, a dicyclopentadiene type epoxy resin etc. can be mentioned, for example, You may use epoxy resins other than these together.
In addition, when using together epoxy resins other than the said (D) component, it is preferable to set it as 30 mass parts or less with respect to 100 mass parts of epoxy resins of (D) component, and to make it 20 mass parts or less. Is more preferable, and 10 parts by mass or less is more preferable.

〔(E)硬化促進剤〕
本発明では(E)成分の硬化促進剤として、(E−1)リン系硬化促進剤、(E−2)イミダゾール系硬化促進剤、及び(E−3)酸系硬化促進剤を併用することが必要である。
[(E) curing accelerator]
In the present invention, (E-1) phosphorus-based curing accelerator, (E-2) imidazole-based curing accelerator, and (E-3) acid-based curing accelerator are used in combination as the curing accelerator for component (E). is necessary.

(E−1)リン系硬化促進剤
本発明で用いる(E−1)成分のリン系硬化促進剤は、主として、(A)成分と(C)成分との架橋反応、及び(C)成分と(D)成分との架橋反応を促進する為に用いられる。(E−1)成分は、これらの反応を促進することにより、(A)成分どうしの自己重合反応を間接的に抑制し、半導体インサート部品との剥離応力の発生を抑える働きを有する。
(E-1) Phosphorus-Based Curing Accelerator The phosphorus-based curing accelerator of component (E-1) used in the present invention mainly comprises the crosslinking reaction of component (A) with component (C), and component (C) with It is used to accelerate the crosslinking reaction with the component (D). The component (E-1) indirectly suppresses the self-polymerization reaction of the components (A) by promoting these reactions, and has the function of suppressing the generation of the peeling stress from the semiconductor insert part.

(E−1)成分のリン系硬化促進剤としては、例えば、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(4−エチルフェニル)ホスフィン、トリス(4−プロピルフェニル)ホスフィン、トリス(4−ブチルフェニル)ホスフィン、トリス(2,4−ジメチルフェニル)ホスフィン、トリス(2,4,6−トリメチルフェニル)ホスフィン、トリブチルホスフィン、メチルジフェニルホスフィン等の三級ホスフィン類、テトラフェニルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムテトラブチルボレート等のテトラ置換ホスホニウムテトラ置換ボレート類等を例示することができ、これらを単独、又は2種以上併用して、適宜使用することができる。これら以外の従来公知のリン系硬化促進剤を単独、又は2種以上併用して使用することも可能である。   Examples of the phosphorus-based curing accelerator as the component (E-1) include triphenylphosphine, tris (4-methylphenyl) phosphine, tris (4-ethylphenyl) phosphine, tris (4-propylphenyl) phosphine, and tris (4). Tertiary phosphines such as 4-butylphenyl) phosphine, tris (2,4-dimethylphenyl) phosphine, tris (2,4,6-trimethylphenyl) phosphine, tributylphosphine, methyl diphenyl phosphine, etc., tetraphenylphosphonium tetraphenylborate Examples thereof include tetra-substituted phosphonium tetra-substituted borates such as tetrabutyl phosphonium tetra-butyl borate and the like, and these can be appropriately used singly or in combination of two or more. It is also possible to use conventionally well-known phosphorus-type hardening accelerators other than these individually or in combination of 2 or more types.

(E−1)成分のリン系硬化促進剤の含有量は、硬化性及び半導体インサート部品との密着性のバランスの観点から、(A)成分100質量部に対し、好ましくは0.1〜6質量部、より好ましくは0.3〜5質量部、更に好ましくは0.5〜3質量部である。2種以上のリン系硬化促進剤を併用する場合には、その合計量が前記範囲内となることが好ましい。   The content of the phosphorus-based curing accelerator as the component (E-1) is preferably 0.1 to 6 parts per 100 parts by mass of the component (A) from the viewpoint of the balance between the curability and the adhesion to the semiconductor insert part. It is a mass part, More preferably, it is 0.3-5 mass parts, More preferably, it is 0.5-3 mass parts. When using 2 or more types of phosphorus-based hardening accelerators together, it is preferable that the total amount becomes in the said range.

(E−2)イミダゾール系硬化促進剤
本発明で用いる(E−2)成分のイミダゾール系硬化促進剤は、主として(A)成分の自己重合反応を促進することで、封止成形材料用組成物の成形性を確保する為に用いられる。(E−2)成分の働きは、(D)成分のエポキシ樹脂の存在により促進され、本発明の封止成形材料用組成物に良好な硬化性や成形性を与えることが可能となる。また、(C)成分のフェノール系硬化剤と(D)成分のエポキシ樹脂との付加反応、及び(D)成分のエポキシ樹脂の自己重合反応を促進することにより、成形性及び密着性を向上させる働きがある。
なお、本発明において、「イミダゾール系硬化促進剤」とは、5員環上の1,3位に窒素原子を含むイミダゾール化合物と同義である。
(E-2) Imidazole-based curing accelerator The imidazole-based curing accelerator of the component (E-2) used in the present invention mainly promotes the self-polymerization reaction of the component (A) to form a composition for a sealing molding material It is used to secure the formability of The function of the component (E-2) is promoted by the presence of the epoxy resin of the component (D), and the composition for a sealing molding material of the present invention can be provided with good curability and moldability. In addition, the moldability and adhesion are improved by promoting the addition reaction of the phenolic curing agent of component (C) and the epoxy resin of component (D) and the self-polymerization reaction of the epoxy resin of component (D). It works.
In the present invention, the term "imidazole-based curing accelerator" has the same meaning as the imidazole compound containing a nitrogen atom at the 1,3 position on the 5-membered ring.

(E−2)成分のイミダゾール系硬化促進剤としては、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール等を例示することができ、これらは単独で使用しても2種以上を併用して使用してもよい。また、上記以外の従来公知のイミダゾール系硬化促進剤を適用してもよい。   Examples of the imidazole-based curing accelerator as the component (E-2) include 2-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2- Phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2-phenyl- 4-methyl-5-hydroxymethylimidazole and the like can be exemplified, and these may be used alone or in combination of two or more. Moreover, you may apply the conventionally well-known imidazole type hardening accelerator other than the above.

(E−2)成分のイミダゾール系硬化促進剤の含有量は、硬化性及び半導体インサート部品との密着性のバランスの観点から、(A)成分100質量部に対し、好ましくは0.1〜4質量部、より好ましくは0.3〜3質量部、更に好ましくは0.5〜2質量部である。2種以上のイミダゾール系硬化促進剤を併用する場合には、その合計量が前記範囲内となることが好ましい。   The content of the imidazole-based curing accelerator as the component (E-2) is preferably 0.1 to 4 with respect to 100 parts by mass of the component (A) from the viewpoint of the balance between the curability and the adhesion to the semiconductor insert part. It is a mass part, More preferably, it is 0.3-3 mass parts, More preferably, it is 0.5-2 mass parts. When using 2 or more types of imidazole series hardening accelerators together, it is preferable that the total amount becomes in the said range.

(E−3)酸系硬化促進剤
本発明で用いる(E−3)成分の酸系硬化促進剤は、主として(B)成分のアリル基含有ナジイミド樹脂の反応性を促進し、(A)成分のマレイミド樹脂と(B)成分のアリル基含有ナジイミド樹脂との硬化性を促進させ、比較的低い温度から反応を開始させるために用いられる。また、(C)成分のフェノール系硬化剤と(D)成分のエポキシ樹脂との反応も促進することにより、成形性及び密着性を向上させる働きがある。一般にマレイミド樹脂は高耐熱性を有するものの、硬化反応に高い温度を必要とする。(A)成分のマレイミド樹脂と(B)成分のアリル基含有ナジイミド樹脂と(E−3)成分の酸系硬化促進剤とを反応させることにより比較的低温で反応を開始させることができ、成型性が向上する。
(E-3) Acid-based curing accelerator The acid-based curing accelerator of the component (E-3) used in the present invention mainly promotes the reactivity of the allyl group-containing nadiimide resin of the component (B), the component (A) And the allyl group-containing nadiimide resin of component (B) to promote the curing property of the resin and to start the reaction from a relatively low temperature. In addition, by promoting the reaction of the phenolic curing agent of the component (C) and the epoxy resin of the component (D), it has the function of improving moldability and adhesion. Although maleimide resins generally have high heat resistance, they require high temperatures for the curing reaction. The reaction can be initiated at a relatively low temperature by reacting the maleimide resin of component (A), the allyl group-containing nadiimide resin of component (B), and the acid curing accelerator of component (E-3), and molding Improves the quality.

(E−3)成分の酸系硬化促進剤としては、例えば、p−トルエンスルホン酸、トリフルオロメタンスルホン酸、またはそれらのアミン塩、ピリジン硫酸塩、リン酸、三フッ化ホウ素エーテル錯体、三フッ化ホウ素アミン錯体などを例示することができる。これらのうち、本発明では反応性や樹脂物性の観点から、p−トルエンスルホン酸、そのアミン塩及び三フッ化ホウ素アミン錯体からなる群より選ばれる少なくとも1種を用いることが好ましい。また、密着性の観点からp−トルエンスルホン酸がより好ましく、硬化性の観点から三フッ化ホウ素アミン錯体がより好ましい。これらは単独で使用しても2種以上を併用して使用してもよい。   Examples of the acid-based curing accelerator as the component (E-3) include p-toluenesulfonic acid, trifluoromethanesulfonic acid, or an amine salt thereof, pyridine sulfate, phosphoric acid, boron trifluoride ether complex, trifluorene An example is borohydride amine complex and the like. Among these, in the present invention, it is preferable to use at least one selected from the group consisting of p-toluenesulfonic acid, its amine salt and boron trifluoride amine complex from the viewpoint of reactivity and resin physical properties. Further, p-toluenesulfonic acid is more preferable from the viewpoint of adhesion, and boron trifluoride amine complex is more preferable from the viewpoint of curability. These may be used alone or in combination of two or more.

(E−3)成分の酸系硬化促進剤の含有量は、硬化性及び熱分解性のバランスの観点から、(B)成分100質量部に対し、好ましくは0.1〜10質量部、より好ましくは0.3〜5質量部、更に好ましくは0.5〜3質量部である。2種以上の酸系硬化促進剤を併用する場合には、その合計量が前記範囲内となることが好ましい。   The content of the acid-based curing accelerator as the component (E-3) is preferably 0.1 to 10 parts by mass, more preferably 100 parts by mass of the component (B), from the viewpoint of the balance between curability and thermal decomposition. Preferably it is 0.3-5 mass parts, More preferably, it is 0.5-3 mass parts. When using 2 or more types of acid system hardening accelerators together, it is preferable that the total amount becomes in the said range.

〔(F)充填材〕
本発明で用いる(F)成分の充填材は、(F−1)中空構造充填材を含むものであり、さらに、封止用成形材料で通常用いられる(F−2)無機充填材を含有することが好ましい。本発明の効果である封止成形材料用組成物の硬化物と半導体インサート部品との剥離を防止する為に、機械強度や線膨張係数等の観点から、(F)成分の充填剤の含有量は、封止成形材料用組成物全量に対し好ましくは60〜95質量%、より好ましくは65〜90質量%、更に好ましくは70〜85質量%である。充填材の含有量が60質量%以上であれば線膨張係数の増大を抑制でき、十分な機械的強度を保つことができ、95質量%以下であれば良好な流動性が得られる。
[(F) filler]
The filler of the component (F) used in the present invention comprises (F-1) a hollow structural filler, and further comprises (F-2) an inorganic filler which is usually used in a molding material for sealing. Is preferred. The content of the filler of the component (F) from the viewpoint of mechanical strength, linear expansion coefficient, etc., in order to prevent peeling between the cured product of the composition for a sealing molding material and the semiconductor insert part, which is the effect of the present invention Is preferably 60 to 95% by mass, more preferably 65 to 90% by mass, still more preferably 70 to 85% by mass, based on the total amount of the composition for a sealing molding material. When the content of the filler is 60% by mass or more, an increase in the linear expansion coefficient can be suppressed, sufficient mechanical strength can be maintained, and when the content is 95% by mass or less, good flowability can be obtained.

(F−1)中空構造充填材
本発明で用いる(F−1)成分の中空構造充填材は、主として、硬化時応力を緩和するとともに、封止成形材料用組成物の硬化物の弾性率を下げることで熱収縮に伴う応力をも緩和し、硬化物と半導体インサート部品との剥離を防ぐ働きをする。封止成形材料用組成物の硬化物の弾性率は10〜15GPaであることが好ましい。15GPa以下であると硬化物とインサート部品との剥離を抑制することができ、10GPa以上であると成形性が良好である。
ここで、本発明における「中空構造充填材」とは、充填材内部に1つ又は2つ以上の中空構造を有する充填材を指す。中空構造充填材としては、特に限定されず、ソーダ石灰ガラスや硼珪酸ガラス、珪酸アルミニウムやムライト、石英等を主成分とするいわゆる中空ガラスや中空シリカ等の無機系中空構造充填材、シロキサン結合が(CHSiO3/2で表される三次元網目状に架橋した構造を持つシルセスキオキサン化合物等シリコーン化合物を主成分とするシリコーン系中空構造充填材の他、熱可塑又は熱硬化性樹脂を出発原料として合成された有機化合物等を主成分とする有機系中空構造充填材等を用いることができる。
なお、本明細書における「シルセスキオキサン化合物」とは、シロキサン結合が(CHSiO3/2で表される三次元網目状に架橋した構造を持ち、側鎖にメチル基やフェニル基等の有機官能基を有する化合物のうち、側鎖がメチル基である割合が80%以上である化合物を指す。
前記「中空構造充填材」のうち、特に無機系中空構造充填材、及びシリコーン系中空構造充填材は、中空構造充填材自体の耐熱性が高い為、より耐熱性の高い封止成形材料用組成物に用いることが可能である。
(F-1) Hollow Structured Filler The hollow structure filler of the component (F-1) used in the present invention mainly relieves the stress during curing, and the elastic modulus of the cured product of the composition for sealing and molding material By lowering it, it also relieves the stress associated with heat shrinkage, and works to prevent peeling between the cured product and the semiconductor insert part. It is preferable that the elastic modulus of the hardened | cured material of the composition for sealing molding materials is 10-15 GPa. Peeling of a hardened material and an insert part can be controlled as it is 15 GPa or less, and moldability is good as it is 10 GPa or more.
Here, the "hollow structure filler" in the present invention refers to a filler having one or more hollow structures inside the filler. The hollow structured filler is not particularly limited, and soda lime glass, borosilicate glass, inorganic hollow structured filler such as so-called hollow glass or hollow silica mainly composed of aluminum silicate, mullite, quartz etc., siloxane bond, etc. Thermoplastic or thermosetting in addition to silicone-based hollow structural fillers mainly composed of silicone compounds such as silsesquioxane compounds such as silsesquioxane compounds having a cross-linked structure represented by (CH 3 SiO 3/2 ) n in a three-dimensional network shape Organic hollow structure filler etc. which have as a main component an organic compound etc. which were synthesized using an acid resin as a starting material can be used.
The “silsesquioxane compound” in the present specification has a structure in which a siloxane bond is cross-linked in a three-dimensional network represented by (CH 3 SiO 3/2 ) n , and a methyl group or phenyl group is used as a side chain. Among compounds having organic functional groups such as groups, it refers to compounds in which the proportion of methyl groups in the side chains is 80% or more.
Among the above-mentioned "hollow structural fillers", in particular, inorganic hollow structural fillers and silicone hollow structural fillers have higher heat resistance of the hollow structural fillers themselves, so the composition for a sealing molding material having higher heat resistance It is possible to use for the thing.

インサート部品との剥離を防ぐ観点からは、封止成形材料用組成物全量に対する(F−1)中空構造充填材の割合を(α)、中空構造充填材の弾性率(単位:GPa)を(β)とした時、(α)/(β)が0.002〜0.250となるよう中空構造充填材種とその添加量を選択することが好ましく、0.003〜0.150となるよう中空構造充填材種とその添加量を選択することが特に好ましい。(α)/(β)が0.002以上であれば封止成形材料用組成物の硬化時の応力緩和効果や熱収縮に伴う応力緩和効果が十分に得られ、0.250以下であれば絶縁耐圧や耐トラッキング性等の信頼性が十分に得られる。   From the viewpoint of preventing peeling with the insert part, the ratio of (F-1) hollow structural filler to the total amount of the composition for a sealing molding material is (α), the elastic modulus (unit: GPa) of the hollow structural filler is It is preferable to select the hollow structure filler species and the addition amount thereof such that (α) / (β) becomes 0.002 to 0.250 when β), and 0.003 to 0.150 It is particularly preferred to select the hollow structural filler species and the amount added. If (α) / (β) is 0.002 or more, the stress relaxation effect at the time of curing of the composition for a sealing molding material and the stress relaxation effect accompanying heat shrinkage can be sufficiently obtained, and if it is 0.250 or less Reliability such as withstand voltage or tracking resistance can be sufficiently obtained.

また、(F−1)成分の中空構造充填材の弾性率は、好ましくは0.1〜15GPa、より好ましくは0.2〜12GPaである。中でも、比較的弾性率の高い、前記中空ガラスや中空シリカ等の無機系中空構造充填材は、封止樹脂の硬化時収縮を抑える効果が相対的に高く、硬化時発生応力の抑制効果が高いため好ましい。また、比較的弾性率の低いシリコーン系中空構造充填材は、少量の添加で封止材の弾性率を下げることができ、熱収縮時応力緩和効果が高いため好ましい。中空ガラスや中空シリカ等の無機系中空構造充填材と、シリコーン系中空構造充填材とを併用すると、比較的少量の添加でもインサート部品との剥離抑制効果が高く、また、高い耐熱性を求められる封止樹脂にも適用可能であり、本発明における好適な実施形態である。
本発明における中空構造充填材の弾性率は、例えば、ダイナミック超微小硬度計((株)島津製作所製、装置名:DUH−211SR、負荷−徐荷試験、荷重:5.0mN、速度1.5mN/s)により測定することができる。
Moreover, the elasticity modulus of the hollow structure filler of (F-1) component becomes like this. Preferably it is 0.1-15 GPa, More preferably, it is 0.2-12 GPa. Among them, inorganic hollow structured fillers such as the above-mentioned hollow glass and hollow silica having a relatively high elastic modulus are relatively high in the effect of suppressing shrinkage during curing of the sealing resin, and high in the effect of suppressing stress generated during curing. Because it is preferable. In addition, a silicone-based hollow structural filler having a relatively low elastic modulus can reduce the elastic modulus of the sealing material with a small amount of addition, and is preferable because the stress relaxation effect at the time of heat contraction is high. When an inorganic hollow structural filler such as hollow glass or hollow silica and a silicone hollow structural filler are used in combination, the effect of suppressing peeling from the insert part is high even with a relatively small amount of addition, and high heat resistance is required. It is applicable also to sealing resin and is a preferred embodiment in the present invention.
The elastic modulus of the hollow structured filler in the present invention is, for example, a dynamic ultra-microhardness tester (manufactured by Shimadzu Corporation, device name: DUH-211SR, load-unload test, load: 5.0 mN, velocity 1. It can measure by 5 mN / s.

(F−1)成分の中空構造充填材は、耐トラッキング性等の絶縁性を両立させる観点から、無機成分の場合、シリカ、アルミナ、シリカ−アルミナ化合物からなる群より選ばれる少なくとも1種を含有する無機系中空構造充填材、及び/又はシルセスキオキサン化合物を含有するシリコーン系中空構造充填材であることが好ましく、中でも、シリカ−アルミナ化合物、アルミナからなる群より選ばれる少なくとも1種を含有する無機系中空構造充填材、及び/又はシルセスキオキサン化合物を含有するシリコーン系中空構造充填材であることがより好ましい。
また、有機成分の場合、アクリル樹脂、ポリエステル樹脂等から形成される有機系中空構造充填材の選択が可能である。
In the case of the inorganic component, the hollow structured filler of the component (F-1) contains at least one member selected from the group consisting of silica, alumina, and a silica-alumina compound, from the viewpoint of achieving both insulation properties such as tracking resistance. Inorganic hollow structural filler, and / or a silicone hollow structural filler containing a silsesquioxane compound, preferably containing at least one selected from the group consisting of silica-alumina compounds and alumina. More preferably, they are inorganic hollow structural fillers and / or silicone hollow structural fillers containing a silsesquioxane compound.
In the case of an organic component, it is possible to select an organic hollow structural filler made of an acrylic resin, a polyester resin or the like.

(F−1)成分の中空構造充填材は、内部に空気層を有する為、通常の充填材と比較して、熱伝導率が低い傾向にある。耐トラッキング性は熱伝導率に大きく影響を受ける為、熱伝導率の低下は耐トラッキング性の低下を伴う場合が多い。中空構造充填材が無機成分の場合、(F−1)成分が熱伝導性の良好なシリカ−アルミナ化合物、及び/又はアルミナを含有することで、耐トラッキング性の低下を抑制することが可能になる。また、シルセスキオキサン化合物については、相対的に少量の添加で剥離抑制効果を示す為、耐トラッキング性への影響が小さくなるものと推察される。   The hollow structured filler of the component (F-1) tends to have a lower thermal conductivity than ordinary fillers because it has an air layer inside. Since the tracking resistance is greatly affected by the thermal conductivity, the decrease in the thermal conductivity often involves the decrease in the tracking resistance. When the hollow structural filler is an inorganic component, it is possible to suppress the decrease in tracking resistance by containing the thermally conductive silica-alumina compound and / or alumina as the component (F-1). Become. In addition, with regard to the silsesquioxane compound, it is presumed that the effect on the tracking resistance is reduced because the peeling suppression effect is exhibited by the addition of a relatively small amount.

本発明で好適に使用できる中空構造充填材は、イオン性不純物による半導体インサートの腐食防止等の観点から、アルカリ金属やアルカリ土類金属を含んでいないことが好ましい。混入を防止できない場合、可能な限り低減されていることが望ましい。   The hollow structure filler that can be suitably used in the present invention preferably contains no alkali metal or alkaline earth metal from the viewpoint of preventing corrosion of the semiconductor insert due to ionic impurities. If contamination can not be prevented, it is desirable to reduce as much as possible.

(F−1)成分の中空構造充填材が、シリカ、アルミナ、シリカ−アルミナ化合物からなる群より選ばれる少なくとも1種を含有し、アルカリ金属やアルカリ土類金属等の含有量が少ないものとしては、例えば、ケイ酸アルミニウム及びムライト(シリカとアルミナの化合物)を主成分とするカイノスフィアーズ(関西マテック(株)製、商品名)、同じくイースフィアーズ(太平洋セメント(株)製、商品名)などとして市場で入手可能である。また、シルセスキオキサン化合物を含むシリコーン系中空構造充填材(シルセスキオキサン化合物系充填材)としては、例えば、ポリメチルシルセスキオキサンを主成分とするNH−SBN04(日興リカ(株)製、商品名)などとして市場で入手可能である。   The hollow structured filler of the component (F-1) contains at least one member selected from the group consisting of silica, alumina, and silica-alumina compounds, and has a small content of alkali metal, alkaline earth metal, etc. For example, Kainos Fears (trade name of Kansai Matek Co., Ltd., trade name) mainly composed of aluminum silicate and mullite (compound of silica and alumina), Es Fears (trade name of Pacific Cement Co., Ltd.), etc. It is available on the market. In addition, as a silicone-based hollow structural filler (silsesquioxane compound-based filler) containing a silsesquioxane compound, for example, NH-SBN04 (manufactured by Nikko Rica Co., Ltd.) containing polymethylsilsesquioxane as a main component It is available on the market as manufactured goods, brand names, etc.

(F−1)成分の中空構造充填材は、半導体インサート部品との剥離防止効果と、封止成形材料用組成物の生産性及び成形性等との両立の観点から、平均粒径を3〜100μmとすることが好ましく、3〜60μmとすることがより好ましい。平均粒径が3μm以上であれば剥離防止効果が得られ、平均粒径が100μm以下であれば封止成形材料用組成物の生産性及び成形性が良好になる。なお、ここで、平均粒径とは、レーザ回折散乱方式(たとえば、(株)島津製作所製、装置名:SALD-3100)により測定された、中央値(D50)を指す。   The hollow structured filler of the component (F-1) has an average particle diameter of 3 to 3 from the viewpoint of coexistence with the peeling prevention effect with the semiconductor insert part, productivity of the composition for a sealing molding material, moldability and the like. The thickness is preferably 100 μm, and more preferably 3 to 60 μm. When the average particle size is 3 μm or more, the peeling prevention effect is obtained, and when the average particle size is 100 μm or less, the productivity and the moldability of the composition for a sealing molding material become good. Here, the average particle diameter refers to a median (D50) measured by a laser diffraction scattering method (for example, device name: SALD-3100, manufactured by Shimadzu Corporation).

平均粒径が3〜100μmの中空構造充填材としては、前記カイノスフィアーズ(関西マテック(株)製、商品名)シリーズとしてカイノスフィアーズ 75(平均粒径35μm)等を、イースフィアーズ(太平洋セメント(株)製、商品名)シリーズとしてイースフィアーズ SL75(平均粒径55μm)、同じくイースフィアーズ SL125(平均粒径80μm)等を、市場にて入手可能である。また、グラスバブルス K37(平均粒径45μm)、グラスバブルス iM30K(平均粒径16μm)(以上、スリーエム・ジャパン(株)製)、NH−SBN04(平均粒径4μm、日興リカ(株)製)、ADVANCELL HB−2051(平均粒径20μm、積水化学工業(株)製)等も市場にて入手することができる。   As hollow structured fillers having an average particle size of 3 to 100 μm, Einospheres 75 (average particle size 35 μm) and the like as the above-mentioned Kinospheres (manufactured by Kansai Matec Co., Ltd., trade name) series, E.Spheres SL75 (average particle diameter 55 μm), and the same E. Sphers SL125 (average particle diameter 80 μm), etc. are available in the market. In addition, Glass Bubbles K37 (average particle diameter 45 μm), Glass Bubbles iM30K (average particle diameter 16 μm) (above, 3M Japan Co., Ltd. product), NH-SBN04 (average particle diameter 4 μm, Nikko Rica Co., Ltd. product), ADVANCELL HB-2051 (average particle size 20 μm, manufactured by Sekisui Chemical Co., Ltd.) and the like can also be obtained on the market.

(F−1)成分の中空構造充填材の含有量は、前記シリカ、アルミナ、シリカ−アルミナ化合物からなる群より選ばれる少なくとも1種を含有する無機系中空構造充填材、及びシルセスキオキサン化合物を含有するシリコーン系中空構造充填材等の無機成分の場合、(F)成分の充填材全量に対し、好ましくは1〜50質量%、より好ましくは2〜45質量%、更に好ましくは5〜20質量%である。1質量%以上であれば剥離防止効果が得られ、50質量%以下であれば絶縁耐圧等の絶縁性能や成形性が良好となる。特に、(F−1)成分の中空構造充填材がシルセスキオキサン化合物を含有するシリコーン系中空構造充填材の場合、その含有量は(F)成分の充填材全量に対し、好ましくは0.5〜10質量%、より好ましくは1.0〜6質量%、更に好ましくは1.2〜5質量%である。
また、(F−1)成分が有機成分の場合、その含有量は(F)成分の充填材全量に対し好ましくは0.5〜10質量%、より好ましくは1.5〜7質量%である。0.5質量%以上であれば剥離防止効果が得られ、10質量%以下であれば絶縁耐圧等の絶縁性能や成形性が良好となる。
The content of the hollow structure filler of the component (F-1) is an inorganic hollow structure filler containing at least one selected from the group consisting of silica, alumina, and a silica-alumina compound, and a silsesquioxane compound In the case of an inorganic component such as a silicone-based hollow structure filler containing the above, it is preferably 1 to 50% by mass, more preferably 2 to 45% by mass, still more preferably 5 to 20 based on the total amount of the filler of the component (F). It is mass%. If it is 1 mass% or more, the peeling prevention effect will be acquired, and if it is 50 mass% or less, insulation performance such as withstand voltage and moldability will be good. In particular, in the case where the hollow structural filler of the component (F-1) is a silicone-based hollow structural filler containing a silsesquioxane compound, the content thereof is preferably 0. to the total amount of the filler of the component (F). The content is 5 to 10% by mass, more preferably 1.0 to 6% by mass, and still more preferably 1.2 to 5% by mass.
When the component (F-1) is an organic component, the content is preferably 0.5 to 10% by mass, more preferably 1.5 to 7% by mass, based on the total amount of the filler of the component (F). . If it is 0.5 mass% or more, the peeling prevention effect will be acquired, and if it is 10 mass% or less, insulation performance, such as withstand voltage, etc. and moldability will become favorable.

(F−2)無機充填材
本発明では、従来公知の無機充填材を使用することができる。かかる無機充填材としては、例えば、結晶シリカ、溶融シリカ、合成シリカ、アルミナ、窒化アルミニウム、窒化ホウ素や、ジルコン、ケイ酸カルシウム、炭酸カルシウム、チタン酸バリウム等が挙げられる。流動性や信頼性の観点からは、結晶シリカ、溶融シリカ、合成シリカが好ましく、溶融球状シリカや合成シリカを主成分とすることが特に好ましい。また、ポリメチルシルセスキオキサン等を主成分とするシリコーンパウダーを添加すると、剥離抑制に効果的である。
(F-2) Inorganic Filler In the present invention, conventionally known inorganic fillers can be used. Examples of such inorganic fillers include crystalline silica, fused silica, synthetic silica, alumina, aluminum nitride, boron nitride, zircon, calcium silicate, calcium carbonate, barium titanate and the like. From the viewpoint of flowability and reliability, crystalline silica, fused silica and synthetic silica are preferable, and fused spherical silica and synthetic silica are particularly preferable as the main component. Further, the addition of silicone powder containing polymethylsilsesquioxane or the like as a main component is effective in suppressing peeling.

(F−2)成分の無機充填材の含有量は、(F)成分の充填材全量に対し好ましくは50〜99.5質量%、より好ましくは55〜98質量%である。   The content of the inorganic filler of the component (F-2) is preferably 50 to 99.5% by mass, more preferably 55 to 98% by mass, based on the total amount of the filler of the component (F).

〔その他の成分〕
(シランカップリング剤)
本発明の封止成形材料用組成物は、耐湿性や機械強度、半導体インサート部品との密着性等の観点から、シランカップリング剤を添加することが好ましい。本発明では、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン等のエポキシシラン、3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン等のアミノシラン、3−メルカプトプロピルトリメトキシシラン等のメルカプトシラン、3−イソシアネートプロピルトリエトキシシシラン等のイソシアネートシラン等、従来公知のシランカップリング剤を適宜使用することが可能である。密着性の観点からは、3−グリシドキシプロピルトリメトキシシランや3−グリシドキシプロピルトリエトキシシラン等のエポキシシラン、二級アミノシラン、及びイソシアネートシラン等を単独、又は併用して用いることが好ましい。なお、シランカップリング剤は、前記(F)成分と単純に混合して用いてもよいし、予めその一部、又は全量を表面処理して用いてもよい。また、本発明の効果を阻害しない範囲で、アルミネート系カップリング剤やチタネート系カップリング剤を添加しても構わない。
[Other ingredients]
(Silane coupling agent)
It is preferable to add a silane coupling agent to the composition for a sealing molding material of the present invention from the viewpoints of moisture resistance, mechanical strength, adhesion to a semiconductor insert part, and the like. In the present invention, epoxysilane such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N- Aminosilanes such as 2- (aminoethyl) -3-aminopropyltrimethoxysilane and 3-aminopropyltriethoxysilane, mercaptosilanes such as 3-mercaptopropyltrimethoxysilane, and isocyanate silanes such as 3-isocyanatopropyltriethoxysilane It is possible to appropriately use conventionally known silane coupling agents. From the viewpoint of adhesion, it is preferable to use epoxysilane such as 3-glycidoxypropyltrimethoxysilane or 3-glycidoxypropyltriethoxysilane, secondary aminosilane, and isocyanate silane alone or in combination. . The silane coupling agent may be used by simply mixing it with the component (F), or it may be subjected to surface treatment of a part or the whole thereof in advance. In addition, an aluminate coupling agent or a titanate coupling agent may be added as long as the effects of the present invention are not impaired.

シランカップリング剤の添加量は、封止成形材料用組成物全量に対し、好ましくは0.01〜1質量%、より好ましくは0.03〜0.7質量%、更に好ましくは0.05〜0.5質量%である。0.01質量%以上とすることで、半導体インサート部品との密着性を向上させることができ、1質量%以下とすることで、成形時の硬化性の低下を抑制することができる。   The amount of the silane coupling agent added is preferably 0.01 to 1% by mass, more preferably 0.03 to 0.7% by mass, still more preferably 0.05 to 1% by mass, based on the total amount of the composition for a sealing molding material. It is 0.5 mass%. Adhesiveness with a semiconductor insert part can be improved by setting it as 0.01 mass% or more, and the fall of the hardenability at the time of shaping | molding can be suppressed by setting it as 1 mass% or less.

(離型剤)
本発明では、さらに、封止成形材料用組成物の良好な生産性を実現する為に、離型剤を添加することが好ましい。添加可能な離型剤としては、例えば、カルナバワックス等の天然ワックス、脂肪酸エステル系ワックス、脂肪酸アミド系ワックス、非酸化型ポリエチレン系離型剤、酸化型ポリエチレン系離型剤、シリコーン系離型剤等を挙げることができるが、これら以外の離型剤を添加しても構わない。また、離型剤は、これらを単独で用いても2種以上を組み合わせて用いてもよい。密着性と金型離型性の両立の観点からは、カルナバワックスや脂肪酸エステル系ワックス等、相対的に分子量の小さなワックスと、酸化型ポリエチレン等、相対的に分子量の大きなワックスを併用して用いると特に効果的である。
(Release agent)
In the present invention, it is preferable to further add a release agent in order to realize good productivity of the composition for a sealing molding material. As the releasing agent which can be added, for example, natural wax such as carnauba wax, fatty acid ester wax, fatty acid amide wax, non-oxidized polyethylene type releasing agent, oxidized polyethylene type releasing agent, silicone type releasing agent Although etc. can be mentioned, you may add a mold release agent other than these. In addition, these release agents may be used alone or in combination of two or more. From the viewpoint of achieving both adhesion and mold releasability, a wax having a relatively small molecular weight such as carnauba wax and a fatty acid ester wax and a wax having a relatively large molecular weight such as oxidized polyethylene are used in combination. And especially effective.

本発明の封止成形材料用組成物には、以上の各成分の他に、本発明の効果を阻害しない範囲で、この種の組成物に一般に配合されるシリコーン等の低応力剤、難燃剤、カーボンブラック、有機染料、酸化チタン、ベンガラ等の着色剤等を必要に応じて配合することができる。   In the composition for a sealing molding material of the present invention, in addition to the above components, a low stress agent such as silicone generally blended in a composition of this type, a flame retardant, to the extent that the effects of the present invention are not inhibited. Carbon black, organic dyes, titanium oxide, colorants such as bengal, and the like can be blended as required.

また、本発明の封止成形材料用組成物には、半導体素子の耐湿性や高温放置特性向上等の観点から、陰イオン交換体等のイオントラップ剤を配合することができる。陰イオン交換体としては、例えば、ハイドロタルサイト類、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス等から選ばれる元素の含水酸化物等を挙げることができるが、これら以外の従来公知の陰イオン交換体を用いてもよい。これらは、単独で用いても2種以上を組み合わせて用いてもよい。   In addition, in the composition for a sealing molding material of the present invention, an ion trap agent such as an anion exchanger can be blended from the viewpoint of improving the moisture resistance of the semiconductor element and the high temperature storage characteristics. Examples of the anion exchanger include hydrotalcites, hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, bismuth and the like, and other conventionally known anion exchangers. May be used. These may be used alone or in combination of two or more.

本発明の封止成形材料用組成物中、(A)成分、(B)成分、(C)成分、(D)成分、(E−1)成分、(E−2)成分、(E−3)成分、(F−1)成分及び(F−2)成分の含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上である。   Component (A), (B), (C), (D), (E-1), (E-2), (E-3) in the composition for a sealing molding material of the present invention The content of the component (F-1) and the component (F-2) is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more.

本発明の封止成形材料用組成物は、上述した各成分を所定量配合したものを均一に分散混合することにより調製することができる。調製方法は、特に限定されないが、一般的な方法として、例えば、上記各成分を所定量配合したものをミキサー等で十分に混合し、次いで、ミキシングロール、押出機等により溶融混合した後、冷却、粉砕する方法を挙げることができる。   The composition for a sealing molding material of the present invention can be prepared by uniformly dispersing and mixing the above-described components in a predetermined amount. The preparation method is not particularly limited, but as a general method, for example, a mixture of a predetermined amount of each of the above components is sufficiently mixed by a mixer or the like, and then melt mixed by a mixing roll, an extruder or the like, and then cooled. And the method of crushing can be mentioned.

このようにして得られた封止成形材料用組成物は、高いガラス転移温度(Tg)を有し、耐熱分解性が高く、成形性に優れるとともに、耐電圧性が高く、半導体インサート部品との密着性が良好で信頼性が高い硬化物を得ることができる。
上記封止成形材料用組成物の硬化物のガラス転移温度は、好ましくは230℃以上、より好ましくは240℃以上、更に好ましくは250℃以上である。
また、上記封止成形材料用組成物の硬化物の熱分解温度は、好ましくは380℃以上、より好ましくは385℃以上である。
なお、硬化物のガラス転移温度及び熱分解温度は、実施例に記載の方法により測定することができる。
The composition for a sealing molding material thus obtained has a high glass transition temperature (Tg), has high thermal decomposition resistance, is excellent in moldability, has high withstand voltage, It is possible to obtain a cured product having high adhesion and high reliability.
The glass transition temperature of the cured product of the composition for a sealing molding material is preferably 230 ° C. or more, more preferably 240 ° C. or more, and still more preferably 250 ° C. or more.
Moreover, the thermal decomposition temperature of the hardened | cured material of the said composition for sealing molding materials becomes like this. Preferably it is 380 degreeC or more, More preferably, it is 385 degreeC or more.
In addition, the glass transition temperature and thermal decomposition temperature of hardened | cured material can be measured by the method as described in an Example.

(電子部品装置)
本発明の電子部品装置は、上記封止成形材料用組成物の硬化物により封止された素子を備える。上記電子部品装置とは、リードフレーム、単結晶シリコン半導体素子又はSiC、GaN等の化合物半導体素子等の支持部材、これらを電気的に接続するためのワイヤやバンプ等の部材、及びその他の構成部材一式に対し、必要部分を上記封止成形材料用組成物の硬化物により封止された電子部品装置のことである。
また、上記封止成形材料用組成物を用いることにより、耐熱性に優れるとともに、半導体インサート部品との密着性に優れ、高温放置後でも剥離やクラックが発生しにくい電子部品装置とすることができる。
(Electronic component device)
The electronic component device of the present invention comprises an element sealed by the cured product of the above composition for sealing and molding material. The above electronic component devices include supporting members such as lead frames, single crystal silicon semiconductor elements or compound semiconductor elements such as SiC and GaN, members such as wires and bumps for electrically connecting them, and other constituent members It is an electronic component device in which the necessary part is sealed with the cured product of the above-mentioned composition for a sealing molding material with respect to one set.
Moreover, by using the composition for a sealing molding material, it is possible to obtain an electronic component device which is excellent in heat resistance, excellent in adhesion to a semiconductor insert part, and less likely to peel or crack even after being left at high temperature. .

本発明の封止成形材料用組成物を用いて封止する方法としては、トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等を用いてもよい。
成形温度は、好ましくは150〜220℃、より好ましくは170〜210℃である。成形時間は、好ましくは45〜300秒、より好ましくは60〜200秒である。また、後硬化する場合、加熱温度は特に限定されないが、例えば、好ましくは150〜220℃、より好ましくは170〜210℃である。また、加熱時間は特に限定されないが、例えば、0.5〜10時間であるのが好ましく、1〜8時間であるのがより好ましい。
As a method of sealing using the composition for a sealing molding material of the present invention, a transfer molding method is the most general, but an injection molding method, a compression molding method or the like may be used.
The molding temperature is preferably 150 to 220 ° C, more preferably 170 to 210 ° C. The molding time is preferably 45 to 300 seconds, more preferably 60 to 200 seconds. Moreover, when carrying out post-hardening, although heating temperature is not specifically limited, For example, Preferably it is 150-220 degreeC, More preferably, it is 170-210 degreeC. The heating time is not particularly limited, but is preferably 0.5 to 10 hours, and more preferably 1 to 8 hours.

次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES The present invention will next be described in detail by way of examples, which should not be construed as limiting the invention thereto.

(実施例1〜10、比較例1〜5)
表1に記載の種類及び配合量の各成分をミキシング二軸ロールで混練し、封止成形材料用組成物を調製した。各実施例及び比較例における混練温度は、約120℃に設定した。なお、表中の空欄は配合なしを表す。
(Examples 1 to 10, Comparative Examples 1 to 5)
Each component of the kind and compounding quantity of Table 1 was knead | mixed with a mixing biaxial roll, and the composition for sealing molding materials was prepared. The kneading temperature in each example and comparative example was set to about 120 ° C. In addition, the blank in the table represents no blending.

封止成形材料用組成物の調製に使用した表1に記載の各成分の詳細は以下のとおりである。   The detail of each component of Table 1 used for preparation of the composition for sealing molding materials is as follows.

<マレイミド樹脂>
〔(A)成分〕
・BMI−2300:ポリフェニルメタンマレイミド(一般式(I)中のz=0〜2を主成分とする)、大和化成工業(株)製、商品名
<Maleimide resin>
[(A) component]
BMI-2300: polyphenylmethane maleimide (having z = 0 to 2 in the general formula (I) as a main component), manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name

<アリル基含有ナジイミド樹脂>
〔(B)成分〕
・BANI−M:N,N’−(メチレンジ−p−フェニレン)−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、丸善石油化学(株)、商品名
・BANI−X:N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、丸善石油化学(株)、商品名
<Allyl group-containing nadiimide resin>
[(B) component]
BANI-M: N, N '-(methylenedi-p-phenylene) -bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), Maruzen Petrochemicals Co., Ltd. Trade name • BANI-X: N, N′-m-xylylene-bis (allylbicyclo [2.2.1] hept-5-ene-2,3-dicarboximide), Maruzen Petrochemical Co., Ltd., Product name

<フェノール系硬化剤>
〔(C)成分〕
・MEH−7500:トリフェニルメタン型フェノール樹脂(一般式(III)中のx=1〜4であるフェノール樹脂が主成分)、明和化成(株)製、商品名、水酸基当量97、軟化点110℃
・SN−485:ナフトールアラルキル樹脂(一般式(IV)中のy1=0〜3であるフェノール樹脂が主成分)、新日鉄住金化学(株)製、商品名、水酸基当量215、軟化点87℃
<Phenolic curing agent>
[(C) component]
MEH-7500: Triphenylmethane-type phenol resin (Phenol resin with x = 1 to 4 in the general formula (III) as a main component), manufactured by Meiwa Kasei Co., Ltd., trade name, hydroxyl equivalent 97, softening point 110 ° C
SN-485: Naphthol aralkyl resin (Phenol resin with y 1 = 0 to 3 in general formula (IV) as the main component), Nippon Steel Sumikin Chemical Co., Ltd., trade name, hydroxyl equivalent 215, softening point 87 ° C.

<エポキシ樹脂>
〔(D)成分〕
・EPPN−502H:トリフェニルメタン型エポキシ樹脂(一般式(V)中のn1=0〜3であるエポキシ樹脂が主成分)、日本化薬(株)製、商品名、エポキシ当量168、軟化点67℃
・ESN−375:ナフトールアラルキル型エポキシ樹脂(一般式(VI)中のn2=0〜3であるエポキシ樹脂が主成分)、新日鉄住金化学(株)製、商品名、エポキシ当量172、軟化点75℃
・HP−4710:ジヒドロキシナフタレンノボラック型エポキシ樹脂(一般式(VII)で表されるエポキシ樹脂)、DIC(株)製、商品名、エポキシ当量161、軟化点82℃
<Epoxy resin>
[(D) component]
-EPPN-502H: Triphenylmethane type epoxy resin (epoxy resin with n1 = 0 to 3 in general formula (V) as the main component), Nippon Kayaku Co., Ltd., trade name, epoxy equivalent 168, softening point 67 ° C
-ESN-375: Naphthol aralkyl type epoxy resin (epoxy resin with n2 = 0 to 3 in general formula (VI) as main component), Nippon Steel Sumikin Chemical Co., Ltd. product name, trade name, epoxy equivalent 172, softening point 75 ° C
HP-4710: dihydroxy naphthalene novolac epoxy resin (epoxy resin represented by the general formula (VII)), manufactured by DIC Corporation, trade name, epoxy equivalent 161, softening point 82 ° C.

<硬化促進剤>
〔(E−1)成分:リン系硬化促進剤〕
・PP−200:トリフェニルホスフィン、北興化学工業(株)製、商品名
・TPTP:トリス(4−メチルフェニル)ホスフィン、北興化学工業(株)製、商品名
<Hardening accelerator>
[(E-1) component: phosphorus-based curing accelerator]
PP-200: triphenyl phosphine, manufactured by Hokuko Chemical Industry Co., Ltd., trade name, TPTP: tris (4-methylphenyl) phosphine, manufactured by Hokuko Chemical Industry Co., Ltd., trade name

〔(E−2)成分:イミダゾール系硬化促進剤〕
・2MZ−A:2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、四国化成工業(株)製、商品名
・2P4MHZ−PW:2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、四国化成工業(株)製、商品名
[(E-2) component: imidazole-based curing accelerator]
· 2MZ-A: 2,4-diamino-6- [2'-methylimidazolyl- (1 ')] -ethyl-s-triazine, manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name · 2P4 MHZ-PW: 2-phenyl -4-Methyl-5-hydroxymethylimidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name

〔(E−3)成分:酸系硬化促進剤〕
・AC−4B50:三フッ化ホウ素イミダゾール錯体、ステラケミファ(株)製、商品名
・p−トルエンスルホン酸:東京化成工業(株)製
[(E-3) component: acid curing accelerator]
AC-4B50: Boron trifluoride imidazole complex, manufactured by Stella Chemifa Co., Ltd., trade name, p-toluenesulfonic acid: manufactured by Tokyo Chemical Industry Co., Ltd.

<アミン系硬化剤>
・4,4’−ジアミノジフェニルメタン:東京化成工業(株)製
<Amine curing agent>
・ 4,4'-diaminodiphenylmethane: made by Tokyo Chemical Industry Co., Ltd.

<充填材>
〔(F−1)成分:中空構造充填材〕
・イースフィアーズ SL75:非晶質アルミニウム(65〜85%)とムライト(20〜30%)を主成分とする無機系中空構造充填材、平均粒径55μm、太平洋セメント(株)製、商品名、弾性率10GPa
・ADVANCELL HB-2051:アクリル系多孔中空構造充填材、平均粒径20μm、積水化学工業(株)製、商品名、弾性率0.3GPa
・NH−SBN04:ポリメチルシルセスキオキサン系単孔中空構造充填材、平均粒径4μm、日興リカ(株)製、商品名、弾性率1.0GPa
ここでの弾性率の値は、ダイナミック超微小硬度計((株)島津製作所製、装置名:DUH-211SR、負荷−徐荷試験、荷重:5.0mN、速度1.5mN/s、圧子:三角すい圧子)により5回測定した値の平均値である。
<Filler>
[(F-1) component: hollow structure filler]
・ E-spheres SL 75: Inorganic hollow structure filler mainly composed of amorphous aluminum (65 to 85%) and mullite (20 to 30%), average particle diameter 55 μm, manufactured by Pacific Cement Co., Ltd., trade name, Elastic modulus 10GPa
・ ADVANCELL HB-2051: Acrylic porous hollow structure filler, average particle diameter 20 μm, Sekisui Chemical Co., Ltd. product name, trade name, elastic modulus 0.3 GPa
· NH-SBN 04: Polymethylsilsesquioxane based single-hole hollow structural filler, average particle diameter 4 μm, manufactured by Nikko Rika Co., Ltd., trade name, elastic modulus 1.0 GPa
Here, the value of the elastic modulus is a dynamic ultra-microhardness tester (manufactured by Shimadzu Corporation, device name: DUH-211SR, load-reload test, load: 5.0 mN, speed 1.5 mN / s, indenter) : The average value of the values measured five times with a triangular indenter.

〔(F−2)成分:無機充填材〕
・FB−105:溶融球状シリカ、電気化学工業(株)製、商品名、平均粒子径18μm、比表面積4.5m/g
[(F-2) component: inorganic filler]
· FB-105: fused spherical silica, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name, average particle diameter 18 μm, specific surface area 4.5 m 2 / g

<その他の成分>
・KBM−403:シランカップリング剤、3−グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製、商品名
・HW−4252E:離型剤(数平均分子量1,000の酸化型ポリエチレン系離型剤)、三井化学(株)製、商品名
・MA−600:着色剤(カーボンブラック)、三菱化学(株)製、商品名
<Other ingredients>
· KBM-403: Silane coupling agent, 3-glycidoxypropyl trimethoxysilane, Shin-Etsu Chemical Co., Ltd., trade name · HW-4252 E: Releasing agent (Oxidized polyethylene of number average molecular weight 1,000 Release agent), Mitsui Chemicals Co., Ltd., trade name, MA-600: Colorant (carbon black), Mitsubishi Chemical Co., Ltd., trade name

以下に示す測定条件により、実施例1〜10、及び比較例1〜5で調製した封止成形材料用組成物の特性の測定、及び評価を行った。評価結果を表1に示した。なお、成形材料の成形は、明記しない限りトランスファ成形機により、金型温度185℃、成形圧力10MPa、硬化時間180秒の条件で行った。また、後硬化は特に記載のない場合、200℃で8時間行った。   The measurement of the characteristic of the composition for sealing molding materials prepared by Examples 1-10 and Comparative Examples 1-5, and evaluation were performed on the measurement conditions shown below. The evaluation results are shown in Table 1. The molding material was molded using a transfer molding machine under conditions of a mold temperature of 185 ° C., a molding pressure of 10 MPa, and a curing time of 180 seconds unless otherwise specified. Further, post curing was performed at 200 ° C. for 8 hours unless otherwise specified.

(1)ガラス転移温度(Tg)
封止成形材料用組成物の硬化物の耐熱性の目安の一つとしてガラス転移温度(Tg)を測定した。まず、縦4mm×横4mm×高さ20mmの金型を用いて、封止成形材料用組成物を上記条件で成形し、更に、185℃で8時間又は200℃で8時間の2条件で後硬化させ、成形品(縦4mm×横4mm×厚み20mm)を作製した。該成形品をそれぞれ必要な寸法に切り出したものを試験片とし、該試験片のガラス転移温度(Tg)を、TMA法で熱分析装置(セイコーインスツル(株)製、商品名:SSC/5200)を用いて測定した。低温反応性の評価は185℃後硬化のTgと200℃後硬化のTg差が15℃未満のものを〇、15℃以上のものを×とした。
(1) Glass transition temperature (Tg)
The glass transition temperature (Tg) was measured as one of the standard of the heat resistance of the hardened | cured material of the composition for sealing molding materials. First, using a mold of 4 mm long x 4 mm wide x 20 mm high, the composition for a sealing molding material is molded under the above conditions, and further after 2 hours at 185 ° C. or 8 hours at 200 ° C. It was made to harden and a cast (4 mm long x 4 mm wide x 20 mm in thickness) was produced. The molded product is cut into pieces of necessary dimensions to obtain a test piece, and the glass transition temperature (Tg) of the test piece is measured by a TMA method using a thermal analyzer (manufactured by Seiko Instruments Inc., trade name: SSC / 5200). ) Was used. The low temperature reactivity was evaluated as follows: those having a Tg of 185 ° C. for post-curing and those having a Tg difference of 200 ° C. of less than 15 ° C. were 〇 and those having 15 ° C. or more were x.

(2)熱分解温度(1%重量減少温度)
封止用成形材料の硬化物の耐熱性のもう一つの目安として、TG−DTAによる熱分解温度を測定した。封止成型材料組成物を上記条件で成形し、更に、200℃で8時間の条件で後硬化させ成形品(縦4mm×横4mm×厚み20mm)を作製した。該成形品を上記(1)と同サイズで切り出したものを試験片とし、該試験片を乳鉢で十分にすり潰して得られた粉末を用い、昇温速度10℃/分で室温(25℃)から600℃まで加熱した。得られた重量変化チャートから、1%の重量減少が認められた温度を熱分解温度とした。測定装置はセイコーインスツル(株)製の「EXSTAR6000」を用いた。なお、385℃以上を合格とする。
(2) Thermal decomposition temperature (1% weight loss temperature)
The thermal decomposition temperature by TG-DTA was measured as another reference of the heat resistance of the hardened | cured material of the sealing molding material. The sealing molding material composition was molded under the above conditions and further post cured at 200 ° C. for 8 hours to prepare a molded product (long 4 mm × horizontal 4 mm × thickness 20 mm). The molded product is cut into pieces of the same size as the above (1) to obtain a test piece, and the powder obtained by sufficiently grinding the test piece in a mortar is used at room temperature (25 ° C.) at a heating rate of 10 ° C./min. To 600 ° C. The temperature at which a weight loss of 1% was observed from the weight change chart obtained was taken as the thermal decomposition temperature. As a measuring apparatus, “EXSTAR 6000” manufactured by Seiko Instruments Inc. was used. In addition, 385 ° C or more is a pass.

(3)対Niメッキ面密着性
無電解Niメッキ((株)三井ハイテック製、商品名「VQFP208p」)上に、封止成型材料組成物を上記条件で成形し、更に、上記条件で後硬化させた成形品をそれぞれ4個作製した。ボンドテスター(西進商事(株)製、SS−30WD)を用いて、Niメッキ上に成形したφ3.5mmのプリン状成形物を、成形品の下部より0.5mmの高さから速度0.1mm/秒でせん断方向に引き剥がし、成形物とNiメッキとの密着力を常温(25℃)又は250℃の条件で測定した。これを4回行い、平均値を求めた。なお、常温では4MPa以上を合格とし、250℃では3MPa以上を合格とする。
(3) Adhesion to Ni-plated surface On the electroless Ni plating (Mitsui Hitec Co., Ltd., trade name "VQFP208p"), a sealing molding material composition is molded under the above conditions, and further post curing under the above conditions Four molded articles were produced. Using a bond tester (manufactured by Nishijin Shoji Co., Ltd., SS-30 WD), a φ 3.5 mm purine-like molding formed on Ni plating was moved from a height of 0.5 mm to a speed of 0.1 mm from the bottom of the molding. The film was peeled off in the shear direction at 1 / sec, and the adhesion between the molded product and the Ni plating was measured at normal temperature (25 ° C.) or 250 ° C. This was done four times and the average value was calculated. In addition, 4 MPa or more is taken as pass at normal temperature, and 3 MPa or more is taken as pass at 250 ° C.

(4)250℃×250時間放置後のパッケージ観察
無電解NiメッキリードフレームのTO−247パッケージのアイランド(8.5×11.5mm)中央部に、SiCチップ(6×6×0.15mmt、表面保護膜なし)を固定し、封止成形材料用組成物を上記条件で成形し、更に、上記条件で後硬化させ、成形品をそれぞれ10個作製した。該成形品を、超音波映像装置((株)日立製作所製、FS300II)を用いて観察し、SiCチップ周囲のアイランドと封止成形材料用組成物との剥離の有無について確認した。アイランド部分の剥離が観察されたパッケージ数が10個中3個以下を合格とした。
なお、リードフレームへのチップの固定は、無鉛はんだを用い、ギ酸5%、窒素95%雰囲気の中、340℃/13分環境下で行った。また、リードフレームは、封止成形材料用組成物を成形直前に、Nordson社製プラズマクリーナAC−300を用い、60秒のアルゴンプラズマ処理を施して用いた。
上記にて剥離観察を行ったTO−247パッケージを、250℃で250時間放置した後、超音波映像装置((株)日立製作所製、FS300II)を用いて剥離の有無について確認した。アイランド部分の剥離面積が20%以上であったパッケージ数が10個中3個以下を合格とした。
(4) Package observation after leaving at 250 ° C. for 250 hours SiC chip (6 × 6 × 0.15 mmt) at the center of the island (8.5 × 11.5 mm) of the electroless Ni-plated lead frame TO-247 package The surface protective film was fixed, the composition for a sealing molding material was molded under the above conditions, and post curing was further performed under the above conditions to prepare ten molded articles. The molded product was observed using an ultrasonic imaging apparatus (manufactured by Hitachi, Ltd., FS300II) to confirm the presence or absence of peeling between the island around the SiC chip and the composition for a sealing molding material. The number of packages in which peeling of the island portion was observed was 3 or less out of 10.
The chip was fixed to the lead frame using a lead-free solder under an environment of 340 ° C./13 minutes in an atmosphere of 5% formic acid and 95% nitrogen. Further, the lead frame was used by subjecting the composition for a sealing molding material to argon plasma treatment for 60 seconds using Plasma Cleaner AC-300 manufactured by Nordson Corporation immediately before molding.
The TO-247 package subjected to the peeling observation as described above was allowed to stand at 250 ° C. for 250 hours, and then the presence or absence of peeling was confirmed using an ultrasonic imaging apparatus (FS300II manufactured by Hitachi, Ltd.). The number of packages in which the peeled area of the island portion was 20% or more was regarded as 3 or less out of 10.

(5)電気特性、耐トラッキング性(CTI)
φ100mm×2mmtの試験片を作製、後硬化の後、ASTM−D3638に準拠し、耐トラッキング性(CTI)を測定した。試験器には、ヤマヨ試験器(有)製、YST−112−1Sを用いた。なお、400V以上を合格とした。
(5) Electrical characteristics, tracking resistance (CTI)
A test piece of φ100 mm × 2 mmt was prepared, and after post-curing, tracking resistance (CTI) was measured in accordance with ASTM-D3638. As a tester, YST-112-1S manufactured by Yamayo Test Instruments Co., Ltd. was used. In addition, 400 V or more was taken as passing.

(6)絶縁耐圧(絶縁破壊電圧)
φ100mm×2mmtの試験片を作製、後硬化の後、ASTM−D149に準拠し、室温(25℃)での絶縁破壊電圧を測定した。測定は「短時間法」で行った。試験器には、ヤマヨ試験器(有)製、YST−243BD−100ROを用いた。n=3で測定を行った時の平均値が10kV/mm以上を合格とした。
(6) Breakdown voltage (breakdown voltage)
Test pieces of φ100 mm × 2 mmt were prepared, and after post-curing, the dielectric breakdown voltage at room temperature (25 ° C.) was measured in accordance with ASTM-D149. The measurement was performed by the "short time method". As a tester, YST-243BD- 100RO manufactured by Yamayo Test Instruments Co., Ltd. was used. An average value of 10 kV / mm or more at the time of measurement at n = 3 was taken as a pass.

(7)連続成形性
離型荷重測定成形機(京セラ(株)製、商品名:GM−500)を用いて、PBGA(Plastic Ball Grid Array、30mm×30mm×1mm、t/2ヶ取り)に対して、300ショットの連続成形を行った。金型温度を185℃、成形時間を180秒とした。なお、以下の基準で評価した。
〇:300ショットまで連続成形が可能であり、金型汚れ等もほぼ見られなかった
×:金型への貼りつき等により300ショットまでの連続成形が不可能であった
(7) Continuous formability Using a mold release load measurement molding machine (manufactured by KYOCERA Corporation, trade name: GM-500), PBGA (Plastic Ball Grid Array, 30 mm × 30 mm × 1 mm, t / 2 pieces) In contrast, 300 shots were continuously formed. The mold temperature was 185 ° C., and the molding time was 180 seconds. The following criteria were evaluated.
:: Continuous molding was possible up to 300 shots, and mold stains and the like were hardly observed. ×: Continuous molding up to 300 shots was impossible due to sticking to the die etc.

(8)保管ライフ
封止成形材料用組成物の製造直後(初期)及び25℃にて7日間放置後のゲル化時間を185℃熱盤法にて測定した。これらのゲル化時間から、以下の基準で評価した。
○:初期のゲルタイムからの変化が15%未満
×:初期のゲルタイムからの変化が15%以上
(8) Storage Life The gelation time immediately after the production of the composition for a sealing molding material (initial) and after standing for 7 days at 25 ° C. was measured by the hot plate method at 185 ° C. From these gelation times, the following criteria were evaluated.
○: Change from initial gel time is less than 15% ×: Change from initial gel time is 15% or more

実施例1〜10の封止成形材料用組成物は、いずれも成形性に優れ、該封止成形材料用組成物の硬化物は、高いガラス転移温度(Tg)を有し、耐熱分解性、耐電圧性が高く、半導体インサート部品との密着性が良好で信頼性が高いことが示された。   The compositions for a sealing molding material of Examples 1 to 10 are all excellent in moldability, and the cured product of the composition for a sealing molding material has a high glass transition temperature (Tg), and is resistant to thermal decomposition, It was shown that the voltage resistance is high, the adhesion to the semiconductor insert part is good, and the reliability is high.

Claims (9)

(A)下記一般式(I)で表されるマレイミド樹脂、(B)下記一般式(II)で表されるアリル基含有ナジイミド樹脂、(C)フェノール系硬化剤、(D)エポキシ樹脂、(E)硬化促進剤、及び(F)(F−1)中空構造充填材を含む充填材を含有し、
前記(C)成分及び(D)成分が、それぞれにトリフェニルメタン骨格及び/又はナフタレン骨格を含み、前記(E)成分が(E−1)リン系硬化促進剤、(E−2)イミダゾール系硬化促進剤、及び(E−3)酸系硬化促進剤を含む封止成形材料用組成物。

(式中、Rはそれぞれ独立に炭素数1〜10の炭化水素基であって、炭化水素基はハロゲン原子で置換されていてもよい。Rが複数存在する場合、該複数のRは、互いに同一でも異なっていてもよい。pはそれぞれ独立に0〜4の整数、qは0〜3の整数、zは0〜10の整数である。)

(式中、Rは炭素数1〜10のアルキレン基、炭素数4〜8のシクロアルキレン基、炭素数6〜18の二価の芳香族基、一般式「−A−C−(A−(ただし、mは0または1の整数を示し、各Aは、それぞれ独立に、炭素数1〜10のアルキレン基、炭素数4〜8のシクロアルキレン基である。)」で表される基、または一般式「−C−A−C−(ここでAは「−CH−」、「−C(CH−」、「−CO−」、「−O−」、「−S−」または「−SO−」で表される基である。)」で表される基である。)
(A) maleimide resin represented by the following general formula (I), (B) allyl group-containing nadiimide resin represented by the following general formula (II), (C) phenolic curing agent, (D) epoxy resin, E) containing a curing accelerator, and a filler comprising (F) (F-1) hollow structural filler,
The component (C) and the component (D) each contain a triphenylmethane skeleton and / or a naphthalene skeleton, and the component (E) is a (E-1) phosphorus-based curing accelerator, (E-2) imidazole-based The composition for sealing molding materials containing a hardening accelerator and (E-3) acid type hardening accelerator.

(Wherein R 1 is each independently a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group may be substituted with a halogen atom. When a plurality of R 1 are present, the plurality of R 1 may be substituted. P may be the same as or different from each other, p is independently an integer of 0 to 4, q is an integer of 0 to 3, and z is an integer of 0 to 10.)

(Wherein, R 2 is an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 8 carbon atoms, a divalent aromatic group having 6 to 18 carbon atoms, a general formula “-A 1 -C 6 H 4 - (a 1) m - (provided that, m is an integer of 0 or 1, each a 1 is independently an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 8 carbon atoms. Or a group represented by the general formula “—C 6 H 4 —A 2 —C 6 H 4 — (wherein A 2 is“ —CH 2 — ”,“ —C (CH 3 ) 2 — ”, A group represented by “—CO—”, “—O—”, “—S—” or “—SO 2 —”))
前記(F−1)中空構造充填材の平均粒径が3〜100μmである請求項1に記載の封止成形材料用組成物。   The composition for a sealing molding material according to claim 1, wherein the average particle diameter of the (F-1) hollow structure filler is 3 to 100 μm. 前記(F−1)中空構造充填材が、シリカ、アルミナ、シリカ−アルミナ化合物からなる群より選ばれる少なくとも1種であり、該(F−1)中空構造充填材の含有量が前記(F)充填材全量に対し1〜50質量%である請求項1又は2に記載の封止成形材料用組成物。   The (F-1) hollow structure filler is at least one selected from the group consisting of silica, alumina, and a silica-alumina compound, and the content of the (F-1) hollow structure filler is the above (F) The composition for a sealing molding material according to claim 1 or 2, which is 1 to 50% by mass with respect to the total amount of the filler. 前記(F−1)中空構造充填材が、有機化合物からなり、該(F−1)中空構造充填材の含有量が前記(F)充填材全量に対し0.5〜10質量%である請求項1又は2に記載の封止成形材料用組成物。   The (F-1) hollow structure filler is made of an organic compound, and the content of the (F-1) hollow structure filler is 0.5 to 10% by mass with respect to the total amount of the (F) filler. The composition for sealing molding materials as described in claim 1 or 2. 前記(F−1)中空構造充填材が、シルセスキオキサン化合物からなり、該(F−1)中空構造充填材の含有量が前記(F)充填材全量に対し0.5〜10質量%である請求項1又は2に記載の封止成形材料用組成物。   Said (F-1) hollow structure filler consists of a silsesquioxane compound, and content of this (F-1) hollow structure filler is 0.5-10 mass% with respect to said (F) filler whole quantity. The composition for a sealing molding material according to claim 1 or 2. 前記(B)成分の含有量が、前記(A)成分100質量部に対し30〜250質量部である請求項1〜5のいずれか一項に記載の封止成形材料用組成物。   Content for the said (B) component is 30-250 mass parts with respect to 100 mass parts of said (A) components, The composition for sealing molding materials as described in any one of Claims 1-5. 前記(E−3)成分が、p−トルエンスルホン酸、そのアミン塩及び三フッ化ホウ素アミン錯体からなる群より選ばれる少なくとも1種である、請求項1〜6のいずれか一項に記載の封止成形材料用組成物。   The component (E-3) is at least one selected from the group consisting of p-toluenesulfonic acid, its amine salt and boron trifluoride amine complex, according to any one of claims 1 to 6, Composition for sealing molding material. 前記(E−3)成分の含有量が、前記(B)成分100質量部に対し0.1〜10質量部である請求項1〜7のいずれか一項に記載の封止成形材料用組成物。   Content of the said (E-3) component is 0.1-10 mass parts with respect to 100 mass parts of said (B) components, The composition for sealing molding materials as described in any one of Claims 1-7 object. 請求項1〜8のいずれか一項に記載の封止成形材料用組成物により封止された素子を備える電子部品装置。   The electronic component apparatus provided with the element sealed by the composition for sealing molding materials as described in any one of Claims 1-8.
JP2017250132A 2017-08-28 2017-12-26 Composition for sealing molding material and electronic component device Pending JP2019116532A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017250132A JP2019116532A (en) 2017-12-26 2017-12-26 Composition for sealing molding material and electronic component device
CN201880030381.4A CN110603294B (en) 2017-08-28 2018-06-21 Molding material composition for sealing SiC and GaN elements, and electronic component device
PCT/JP2018/023651 WO2019044133A1 (en) 2017-08-28 2018-06-21 MOLDING COMPOSITION FOR SiC AND GaN ELEMENT SEALING, AND ELECTRONIC COMPONENT DEVICE
TW107121348A TWI696655B (en) 2017-08-28 2018-06-21 Molding material composition for sealing SiC and GaN elements, electronic parts device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250132A JP2019116532A (en) 2017-12-26 2017-12-26 Composition for sealing molding material and electronic component device

Publications (1)

Publication Number Publication Date
JP2019116532A true JP2019116532A (en) 2019-07-18

Family

ID=65527566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250132A Pending JP2019116532A (en) 2017-08-28 2017-12-26 Composition for sealing molding material and electronic component device

Country Status (4)

Country Link
JP (1) JP2019116532A (en)
CN (1) CN110603294B (en)
TW (1) TWI696655B (en)
WO (1) WO2019044133A1 (en)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298407A (en) * 1997-04-23 1998-11-10 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JP5895156B2 (en) * 2011-12-19 2016-03-30 パナソニックIpマネジメント株式会社 Thermosetting resin composition, sealing material and electronic component using them
JP6126837B2 (en) * 2012-12-21 2017-05-10 株式会社日本触媒 Liquid curable resin composition and use thereof
CN103265791B (en) * 2013-05-29 2015-04-08 苏州生益科技有限公司 Thermosetting resin composition for integrated circuit as well as prepreg and laminated board both fabricated by using composition
JP6185342B2 (en) * 2013-09-05 2017-08-23 信越化学工業株式会社 Encapsulant laminated composite, post-sealing semiconductor element mounting substrate or post-sealing semiconductor element forming wafer, and method for manufacturing semiconductor device
KR101668855B1 (en) * 2013-09-30 2016-10-28 주식회사 엘지화학 Thermosetting resin composition for semiconductor pakage and Prepreg and Metal Clad laminate using the same
US11535750B2 (en) * 2013-09-30 2022-12-27 Lg Chem, Ltd. Thermosetting resin composition for semiconductor package and prepreg and metal clad laminate using the same
JP2015147850A (en) * 2014-02-05 2015-08-20 住友ベークライト株式会社 Resin composition and semiconductor device
JP6710434B2 (en) * 2015-03-31 2020-06-17 三菱瓦斯化学株式会社 Cyanate ester compound, curable resin composition containing the compound and cured product thereof
JP2016224338A (en) * 2015-06-02 2016-12-28 株式会社ダイセル Antireflection material and method for producing the same
JP6794626B2 (en) * 2015-12-14 2020-12-02 住友ベークライト株式会社 Encapsulating resin composition, semiconductor device and in-vehicle electronic control unit
JP6168259B1 (en) * 2015-12-25 2017-07-26 住友ベークライト株式会社 Resin composition for sealing, and semiconductor device
JP6537188B2 (en) * 2016-02-19 2019-07-03 京セラ株式会社 Molding material for sealing and electronic component device
CA3018170A1 (en) * 2016-03-31 2017-10-05 Mitsubishi Gas Chemical Company, Inc. Cyanic acid ester compound, method for producing same, resin composition, cured product, prepreg, material for encapsulation, fiber-reinforced composite material, adhesive, metal foil-clad laminate, resin sheet, and printed circuit board
JP2017190396A (en) * 2016-04-13 2017-10-19 京セラ株式会社 Sealing resin sheet and method of manufacturing electronic component device

Also Published As

Publication number Publication date
TWI696655B (en) 2020-06-21
CN110603294A (en) 2019-12-20
CN110603294B (en) 2022-07-22
WO2019044133A1 (en) 2019-03-07
TW201912711A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
JP7356931B2 (en) Silicon carbide, gallium oxide, gallium nitride, and diamond element encapsulation molding material compositions, and electronic component devices
KR101149453B1 (en) Epoxy resin composition and semiconductor device
JP2008189827A (en) Thermosetting epoxy resin composition and semiconductor apparatus
TW200948846A (en) Epoxy-silicon mixed resin composition for sealing of light semiconductor element and transfer molding plate formed thereof
JP6614700B2 (en) Molding material for sealing and electronic component device
JP6497652B2 (en) Epoxy resin molding material for sealing and electronic parts
JP2018104683A (en) Composition for sealing molding material and electronic component device
TW201710383A (en) Liquid resin composition
JP6992967B2 (en) Compositions for encapsulation molding materials and electronic component equipment
KR20100130966A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP6794218B2 (en) Compositions for encapsulation molding materials and electronic component equipment
JP6537188B2 (en) Molding material for sealing and electronic component device
JP6537170B2 (en) Molding material for sealing and electronic component device
TWI814868B (en) Heat-curable resin composition for semiconductor encapsulation and semiconductor device
JP2013119588A (en) Epoxy resin composition for sealing electronic component and electronic component device using the same
JP6566349B2 (en) Epoxy resin molding material for sealing and electronic parts
JP2019116532A (en) Composition for sealing molding material and electronic component device
JP6611861B2 (en) Epoxy resin molding material for sealing and electronic parts
KR20180123976A (en) Epoxy resin composition and semiconductor device
JP6733950B2 (en) Molding material for sealing and electronic component device
JP2002194064A (en) Resin composition for encapsulating semiconductor and semiconductor device using the same
JP5944356B2 (en) Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
JP5943486B2 (en) Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
JP2013142136A (en) Flame-retardant liquid epoxy resin composition for encapsulating semiconductor and semiconductor device
JP6839114B2 (en) Thermosetting epoxy resin sheet for semiconductor encapsulation, semiconductor device, and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200824