TW200941171A - Flow control system - Google Patents

Flow control system Download PDF

Info

Publication number
TW200941171A
TW200941171A TW098101197A TW98101197A TW200941171A TW 200941171 A TW200941171 A TW 200941171A TW 098101197 A TW098101197 A TW 098101197A TW 98101197 A TW98101197 A TW 98101197A TW 200941171 A TW200941171 A TW 200941171A
Authority
TW
Taiwan
Prior art keywords
flow rate
flow
design
actual
exceeds
Prior art date
Application number
TW098101197A
Other languages
Chinese (zh)
Other versions
TWI384341B (en
Inventor
Satoshi Katsuragawa
Original Assignee
Yamatake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corp filed Critical Yamatake Corp
Publication of TW200941171A publication Critical patent/TW200941171A/en
Application granted granted Critical
Publication of TWI384341B publication Critical patent/TWI384341B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Flow Control (AREA)
  • Measuring Volume Flow (AREA)

Abstract

This invention determines whether an energy efficiency problem occurs in a quantitative way to promote energy saving. An actual flow measurement part 25B measures the actual flow QR of a fluid passing through the pipeline 13. An excessive flow integration part 25D is used to integrate the excessive amount Δ Q the actual flow QR exceeding the design flow QD at each excessive period when the actual flow QR exceeds the design flow QD. The integration value of excessive flow Σ ΔQ of the excessive flow is stored in the excessive flow integration value storage part 21 and displayed on the display part 17. By referencing the integration value of excessive flow Σ ΔQ, users can be informed in a quantitative way to what extent the system as designed can be used and to what extent the bias design can be used. In addition, by analyzing the integration value of excessive flow Σ ΔQ, to what extent the energy is wasted by the system and whether abnormality occurs can also be inspected.

Description

200941171 六、發明說明: 【發明所屬之技術領域】 本發明係有關-種流量控制系統,用以對流經流路之 流體的流量進行控制。 【先前技術】 習知’就此種流量控制系統而言’有對流向空調機的 熱媒(冷熱水)、流量進行控制之空調_,系統(例如,參 照專利文獻1、2)。在構建該空調控制系統之際,對供應 來自空調機的調和空氣之控制對象區域之空調負載的最大 量(最大空調負載)進行測量’料可消除該最大空調負 載的設備,例如需要選定流量控制閥等,以對熱源裝置、 空調機、及熱源裝置流向空調機的冷熱水供應量進行控制。 在此,如果將適合最大空調負載的能力選定成設計能 力,會有當在構建空調控制系統後進行性能檢驗時最大能 力低於所需之設計能力,或者在空調控制系統投入使用後 控制對象區域的空調負載增大而大於設計時的最大空調負 載等問題之虞。因此,基於安全考量,通常所選定的設備 具有比需要之設計能力多少具備裕度之最大能力。 專利文獻1 ··曰本特開平11 -2 11191號公報 專利文獻2:日本特開平〇6_272935號公報 【發明内容】 然而,在上述習知的空調控制系統,由於選定的設備 200941171 具有比需要之設計能力多少具備裕度之最大能力,所以在 能量效率方面存在問題。例如,若使流量控制閥的能力具 有裕度,則當想要對該流量控制閥進行開度控制時,全開 時會流過比設計流量多的最大流量,產生能量浪費的問 題。習知,並無以量化方式獲知該能量浪費之手段,故無 法判斷是否發生能量效率方面的問題,對於節能造成妨礙。 本發明,為解決上述問題,其目的在於提供一種流量 控制系統,能以量化方式判斷是否發生能量效率方面的問 〇 題、可促進節能。 為實現上述目的,本發明之流量控制系統,設置有: 閥體,用以調節流體流經之流路之開閉量;設計流量記憶 手段,用以儲存運用上之設計流量,該運用上之設計流量, 係設定為比該閥體之開度最大時流經該流路之流體流量小 之值;實際流量測量手段,用以測量流經該流路之流體之 實際流量;以及超過流量積算手段,將以該實際流量測量 手段測得之實際流量與儲存於該設計流量記憶手段之設計 ® 流量進行比較,以實際流量超過設計流量之期間作為實際 流量之超過期間,於每一該超過期間積算實際流量超過設 計流量之超過量。 根據本發明,可測量流經管路的流體之實際流量,並 能於流經該流路的流體之實際流量超過設計流量的每一超 過期間積算實際流量超過設計流量之超過量。在本發明, 藉由參照該超過流量之積算值,能以量化方式獲知系統以 設計的何種程度被應用、以何種程度偏離設計而被應用 5 200941171 等。又’藉由解析超過流量之積算值,能檢驗系統以何種 程度浪費能量、檢驗是否發生異常。 在本發明’每當實際流量超過設計流量時,於該實際 流量超過設計流量之期間積算實際流量超過設計流量之超 過量’作為連續超過流量,並在該連續超過流量之積算值 超過預定之閣值時輸出警報,從而能馬上確認發生超過流 量的異常狀態’而能快速採取相應對策。又,此時,如果 收到輸出之警報而強制將閥體之開度變更為關閉方向,以 減少流經流路之流體流量(例如減少至設計流量),則能 排除異常狀態,並謀求節能。 另外’本發明之流量控制系統,只要是使用閥體來控 制流體流量之系統,不局限於對空調機供應的熱媒流量進 行控制之空調控制系統的應用。藉由將本發明應用於空調 控制系統,當運用空調控制系統時,能通知能量的浪費或 發生異常之超過流量,可避免異常之超過流量,發揮保護 空調控制系統的作用。 又,^應用於空調控制系統時,可預先將冷水用設計 流量與熱水用設計流量儲存於設計流量記憶手段水用水 用,當使用空調機輸出冷氣時,選擇冷水用設計流量作為 設計流量,當㈣空調機輸出暖氣時,選擇熱水用設計流 量作為設計流量。有時設計流量在冷氣和暖氣情況下不 同’藉由將設計流量設置成冷水用設計流量和熱水用設計 流量兩種並可進行選擇,能在冷氣和暖氣時均能對超過流 量進行適當監控、發出警報、應對。 200941171 根據本發明,由於對流經管路之流體之實際流量進行 測量’並對流經該管路之流體之實際流量超過設計流量的 每一超過期間積算實際流量超過設計流量之超過量,因此 能藉由參照該超過流量之積算值,來以量化方式獲知系統 以設計的何種程度被應用、以何種程度偏離設計而被應用 等。又’藉由解析超過流量之積算值,能檢驗系統以何種 程度浪費能量、檢驗是否發生異常。 © 【實施方式】 以下,根據圖式針對本發明詳細加以說明。圖1係表 示應用了本發明之流量控制系統的空調控制系統之一例的 配置圖。 ❹ 圖1中,1為生成冷熱水的熱源機,2為輸送由熱源機 1生成的冷熱水的泵,3為混合來自複數個熱源機丨的冷熱 水的往水箱,4為往水管路,5為接收從往水箱3經由往水 管路4輸送來的冷熱水的供應的空調機,6為回水管路,7 為在空調機5中進行熱交換並經由回水管路6輸送的冷熱 水所返回的回水箱’ 8為對從往水箱3向空調機5供應的冷 熱水流量進行控制的流量控制閥,9為對從空調機5送來2 供氣的溫度進行測量的供氣溫度感測器,1〇為空調控制裝 置’ 11為空調機5的線圈,12為送風機。 在該空調控制系統,由泵2壓送並被熱源機i附加執 量的冷熱水,在往水箱3中混合,經由往水管路4被供應 到空調機5中,通過空調機5再藉由回水管路“乍為回水 7 200941171 而到達回水箱7’再度由泵2進行壓送,循環於上述路徑。 例如’當冷氣運轉時’以熱源機1生成冷水,使該冷水循 環》當暖氣運轉時,以熱源機1生成熱水,使該熱水循環。 空調機5,藉由冷熱水通過的線圈11,對從控制對象 區域返回到空調控制系統的空氣(回氣)與外氣的混合氣 進行冷卻或加熱,將該冷卻或加熱後的空氣作為供氣經由 送風機12送入控制對象區域。空調機5,係在冷氣運轉和 暖氣運轉下使用共通的線圈U之單一式空調機。 圖2係表示該空調控制系統的流量控制閥$的主要部 分。流量控制閥8具備:形成供通過空調機5的冷熱水流 入之流路之管路13、對流經該管路13之流體流量(流路的 開閉量)進行調節的閥體14、驅動該閥體14的馬達15、 將閥體14的實際開度作為閥開度0 pv而檢測的閥開度檢測 器16、顯示部17、與空調控制裝置10或監控裝置(未圖 示)之間作為通訊媒介的通訊介面18、19、設計流量儲存 4 20超過流量積算值儲存部21 '異常閾值儲存部22、將 管路13内的閥體14上游側的流體壓力作為一次壓力ρι而 檢測的一次側壓力感測器23、將管路13内的閥體14下游 側的流體壓力作為二次壓力p2而檢測的二次側壓力感測器 24、及處理部25。 處理部25具備:閥控制部25A、實際流量測量部25B、 設計流量超過通知部25C、超過流量積算部25d、連續超過 量積算部25E、連續超過流量積算值異常警報部25F、及 設計流量讀取部25G。該處理部25之閥控制部25A、實際 200941171 流量測量部25B、設計流量超過通知部25C、超過流量積算 部25D、連續超過流量積算部25E、連續超過流量積算值異 常警報部25F、設計流量讀取部25G,能以依照程式之CPU 的處理功能而實現。 此外,該實施形態,在設計流量儲存部2〇,儲存有冷 水用設計流量QDC和熱水用設計流量qdh,作為運用上之 設计流量。該冷水用設計流量QDC及熱水用設計流量 QDH,係定為在閥體14之開度最大時,小於流經管路^ 3 ® 之流體流量之值。冷水用設計流量QDC和熱水用設計流量 QDH基本上設定為不同之值,但亦有視情況而設定成相同 之值》另外,在異常閾值儲存部22,儲存有異常閾值cth, 以用於對後述的連續超過流量之積算值Σ △QC判斷其是否 異常之閾值。 以下,一邊穿插處理部25之各部的功能,一邊對該流 量控制閥8的特徵處理動作進行說明。又,此例係進行冷 氣運轉,藉由空調控制裝置1G向流量控制8通知其進行 冷氣運轉的模式訊號。又,為了將控制對象區域的溫度保 持為設定溫度’#由空調控制裝£ 1〇向流量控制閥8傳送 控制設定指令值0 SP (閥開度的指令值(0〜1〇〇%))。 在流量控制閥8,來自空調控制裝置1〇的通知為冷氣 的模式訊號,經由通訊介面18傳送至設計流量讀取部 25G。設計流量讀取部25G接收來自空調控制裝置ι〇的通 知為冷氣的模式訊號後’讀取儲存於設計流量储存部如之 冷水用設計流量QDC,並作為設計流量qd將其傳送至設 9 200941171 »十流量超過通知部 量積算部25Ε。 25C、超過流量積算部25D、 連續超過流 -值θ' :來自空調控制裝置1〇之控制設定指 Μ:接:來:訊介面18傳送至閥控制部25八。閥控制 从接收來自空調控制裝置1〇之控制設定指令… 後’以使來自閥開度檢測器16之表示閥體14的實際開度 之閥開度0PV與控制設定指令值⑼一致的方式,向馬達 15傳送驅動指令,以控制閥體14之開度。 在該閥體14之開度控制中,實際流量測量部25Β將來 自一次側壓域測器23的流體(冷水)的一次壓力Η、來 自二次側壓力感測器24的流體的二次壓力p2、及來自閥開 度檢測器16的閥開度5» pv作為輸入,根據這些參數計算出 流經管路13之流體之實際流量QR作為實際流量的測量 值,並將其算出的實際流量QR傳送至設計流量超過通知部 25C、超過流量積算部25D、連續超過流量積算部25E。 設計流量超過通知部25C,將來自實際流量測量部25b 的實際流量QR、與來自設計流量讀取部25G之設計流量 QD (冷水用設流量qdc )進行比較,當實際流量QR超 過設計流量QD時,在實際流量QR超過設計流量QD之期 間,向超過流量積算部25D及連續超過流量積算部25E傳 送設計流量超過通知訊號。 當從設計流量超過通知部25C傳來設計流量超過通知 訊號時,超過流量積算部25D求出來自實際流量測量部25B 的實際流量QR與來自設計流量讀取部25G之設計流量 200941171 ' 之差(實際流量QR超過設計流量QD的部分),作為超過 流量AQ,並對該超過流量AQ進行積算。超過流量積算部 25D,以産生設計流量超過通知訊號的全部期間為對象,進 行該超過流量AQ的積算。 由此,如圖3所示,將實際流量QR超過設計流量QD 之期間作為實際流量之超過期間T,於每一該超過時間T 積算實際流量QR超過設計流量QD之超過量,求出每一該 超過期間T的實際流量QR超過設計流量QD之超過量△ Q © 之積算值,作為超過流量之積算值藉由該超過流量 積算部25D求出的每一時刻之超過流量之積算值Σ 被 儲存到超過流量積算值儲存部21。又,儲存於超過流量積 算值儲存部21之超過流量之積算值Σ/XQ顯示於顯示部 17,並且經由通訊介面19輸出至空調控制裝置10與監控 裝置。 當從設計流量超過通知部25C傳來設計流量超過通知 訊號時,連續超過流量積算部25E求出來自實際流量測量 ® 部25B的實際流量QR、與來自設計流量讀取部25G之設計 流量QD之差(實際流量QR超過設計流量QD的部分), 作為超過流量△ QC,並對該超過流量△ QC進行積算。連續 超過流量積算部25E,在生成設計流量超過通知訊號之每一 期間,進行該超過流量△ QC的積算。 藉此,如圖4所示,將實際流量QR超過設計流量QD 之期間作為實際流量之超過期間T,於每一該超過期間T 求出實際流量QR超過設計流量QD之超過量△ QC之積算 11 200941171 值,作為連續超過流量之積算值該情況下,每於 進入新的超過期間τ,之前的連續超過流量之積算值2八 QC皆歸零,開始連續超過流量從零起的積算。藉由該連續 超過"il量積算部25E求出的每一時刻之連續超過流量之積 算值Σ △〇(:’傳送至連續超過流量積算值異常警報部25F。 連續超過流量積算值異常警報部25F,監控來自連績超 過流量積算部25E之連續超過流量之積算值SAQC,當該 速續超過流量之積算值2 Δ()(:超過儲存於異常閾值儲存部 22之異常閾值Cth時,輸出警報。來自該連續超過流量積 ❹ 算值異常警報部25F之警報,傳送至顯示部17以及閥控制 # 25A,並經由通訊介面19輸出至空調控制裝置1〇與監控 装置。 該情況下,在顯示部丨7顯示發生超過流量的異常狀 態。又,閥控制部25 A,接收來自連續超過流量積算值異常 警報部25F之警報,取得實際流量測量部乃的實際流量qr 及設計流量讀取部25G之設計流量QD,強制將閥體Μ之 開度變更為關閉方向,以使實際流量QR成為設計流量 ❹ QD。另外,如果連續超過流量之積算值Σ AQC低於異常閾 值Cth ’則解除來自連續超過流量積算值異常警報部25F之 警報輸出。該情況下,閥控制部25A的控制,係回到依照 來自空調控制裝置10之控制設定指令值Θ sp之開度控制。200941171 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a flow control system for controlling the flow rate of a fluid flowing through a flow path. [Prior Art] In the case of such a flow control system, there is a system (for example, refer to Patent Documents 1 and 2) for controlling the flow of heat medium (cold hot water) and flow rate to the air conditioner. When constructing the air conditioning control system, the maximum amount of air conditioning load (maximum air conditioning load) for supplying the control air region from the air conditioner is measured. The device that can eliminate the maximum air conditioning load, for example, the selected flow control is required. A valve or the like controls the amount of hot and cold water supplied to the air conditioner by the heat source device, the air conditioner, and the heat source device. Here, if the ability to fit the maximum air conditioning load is selected as the design capability, there is a design capability that is lower than the required capacity when the performance check is performed after the air conditioning control system is constructed, or the control target area is used after the air conditioning control system is put into use. The air conditioning load is increased and is greater than the maximum air conditioning load at the time of design. Therefore, based on security considerations, the equipment typically selected has the greatest margin of margin than the required design capability. [Patent Document 1] Japanese Patent Laid-Open No. Hei 6-272935 (Patent Document) However, in the above-described conventional air conditioning control system, since the selected device 200941171 has a need There is a problem in terms of energy efficiency in terms of how much design capability has the greatest margin. For example, if the capacity of the flow control valve is margined, when the flow control valve is desired to perform the opening control, the maximum flow rate more than the design flow rate flows during full opening, resulting in waste of energy. Conventionally, there is no means to quantify the waste of energy, so it is impossible to judge whether or not energy efficiency problems occur, which hinders energy conservation. The present invention has been made to solve the above problems, and an object thereof is to provide a flow rate control system capable of determining whether or not energy efficiency problems occur in a quantitative manner and promoting energy saving. In order to achieve the above object, the flow control system of the present invention is provided with: a valve body for regulating the opening and closing amount of a flow path through which a fluid flows; and a flow memory means for storing a design flow rate for use, the design of the operation The flow rate is set to a value smaller than the flow rate of the fluid flowing through the flow path when the opening degree of the valve body is maximum; the actual flow rate measuring means is used to measure the actual flow rate of the fluid flowing through the flow path; and the flow rate calculation means is exceeded. The actual flow measured by the actual flow measurement means is compared with the design flow rate stored in the design flow memory means, and the actual flow rate exceeds the design flow period as the actual flow excess period, and the actual time is accumulated in each of the excess periods. The flow exceeds the excess of the design flow. According to the present invention, the actual flow rate of the fluid flowing through the pipeline can be measured, and the actual flow rate can exceed the excess of the design flow rate during each excess period in which the actual flow rate of the fluid flowing through the flow passage exceeds the design flow rate. In the present invention, by referring to the integrated value of the excess flow rate, it is possible to quantitatively know how much the system is applied to the design and to what extent it deviates from the design. 5 200941171 and the like. In addition, by analyzing the integrated value of the excess flow rate, it is possible to check to what extent the system wastes energy and check whether an abnormality has occurred. In the present invention, 'when the actual flow exceeds the design flow, the actual flow exceeds the design flow during the period when the actual flow exceeds the design flow' as the continuous excess flow, and the integrated value of the continuous excess flow exceeds the predetermined value. When the value is output, the alarm can be immediately confirmed, and the abnormal state exceeding the flow rate can be confirmed immediately, and the corresponding countermeasure can be quickly taken. Further, at this time, if an alarm of the output is received and the opening degree of the valve body is forcibly changed to the closing direction to reduce the flow rate of the fluid flowing through the flow path (for example, to the design flow rate), the abnormal state can be eliminated and energy can be saved. . Further, the flow control system of the present invention is not limited to the application of the air conditioning control system for controlling the flow rate of the heat medium supplied from the air conditioner as long as it is a system for controlling the flow rate of the fluid using the valve body. By applying the present invention to an air conditioning control system, when the air conditioning control system is used, it is possible to notify the waste of energy or the abnormal flow exceeding the flow rate, thereby avoiding the abnormal flow exceeding the flow rate and functioning as a protection air conditioning control system. Moreover, when applied to the air conditioning control system, the design flow rate for cold water and the design flow rate for hot water can be stored in advance in the design flow memory means for water use, and when the air conditioner is used to output cold air, the design flow rate for cold water is selected as the design flow rate. When (4) the air conditioner outputs the heating, the design flow rate of the hot water is selected as the design flow rate. Sometimes the design flow is different in the case of air-conditioning and heating. 'By setting the design flow rate to the design flow rate for cold water and the design flow rate for hot water, you can choose to monitor the excess flow in both air-conditioning and heating. , issue an alarm, respond. 200941171 According to the present invention, since the actual flow rate of the fluid flowing through the pipeline is measured 'and the actual flow rate of the fluid flowing through the pipeline exceeds the design flow rate, the actual flow rate exceeds the design flow exceeds the design flow rate, so Referring to the integrated value of the excess flow rate, it is quantitatively known how much the system is applied to the design, to what extent it deviates from the design, and the like. In addition, by analyzing the integrated value of the excess flow rate, it is possible to check to what extent the system wastes energy and check whether an abnormality has occurred. © Embodiments Hereinafter, the present invention will be described in detail based on the drawings. Fig. 1 is a configuration diagram showing an example of an air conditioning control system to which the flow control system of the present invention is applied. ❹ In Fig. 1, 1 is a heat source machine for generating hot and cold water, 2 is a pump for conveying hot and cold water generated by the heat source unit 1, 3 is a water tank for mixing hot and cold water from a plurality of heat source units, and 4 is a water supply line. 5 is an air conditioner that receives supply of hot and cold water from the water tank 3 to the water line 4, 6 is a return water line, and 7 is a hot and cold water that is exchanged in the air conditioner 5 and transported through the return water line 6. The returned return water tank '8 is a flow rate control valve for controlling the flow rate of the hot and cold water supplied from the water tank 3 to the air conditioner 5, and 9 is a gas supply temperature sensing for measuring the temperature of the air supply from the air conditioner 5 The air conditioner control device 11 is a coil of the air conditioner 5, and 12 is a blower. In the air conditioning control system, the hot and cold water that is pumped by the pump 2 and added by the heat source unit i is mixed in the water tank 3, supplied to the air conditioner 5 via the water line 4, and passed through the air conditioner 5 again. The return water pipeline “乍回回水7 200941171 and arrives at the return water tank 7' is again pumped by the pump 2, and circulates in the above path. For example, 'When the air conditioner is running, the cold source water is generated by the heat source machine 1 to make the cold water circulation” During operation, hot water is generated by the heat source unit 1 to circulate the hot water. The air conditioner 5 returns air (return air) and outside air from the control target area to the air conditioning control system by the coil 11 through which the hot and cold water passes. The mixed gas is cooled or heated, and the cooled or heated air is supplied as a supply air to the control target area via the blower 12. The air conditioner 5 is a single type air conditioner that uses the common coil U in the cooling operation and the heating operation. Fig. 2 is a view showing a main portion of the flow rate control valve $ of the air conditioning control system. The flow rate control valve 8 is provided with a line 13 for forming a flow path through which the hot and cold water flows through the air conditioner 5, and a fluid flow for flowing through the line 13. The valve body 14 that adjusts the opening and closing amount of the flow path, the motor 15 that drives the valve body 14, and the valve opening degree detector 16 and the display unit 17 that detect the actual opening degree of the valve body 14 as the valve opening degree 0 pv The communication interface 18, 19 as a communication medium between the air conditioning control device 10 or the monitoring device (not shown), the design flow storage 4 20 exceeds the flow rate integrated value storage unit 21, the abnormal threshold value storage unit 22, and the inside of the pipeline 13 The primary side pressure sensor 23 that detects the fluid pressure on the upstream side of the valve body 14 as the primary pressure ρι, and the secondary side pressure that detects the fluid pressure on the downstream side of the valve body 14 in the line 13 as the secondary pressure p2 The sensor 24 and the processing unit 25. The processing unit 25 includes a valve control unit 25A, an actual flow rate measuring unit 25B, a design flow rate exceeding notification unit 25C, a flow rate integration unit 25d, a continuous excess amount integration unit 25E, and a continuous excess flow rate integration. The value abnormality alarm unit 25F and the design flow rate reading unit 25G. The valve control unit 25A of the processing unit 25, the actual 200941171 flow rate measurement unit 25B, the design flow rate exceeding notification unit 25C, the excess flow rate integration unit 25D, and the continuous flow rate product. The calculation unit 25E, the continuous excess flow rate integrated value abnormality alarm unit 25F, and the design flow rate reading unit 25G can be realized by the processing function of the CPU according to the program. In addition, in this embodiment, the flow rate storage unit 2 is configured to store cold water. The design flow rate Qdc and the hot water design flow rate qdh are used as the design flow rate in operation. The design flow rate QDC for cold water and the design flow rate QDH for hot water are set to be smaller than the flow tube when the opening degree of the valve body 14 is the largest. The value of the fluid flow rate of the road ^ 3 ® . The design flow rate QDC for cold water and the design flow rate QDH for hot water are basically set to different values, but are also set to the same value as the case may be. In addition, the abnormal threshold value storage unit 22 The abnormal threshold value cth is stored for determining whether or not the threshold value is abnormal for the continuous excess flow rate integrated value △ ΔQC to be described later. Hereinafter, the characteristic processing operation of the flow rate control valve 8 will be described while interpolating the functions of the respective units of the processing unit 25. Further, in this example, the air-conditioning operation is performed, and the air-conditioning control device 1G notifies the flow rate control 8 of the mode signal for performing the cooling operation. In addition, in order to maintain the temperature of the control target area at the set temperature '#, the control setting command value 0 SP (the command value of the valve opening degree (0 to 1〇〇%)) is transmitted to the flow rate control valve 8 by the air conditioning control device. . In the flow rate control valve 8, the mode signal from the air-conditioning control unit 1A that the cold air is notified is transmitted to the design flow rate reading unit 25G via the communication interface 18. The design flow reading unit 25G receives the mode signal from the air conditioning control device that is notified of the cold air, and then reads the design flow QDC stored in the design flow storage unit such as cold water, and transmits it to the design flow rate qd to the design 9 200941171 » Ten flow rate exceeds the notification unit volume calculation unit 25Ε. 25C. The flow rate accumulating unit 25D exceeds the flow-value θ' continuously: the control setting command from the air-conditioning control device 1 is connected: the interface 18 is transmitted to the valve control unit 25-8. The valve control is configured such that the valve opening degree 0PV indicating the actual opening degree of the valve body 14 from the valve opening degree detector 16 coincides with the control setting command value (9) after receiving the control setting command from the air conditioning control device 1 A drive command is transmitted to the motor 15 to control the opening degree of the valve body 14. In the opening degree control of the valve body 14, the actual flow rate measuring unit 25 一次 sets the primary pressure 流体 of the fluid (cold water) from the primary side pressure domain detector 23, and the secondary pressure of the fluid from the secondary side pressure sensor 24 P2, and the valve opening degree 5»pv from the valve opening degree detector 16 as an input, based on these parameters, the actual flow rate QR of the fluid flowing through the line 13 is calculated as the measured value of the actual flow rate, and the actual flow rate QR is calculated. The transmission to the design flow rate exceeding notification unit 25C, the excess flow rate integration unit 25D, and the continuous flow rate integration unit 25E are continuously performed. The design flow rate exceeds the notification unit 25C, and compares the actual flow rate QR from the actual flow rate measuring unit 25b with the design flow rate QD (cold water set flow rate qdc) from the design flow rate reading unit 25G, when the actual flow rate QR exceeds the design flow rate QD. While the actual flow rate QR exceeds the design flow rate QD, the design flow rate exceeding notification signal is transmitted to the excess flow rate integrating unit 25D and the continuous excess flow rate integrating unit 25E. When the design flow rate exceeds the notification signal from the design flow rate exceeding notification unit 25C, the excess flow rate integrating unit 25D obtains the difference between the actual flow rate QR from the actual flow rate measuring unit 25B and the design flow rate 200941171' from the design flow rate reading unit 25G ( The actual flow rate QR exceeds the portion of the design flow rate QD), and the flow rate AQ is exceeded, and the excess flow rate AQ is integrated. The flow rate integration unit 25D exceeds the total period in which the design flow rate exceeds the notification signal, and the total flow rate AQ is accumulated. As a result, as shown in FIG. 3, the period in which the actual flow rate QR exceeds the design flow rate QD is taken as the excess flow period T of the actual flow rate, and the excess flow amount of the actual flow rate QR exceeds the design flow rate QD is accumulated for each of the excess time T, and each is obtained. The actual flow rate QR of the excess period T exceeds the integrated value of the excess amount Δ Q © of the design flow rate QD, and the integrated value of the excess flow rate at each time obtained by the excess flow rate integrating unit 25D is calculated as the integrated value of the excess flow rate. It is stored in the excess flow integrated value storage unit 21. Further, the integrated value Σ/XQ stored in the excess flow rate exceeding the flow rate integrated value storage unit 21 is displayed on the display unit 17, and is output to the air conditioning control device 10 and the monitoring device via the communication interface 19. When the design flow rate exceeds the notification signal from the design flow rate exceeding notification unit 25C, the continuous flow rate integration unit 25E calculates the actual flow rate QR from the actual flow rate measurement unit 25B and the design flow rate QD from the design flow rate reading unit 25G. The difference (the portion where the actual flow rate QR exceeds the design flow rate QD) is exceeded as the flow rate ΔQC, and the excess flow rate ΔQC is integrated. The flow rate integration unit 25E continuously exceeds the flow rate ΔQC for each period in which the design flow rate exceeds the notification signal. As a result, as shown in FIG. 4, the period in which the actual flow rate QR exceeds the design flow rate QD is taken as the excess flow period T of the actual flow rate, and the total flow rate QR exceeds the excess amount ΔQC of the design flow rate QD for each of the excess periods T. 11 200941171 Value, as the integrated value of the continuous excess flow rate. In this case, the accumulated value of the previous continuous excess flow rate is returned to zero every time the new excess period τ is entered, and the continuous integration of the flow rate from zero is started. The cumulative value of the continuous excess flow rate at each time obtained by the continuous excess "il quantity integrating unit 25E Σ Δ〇 (: 'transferred to the continuous excess flow rate integrated value abnormality alarm unit 25F. Continuously exceeds the flow rate integrated value abnormality alarm The portion 25F monitors the integrated value SAQC of the continuous excess flow rate from the continuous flow exceeding the flow rate integrating unit 25E, and when the speed exceeds the integrated value of the flow rate 2 Δ() (: exceeds the abnormal threshold Cth stored in the abnormal threshold value storage unit 22, The alarm is output, and the alarm from the continuous excess flow rate calculation value abnormality alarm unit 25F is transmitted to the display unit 17 and the valve control #25A, and is output to the air conditioning control device 1A and the monitoring device via the communication interface 19. The display unit 7 displays an abnormal state in which the flow rate is exceeded. The valve control unit 25A receives an alarm from the continuous excess flow rate integrated value abnormality alarm unit 25F, and obtains the actual flow rate qr and the design flow rate reading by the actual flow rate measuring unit. The design flow rate QD of the part 25G is forcibly changing the opening degree of the valve body to the closing direction, so that the actual flow rate QR becomes the design flow rate ❹ QD. The accumulated value of the excess flow rate Σ AQC is lower than the abnormal threshold value Cth', and the alarm output from the continuous excess flow rate integrated value abnormality alarm unit 25F is released. In this case, the control of the valve control unit 25A is returned to the air conditioning control device 10 The control setting command value Θ sp opening degree control.

由以上的說明可知’根據本實施形態,由於對流經管 絡13之流體之實際流量QR進行測量,並對流經該管路u 之流體之實際流量qR超過設計流量qD的每—超過期間T 12 200941171 * 積算實際流量QR超過設計流量QD之超過量△ q,將該超 過流量之積算值ΣΔΟ顯示於顯示部17、傳送至空調控制 裝置10與監控裝置,因此,藉由參照超過流量之積算值乙 Δ Q ’能以量化方式獲知系統以設計的何種程度被運用、以 何種程度偏離設計而被應用等。又,藉由解析超過流量之 積算值Σ △Q,能檢驗系統以何種程度浪費能量、檢驗是否 發生異常。 又,根據本實施形態’由於每當實際流量qR超過設計 © 流量QD時,於該實際流量qR超過設計流量QD之期間積 算實際流量QR超過設計流量QD之超過量△ qC,作為連續 超過流量,並在該連續超過流量之積算值超過異常 閾值Cth時輸出警報,將該内容顯示於顯示部I?、傳送至 空調控制裝置10與監控裝置,因此能馬上確認發生超過流 量的異常狀態,從而能快速採取相應對策。 另外,根據本實施形態,由於當連續超過流量之積算 值Σ △ QC超過異常閾值Cth時輸出警報,強制將閥體14 ® 之開度變更為關閉方向,以使流經管路13之流體流量減少 至設計流量QD,因此能排除異常狀態,並能謀求節能。 此外,在上述說明,雖以從空調控制裝置1〇向流量控 制閥8傳送通知為冷氣的模式訊號作為前提但在從空調 控制裝置10向流量控制閥8傳送通知為暖氣的模式訊號的 情況下,也進行同樣的處理動作。該情況下,設計流量讀 取邓25G讀取儲存於設計流量儲存部2〇之熱水用設計流量 QDH ’作為設計流量QD,傳送至設計流量超過通知部25c、 13 200941171 超過流量積算部25D、連續超過流量積算部25E。 又,在上述實施形態,從空調押备丨 M Q你 制裝置10向流量控制 闕8傳送通知為冷嫌㈣模式訊號,“能檢測管路π :的流體溫度,在流量控制閥8根據該溫度進行冷氣/暖氣 的判斷。 又,在上述實施形態,當連續超過流量之積算值ς△ QC超過異常閾值cth時,強制蔣關練,1 將閥體14之開度變更為關 才]方向’以使流經管路13之流體湳蚤、法小^ 巩體流量减少至設計流量QD, 但並非一定要減少至設計流量 „ ^ 例如亦可使閥體14之 開度僅關閉既定開度量。 另外’在上述實施形態,雖藉由間控制部Μ進行闊 體“之開度控制,但亦可根據由實際流量測量部25B測量 =際流量QR進行流量控制。此時,控制設^指令值心 “乂閥開度的指令值,而是以流量的指令值(〇〜1〇〇%) 從空調控制裝置1〇傳送,以與該控制設定指令值“p 一致 =方式進行流量控制,但此時也可採取對實際流量qr超過 叹計流量QD之超過量進行積算,能獲得同樣的效果。 【圖式簡單說明】 圖1係、表示應用了本發明之流量控制系統的空調控制 糸純之—例的配置圖。 圖2係表示該空調控制系統所使用之流量控 要部分。 圖3係說明在該流量控制閥之超過流量積算部對超過 200941171 流量進行積算的情況。 圖4係說明在該流量控制閥之連續超過流量積算部對 連續超過流量進行積算的情況。As apparent from the above description, according to the present embodiment, the actual flow rate QR of the fluid flowing through the pipe 13 is measured, and the actual flow rate qR of the fluid flowing through the pipe u exceeds the design flow rate qD per-over period T 12 200941171 * The accumulated actual flow rate QR exceeds the excess amount Δ q of the design flow rate QD, and the integrated value ΣΔΟ of the excess flow rate is displayed on the display unit 17 and transmitted to the air conditioning control device 10 and the monitoring device. Therefore, by referring to the integrated value of the excess flow rate, ΔQ' can quantitatively know how much the system is used in design, to what extent it deviates from the design, and so on. Further, by analyzing the integrated value Σ ΔQ exceeding the flow rate, it is possible to check to what extent the system wastes energy and check whether an abnormality has occurred. Further, according to the present embodiment, since the actual flow rate qR exceeds the design flow rate QD every time the actual flow rate qR exceeds the design flow rate QD, the actual flow rate QR exceeds the design flow rate QD by the excess amount ΔqC, as the continuous excess flow rate. When the integrated value of the continuous excess flow rate exceeds the abnormal threshold Cth, an alarm is output, and the content is displayed on the display unit I? and transmitted to the air-conditioning control device 10 and the monitoring device. Therefore, it is possible to immediately confirm that an abnormal state exceeding the flow rate has occurred, thereby enabling Take appropriate countermeasures quickly. Further, according to the present embodiment, when the integrated value Σ Δ QC exceeding the flow rate exceeds the abnormal threshold Cth, an alarm is output, and the opening degree of the valve body 14 ® is forcibly changed to the closing direction to reduce the flow rate of the fluid flowing through the line 13 By designing the flow rate QD, it is possible to eliminate abnormal conditions and to save energy. In addition, in the above description, the mode signal indicating that the air is sent from the air-conditioning control device 1 to the flow rate control valve 8 is premised, but when the air-conditioning control device 10 transmits the mode signal indicating that the heating is transmitted to the flow rate control valve 8, The same processing action is also performed. In this case, the design flow reading Deng 25G reads the hot water design flow rate QDH′ stored in the design flow storage unit 2 as the design flow rate QD, and transmits it to the design flow rate exceeding notification unit 25c, 13 200941171 to exceed the flow rate integrating unit 25D, The flow rate integration unit 25E is continuously exceeded. Further, in the above embodiment, the air conditioner 丨MQ device 10 transmits a notification to the flow control unit 8 as a cold (four) mode signal, "can detect the fluid temperature of the line π: according to the temperature of the flow control valve 8 Further, in the above embodiment, when the integrated value ς Δ QC of the continuous flow rate exceeds the abnormal threshold cth, the Jiang Guanlian is forced to change the opening degree of the valve body 14 to the "direction". The flow rate of the fluid enthalpy and the flow through the line 13 is reduced to the design flow rate QD, but it is not necessarily reduced to the design flow rate. For example, the opening degree of the valve body 14 can also be closed only by the predetermined opening metric. Further, in the above-described embodiment, the opening control of the wide body is performed by the inter-control unit ,, but the flow rate control may be performed based on the measurement of the inter-flow rate QR by the actual flow rate measuring unit 25B. At this time, the control command value is set. The heart "the command value of the valve opening degree is transmitted from the air-conditioning control device 1" with the command value of the flow rate (〇~1〇〇%), and the flow rate control is performed in accordance with the control setting command value "p". At this time, it is also possible to obtain the same effect by integrating the actual flow rate qr over the excess flow rate QD, and the same effect can be obtained. [Simplified Schematic] FIG. 1 is a view showing the air conditioning control of the flow control system to which the present invention is applied. Fig. 2 is a view showing a flow control portion used in the air conditioning control system. Fig. 3 is a view showing a case where the flow rate control unit exceeds the flow rate of 200941171 in the flow rate control unit. In the case where the flow rate control valve continuously exceeds the flow rate integrating unit, the flow rate is continuously exceeded.

【主要元件符號說明】 1 熱源機 2 泵 3 往水箱 4 往水管路 5 空調機 6 回水管路 7 回水箱 8 流量控制閥 9 供氣溫度感測器 10 空調控制裝置 11 線圈 12 送風機 13 管路 14 閥體 15 馬達 16 閥開度檢測器 17 顯示部 18、19 通訊介面 20 設計流量儲存部 15 200941171[Main component symbol description] 1 Heat source machine 2 Pump 3 to water tank 4 to water line 5 Air conditioner 6 Return water line 7 Back water tank 8 Flow control valve 9 Air supply temperature sensor 10 Air conditioning control device 11 Coil 12 Air blower 13 Pipe 14 Valve body 15 Motor 16 Valve opening detector 17 Display unit 18, 19 Communication interface 20 Design flow storage unit 15 200941171

21 22 23 24 25 25A 25B 25C 25D 25E 25F 25G 超過流量積算值儲存部 異常閾值儲存部 一次侧壓力感測器 二次側壓力感測器 處理部 闊控制部 實際流量測量部 設計流量超過通知部 超過流量積算部 ❹ 連續超過流量積算部 連續超過流量積算值異常警報部 設計流量讀取部21 22 23 24 25 25A 25B 25C 25D 25E 25F 25G Overflow flow total value storage unit abnormal threshold value storage unit primary side pressure sensor secondary side pressure sensor processing unit wide control unit actual flow rate measurement unit design flow rate exceeding notification unit Flow rate calculation unit 连续 Continuously exceeds the flow rate calculation unit and continuously exceeds the flow rate integrated value abnormality alarm unit design flow reading unit

1616

Claims (1)

200941171 七、申請專利範圍: 1 · 一種流量控制系統,其特徵在於,具備: 閥體,用以調節流體流經之流路之開閉量; 設計流量記憶手段,用以儲存運用上之設計流量,該 運用上之設計流量,係設定為比該閥體之開度最大時流經 該流路之流體流量小之值; 實際流量測量手段,用以測量流經該流路之流體之實 際流量;以及 φ 超過流量積算手段,將以該實際流量測量手段測得之 實際流量與儲存於該設計流量記憶手段之設計流量進行比 較,以實際流量超過設計流量之期間作為實際流量之超過 期間,於每一該超過期間積算實際流量超過設計流量之超 過量。 2 ·如申請專利範圍第1項之流量控制系統,其具備警 報輸出手段,每當以該實際流量測量手段測得之實際流量 超過儲存於該設計流量記憶手段之設計流量時,於該實際 Ο 流量超過設計流量之期間積算實際流量超過設計流量之超 過量,作為連續超過流量,並在該連續超過流量之積算值 超過預定之閾值時輸出警報。 3 ·如申請專利範圍第2項之流量控制系統,其具備接 收從該警報輸出手段輸出之警報後,將該閥體之開度強制 變更為關閉方向以減少流經該流路之流體流量之手段。 4 ·如申請專利範圍第1至3中任一項之流量控制系 統,其中,該閥體係設置於向空調機供應熱媒之供應通路。 17 200941171 5 ·如申請專利範圍第4項之流量控制系統,其中,該 設計流量記憶手段,於使用該空調機供應冷氣時係選擇冷 水用設計流量作為該設計流量加以儲存,於使用該該空調 機供應暖氣時選擇熱水用設計流量作為該設計流量加以儲 存。 八、圖式:200941171 VII. Patent application scope: 1 · A flow control system, characterized in that: a valve body for regulating the opening and closing amount of a flow path through which a fluid flows; and a flow memory means for storing a design flow rate for use; The design flow rate in the operation is set to a value smaller than the flow rate of the fluid flowing through the flow path when the opening degree of the valve body is the largest; the actual flow rate measuring means for measuring the actual flow rate of the fluid flowing through the flow path; φ exceeds the flow totalizer, and compares the actual flow measured by the actual flow measurement means with the design flow stored in the design flow memory means, and the actual flow exceeds the design flow period as the actual flow excess period, The excess period accumulates the actual flow rate exceeding the excess of the design flow rate. 2 · The flow control system of claim 1 of the patent scope has an alarm output means, and the actual flow rate measured by the actual flow measurement means exceeds the design flow rate stored in the design flow memory means, When the flow rate exceeds the design flow period, the actual flow rate exceeds the design flow exceeds the design flow rate as a continuous excess flow rate, and an alarm is output when the integrated value of the continuous excess flow rate exceeds a predetermined threshold value. 3. The flow control system of claim 2, which is configured to receive an alarm outputted from the alarm output means, forcibly changing the opening degree of the valve body to a closing direction to reduce the flow rate of the fluid flowing through the flow path. means. The flow control system according to any one of claims 1 to 3, wherein the valve system is provided in a supply passage for supplying a heat medium to the air conditioner. 17 200941171 5 · The flow control system of claim 4, wherein the design of the flow memory means, when the air conditioner is used to supply the cold air, selects the design flow rate of the cold water as the design flow for storage, and uses the air conditioner When the machine supplies heating, the hot water is selected to be stored as the design flow rate. Eight, the pattern: (如次頁) 18(such as the next page) 18
TW098101197A 2008-03-31 2009-01-14 Flow control system TWI384341B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089907A JP4885901B2 (en) 2008-03-31 2008-03-31 Flow control system

Publications (2)

Publication Number Publication Date
TW200941171A true TW200941171A (en) 2009-10-01
TWI384341B TWI384341B (en) 2013-02-01

Family

ID=41155533

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098101197A TWI384341B (en) 2008-03-31 2009-01-14 Flow control system

Country Status (4)

Country Link
JP (1) JP4885901B2 (en)
KR (1) KR101077422B1 (en)
CN (1) CN101551151B (en)
TW (1) TWI384341B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668548B (en) * 2018-02-13 2019-08-11 Scientech Corporation Fluid control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907896B (en) * 2010-08-03 2012-06-06 温州大学 Multifunctional intelligent combined flow measuring and controlling instrument
KR101220997B1 (en) * 2011-01-14 2013-02-07 주식회사 코텍 The flow detect type heating control system
US9897359B2 (en) * 2012-01-18 2018-02-20 Mitsubishi Electric Corporation Air-conditioning apparatus
JP6557618B2 (en) * 2016-03-02 2019-08-07 アズビル株式会社 Flow control device
JP7245600B2 (en) * 2016-12-15 2023-03-24 株式会社堀場エステック Flow control device and program for flow control device
TWI645137B (en) * 2017-02-21 2018-12-21 群光電能科技股份有限公司 Method of controlling pump of air conditioning system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448473B2 (en) * 1997-10-29 2003-09-22 三洋電機株式会社 Air conditioner
JP3592117B2 (en) * 1999-01-18 2004-11-24 東洋計器株式会社 Gas meter with multiple electronic counters
WO2003052326A1 (en) * 2001-12-14 2003-06-26 Mitsubishi Denki Kabushiki Kaisha Air conditioner
AU2003249029A1 (en) * 2002-07-15 2004-02-02 Aviza Technology, Inc. Control of a gaseous environment in a wafer loading chamber
JP3783859B2 (en) * 2002-07-19 2006-06-07 日立プラント建設株式会社 Air conditioning equipment and control method thereof
US7073392B2 (en) * 2002-07-19 2006-07-11 Celerity, Inc. Methods and apparatus for pressure compensation in a mass flow controller
US6882924B2 (en) * 2003-05-05 2005-04-19 Precision Engine Controls Corp. Valve flow control system and method
US6973375B2 (en) * 2004-02-12 2005-12-06 Mykrolis Corporation System and method for flow monitoring and control
JP2005337726A (en) * 2004-05-24 2005-12-08 Aichi Tokei Denki Co Ltd Gas flowmeter
CN201003835Y (en) * 2006-12-12 2008-01-09 重庆爱尔建筑节能技术有限公司 Energy saving controller for central air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668548B (en) * 2018-02-13 2019-08-11 Scientech Corporation Fluid control device
CN110159928A (en) * 2018-02-13 2019-08-23 辛耘企业股份有限公司 Fluid control device
CN110159928B (en) * 2018-02-13 2021-04-20 辛耘企业股份有限公司 Fluid control device

Also Published As

Publication number Publication date
JP2009245094A (en) 2009-10-22
KR20090104651A (en) 2009-10-06
CN101551151A (en) 2009-10-07
JP4885901B2 (en) 2012-02-29
KR101077422B1 (en) 2011-10-26
CN101551151B (en) 2013-09-25
TWI384341B (en) 2013-02-01

Similar Documents

Publication Publication Date Title
TW200941171A (en) Flow control system
JP5066474B2 (en) Flow control system
US10635120B2 (en) Method for operating and/or monitoring an HVAC system
JP5261170B2 (en) Thermal load processing system and heat source system
DK2936003T3 (en) Method and devices for balancing a group of consumers in a fluid transport system
JP2009030823A (en) Air conditioning control system and air conditioning control method
CN105318772A (en) Method for limiting a supply flow in a heat transfer system
JP2007327725A (en) Heat pump type water heater
JP4173973B2 (en) Number control device and number control method for heat source equipment
EP2784402B1 (en) Heat pump water heater
JP6305956B2 (en) Rotary valve
KR101965848B1 (en) Variable control heat exchange heat pump system using water source
JP5261153B2 (en) Heat source system
JP4925885B2 (en) Flow rate measurement method for piping system equipment
JP6685602B2 (en) Air conditioning system
JP2009019842A (en) Water delivery control system and water delivery control method
JP2006250445A (en) Operation control method in two pump-type heat source equipment
JP5414648B2 (en) Combined combustion device
JP6832732B2 (en) Refrigeration system
JP2010270967A (en) Air conditioning system, and method and device of controlling air conditioning system
JP5523918B2 (en) Refrigeration system
JP2009121722A (en) Water supply pressure control system and method
KR200457915Y1 (en) System for Cooling with Transformer
JP2015170021A (en) Flow controller and flow controlling method
CN117345631B (en) Vacuum pump rotor movement gap monitoring method, control method and vacuum pump